
IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING 1

Automated Formal Verification of Routing

in Material Handling Systems
Thomas Klotz, Student Member, IEEE, Jens Schönherr, Norman Seßler, Bernd Straube, and Karsten Turek

Abstract—The design of correctly implemented controls
in material handling systems (MHS) is time consuming and
cumbersome. The developer has to deal with an ever increasing
complexity and heterogeneity of MHS on the one hand, but also
with short development cycles and high demands to MHS on the
other hand. For baggage handling systems (BHS) at airports, the
error-free implementation of routing strategies is especially of
importance, as these strategies are critical to safety. This paper
proposes a compositional approach to the formal verification
of routing in MHS. The approach is based on the theory of
assume-guarantee reasoning, where proofs of the overall system
are derived from proofs of subsystems. Moreover, the approach
has been implemented in a tool that automatically carries out
the verification. A real-world example is discussed in the paper,
showing the benefits and scalability of the presented approach.

Note to Practitioners— Routing strategies in MHS such as BHS
at airports can be complex, and thus, their implementation is
tedious and error-prone. Currently, these systems are simulated
to validate their control strategies, and then implemented on
real equipment. With this, however, only a limited number of
test cases is considered, and hence, routing errors may stay
undetected. This paper proposes an approach to automatically
prove the correctness of routing strategies in MHS by means of
formal verification. A main difficulty of the formal verification
of real-world MHS is the so-called state space explosion, i.e.
the model to be verified has too many states. To also apply
formal verification to these systems, a compositional approach
is presented which allows to verify system properties with
regard to routing in a reasonable amount of time. A case
study shows the application of the approach to the BHS of an
international airport. A number of properties with respect to
routing functionality have been proven automatically for this
system, for instance, no unclear or unidentified bags reach an
airplane. Furthermore, the proposed approach is not restricted
to routing only and can be extended for other system properties.

Index Terms—material handling systems (MHS), baggage han-
dling systems (BHS), routing, formal verification, model checking

Manuscript received May 16, 2013; revised July 24, 2013; accepted July 30,
2013. This paper was recommended for publication by Associate Editor
T. Nishi and Editor M. C. Zhou upon evaluation of the reviewers’ comments.
This work was partially supported by the German Research Foundation under
Grant STR 412/4-1 and Grant SCHM 2689/3-1. This paper was presented in
part at the Eight IEEE International Conference on Automation Science and
Engineering, Seoul, South Korea. (Corresponding author: T. Klotz.)

T. Klotz, N. Seßler, and B. Straube are with the Fraunhofer
Institute for Integrated Circuits, Design Automation Division, Dres-
den 01069, Germany (e-mail: thomas.klotz@eas.iis.fraunhofer.de; nor-
man.sessler@eas.iis.fraunhofer.de; bernd.straube@eas.iis.fraunhofer.de).

J. Schönherr is with the Dresden University of Applied Sciences, Dres-
den 01069, Germany (e-mail: schoenherr@htw-dresden.de).

K. Turek is with the Institute of Material Handling and Industrial Engi-
neering, Technische Universität Dresden, Dresden 01062, Germany (e-mail:
karsten.turek@tu-dresden.de).

I. INTRODUCTION

TODAY, material handling systems (MHS) controlling the

flow of goods play an important role in most industries.

Moreover, they are a crucial factor in the overall production

of goods. With the rising degree of automation, especially

in manufacturing and distribution, the impact of material

handling will increase even further in the future. In a typical

manufacturing plant, material handling accounts for 25% of all

employees, 55% of all company space, 87% of the production

time, and 15–70% of the total cost of a product [1]. Hence,

there are strong demands on MHS: beside being cost-efficient

and having a large throughput, they are expected to be free of

design errors, safe, highly available, but also flexible.

A common field of application of MHS are baggage han-

dling systems (BHS) at airports. There, conveyor lines span

up to hundreds of kilometers, consist of tens of thousands of

conveyor segments and transport more than twenty thousand

pieces of luggage per hour. The ongoing globalization process

and the fact that more and more people travel result in

ever-increasing demands to these systems. However, due to

the AEA consumer report for January–June 2012 [2], these

demands have not been completely fulfilled. As a consequence,

1.7 million travelers had to wait for their delayed luggage at

European airports.

In BHS, especially the implementation of complex routing

strategies is cumbersome and error-prone as these strategies

have to deal with load balancing, alternative paths in case of

a failure, several levels of security checks, etc. In addition,

routing can partially be implemented based on local strategies

on programmable logic controller level and based on global

strategies provided by the material flow control. In conclu-

sion, the correct implementation of these routing strategies is

crucial, non-trivial, and safety-critical.

By validating the MHS using simulation, design errors can

be found depending on the considered test cases. However, the

absence of such errors cannot be verified. Model checking [3]

as a formal method, though, provides a general means to prove

the correctness of the system with regard to its specification.

The authors of this paper proposed a modeling methodology

for MHS [4] that allows for the formal verification of these

systems. In this methodology, the MHS is modeled using so-

called MHS elements. Each of these elements is a finite state

model of a technical MHS component. By interconnecting

these elements, a formal model of the MHS is built, which

thereafter can be fed into a model checker to check the speci-

fied properties on the model. With this, requirements to MHS

can be automatically proven. Unfortunately, the verification

using this methodology has been hampered because it could

2 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING

only be applied to MHS of a moderate size. On the other

hand, real-world MHS may consist of thousands of interacting

components and their controls, i.e. their corresponding formal

models may be complex and large.

To also verify real-world MHS, a compositional approach

for the verification of MHS has been developed and is pre-

sented in this paper. The approach is based on the theory

of assume-guarantee reasoning (AGR) which allows to derive

properties of the overall system from proving properties of its

subsystems. Therefore, the MHS is partitioned into subsystems

that are subsequently verified separately. A challenge in AGR

is to determine appropriate assumptions about a subsystem

in order succeed with a proof. The proposed approach has

specifically been developed for the verification of MHS, where

such assumptions can automatically be computed. This paper

focuses on the verification of routing in MHS; the general idea,

though, can also be considered for checking other properties.

The rest of the paper is organized as follows: Section II

gives an overview on recent related work. Then, a brief

background in model checking and compositional verification

is given in Section III. The modeling methodology for MHS is

revisited in Section IV. Next, a novel compositional approach

to the verification of routing in MHS is thoroughly explained

in Section V. The application of the approach to formally

verify routing is shown first with an illustrative example and

second by considering the BHS of an international airport, as

a real-world case study, in Section VI. Finally, Section VII

summarizes the work and provides pointers for future work.

II. RELATED WORK

The existing related work and the aim of this work is

classified using the VDI guideline 3628 [5]. This guideline

provides a definition for the abstraction layers of the control

of automated MHS:

• Administration Planning

• Warehouse Management System

• Material Flow Control System

• Conveying Segment Control

• Conveying Group Control

• Conveying Element Control

Administration planning (HOST) includes the storage of

central data, e.g. about incoming deliveries, orders, total stock.

The warehouse management system (WMS) controls and

monitors the movement and storage of goods in a warehouse,

which includes e.g. choosing of storage and retrieval strategies.

The material flow control system (MFCS) controls and opti-

mizes transports, and continually monitors the availability of

the existing material handling equipment. Conveying segment

control (CSC), conveying group control (CGC), and conveying

element control (CEC) hierarchically control the conveying

system by reading inputs from sensors and writing outputs

to actuators. The latter task is typically implemented using

programmable logic controllers (PLCs).

Petri nets (PNs) have been utilized for the analysis of MHS

at a high level of abstraction (HOST, WMS), e.g. for modeling

supply chains and workflows, schedulability analysis, stochas-

tic evaluation, see for instance [6]–[11]. Contrary, this paper

aims at the verification of the layer MFCS and the conveying

controls, i.e. considers a lower level of abstraction.

PNs have also been employed to verify routing in automated

guided vehicle systems (AGVS). These systems employ a

number of driver-less vehicles to transport goods or material

following certain guide-paths. A central control assigns routes

and tasks to the vehicles. Dispatching and routing in AGVS

is more complex than in conveyor systems because all vehi-

cles may change their initial positions. Hence, approaches to

prevent deadlocks [12]–[14] and to find shortest routes [15]

in AGVS have been proposed. To deal with computational

complexity, decomposition [16], [17] has been applied.

The formal verification of PLC programs has been tackled

by a plethora of work in the last two decades [18]. Most

work has been done with regard to the formalization of

PLC code according to IEC 61131-3 [19], e.g. for ladder

diagrams (LD) [20]–[22], instruction lists (IL) [23]–[25],

function block diagrams (FBD) [26], and sequential function

charts (SFC) [27]–[30]. More recently, also model-based ap-

proaches to the verification of PLCs gained interest [31]–

[33]. On the other hand, the verification of single PLCs

only captures local behavior. Thus, global properties of an

MHS, e.g. with regard to deadlock freedom or correctly

implemented routing algorithms, cannot be analyzed at this

level of abstraction.

Ljungkrantz et al. [34] proposed the concept of reusable

automation components. Each component consists of an im-

plementation as well as a mathematical specification. This

specification is formulated using a special type of LDs that

are augmented with temporal logic. This ensures that each

component can be verified and maintained separately, but the

overall system behavior that is given by the interaction and

composition of the components is not taken into account.

Another related field is the verification of routing algo-

rithms implemented in communication networks. Renesse and

Aghvami [35] showed how to formally verify a five node

network using the SPIN model checker. The state space

explosion seems to hamper the application to larger networks.

Camara et al. [36] proposed an approach to the verification

of mobile ad-hoc networks. However, these approaches are

not applicable to the verification of MHS, as the underlying

models are too abstract and not appropriate for describing

MHS.

Currently, mainly simulation methods are applied to validate

the MFCS and the conveying controls of MHS. In industry,

especially commercial simulators such as Automod [37] or

Flexsim [38] are utilized for this purpose. Besides the existing

commercial solutions, there is also current research dealing

with the simulation of MHS. Seidel et al. [39] introduced

a simulation-based validation tool for MHS. There, one sim-

ulation model is used for a material flow simulation of the

plant model as well as to validate the interaction of the plant

model with the material flow control and the involved PLCs.

Black and Vyatkin [40] proposed a methodology to the design

of BHS, where the BHS is implemented as a distributed

automation system according to IEC 61499. Each technical

component such as a conveyor is implemented by a function

block and viewed as an agent. For these components, model

KLOTZ et al.: AUTOMATED FORMAL VERIFICATION OF ROUTING IN MATERIAL HANDLING SYSTEMS 3

components have been created. Using these models, simulation

runs can be conducted. Simulation-based methods, though,

typically capture only parts of the behavior of the overall

system. In contrast, formal methods are capable of proving

the correctness of a system with regard to its specification.

