Innovative Forming Technologies for Efficient Light Weight Design in Car Body Structures

Tom Barthel AP&T Future Forming Seminars,

Innovative Forming Technologies for Efficient Light Weight Design in Car Body Structures

Table of contents

- 1. Introduction
- 2. Pre-Processing
- 3. Forming Processes
- 4. Post Processing
- 5. Conclusion and Outlook

Fraunhofer

Innovative Forming Technologies for Efficient Light Weight Design in Car Body Structures

Table of contents

- 1. Introduction
- 2. Pre-Processing
- 3. Forming Processes
- 4. Post Processing
- 5. Conclusion and Outlook

Fraunhofer

rchivierungsangabei

Fraunhofer

1. Introduction 2nd Challenge: Shortage of Resources

2014 world wide production – automotive main materials

1 662 Mio. t 53 Mio. t 19 Mio. t 303 Mio. t	steel aluminum copper polymer*	
* at about 4 402 Mio t mineral o	oil production \rightarrow 7 %	source: www.faz.net
average passenger car ma	aterial mix	2014 share of passenger cars production: 67,5 Mio.
Other Polymers 16.20%		<u>average kerb weight per car: 1.37 t</u>
12,22%		→ 57,6 Mio. t steel (3,5%)
	Ferrous	\rightarrow 6.5 Mio. t aluminum (12.3%)
Non Ferrous	Metals	\rightarrow 0.9 Min t copper (4.8%)
2,32%	62.24%	\rightarrow 11.2 Mio. t polymor (2.7%)
(copper 1%)		\rightarrow 11,5 who. t polymer (5,7 %)
		<u>resources consumption per car: 70 t</u>
Aluminum		1 725 Mio +
7,02%	source: Habermacher	4723 WIIO. L

5

1. Introduction **3rd Challenge: Energy Efficiency in Production**

Material savings versus Productivity

* Cumulated energy consumption (KEA) incl. all process steps to manufacture zinc-coated steel blanks, 2010 (source: ProBas-Datenbank des Umweltbundesamtes)

Constraints :

mech. transfer press , 15 000 kN nominal force, max. strokes of 22 [1/min]. reference part: lower B-pillar of 2,33 kg

High material usage rate

1. Introduction **4rd Challenge: Growing Individualism Evolution of product variety: example BMW**

Innovative Forming Technologies for Efficient Light Weight Design in Car Body Structures

Table of contents

- 1. Introduction
- 2. Pre-Processing
- 3. Forming Processes
- 4. Post Processing
- 5. Conclusion and Outlook

Fraunhofer

Archivierungs

2. Pre-Processing Effects by Temperature Support at Lightweight Materials

2. Pre-Processing Effects by Temperature Support at Lightweight Materials Aluminum

Influence of temperature support at A6061; $s_0 = 1,3$ mm;

face centered cubic grid

2. Pre-Processing Effects by Temperature Support at Lightweight Materials Magnesium

Influence of temperature support at AZ 31B; $s_0 = 1,3$ mm;

2. Pre-Processing Contact Heating – Fast and Efficient

Function principle and basic investigations

2. Pre-Processing Contact Heating – Fast and Efficient

Testing device at Fraunhofer IWU

Innovative Forming Technologies for Efficient Light Weight Design in Car Body Structures

Table of contents

- 1. Introduction
- 2. Pre-Processing
- 3. Forming Processes
- 4. Post Processing
- 5. Conclusion and Outlook

3. Forming Processes Magnesium Forming

Deep Drawing & Stretch forming

tool heating strategy

tool: → die, blankholder – electrical cartridges
 → punch – fluid (thermal oil)
 blank: → furnace (outside of press)

"Door Inner Panel" triple tailored blank 2,0mm/1,2mm/2,0mm

realized induction heating

Lower gas forming tool

realized magnetic heating

3. Forming Processes Magnesium Forming

Free shape bending

adjusting of power level for

induction heating

comparison of bended parts incl. and without induction heating

17

3. Forming Processes Magnesium Forming Hemming

hemming die in test press EHP1600 (IWU) (lower die – heating by electric cartridges)