The actual control architecture for BHS and the determi-

nation of efficient routing strategies has also been studied

in literature. Tarau et al. [41] analyzed concepts to find an

optimal routing in case of dynamic demand in BHS. They

compare centralized, decentralized, and also distributed predic-

tive methods. Johnstone et al. [42] also compared centralized,

search-based routing strategies with decentralized, learning-

based approaches to make optimal routing decisions. A more

general overview on distributed control using agents can be

found in [43]. Haneyah et al. [44] provided a comprehensive

review of the current literature regarding control structures

for MHS. General requirements to an MHS, e.g. regarding

throughput, blocking, deadlock avoidance, etc. are discussed,

and a derived concept of a control architecture for MHS is

proposed. Unfortunately, the presented work deals only with

how optimal routing decisions with respect to performance

are made but does not provide any means to ensure the

correctness of the implementation of the proposed strategies.

Contrary, this paper proposes an approach to automatically

prove the correctness of the implemented material flow control,

in particular, whether cargos reach their correct destination.

In conclusion, the existing work aims either at a higher

or at a lower level of abstraction than the work presented

in this paper. There is no existing work dealing with the

formal verification of MHS that takes the actual MHS layout,

the involved technical components, the material flow control

system, and the conveying controls into account.

III. FORMAL VERIFICATION

This section briefly introduces model checking and com-

positional verification. For a more detailed presentation, the

reader is referred to [3], [45]. First, Section III-A discusses

mathematical models used for formal verification. Next, in

Section III-B, temporal logics and model checking are pre-

sented. Finally, assume-guarantee reasoning, which is a com-

positional verification technique, is explained in Section III-C.

A. Models

For specifying and analyzing systems, a mathematical de-

scription (a model) of the system is needed. For this purpose,

the notion of finite state machines (FSM) [46] describing a

system with inputs, states, and outputs, is often considered.

Definition 1. A deterministic Finite State Machine of Mealy

type is defined as the 5-tuple M = (S, s0, I, O, σ, λ) where

S represents the finite set of states; s0 ∈ S marks the initial

state; I is the finite set of input variables; O is the finite set of

output variables with I∩O = ∅; σ is the next state function σ :
S×ΣI 7→ S; λ is the output function λ : S×ΣI 7→ ΣO. Each

input and output variable v has a corresponding domain Dv

of possible values. The input and output alphabet are defined

as ΣI =
∏

i∈I

Di and ΣO =
∏

o∈O

Do, respectively.

In formal verification, systems are usually described as

labeled transition systems such as fair Kripke structures [3].

Definition 2. A fair Kripke structure K is a 6-tuple K =
(S, S0, A, L,R, F) where S is a finite set of states; S0 ⊆ S is

the set of initial states; A is a finite set of atomic propositions;

L : S 7→ 2A is a function that labels each state with the set

of atomic propositions true in that state; R ⊆ S × S is a total

transition relation; F ⊆ 2S is a set of fairness constraints.

An execution of a Kripke structure, called a path, is an

infinite sequence of states where possible successors of a state

are defined by the transition relation. A fair path must contain

an element of each fairness constraint infinitely often. A trace

is the sequence of observable atomic propositions on a path.

The diameter of a Kripke structure is the minimum number of

transitions that is required to reach all states of the structure

from an initial state.

Systems to be modeled are normally divided into a number

of modules, each describing a specific part of the functionality

of the overall system. If each of these modules is modeled

using a Kripke structure, the composition of Kripke structures

needs to be defined.

Definition 3. The composition K ′′ of two fair Kripke struc-

tures K and K ′, denoted as K ‖ K ′, is defined as

• S′′ = {(s, s′) | L(s) ∩ A′ = L′(s′) ∩ A},

• S′′
0 = (S0 × S′

0) ∩ S
′′,

• A′′ = A ∪ A′,

• L′′ ((s, s′)) = L(s) ∪ L′(s′),
• R′′ ((s, s′) , (t, t′)) iff R (s, t) and R′ (s′, t′), and

• F ′′ = {(Fi × S′) ∩ S′′ | Fi ∈ F} ∪
{(S × F ′

i) ∩ S
′′ | F ′

i ∈ F ′}.

For modeling purposes Mealy machines are often preferred

to Kripke structures. A Mealy machine can be converted into

a Kripke structure by adding the input and output values of

the FSM to the state information of the Kripke structure [3].

B. Model Checking

For the specification of properties describing the desired

behavior of a Kripke structure, temporal logics such as com-

putation tree logic (CTL) [47] are considered. By restricting

CTL to allow universal quantifiers only, a subset of the logic

called A-computation tree logic (ACTL) [45] is derived. ACTL

formulas make propositions about all computation paths of a

system. They consist of atomic propositions, boolean opera-

tors, and the universal path quantifier A. Negation occurs only

before atomic formulas. The four basic temporal operators are

G (“globally”), F (“future”), X (“next time”) and U (“until”).

Given a fair Kripke structure K and an ACTL formula ϕ,

the model checking algorithm [3] determines if K satisfies ϕ,

denoted as K |= ϕ. A major problem of model checking is

the state space explosion problem. This refers to the fact that

the number of states of a model is exponential in the size of

the system.

C. Assume-Guarantee Reasoning

One method to tackle the state space explosion problem is

compositional verification [3]. It follows the principle of divide

4 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING

and conquer: a proof of a property of the whole system is

derived from proofs of properties of its modules. With this, the

model checking is carried out on the single modules separately,

and thus, the number of involved states is reduced.

However, modules are usually designed in such a way

that they only fulfill certain properties in a given environ-

ment (context). Based on this idea, assume-guarantee reason-

ing (AGR) [48] has been proposed. In AGR, tuples of the

form 〈ϕ〉K 〈ψ〉 are checked, which state that if the module

K is part of a model that satisfies the assumption ϕ, then it

is guaranteed that the property ψ holds.

To prove a property ψ for the composition of two modules

K1 and K2, the basic assume-guarantee rule [45] can be used:

〈ϕ〉 K1 〈ψ〉
〈true〉 K2 〈ϕ〉

〈true〉K1 ‖ K2 〈ψ〉
(AGR-2)

The rule denotes that if K1 satisfies ψ under the assumption

ϕ, and if K2 satisfies assumption ϕ, then the composition of

K1 and K2 satisfies ψ. The advantage of this approach is that

only the state spaces of K1 and K2 have to be examined

separately, but not the (possibly huge) state space of the

composition K1 ‖ K2. In order to derive a sound conclusion,

the base assumption ϕ itself must be proven without any

further assumptions.

By repeatedly applying the basic AGR rule, it can be

generalized to n modules:

〈ϕ1〉 K1 〈ψ〉
〈ϕ2〉 K2 〈ϕ1〉

...

〈ϕn−1〉 Kn−1 〈ϕn−2〉
〈true〉 Kn 〈ϕn−1〉

〈true〉K1 ‖ K2 ‖ . . . ‖ Kn 〈ψ〉
(AGR-n)

With this rule, starting without any further assumptions

(〈true〉Kn 〈ϕn−1〉), a chain of conclusions is derived in terms

of ϕi until finally the property ψ is proven (〈ϕ1〉K1 〈ψ〉). In

each step, the derived conclusion ϕi is taken into account as

an assumption for the next step.

Grumberg and Long [45] identified that the framework

consisting of the logic ACTL, the notion of fair Kripke

structures K and their composition ‖, together with the fair

simulation preorder � allows to implement AGR using a

standard model checker. The simulation preorder K � K ′

can be viewed as “K is smaller than K ′”, “K refines K ′”, or

“K ′ abstracts K”. In their framework, the following theorem

holds: K � K ′ and K ′ |= ϕ implies K |= ϕ, i.e. if the

property ϕ holds for a model, then it also holds for any model

that is smaller in the preorder.

A major challenge in AGR is the determination of sufficient

assumptions in order to prove a certain property. In most cases,

these assumptions have to be manually identified and specified.

Current research [49] focuses on automatically determining

such assumptions by learning algorithms. Nevertheless, these

learning approaches are computationally expensive, and thus

not suitable yet for applying them to industrial examples.

IV. MODELING METHODOLOGY FOR MHS

This section introduces the modeling methodology for MHS

as described in [4]. First, necessary preliminaries are pro-

vided in Section IV-A. Next, the notion of MHS elements

is revisited in Section IV-B, and then, MHS elements with

material flow control are studied in Section IV-C. Finally, the

interconnection of MHS elements to networks is discussed in

Section IV-D.

A. Preliminaries

In general, processes in a technical MHS are continuous,

i.e. goods are either continuously in motion or stopped, e.g. to

wait at a divert. In practice, goods are mostly combined to unit

loads [50] by using loading aids such as pallets, containers,

trays, bins, and so on.

However, for applying the formal verification method model

checking to MHS, a discrete and finite model of this con-

tinuous system is mandatory. Hence, space and time of the

technical MHS have to be discretized.

The space is discretized in terms of so-called places. It is

further assumed that each cargo has the same size, which is

also the size of a place. As a consequence, on each place there

can be either one cargo or no cargo.

For discretizing time, it is assumed that a cargo can move

from one place to another place in one time step.

Moreover, a finite number of types of cargos is considered.

A type of a cargo may describe the destination of the cargo,

e.g. to mark all bags in a BHS that have to be routed to a

certain terminal. There, the set C defines the types of cargos

that have to be distinguished. A cargo type is specified by a

letter such as a, b, c, Furthermore, the special cargo type

L ∈ C represents the absence of a cargo at a place.

The assumptions have particularly been chosen to model the

behavior of MHS transporting general cargo, i.e. individually

packaged goods. Currently, the models are restricted in such

a way that all cargos have them same size. However, this is

especially true for BHS where bags are usually transported

using loading aids (trays), which all have the same size.

This ensures safe transport as all trays behave the same, i.e.

have the same grip, there are no rollovers, two cargos cannot

end up on top of each other, the sequence of the cargos

stays the same, etc. Allowing different cargo sizes can be

realized by extending the modeling methodology, in particular

by changing the modeled MHS elements (cf. Section IV-B).

The assumptions do not suffice to model all kinds of MHS, e.g.

are not appropriate to model bulk cargo, i.e. loose material.

Based on the assumptions, an MHS element specifies a

number of places and when cargos move from one place to

another. As an illustrative example, a simple MHS element

modeling a conveyor of length l could consist of l neighboring

places, and a control logic determining when cargos move

from one place to the next place.

A technical MHS is composed of a quantity of commonly

used MHS components such as conveyors, working stations,

pushers, etc. For each of these technical MHS components,

a behavioral model in terms of an MHS element is cre-

ated. The model of the whole technical MHS is obtained

KLOTZ et al.: AUTOMATED FORMAL VERIFICATION OF ROUTING IN MATERIAL HANDLING SYSTEMS 5

by interconnecting instances of the single MHS elements to

an MHS network. This MHS network is utilized for formal

verification, simulation, analysis, etc.

B. MHS Elements

An MHS element is a finite state behavioral model of a

technical MHS component with a defined interface in terms of

input and output variables. More specifically, an MHS element

refers to a number of so-called input and output connection

ports, which are used to interconnect MHS elements. Through

input connection ports, connections to preceding MHS ele-

ments are set up, whereas output connection ports allow for

connections to succeeding MHS elements. The connection

ports are considered to model the actual flow of cargos and

the control flow between MHS elements. In addition, an

MHS element has a number of input and output signals to

model control flow between MHS elements that are neither a

direct predecessor nor a direct successor of each other.

Definition 4. For the interconnection of MHS elements, two

types of connection ports are distinguished:

• input connection port CPi
in is the finite set of variables:

CPi
in = {IN i,Prei,Takei,Clear i}, and

• output connection port CPj
out is the finite set of variables:

CPj
out = {OUT j ,Givej , Sucj ,Ack j}.

Considering the notion of connection ports, abstract

MHS elements are defined in the sequel.

Definition 5. An abstract MHS element Ê is defined as Ê =
(ĈPE

in , ĈP
E
out , Ŝ

E
in , Ŝ

E
out , M̂

E), where

• ĈPE
in is the finite set of input connection ports ĈPE

in =
{CP1

in ,CP
2
in , . . . ,CP

p
in} with p = |ĈPE

in | (p ∈ N),
• ĈPE

out is the finite set of output connection ports

ĈPE
out = {CP1

out ,CP
2
out , . . . ,CP

s
out} with s =

|ĈPE
out | (s ∈ N),

• ŜE
in is the finite set of input signals, ŜE

in =
{S1in , S

2
in , . . . , S

k
in} with k = |ŜE

in | (k ∈ N),
• ŜE

out is the finite set of output signals, ŜE
out =

{S1out , S
2
out , . . . , S

m
out} with m = |ŜE

out | (m ∈ N), and

• M̂E is a deterministic FSM M̂E = (S, s0, I, O, σ, λ) with

– I = {IN 1, . . . , IN p,Pre1, . . . ,Prep, Stop,Ack1,

. . . ,Acks, Suc1, . . . , Sucs, S1in , S
2
in , . . . , S

k
in}, and

– O = {OUT1, . . . ,OUT s,Give1, . . . ,Gives,

Error ,Clear 1, . . . ,Clearp,Take1, . . . ,Takep, S1out ,
S2out , . . . , S

m
out},

where p is the number of predecessors, s is the number of

successors, k is the number of input signals, and m is the

number of output signals of the abstract MHS element Ê. The

input and output variables of M̂E are identified with the corre-

sponding variables in the connection ports CPi
in ∈ ĈPE

in and

CPj
out ∈ ĈPE

out , and the signals Sin ∈ ŜE
in and Sout ∈ ŜE

out .

Both, input and output connection ports refer to input and

output variables; all input variables from connection ports and

input signals are input variables to the FSM M̂E. Contrary,

the output variables of M̂E refer to either output variables in

the connection ports or to output signals. In addition to the

variables of the connection ports, each abstract MHS element

Ê has one input variable called Stop, to halt the element, and

one output variable named Error , to signalize error states.

The FSM M̂E specifies the behavior of the MHS element. To

ease modeling, M̂E may be the composition of several FSMs

again, each describing a part of the behavior of the overall

behavior of the MHS element.

The input and output variables of the connection ports have

a given semantics [4], e.g. the variable Give may only become

true if the MHS element requests to transfer a cargo to the

successor. The variables Clear and Ack are only necessary for

segmented MHS elements, where the receipt of each cargo has

to be acknowledged before the next cargo can be transported.

For MHS elements transporting more than one cargo at a time,

these variables can be omitted.

To achieve a closed MHS network, the two special abstract

MHS elements MHS source and MHS sink are introduced.

Definition 6. An MHS source, denoted as SRC, is an abstract

MHS element with one output connection port and without

input connection ports, i.e. |ĈPE
in | = 0 and |ĈPE

out | = 1. In

contrast, an MHS sink, denoted as SNK, is an MHS element

with one input connection port and without output connection

ports, i.e. |ĈPE
in | = 1 and |ĈPE

out | = 0.

For differentiating between MHS sources, MHS sinks, and

abstract MHS elements that are neither a source nor a sink,

the definition of the abstract MHS element Ê is restricted to

define the concrete MHS element E.

Definition 7. A concrete MHS element E = (CPE
in , CP

E
out ,

SE
in ,S

E
out ,M

E) refers to an abstract MHS element Ê with at

least one input and at least one output connection port, i.e.

|CPE
in | ≥ 1 and |CPE

out | ≥ 1.

Among the MHS elements that have been modeled are

conveyors, merger, pushers, accumulative conveyors, lifts,

working stations, turntables, etc. In [4], some examples of

common MHS elements are explained more in detail.

C. MHS Elements with Material Flow Control

The material flow control in an MHS is normally imple-

mented in the MFCS (cf. Section II). The MFCS acts as

a global instance in the MHS and receives status messages

from the technical MHS components, e.g. about the fact that a

cargo has been received at a component. Through these status

messages, the MFCS updates an image of the MHS, i.e. it

stores where each cargo is located in the MHS. Moreover,

the MFCS sends control signals to the MHS components, for

instance, to set global routing decisions.

In this work, the global MFCS functionality is split up into

local functions in such a way that it is moved from the MFCS

to the MHS elements. Hence, MHS elements with material

flow control receive not only inputs from their neighboring

MHS elements (through connection ports) but also additional

inputs from other MHS elements (through signals). There,

the actual material flow control is implemented as part of

the FSM ME of an MHS element (cf. Section IV-B). The

split-up does not change the behavior of the modeled MHS

but allows for encapsulating the material flow control in

the MHS elements. This has advantages when considering

compositional verification (cf. Section V).

6 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING

Ei

Error i

Ei−1

OUT i−1

Error i−1

Givei−1

IN i

Stop

Prei

Suci−1 Takei

Ack i−1 Clear i

OUT i

Givei

IN i+1

Stop

Prei+1

Ack i Clear i+1

Suci Takei+1

Ei+1

Figure 1. Example of interconnected MHS elements

Material flow control may either appear in MHS elements

with divert function (more than one successor) or in MHS ele-

ments with merge function (more than one predecessor).

While the former is called routing, the latter is often called

intersection control.

It is typically the case in MHS that routing is based on

a static shortest path computation, i.e. the shortest path to

the destination is always selected. However, this can lead to

crowding or even blocking of cargos in sections of the MHS,

and thus, the overall throughput of the MHS would strongly

suffer from this. For avoiding these blockings, a number of

checks are performed in a certain order before the actual

routing decision is made, for instance

1) velocity check: successive MHS elements are able to

move, i.e. are not stopped,

2) content check: successive MHS elements are able to

receive goods, i.e. provide empty places,

3) counter check: restricts the total number of cargos in a

certain area, e.g. to avoid deadlocks in loops, and

4) others, e.g. to implement load balancing.

In the same manner also intersection control at MHS ele-

ments with merge function has been modeled. At an inter-

section, not the succeeding MHS element to route a cargo

to is chosen, but the preceding element from which a cargo

is transferred. Typical intersection control strategies comprise,

among others, first-in-first-out (FIFO) and static prioritizing.

D. MHS Networks

After the notion of MHS elements has been introduced in

Section IV-B, the interconnection of these elements needs to

be defined in order to describe networks of MHS elements.

Definition 8. A connection CN is defined as the pair CN =
(CPj

out ,CP
i
in) and refers to linking and identifying the vari-

ables OUT j 7→ IN i, Givej 7→ Prei, Sucj 7→ Takei, and

Ack j 7→ Clear i of the two connection ports.

Figure 1 shows a simple example of a series connection of

three MHS elements. The connection ports are omitted in the

figure to improve readability.

Using the notion of MHS elements and their connection,

MHS networks are defined in the following.

Definition 9. An MHS network N is defined as the tuple N =
(CN,SRCN,SNKN, EN,SN

in ,S
N
out , CN

N, ηN) such that

• CN is the set of cargo types available in the network,

• SRCN is a finite set of MHS sources,

• SNKN is a finite set of MHS sinks,

• EN is a finite set of concrete MHS elements,

• SN
in is a finite set of input signals of the network,

• SN
out is a finite set of output signals of the network,

• CNN is a finite set of connections, and

• ηN is a total function mapping signals,

ηN :
⋃

E SE
in → SN

in ∪
⋃

E SE
out ,

where the relation provided through CNN is a bijective map-

ping, i.e. for each output connection port CPj
out ∈ CPE

out of an

MHS element E or an MHS source SRC there exists exactly

one input connection port CPi
in ∈ CPE

in of another MHS ele-

ment E or a sink SNK such that (CPj
out ,CP

i
in) ∈ CNN.

ηN connects and identifies output signals of MHS elements

and input signals of the network to input signals of elements.

As a consequence, the behavior of each MHS element is

defined because all input signals of an element are input

variables of its FSM ME. Moreover, all output signals of

MHS elements of an MHS subnetwork are viewed as output

signals of the network, i.e. SN
out =

⋃

E SE
out .

Through input connection ports SN
in of the network, free

inputs to MHS elements can be created, e.g. to model

non-deterministic choices. With this, for instance, non-

deterministic delays at working stations are modeled.

V. COMPOSITIONAL VERIFICATION APPROACH

For applying compositional verification, an MHS network is

partitioned into subnetworks. The partitioning of networks is

presented in Section V-A and Section V-B. Next, Section V-C

introduces a compact description of partitioned MHS net-

works. Section V-D proposes the compositional approach for

the verification of routing in MHS [51]. The algorithms are

explained in Section V-E, and the verification results are

discussed in Section V-F. Finally, the implementation of the

algorithms is briefly summarized in Section V-G.

A. Partitioning of MHS Networks

First, the designer partitions the original MHS network into

subnetworks. More specifically, an MHS network is partitioned

into a number of MHS subnetworks by placing all concrete

MHS elements into MHS subnetworks. MHS sources and

sinks are considered to be always outside of subnetworks.

Hence, each subnetwork has at least one input and at least

one output connection port that allows for connecting the

MHS subnetwork to other subnetworks and/or sources and

sinks. Additionally, each subnetwork may have input and

output signals.

Definition 10. An MHS subnetwork SN is defined as the tuple

SN = (ESN, CPSN
in , CP

SN
out ,S

SN
in ,SSN

out , CN
SN, ηSN) such that

• ESN is a finite set of concrete MHS elements,

• CPSN
in is the finite set of input connection ports of the

subnetwork, CPSN
in = {CP1

in ,CP
2
in , . . . ,CP

k
in}

with k = |CPSN
in | (k ∈ N, k ≥ 1),

• CPSN
out is the finite set of output connection ports of the

subnetwork, CPSN
out = {CP1

out ,CP
2
out , . . . ,CP

m
out}

with m = |CPSN
out | (m ∈ N,m ≥ 1),

• SSN
in is a finite set of input signals of the subnetwork,

• SSN
out is a finite set of output signals of the subnetwork,

KLOTZ et al.: AUTOMATED FORMAL VERIFICATION OF ROUTING IN MATERIAL HANDLING SYSTEMS 7

• CN SN is a finite set of connections, and

• ηSN is a total function mapping signals,

ηSN :
⋃

E SE
in → SSN

in ∪
⋃

E SE
out ,

where the relation provided through CN SN is an injective

mapping, i.e. for each output connection port CPj
out of a

concrete MHS element E there exists exactly one or no input

connection port CPi
in of another MHS element such that

(CPj
out ,CP

i
in) ∈ CN SN. The input and output connection

ports of the subnetwork correspond to all connection ports of

MHS elements that are not connected to any other elements,

i.e. all free connection ports of elements become connection

ports of the subnetwork.

ηSN connects and identifies output signals of MHS elements

and input signals of the subnetwork to input signals of

elements. Furthermore, all output signals of MHS elements

of an MHS subnetwork are viewed such that they are also

output signals of the subnetwork, i.e. SSN
out =

⋃

E SE
out .

The definition of an MHS subnetwork excludes subnetworks

without input or output connection ports. However, this is

not a restriction to the generality of the presented verification

method (cf. Section V-D). Such subnetworks do not influence

the routing properties of the overall MHS network (except

for the assignment of signals). If the partitioning results in

such subnetworks, then these subnetworks should be analyzed

first as they reveal structural deficiencies of the MHS network

because they are not reachable for any cargo.

Considering MHS subnetworks, the notion of partitioned

MHS networks, which are networks consisting of sources,

sinks, and subnetworks, is introduced.

Definition 11. A partitioned MHS network N⋆ is defined

as the tuple N⋆ = (CN⋆

,SRCN⋆

,SNKN⋆

,SNN⋆

,SN⋆

in ,

SN⋆

out , CN
N⋆

, ηN
⋆

) such that

• CN⋆

is the set of cargo types available in the network,

• SRCN⋆

is a finite set of MHS sources,

• SNKN⋆

is a finite set of MHS sinks,

• SNN⋆

is a finite set of subnetworks,

• SN⋆

in is a finite set of input signals of the network,

• SN⋆

out is a finite set of output signals of the network,

• CNN⋆

is a finite set of connections, and

• ηN
⋆

is a total function mapping signals,

ηN
⋆

:
⋃

SN SSN
in → SN⋆

in ∪
⋃

SN SSN
out ,

where the relation provided through CNN⋆

is a bijective

mapping, i.e. for each output connection port CPj
out ∈ CPSN

out

of a subnetwork SN or a source SRC there exists exactly one

input connection port CPi
in ∈ CPSN

in of another subnetwork

SN or a sink SNK such that (CPj
out ,CP

i
in) ∈ CNN⋆

.

ηN
⋆

connects and identifies output signals of MHS sub-

networks and input signals of the network to input signals

of subnetworks. Moreover, all output signals of MHS subnet-

works, and hence, all output signals of MHS elements of an

MHS network are viewed as output signals of the network as

well, i.e. SN⋆

out =
⋃

SN SSN
out .

B. Finding of an Appropriate Partitioning

In the following, a simple procedure to find a suitable

partitioning of an MHS network into subnetworks is provided.

MHS network N⋆ := 〈Cglobal ,SRC,SNK,SN ,Sin ,Sout ,
CN , η〉

MHS subnetwork SN := 〈E ,CP in , CPout ,Sin ,Sout , CN , η〉
MHS element E := 〈CPin , CPout ,Sin ,Sout ,M〉
Source SRC := 〈CPout ,Sin ,Sout , Cout〉
Sink SNK := 〈CPin ,Sin ,Sout , Cspec〉
Connection port CP := 〈Cport〉
Connection CN := 〈CPogn ,CPtgt 〉

Figure 2. Compact description of the partitioned MHS network

1) Partition the MHS network into subnetworks according

to the functionality of the MHS design. For instance,

an MHS of a warehouse distribution center may consist

of the parts high bay warehouse, order picking area,

dispatch area, etc. The MHS elements that belong to

one part are placed into the same subnetwork.

2) Run compositional verification approach to prove a

property on the MHS network.

a) Computation succeeded: Examine the verification

results as described in Section V-F to figure out

whether the given properties hold or not.

b) Computation timed out/ran out of memory: Refine

the partitioning and rerun verification. The com-

positional verification revealed the specific subnet-

work which was too large to be handled. Split up

this subnetwork according to the functionality of

the MHS. For the example of the warehouse distri-

bution center, for instance, the high bay warehouse

may be subdivided into several separate aisles.

A similar procedure could also be automated in a software

tool. However, the algorithm cannot automatically determine

the functional parts of the MHS as the designer views them.

Hence, the automated partitioning can only take the control

flow dependencies between MHS elements into account to

decide which elements are put in which subnetwork. Addi-

tionally, by manually choosing subnetworks the designer can

decide at which positions (ingoing and outgoing connections

of the subnetworks) in the MHS network the cargo types are

proven, and through this, are observable for the designer.

C. Compact Description of Partitioned MHS Networks

This section introduces a compact description of partitioned

MHS networks (cf. Figure 2). The description is the basis

for the algorithms presented in Section V-E. Furthermore, a

specification is added to the description, which is necessary to

automatically compare the obtained verification results with

the expected ones. The following notation is used: regular

uppercase letters refer to single components and calligraphic

uppercase letters to sets of components, e.g. SN is a set of

components with the type SN. Moreover, a function to return a

subcomponent is defined by the subcomponent name followed

by round brackets, e.g. the expression Cout(SRC) represents a

function to return the cargo types Cout of an MHS source SRC.

The partitioned network N⋆ consists of sources SRC, sinks

SNK, and subnetworks SN . They are interconnected using

connections CN . Furthermore, signals are connected accord-

ing to η (cf. Section V-A).

8 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING

An MHS subnetwork is composed of MHS elements E .

Connections CN of a subnetwork link MHS elements to other

elements by their input and output connection ports CPin and

CPout , respectively. Connection ports of a subnetwork allow

for connections with sources, sinks, and other subnetworks.

The partitioned MHS network is required to be closed, i.e.

all existing connection ports in the network are connected to

other connection ports. The set of available cargo types in the

network is given by Cglobal .
A concrete MHS element E is modeled by an FSM M

and interconnected through connection ports and signals. An

MHS source has one output connection port CPout and a set

of cargo types Cout it can generate.

In order to verify routing, information about the cargo types

in the MHS network is needed. Therefore, a sink refers to the

set Cspec defining the cargo types that are required to reach this

sink. This set is derived from the specification of the MHS.

Additionally, the set Cport characterizes the cargo types at the

connection ports that are determined during verification (cf.

Section V-D).

A connection relates an origin (output) connection port

CPogn to a target (input) one CPtgt . Through a connection

port, the single input or output variables of an MHS element,

such as Give , can be accessed.

Finally, the function CN (CP) returns for a given input

connection port the corresponding output connection port, and

vice versa, as defined through the connections CN . Here, it is

not differentiated whether the corresponding connection links

subnetworks or elements.

D. Verification Method

The verification goal is to prove the correctness of the

routing in the given MHS network, i.e. whether the set of

determined cargo types Cport at a sink is the same as its

specified cargo types Cspec .

To apply compositional verification, the MHS network is

partitioned into subnetworks as described in Section V-A. The

goal of the partitioning is to achieve a partitioned MHS net-

work without feedback loops between subnetworks. However,

if this is not possible, feedback loops have to be resolved as

discussed later in this section.

The method to formally verify routing works as follows:

the partitioned MHS network N⋆ without feedback loops

between MHS subnetworks spans a directed acyclic graph

where the nodes are the subnetworks, sources, and sinks, and

the direction is given by the flow of the cargos, i.e. from

sources SRC through subnetworks SN to sinks SNK. At

each of the sources, the possible cargo types being generated

Cout(SRC) are defined. Thus, from the given cargo types

at the sources, without any further assumptions, the possible

cargo types CPout (SN) at the output connection ports of the

subnetworks directly connected to these sources can formally

be verified. This first step refers to 〈true〉Kn 〈ϕn−1〉 in

AGR-N (cf. Section III-C). Based on the verified assumptions,

i.e. the proven cargo types at the input connection ports,

the possible cargo types at the output connection ports of

subnetworks directly connected to the subnetworks from the

SNi SNj SNk

SNl SNm

(a) Feedback loop

SNi SNj SNk

SNl SNmSNK
⋆

SRC
⋆

(b) Resolved feedback loop

Figure 3. Resolving of a feedback loop between two MHS subnetworks in
a partitioned MHS network

first step can now be verified (〈ϕn−1〉Kn−1 〈ϕn−2〉). This

procedure is repeated for the remaining subnetworks. Finally,

whenever these steps lead to the verification of the output

connection ports of subnetworks directly connected to sinks,

the algorithm terminates, as the properties of interest (possible

cargo types at sinks) have been proven (〈ϕ1〉K1 〈ψ〉).
The number of reachable states that needs to be traversed

during verification grows exponentially with the size of the

system (cf. Section III-B), i.e. for MHS networks, it grows

with the number of included MHS elements, the count of

different cargo types, etc. Hence, the number of the reachable

states of each subnetwork is much smaller than the state space

of the whole MHS network. Consequently, the compositional

approach may succeed in cases where the whole MHS network

cannot be verified at once because of the state space explosion.

This is illustrated in the case study in Section VI-B.

For MHS networks with feedback loops between MHS sub-

networks, a preprocessing is performed. While feedback loops

inside MHS subnetworks stay untouched, feedback loops

connecting MHS subnetworks are resolved: One arbitrary

connection of one feedback loop is replaced by a source SRC⋆

creating the cargo types Cout and an appropriate sink SNK⋆

consuming them (Cspec(SNK
⋆) = Cout (SRC

⋆)) (cf. Figure 3).

If the partitioned MHS network still contains feedback loops

after this resolution, this procedure will be repeated until all

loops have been resolved.

For the verification of routing, only the cargo types Cout
generated by SRC⋆ are of interest. All outgoing control flow

variables of SRC⋆ and SNK⋆ may take arbitrary values. SRC⋆

and SNK⋆ are only needed to receive a closed MHS network,

but they do not restrict the behavior of the rest of the network

in any terms, with the exception of the provided cargo types

Cout . Thus, only the cargo types Cout have to be computed.

The computation of the corresponding cargo types Cout is

done fully automatic as discussed in Section V-E. The proof

that the altered MHS network is a valid abstraction of the

original network is sketched in the Appendix.

E. Description of the Algorithms

The algorithm to verify routing in partitioned MHS net-

works is shown in Algorithm 1. In lines 1–4, the possible

KLOTZ et al.: AUTOMATED FORMAL VERIFICATION OF ROUTING IN MATERIAL HANDLING SYSTEMS 9

input : Partitioned MHS network N⋆ consisting of
subnetworks SN

output: Cargo types at all sinks SNK of N⋆

// Initialize

1 foreach CN ∈ CN (N⋆) do
2 Cport(CPogn(CN)) := ∅
3 Cport(CPtgt(CN)) := ∅
4 end

// Propagate cargo types from sources

5 foreach SRC ∈ SRC(N⋆) do
6 Cport(CN (CPout(SRC))) := Cout(SRC)
7 end

8 SN verify := SN (N⋆)

// Main loop

9 while true do
// Analyze subnetworks

10 foreach SN ∈ SN verify do
11 if ∀CP ∈ CPin (SN). Cport 6= ∅ then

// Compute cargo types of current

subnetwork

12 ComputeCargoTypes(N⋆,SN)

13 SN verify := SN verify \ SN
14 end
15 end

// Cargo types at all sinks determined?

16 if ∀SNK ∈ SNK(N⋆). Cport(CPin (SNK)) 6= ∅ then
17 foreach SNK ∈ SNK(N⋆) do
18 if Cspec(SNK) = Cport(CPin (SNK)) then

// No routing error found

19 else if Cspec(SNK) ⊂ Cport (CPin (SNK)) then
// Routing error candidate

20 else
// Routing error found

21 end
22 end

23 return
24 end
25 end

Algorithm 1: Verify routing in partitioned MHS network

cargo types at each connection port are initialized to the

empty set. Next, the available cargo types at the sources

are propagated through connections to the connection ports

of the MHS subnetworks directly connected to these sources

(lines 5–7).

Afterwards, the set SN verify of subnetworks to be analyzed

is initialized to all subnetworks of the MHS network (line 8).

Each subnetwork is then handled as follows (lines 10–15):

If all possible cargo types at input connection ports of a

subnetwork have already been determined (line 11), then the

routing in this subnetwork SN will be checked by calling

ComputeCargoTypes (line 12, cf. Algorithm 2 and expla-

nation below). After this, the currently handled MHS subnet-

work is removed from the set SN verify (line 13).

Whenever all possible cargo types at all sinks have been

determined (line 16), the verified routing results are compared

to the specification (lines 17–22). Since the special cargo type

L is never blocked, eventually, L is in each Cport(CPout),
i.e. Cport(CPout) 6= ∅. Thus, the algorithm terminates. The

possible verification results are discussed in Section V-F.

input : Partitioned MHS network N⋆ and subnetwork SN
output: Possible cargo types at all output connection ports CP

of subnetwork SN
1 foreach CPout ∈ CPout(SN) do
2 Cblock := ∅

3 foreach C ∈ Cglobal(N
⋆) do

4 if BlockType(CPout ,C) then
5 Cblock := Cblock ∪ C
6 end
7 end

8 Cport(CPout) := Cglobal (N
⋆) \ Cblock

// Propagate cargo types

9 Cport(CN (CPout)) := Cport(CPout)

10 end

Algorithm 2: ComputeCargoTypes: Computes cargo

types at outgoing connections ports of a subnetwork

If the network contained feedback loops that were re-

solved as described in Section V-D, Algorithm 1 runs sev-

eral times in a modified manner to compute the cargo

types of the introduced sinks Cport (CPin(SNK
⋆)). These

cargo types are the same as the cargo types generated by

the corresponding sources SRC⋆. In the first run of the

algorithm (i = 0), it is assumed that Cout (SRC
⋆) :=

{L}. In lines 10–15, new values for Cport(CPin(SNK
⋆))

are computed. In contrast to Algorithm 1, additional com-

putations are carried out between line 17 and 18: If

Cport(CPin(SNK
⋆)) 6= Cport(CPout(SRC

⋆)) for at least one

sink, then Cout (SRC
⋆) := Cport(CPin(SNK

⋆)). In this case,

the checks in lines 18–22 are not performed but the algorithm

is started again with iteration (i+1). If Cport (CPin(SNK
⋆)) =

Cout(SRC
⋆), then all cargo types on feedback loops have been

determined and the final checks (lines 17–22) are executed.

During one iteration of Algorithm 1, the set

Cport(CPin(SNK
⋆)) of each sink SNK⋆ is either increased

or stays unchanged. Since Cport (CPin(SNK
⋆)) ⊆ Cglobal and

since Cglobal is a finite set, the Cport (CPin(SNK
⋆)) cannot

be increased infinitely often. Hence, the algorithm terminates

after a finite number of iterations.

The function ComputeCargoTypes (cf. Algorithm 2)

computes all the cargo types Cport that can reach the output

connection ports CPout of the given subnetwork. Therefore

the assumptions about the incoming connection ports of the

subnetwork, which have been proven in previous steps, are

used as environment of the subnetwork.

Each cargo type is processed separately (lines 3–7): The

function BlockType(CPout ,C) (line 4) calls the model

checker to prove that the given cargo type C cannot be trans-

ferred at the output connection port CPout . This is realized

by trying to prove the ACTL formula (cf. Section III-B)

AG (¬ (CPout .OUT = C)) (1)

stating that there is no state where C reaches CPout . If the

outcome is true, the given cargo type C is added to the set of

blocked cargo types Cblock of this connection port (line 5).

After all cargo types have been examined, the set of cargo

types Cport that can reach CPout is determined (line 8). This

10 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING

set contains all the cargo types that are not blocked at CPout .

From this follows the correctness of the ACTL formula

AG

∨

∀c∈Cport(CPout)

(CPout .OUT = c)

 (2)

which specifies the cargo types at CPout . This formula is

used as an assumption (“source”) for the succeeding subnet-

works directly connected to this subnetwork.

Finally, this result is propagated from the current connection

port CPout to the succeeding subnetwork (line 9).

F. Verification Results

For each sink SNK, the verified set of cargo types

Cport(CPin(SNK)) is compared to the given set of cargo types

from the specification Cspec(SNK), and it results in:

• Cspec(SNK) = Cport(CPin(SNK)): no routing errors

found as both sets are the same.

• Cspec(SNK) ⊂ Cport(CPin(SNK)): routing error candi-

date found as there is at least one not expected cargo type

reaching this sink.

• else: routing error found because at least one of the

required cargo types cannot reach this sink.

The reason for the second case can be either a real routing

error or a false negative caused by too weak assumptions

(cf. Section III-C). Hence, the designer has to review the

intermediate results Cport by further analysis.

False negatives may only occur if the routing strategy

in a subnetwork depends on MHS elements outside of this

subnetwork or if the sequence of cargos provided by the

MHS source SRC⋆ is a too coarse abstraction of the environ-

ment of the subnetwork (cf. Section V-D). Thus, if possible,

all MHS elements affecting the routing in a subnetwork should

be in this subnetwork.

From a practical perspective, routing based on expected

sequences of cargos of a certain type is not feasible. Secondly,

false negatives may only appear if a routing strategy for a cargo

type at an MHS element has been implemented but is never

chosen, i.e. the conditions to choose this specific strategy are

never fulfilled. Again, this kind of implementation does not

make sense in practice.

As a technical extension of the approach, a specification

Cport could also be added to each connection CN, to also

verify the cargo types at connections in the MHS network.

G. Implementation

The proposed approach has been automated and imple-

mented in a software tool called MHSVer (cf. Figure 4).

MHSVer utilizes the symbolic model checker NuSMV [52]

as a backend for proving properties.

From a description of the partitioned MHS network,

MHSVer step-wise executes the presented verification algo-

rithms (cf. Section V-E). For each subnetwork where the

incoming cargo types have already been determined, the

corresponding SMV code is generated using the MHS library.

This library contains the behavioral models of all existing

MHS

MHS

MHS

Description

Network

Verification

Verification

Algorithm

Results

Results

Library

NuSMV

Subnetwork

Environment Properties
SMV Code SMV Code+

Generator

Subnetwork+

MHSVer

Figure 4. MHSVer verification flow

MHS elements. When generating SMV code, the already

proven cargo types have to be considered as environment

of the subnetwork under verification. The generated SMV

code and the appropriate properties for proving the routing

are passed to the NuSMV model checker. The results from

NuSMV are subsequently parsed, and the computed cargo

types are extracted and stored in the MHS network. After all

subnetworks have been processed, the verification results are

presented to the user.

VI. EVALUATION

The proposed modeling methodology (cf. Section IV) al-

lows to create models of MHS by interconnecting MHS ele-

ments to a network. This section explains how formal veri-

fication in terms of model checking can be applied to these

MHS networks with an illustrative example in Section VI-A

and with a real-world case study in Section VI-B.

A. Illustrative Example

As an example, Figure 5 depicts the layout of a structure

that often occurs in technical MHS, especially in warehouse

distribution centers. The MHS has been modeled using the

following elements:

• src: MHS source generating cargos of the types {p, L}
• c1–c18: early clear conveyors with length l = 1, except

for l5,13 = 2 and l8,18 = 3
• mg1, mg2: turntable with merge function

• tt1–tt6: turntables

• dv1, dv2: turntables with divert function

• ws : working station, has a non-deterministic delay be-

tween 3–5 time steps

• snk : MHS sink

The example consists of a high bay warehouse (HBW), an

order picking area, and a conveying system connecting the

former two. The global set of cargo types is C = {p, s, L}.

The considered HBW is equipped with one aisle and has been

modeled using a source, a sink, and a number of conveyors.

Cargos from the HBW (type p) are transported to the working

station ws in the order picking area.

KLOTZ et al.: AUTOMATED FORMAL VERIFICATION OF ROUTING IN MATERIAL HANDLING SYSTEMS 11

sr
c

c
1

c
2

mg1 c3 tt1

c
5

tt2c7dv1c8

c
9

ws

c
1
0

mg2c11tt5

c
1
3

tt6 c15 dv2

c
1
6

c
1
7

sn
k

c18

tt3tt4

H
ig

h
b
ay

w
ar

eh
o
u
se

O
rd

er
p
ic

k
in

g
ar

ea

Figure 5. Example of an MHS network

The working station models the order picking. Incoming

cargos of type p are handled, and subsequently, their type is

changed to s, i.e. the cargos are marked as processed. All

cargos of type s are transported back to the HBW. In case

c9 (c16) is ready to receive a cargo, all incoming cargos of

type p (s) are routed at dv1 (dv2) to ws (snk), respectively.

All the cargos that could not immediately be transported to

one of these two targets move on in the loop. There, the

controls of the turntables with merge function, mg1 and mg2,

are implemented in such a way that the cargos in the loop are

preferred over the merging ones.

Based on the model of the MHS, the correctness of a

number of properties can be proven using a model checker.

As an example, the correct routing in the MHS network is

analyzed (here exemplarily shown for the target snk):

AG (snk .OUT = s ∨ snk .OUT = L) (3)

This formula states that at any time at snk there can either be

a cargo of type s or no cargo (L), and consequently, no cargos

of type p will ever reach snk .

The corresponding Kripke structure of the MHS network

modeling the example has 11.1 million states and has a

diameter (cf. Section III-A) of 86. The overall verification

time for proving all the above property is 47 s (Intel Xeon R©

X5672@3.2 GHz, 4GB RAM, Linux, NuSMV 2.5.3 64bit).

So far, the example only consisted of an MHS network with

a simple conveying system spanning one loop. However, a

typical warehouse distribution center consists of an HBW with

multiple aisles on the one hand side, and includes an order

picking area with multiple working stations on the other hand

side. Therefore, also the involved conveying system needs to

be adapted.

s1 Cp

p1Cs

s2 Cp

p2Cs

sn Cp

pnCs

structure 1 structure 2 structure n

Figure 6. Extended example of an MHS network

More specifically, the basic structure sketched in Figure 5

occurs not just once but multiple times (cf. Figure 6). For

interconnecting multiple copies of this structure, the turntables

tt2 and tt6 are exchanged against turntables with merge

function, while turntables tt1 and tt5 are exchanged against

ones with divert function. Moreover, four additional conveyors,

namely c4, c6, c12, and c14, are added to the example and

connected to tt2, tt6, tt1, and tt5, respectively. Through these

conveyors, neighboring structures are interconnected to receive

a closed MHS network.

In order to model the involved routing functionality, fur-

ther cargo types have to be added. Hence, for n struc-

tures, the global set of cargo types is given by C =
{s1, s2, . . . , sn, p1, p2, . . . , pn, L}. Each source modeling an

aisle of the HBW generates arbitrary cargos of the types

Cp = {p1, p2, . . . , pn} where the type represents the working

station they are transported to. In the ith structure (1 ≤ i ≤ n),

the HBW consumes cargos of type si; the working station

processes cargos of type pi and changes their types to arbitrary

elements of Cs = {s1, s2, . . . , sn}. The routing in the turnta-

bles with divert function, dv1 and dv2, is adjusted accordingly.

For the structure 1, i.e. on the very left side, tt5 and tt6
remain turntables without routing and conveyors c12 and c14
are removed to receive a closed MHS network. The same

applies to the structure n, i.e. on the very right side, with

respect to turntables tt1 and tt2 and conveyors c4 and c6.

Furthermore, the routing regarding neighboring structures

has to be implemented. For incoming cargos from neigh-

boring structures, the control of the newly added turnta-

bles with merge function tt2 and tt6 is implemented such

that cargos from c6 and c14 are preferred over the ones

from c5 and c13, respectively. For outgoing cargos, the

routing at the turntables with divert function tt1 and tt5
needs to be defined. For this purpose, the sets keepl and

keepr are introduced. For structure i, these sets are given

as keepl = {p1, p2, . . . , pi, s1, s2, . . . , si} and keepr =
{pi, pi+1, . . . , pn, si, si+1, . . . , sn}. If a cargo at tt1 (tt5) is

of a type that is in keepl (keepr) and if conveyor c5 (c13)

is able to receive a cargo, then this cargo is transported to

this conveyor. If c5 (c13) cannot receive a cargo at this point

or if the cargo is of a type that is not an element of keepl
(keepr), then the cargo is transferred to c4 (c12). If non of

the conveyors is able to receive a cargo, the cargo waits at the

turntable with divert function.

By increasing the number of structures and, with this, the

number of involved cargo types as discussed above, also the

state space and the diameter of the corresponding Kripke

structure grow. While for the example consisting of only one

12 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING

 1

 100

 10000

 1e+006

 1e+008

 1e+010

 1e+012

 1e+014

 1e+016

 1 2 3 4 5 6 7 8 9

1 structure
2 structures
3 structures
4 structures

Number of iterations

N
u
m

b
e
r

o
f

r
e
a
c
h
a
b
le

s
ta

te
s

Figure 7. Reachable states for MHS network example consisting of 1, 2, 3,
and 4 structures

structure the properties have been proven in 47 s, the proof of

the example including two structures did not succeed in 12 h.

The considered model checker NuSMV [52] allows to

compute the number of reachable states of a Kripke structure.

This computation is done by traversing the reachable states

using several iterations, beginning at the initial states. There,

the first iteration corresponds to the number of initial states

in the model; the second iterations refers to all states that are

reachable in one transition from the initial states, etc.

Figure 7 depicts a plot showing the number of reachable

states in relation to the number of iterations for the example

consisting of 1, 2, 3, and 4 structures. The plot indicates

that the state space of the underlying Kripke structures grows

significantly with each added structure. While for one structure

only 136 states are reachable in 9 iterations, for four structures

this value increases to about 514 trillions. The number of initial

states (1250) when involving four structures is already larger

than the number of reachable states in 9 iterations for one

structure. Consequently, the model checking of a complete

model consisting of multiple structures becomes unfeasible.

Thus, to verify models of real-world MHS using the pro-

posed modeling methodology (cf. Section IV), further means

such as compositional verification (cf. Section V) are neces-

sary. To apply the compositional approach, the MHS network

needs to be partitioned into subnetworks (cf. Section V-A),

e.g. as sketched in Figure 8.

The chosen partitioning contains multiple loops between

subnetworks, which have to be removed as described in

Section V-D. Hence, at each cut i, an appropriate SRC⋆
i and

SNK⋆
i are inserted into the partitioned MHS network and

the corresponding cargo types Cport(SNK
⋆) are automatically

computed by the proposed algorithms. After two iterations,

the cargo types at the cuts have been determined as follows

• Cport(SRC
⋆
1) = {L, p1, p2, p3, p4, s1, s2, s3, s4}

• Cport(SRC
⋆
2) = {L, p2, p3, p4, s2, s3, s4}

• Cport(SRC
⋆
3) = {L, p3, p4, s3, s4}

• Cport(SRC
⋆
4) = {L, p4, s4}

This corresponds to the implemented routing strategy ex-

plained before, as for instance at cut4 only cargos of the types

p4 and s4 are allowed to take the shortcut to subnetwork SN7

SN1

SN2

SN3

SN4

SN5

SN6

SN7

SN8

SNK1 SNK2 SNK3 SNK4SRC1 SRC2 SRC3 SRC4

cut1 cut2 cut3 cut4

Figure 8. Illustrative example partitioned into eight subnetworks

instead of being transferred to SN6.

Finally, the compositional verification of routing deter-

mines for each MHS sink SNKi the set of cargo types as

Cport(SNKi) = {L, si}, i.e. the implementation is proven to

be correct. The complete verification, including the resolving

of the loops, took 1021 s. In summary, the illustrative example

consisting of multiple structures could not be verified at once,

i.e. without partitioning, but the verification succeeded by

applying the proposed compositional approach.

B. BHS of an International Airport

A typical example of MHS are BHS at international airports

transporting and delivering up to several thousand pieces of

luggage per hour. Figure 9 shows the layout of the BHS of an

existing international airport, which is discussed in the sequel.

From the 48 check-in lines A , B and the transfer

gate F , domestic and international bags enter the BHS. In this

BHS, only international bags have to be screened, and thus,

are considered uncleared. This screening is called checked-

baggage-screening (CBS) and is usually carried out using X-

ray machines to detect threats. The bags from the check-in

block A are identified by the automatic tag reader (ATR) C ,

and then transported to the lower main line E of the BHS,

whereas bags from check-in blocks B , and transfer bags F

are scanned at the ATR D , and thereafter fed into the upper

main line G . In case a tag could not be identified by the ATR,

these bags are routed to the manual encoding station H , and

subsequently fed back into the upper main line of the BHS.

Owing to the fact that domestic bags bypass CBS L M ,

they are routed to the lower main line by taking link I ;

if this link is too populated, these bags have to take the

link K . With this, domestic bags take the outer loop and

are routed to the inner make-up carousels N . In contrast,

uncleared international bags are routed to one of the two CBS

stations L M by using the two before mentioned links. If the

access to the inner CBS station L is too populated, incoming

bags are assigned to the outer CBS station M . However,

if a bag cannot be cleared automatically, this bag will be

transferred to the screening station P for manual inspection.

All cleared international bags are routed to the outer two make-

up carousels O . From the make-up carousels, the bags are

transported to their departing aircraft.

The BHS of this airport has been modeled considering

the presented modeling methodology (cf. Section IV) and

the existing MHS elements (e.g. [4]). The resulting overall

MHS network consists of 358 MHS elements, including 49

MHS sources, 233 conveyors, 55 conveyors with merge func-

tion, 11 pusher, 5 working stations, and 5 MHS sinks.

KLOTZ et al.: AUTOMATED FORMAL VERIFICATION OF ROUTING IN MATERIAL HANDLING SYSTEMS 13

A B

C

D

E

F

G

H

I

K

LM

N O

P

Uncleared bags

Domestic bags

International bags

ATR read failure

Figure 9. Layout of the BHS of an international airport

The MHS sources model the 48 check-in lines A , B

and the transfer gate F . Most (45) of the conveyors with

merge function appear at the check-in lines, the remaining

ones appear in the conveying system, e.g. at I and K . The

pushers are needed wherever routing functionality has been

implemented, i.e. at all diverts. The working stations have

been introduced to model ATR C D , manual encoding H ,

and CBS L M . Last, the sinks model the fact that cargos

leave the conveying system at the carousels N , O , and at

the screening station P .

To model the different types of cargos and to implement

appropriate routing strategies, four different types of cargos

(bags) have been introduced (cf. Figure 9), which are named

by colors as follows

• Uncleared bags: r(ed)

• Domestic bags: b(lue)

• International bags: g(reen)

• Read failure: w(hite)

The whole MHS network could not be verified without

partitioning due to state space explosion. On the other hand,

with the compositional approach presented in Section V, a

number of properties with regard to routing functionality have

been proven automatically, in particular

• no uncleared international or unidentified bags are deliv-

ered to a plane

• only domestic bags arrive at the inner make-up carousels

• only international bags reach the outer make-up carousels

• only uncleared bags arrive at the CBS stations

For the verification, the MHS network has been split up into

13 subnetworks using the procedure provided in Section V-B.

There, the functionality of the BHS is taken into account,

i.e. all check-in lines A , B are placed into a subnetwork,

the outer two make-up carousels O span a subnetwork, etc.

Also, the properties to be proven are considered because the

cargo types are always computed, and thus observable, at the

outgoing connection ports of each subnetwork. Hence, for

instance, the CBS stations L M and their corresponding

conveyors are put into the same subnetwork.

The only feedback loop that had to be resolved is the outer

conveying loop which was cut between F and D . Based on

this partitioning, the overall verification of routing took 251.3 s

plus 235.3 s needed for removing the loop and determining

the cargo types at the cut, i.e. 486.6 s in total (Intel Xeon R©

X5672@3.2 GHz, 4GB RAM, Linux, NuSMV 2.5.3 64bit).

In the initial iteration to determine the cargo types at

the loop cut (cf. Section V-E), Cout(SRC
⋆) := {L}. Based

on this, the cargo types reaching the cut are computed as

Cport(SNK
⋆) = {r, b, g, w, L}, i.e. cargos of all cargo types

may reach the cut in the airport example. In the next and

last iteration, the cargo types at the source SRC⋆ are updated

to Cout(SRC
⋆) := {r, b, g, w, L}; the set Cport(SNK

⋆) does

not change anymore in this iteration, because Cport (SNK
⋆) =

Cglobal , i.e. no further cargo types can be added. Consequently,

after two iterations the cargos types at the cut have been

determined. In the second iteration, also the verification of

routing is carried out, i.e. the cargo types reaching all sinks

in the MHS network are computed.

To further discuss the impact of the count of subnetworks on

the overall verification time, the compositional verification for

the airport example has been conducted considering different

partitionings. Figure 10 depicts the sum of the number of

reachable states of all subnetworks in relation to the number

of subnetworks for airport example. The number of reachable

states is plotted in logarithmic scale.

The plot shows that the initial partitioning (13 subnetworks)

is not well suited for formal verification as the number of

reachable states is huge (1.30 · 1093). This is mainly due

to the fact that in the initial partitioning all the check-in

14 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING

 1e+010

 1e+020

 1e+030

 1e+040

 1e+050

 1e+060

 1e+070

 1e+080

 1e+090

 1e+100

 10 20 30 40 50 60 70 80 90

Number of subnetworks

S
u
m

o
f

th
e

n
u
m

b
e
r

o
f

r
e
a
c
h
a
b
le

s
ta

te
s

o
f

a
ll

s
u
b
n
e
tw

o
r
k
s

Figure 10. Reachable states in relation to the number of subnetworks

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

13 15 17 20 23 25 30 46 64 83

Loop cut
Routing

Number of subnetworks

N
e
e
d
e
d

v
e
ri

fi
c
a
ti

o
n

ti
m

e
in

s
e
c
o
n
d
s

Figure 11. Overall time needed to verify routing in relation to the number
of subnetworks

lines (96 MHS elements, 48 MHS sources) were put into one

subnetwork, which by itself already provides 6.48·1092, i.e. al-

most 50.0% of the overall reachable states. As a consequence,

245.1 s (50.4%) of the complete verification time were spent

to prove outgoing cargo types on this subnetwork.

Thus, by subdividing this subnetwork into three subnet-

works, which leads to a count of 15 subnetworks, the sum

of reachable states of all subnetworks drops to 5.07 · 1040

(cf. Figure 10). By dividing the MHS network into even

more subnetworks, the overall state count further decreases.

For the airport example, a partitioning in 83 subnetworks

reduced the sum of the reachable states of all subnetworks

to 1.83 · 1016. The partitioning for the shown number of

subnetworks has been chosen such that no additional loops

between subnetworks were introduced.

With the smaller number of states that have to be analyzed

during model checking, also the needed verification time

decreases. The plot in Figure 11 presents the time needed to

verify routing in relation to the chosen partitioning.

The overall time is segmented into the time needed to

compute the cargo types at the loop cut and the time needed

verify routing. More precisely, the latter is the amount of time

for performing the last iteration of the verification algorithm

(cf. Section V-E) during which the cargo types at the loop

cuts do not change anymore and during which the cargo

types at the MHS sinks are computed. This last iteration is

shown explicitly, as it represents the actual verification time

if the MHS network would not contain any loops between

subnetworks. This last iteration takes slightly more time than

the first iteration (cf. Figure 11), as more subnetworks have to

be considered to reach not only the introduced sinks SNK⋆

but the actual sinks SNK of the MHS network.

For the initial partitioning, the overall verification took

486.6 s. The fewer MHS elements are part of a subnetwork, the

smaller the number of reachable states but also the smaller the

diameter (cf. Section III-A) of the underlying Kripke structure.

Hence, by further refining the partitioning, the verification

time has been reduced to 43.3 s. Interestingly, the minimum

verification time has not been not achieved when choosing

the maximum number of considered subnetworks (83), but

when considering 64 subnetworks. The verification time rises

from 43.3 s for 64 subnetworks to 45.9 s for 83 subnetworks

owing to the additional time that is needed for generating the

NuSMV code and for verifying a higher number of properties

on a higher number of subnetworks.

This suggests, at first sight, to split up the MHS network

into a large number of subnetworks to improve the general

performance. However, it has to be taken into account that

false negatives (cf. Section V-F) may occur. Moreover, by

introducing a large number of small subnetworks, additional

cycles between subnetworks may be introduced, which have

to be resolved during verification.

This case study shows that with the discussed approach,

important properties of the BHS can be proven automatically

in a reasonable amount of time. Another case study can be

found in [53].

VII. CONCLUSION

This paper has proposed an approach to automatically prove

the correctness of routing in MHS using compositional verifi-

cation. The applicability of the approach has been shown using

a real-world example. Experimental results are promising as

the approach scales well with the size of the MHS network.

Furthermore, the approach has advantages over simple routing

graph analysis because complex routing strategies are also

taken into account. Moreover, the presented approach is the

basis for proving not just routing but arbitrary properties of

MHS in a compositional way [53]. The general idea of the

approach is not restricted to MHS but may also be applied to

other applications.

Current work focuses on automatic partitioning of MHS net-

works into subnetworks, where the size of the subnetworks

is adjusted dynamically with regard to material flow control,

and the time and/or memory needed by the model checker.

The overall performance of the tool can be improved by

topologically sorting the subnetworks, and then, allowing for

parallel proofs of subnetworks.

A major challenge for future research is the tackling of false

negatives which refer to counterexamples that are reachable

when verifying a subnetwork but that are not reachable when

considering the complete MHS network. These false negatives

have to be automatically identified and weeded out.

KLOTZ et al.: AUTOMATED FORMAL VERIFICATION OF ROUTING IN MATERIAL HANDLING SYSTEMS 15

Another direction for the future is the design of specifica-

tion templates for MHS. Expressing certain requirements in

temporal logics is non-trivial and error-prone, especially for

non-experts. Since some requirements to MHS occur often in

practice, they can be specified in terms of templates. From

these templates, temporal logic formulas are automatically

generated and proven.

APPENDIX

The proof for the correctness of the proposed algorithm (cf.

Section V-D) is provided in the following.

Proof: Two cases have to be addressed regarding whether

the partitioned MHS network contains feedback loops between

subnetworks or not. In the following, may N be the original

MHS network which also stands for all traces of N which are

the same traces as allowed by the partitioned version N⋆. The

traces assumed by the compositional verification Algorithm 1

are denoted by Alg(N).
If the partitioned MHS network does not contain feedback

loops, only the set of cargo types Cport(CPin) at an input con-

nection port of a subnetwork is assumed. All other control flow

variables (Give etc.) and all input signals of the subnetwork

may take arbitrary values. Thus, Alg(N) is a valid abstraction

of N (N � Alg(N), cf. Section III-C), i.e. the partitioning

does not exclude possible traces of N. Consequently, the cargo

types Cport(CPout) reaching an output connection port of

a subnetwork in Alg(N) are an over-approximation of the

cargo types that may reach this connection port in the original

network N.

If the partitioned MHS networks contains feedback loops

between subnetworks, additional sources SRC⋆ and sinks

SNK⋆ are introduced at connections CN that have been

resolved (cf. Figure 3). The outgoing control flow variables

of SRC⋆ and SNK⋆ may take arbitrary values, i.e. they are

not restricted. May Cport(SRC) denote the cargo types that are

generated by a source SRC in the original MHS network N.

Moreover, may Cport(SNK
⋆) denote the cargo types reaching

the resolved connection CN at SNK⋆. In iteration 0 of

Algorithm 1, each cargo that has been generated by a source

and that did not pass CN yet will reach CN and its type

is included in Cport(SNK
⋆). In iteration i, each cargo that

has been generated by a SRC and that passed CN between

0 and i times will reach CN and its type is included in

Cport(SNK
⋆). After infinitely many iterations, the types of all

cargos that have been generated by a SRC and that arbitrary

often passed CN are in Cport (SNK
⋆), and thus, are also in

Cport(SRC
⋆). However, the algorithm terminates already after

a finite number of iterations q (q ∈ N, q > 0), whenever

Cport(SNK
⋆) = Cport(SRC

⋆), because further iterations will

not add any additional cargo types. Hence, the iterations after

q can be omitted, and the algorithm correctly determines all

the cargo types at the resolved connection.

REFERENCES

[1] J. A. Tompkins, J. A. White, Y. A. Bozer, and J. M. A. Tanchoco,
Facilities Planning, 3rd ed. John Wiley & Sons, 2003.

[2] Association of European Airlines, “Consumer Report 06/2012,” http:
//www.aea.be/AEAWEBSITE/STATFILES/CR-12-06.pdf, 2012.

[3] E. M. Clarke, O. Grumberg, and D. A. Peled, Model checking. The
MIT Press, 1999.

[4] T. Klotz, B. Straube, E. Fordran, J. Haufe, F. Schulze, K. Turek,
and T. Schmidt, “An approach to the verification of material handling
systems,” in Proc. 16th IEEE Int. Conf. Emerging Technol. Factory

Autom., 2011, pp. 1–8.
[5] VDI, “VDI 3628 Draft: Automated material handling systems - Inter-

faces between the various function levels in the automation model,”
1996.

[6] W. M. P. van der Aalst, “Logistics: A systems oriented approach,” in
Proc. 3rd Int. Working Conf. Dynamic Modelling Information Syst.,
1992, pp. 169–189.

[7] H. Chen, K. Labadi, and L. Amodeo, “Modeling, analysis, and opti-
mization of logistics systems: Petri net based approaches,” in Proc. Int.

Conf. Service Syst. Service Manage., 2006, pp. 575–582.
[8] M. Dotoli, M. Fanti, G. Iacobellis, and A. Mangini, “A first-order hybrid

petri net model for supply chain management,” IEEE Trans. Autom. Sci.

Eng., vol. 6, no. 4, pp. 744–758, 2009.
[9] D. Herrero-Perez and H. Martinez-Barbera, “Modeling distributed trans-

portation systems composed of flexible automated guided vehicles in
flexible manufacturing systems,” IEEE Trans. Ind. Inform., vol. 6, no. 2,
pp. 166–180, 2010.

[10] F. Basile, P. Chiacchio, and J. Coppola, “A hybrid model of complex
automated warehouse systems – Part I: Modeling and simulation,” IEEE

Trans. Autom. Sci. Eng., vol. 9, no. 4, pp. 640–653, 2012.
[11] Z. Li, N. Wu, and M. Zhou, “Deadlock control of automated manufac-

turing systems based on Petri nets – A literature review,” IEEE Trans.

Syst., Man, Cybern. C, Appl. Rev., vol. 42, no. 4, pp. 437–462, 2012.
[12] S. A. Reveliotis, “Conflict resolution in AGV systems,” IIE Trans.,

vol. 32, no. 7, pp. 647–659, 2000.
[13] N. Wu and W. Zeng, “Deadlock avoidance in an automated guidance

vehicle system using a coloured Petri net model,” Int. Jour. Prod. Res.,
vol. 40, no. 1, pp. 223–238, 2002.

[14] N. Wu and M. Zhou, “Modeling and deadlock control of automated
guided vehicle systems,” IEEE/ASME Trans. Mech., vol. 9, no. 1, pp.
50–57, 2004.

[15] ——, “Shortest routing of bidirectional automated guided vehicles
avoiding deadlock and blocking,” IEEE/ASME Trans. Mech., vol. 12,
no. 1, pp. 63–72, 2007.

[16] T. Nishi and R. Maeno, “Petri net decomposition approach to optimiza-
tion of route planning problems for AGV systems,” IEEE Trans. Autom.

Sci. Eng., vol. 7, no. 3, pp. 523–537, 2010.
[17] T. Nishi and Y. Tanaka, “Petri net decomposition approach for dispatch-

ing and conflict-free routing of bidirectional automated guided vehicle
systems,” IEEE Trans. Syst. Man Cybern. A., Syst. Humans, vol. 42,
no. 5, pp. 1230–1243, 2012.

[18] T. L. Johnson, “Improving automation software dependability: A role for
formal methods?” Control Eng. Pract., vol. 15, no. 11, pp. 1403–1415,
2007.

[19] International Electrotechnical Commission, “IEC Standard 61131-3:
Programmable controllers - Part 3,” 1993.

[20] I. Moon, “Modeling programmable logic controllers for logic verifica-
tion,” IEEE Control Syst. Mag., vol. 14, no. 2, pp. 53–59, 1994.

[21] O. Rossi and P. Schnoebelen, “Formal modeling of timed function blocks
for the automatic verification of ladder diagram programs,” in Proc. 4th

Int. Conf. Automat. Mixed Processes, 2000, pp. 177–182.
[22] B. Zoubek, J.-M. Roussel, and M. Kwiatkowska, “Towards automatic

verification of ladder logic programs,” in Proc. Multiconf. Computati.

Eng. Syst. Applicat., 2003, pp. 9–12.
[23] M. B. Younis and G. Frey, “Formalization of PLC programs to sustain

reliability,” in Proc. IEEE Conf. Robotics Automat. Mechatron., 2004,
pp. 613–618.

[24] V. Gourcuff, O. De Smet, and J.-M. Faure, “Efficient representation
for formal verification of PLC programs,” in Proc. 8th Int. Workshop

Discrete Event Syst., 2006, pp. 182–187.
[25] B. Schlich, J. Brauer, and S. Kowalewski, “Application of static analyses

for state-space reduction to the microcontroller binary code,” Sci. Comp.

Prog., vol. 76, no. 2, pp. 100–118, 2011.
[26] O. Pavlovic and H.-D. Ehrich, “Model checking plc software written

in function block diagram,” in Proc. 3rd Int. Conf. Softw. Testing,

Verification Validation, 2010, pp. 439–448.
[27] S. Bornot, R. Huuck, B. Lukoschus, and Y. Lakhnech, “Verification

of sequential function charts using SMV,” in Proc. Int. Conf. Parallel

Distrib. Process. Tech. Applicat., 2000, pp. 2987–2993.
[28] N. Bauer, S. Engell, R. Huuck, S. Lohmann, B. Lukoschus, M. Remelhe,

and O. Stursberg, “Verification of PLC programs given as sequential
function charts,” in Integration of software specification techniques for

16 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING

applications in engineering, ser. LNCS. Springer, 2004, vol. 3147, pp.
517–540.

[29] H. Bel Mokadem, B. Beandrard, V. Gourcuff, O. De Smet, and J. Rous-
sel, “Verification of a timed multitask system with Uppaal,” IEEE Trans.
Autom. Sci. Eng., vol. 7, no. 4, pp. 921–932, 2010.

[30] N. Wightkin, U. Buy, and H. Darabi, “Formal modeling of sequential
function charts with time petri nets,” IEEE Trans. Contr. Sys. Techn.,
vol. 19, no. 2, pp. 455–464, 2011.

[31] T. Klotz, E. Fordran, B. Straube, and J. Haufe, “Formal verification
of UML-modeled machine controls,” in Proc. 14th IEEE Int. Conf.

Emerging Technol. Factory Autom., 2009, pp. 1–7.
[32] D. Witsch, M. Ricken, B. Kormann, and B. Vogel-Heuser, “PLC-

statecharts: An approach to integrate UML-statecharts in open-loop
control engineering,” in Proc. 8th IEEE Int. Conf. Ind. Inform., 2010,
pp. 915–920.

[33] M. Bonfe, C. Fantuzzi, and C. Secchi, “Design patterns for model-based
automation software design and implementation,” Control Eng. Pract.,
2012, in press.

[34] O. Ljungkrantz, K. Akesson, M. Fabian, and C. Yuan, “Formal speci-
fication and verification of industrial control logic components,” IEEE

Trans. Autom. Sci. Eng., vol. 7, no. 3, pp. 538–548, 2010.
[35] F. de Renesse and A. Aghvami, “Formal verification of ad-hoc routing

protocols using SPIN model checker,” in Proc. IEEE Mediterranean

Electrotechnical Conf., 2004, pp. 1177–1182.
[36] D. Camara, A. Loureiro, and F. Filali, “Methodology for formal verifi-

cation of routing protocols for ad hoc wireless networks,” in Proc. IEEE

Global Telecomm. Conf., 2007, pp. 705–709.
[37] M. Rohrer, “Automod,” in Proc. Winter Sim. Conf., 1994, pp. 487–492.
[38] W. B. Nordgren, “Flexsim simulation environment,” in Proc. Winter Sim.

Conf., 2002, pp. 250–252.
[39] S. Seidel, U. Donath, and J. Haufe, “Approach to a simulation-based

verification environment for material handling systems,” in Proc. 17th
IEEE Int. Conf. Emerging Technol. Factory Autom., 2012, pp. 1–4.

[40] G. Black and V. Vyatkin, “Intelligent component-based automation of
baggage handling systems with IEC 61499,” IEEE Trans. Autom. Sci.

Eng., vol. 7, no. 2, pp. 337–351, 2010.
[41] A. Tarau, B. De Schutter, and H. Hellendoorn, “Model-based control

for route choice in automated baggage handling systems,” IEEE Trans.

Syst., Man, Cybern. C, Appl. Rev., vol. 40, no. 3, pp. 341–351, 2010.
[42] M. Johnstone, D. Creighton, and S. Nahavandi, “Status-based routing

in baggage handling systems: Searching verses learning,” IEEE Trans.

Syst., Man, Cybern. C, Appl. Rev., vol. 40, no. 2, pp. 189–200, 2010.
[43] K. Hallenborg, “Intelligent control of material handling systems,” in

Environmentally Conscious Materials Handling, M. Kutz, Ed. John
Wiley & Sons, 2009, pp. 63–116.

[44] S. W. A. Haneyah, J. M. J. Schutten, P. C. Schuur, and W. H. M. Zijm,
“Generic planning and control of automated material handling systems:
Practical requirements versus existing theory,” Comp. Ind., vol. 64, no. 3,
pp. 177–190, 2013.

[45] O. Grumberg and D. E. Long, “Model checking and modular verifica-
tion,” ACM Trans. Program. Lang. Syst., vol. 16, no. 3, pp. 843–871,
1994.

[46] J. E. Hopcroft and J. D. Ullman, Introduction to automata theory,

languages, and computation. Addison Wesley, 1979.
[47] M. Ben-Ari, Z. Manna, and A. Pnueli, “The temporal logic of branching

time,” Acta Inform., vol. 20, pp. 207–226, 1983.
[48] A. Pnueli, “In transition from global to modular temporal reasoning

about programs,” in Logics and models of concurrent systems. Springer,
1985, pp. 123–144.

[49] C. S. Pasareanu, D. Giannakopoulou, M. G. Bobaru, J. M. Cobleigh,
and H. Barringer, “Learning to divide and conquer: applying the L*
algorithm to automate assume-guarantee reasoning,” Formal Meth. Sys.

Des., vol. 32, pp. 175–205, 2008.
[50] M. ten Hompel and T. Schmidt, Warehouse Management: Automation

and Organisation of Warehouse and Order Picking Systems. Springer,
2007.

[51] T. Klotz, N. Seßler, B. Straube, E. Fordran, K. Turek, and J. Schönherr,
“On the formal verification of routing in material handling systems,” in
Proc. 8th IEEE Conf. Autom. Sci. Eng., 2012, pp. 8–13.

[52] A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore,
M. Roveri, R. Sebastiani, and A. Tacchella, “NuSMV 2: An opensource
tool for symbolic model checking,” in Proc. 14th Int. Conf. Comput.
Aided Verification, ser. LNCS, vol. 2404, 2002, pp. 359–364.

[53] T. Klotz, N. Seßler, B. Straube, E. Fordran, K. Turek, and J. Schönherr,
“Compositional verification of material handling systems,” in Proc. 17th
IEEE Int. Conf. Emerging Technol. Factory Autom., 2012, pp. 1–8.

Thomas Klotz (S’10) received the Dipl.-Ing. degree
in information systems engineering from Technische
Universität Dresden, Dresden, Germany, in 2009.
Since 2010, he is working toward the Dr.-Ing. de-
gree in computer science at Technische Universität
Dresden, Dresden, Germany.

From 2007 to 2008, he was with SAP Research,
Palo Alto, CA, USA, where he worked as a Software
Engineer Intern. Since 2009, he has been with the
Fraunhofer Institute for Integrated Circuits, Design
Automation Division, Dresden. His research inter-

ests include formal verification, testing, and model-based design.

Jens Schönherr received the Dipl.-Inform. and the
Dr.-Ing. degrees in computer science from Tech-
nische Universität Dresden, Dresden, Germany, in
1996 and 2002, respectively.

In 1996, he joined the Fraunhofer Institute for
Integrated Circuits, Design Automation Division,
Dresden, as a Researcher. From 2005 to 2007, he
was with OneSpin Solutions, Munich, Germany,
where he worked as a Senior Engineer. From 2007
to 2012, he worked as a Group Manager at Sig-
nalion, Dresden. Since 2012, he has been Professor

of Digital System Design at the Dresden University of Applied Sciences,
Germany. His current research focuses on design and verification issues of
digital circuits.

Norman Seßler received the Dipl.-Ing. degree in
information systems engineering from Technische
Universität Dresden, Dresden, Germany, in 2012.

Since 2012, he has been with the Fraunhofer Insti-
tute for Integrated Circuits, Design Automation Di-
vision, Dresden, where he implements tools for the
design and formal verification of hardware/software
systems. His research interests include modeling and
formal verification of circuits and systems.

Bernd Straube received the Dipl.-Ing., the Dr.-Ing.,
and the habil. degrees in electrical engineering, net-
work and system theory from Technische Universität
Dresden, Dresden, Germany, in 1970, 1973, and
1984, respectively.

In 1973, he joined the Central Institute of Cyber-
netics and Information Processes of the Academy
of Sciences of the former G.D.R. From 1992 to his
retirement in 2009, he worked as a group manager
at the Fraunhofer Institute for Integrated Circuits,
Design Automation Division, Dresden. Currently,

he is a senior consultant there. Since 2002, he has also been an Adjunct
Professor at the department of Computer Science at Technische Universität
Dresden, Dresden, Germany. His research interests include testing, diagnosis,
and formal verification.

Karsten Turek received the Dipl.-Ing. degree in
electrical engineering from Technische Universität
Dresden, Germany, in 1996.

Since 1997, he has been with the Institute of
Material Handling and Industrial Engineering at
Technische Universität Dresden, Dresden, Germany,
where he worked in several research and industrial
projects. His research interests focus on simulation
and control design of material handling systems.