- hemming of demonstration parts door geometry incl. electrical heating
- tryout of induction heating
 → existing potentials

hemming tool upper die upper

door assembly after hemming - results

3. Forming Processes Magnesium Forming

Roll Forming

3. Forming Processes **Magnesium Forming** Conclusion

- semi finished products (blanks, tubes and profiles) available
- established forming technologies ready for application
- temperature support (~200 °C) must be
- Iubricant for serial production is not available

3. Forming Processes Hybrid Technologies

An old idea... 10 years ago

process combination of deep drawing and hydroforming

tool principle

- ⇒ reduction of joining operations
- ⇒ increasing of forming limits, part quality as well as complexity (new design free space)
- ⇒ ...

⇒ new challenges in tool design and process control

© Fraunhofer IWU

demonstration part motorcycle fuel tank

3. Forming Processes Hybrid Metal-Polymer Technologies

Process Combination Deep Drawing & Injection Molding

why not using heated fluid polymer as forming media?

1. Conventionally deep drawing of a cup geometry

2. Injection molding for:

- \rightarrow forming undercuts
- ightarrow inserting of reinforcement elements

3. Forming Processes Hybrid Metal-Polymer Technologies

Process Combination Hydroforming & Injection Molding

1. Hydroforming of metal tube / realization of a counter pressure

2. Injection molding of plastic functional sections

3. Forming Processes Hybrid Metal-Polymer Technologies

Challenges in different load directions

Connecting concepts for optimized load paths

Innovative Forming Technologies for Efficient Light Weight Design in Car Body Structures

Table of contents

- 1. Introduction
- 2. Pre-Processing
- 3. Forming Processes
- 4. Post Processing
- 5. Conclusion and Outlook

Fraunhofer

4. Post Processing Velocity effects

4. Post Processing Part Trimming by High Speed Impact Cutting (HSIC) Function principle

4. Post Processing Part Trimming by High Speed Impact Cutting (HSIC)

Effects regarding cutting quality – example press hardened steel

Material: 22MnB5, R_m = 1500 MPa, sheet thickness 2,0 mm, die clearance 3%

4. Post Processing Part Trimming by High Speed Impact Cutting (HSIC) Testing device at IWU

Test equipment

energy level :	2 x 1,0 kJ and 2 x 2,0 kJ (4 independent punching units)
velocity range:	3 to 10 m/s
table size:	1500 x 800 mm
	1 1 1 1 1 1

power generation by high speed hydraulic

4. Post Processing Part Trimming by High Speed Impact Cutting (HSIC)

Die less HSIC piercing of tubes

Test equipment

- captive-bolt pistol with piercing punch Ø 8,37 mm
- cutting speed: 50,2 70,2 m/s
- basic material tubes
 - diameter Ø 25 Ø 55 mm
 - wall thickness 2,0 3,0 mm
 - tube materials \$355 (St 52), copper alloy, ferritic stainless steel (1.4509)

test device for die less piercing

tube and clamping device

4. Post Processing Electromagnetic forming - EMF Process principle

- pulsed magnetic fields initiate repulsive Lorentz forces between inductor and electrically conductive work pieces
- compression / expansion of tubes and hollow profiles as well as forming on flat or preformed sheet metal materials is possible within microseconds

Technology variants

Fraunhofer

4. Post Processing Electromagnetic forming - EMF Fields of application

Forming

Door handle cavity (AA6060; thickness 1.0 mm)

Design element (AA3103; thickness 0.6 mm)

Major advantages

- contactless force application to the workpiece
- in many materials high strain rates (10⁴ s⁻¹) allow higher strains than in conventional forming
- integration of additional technologies i.e. cutting and joining is possible
- combined application with conventional technologies allows exploiting complementary advantages

Multi material joints (Al, Cu, CFRP)

Torque shaft (outer joining partner: C35; Ø 42.4; thickness: 3.2 mm)

Multiple cutout demonstrator (AA-6060; thickness 1.2 mm)

Combined processes

Innovative Forming Technologies for Efficient Light Weight Design in Car Body Structures

Table of contents

- 1. Introduction
- 2. Pre-Processing
- 3. Forming Processes
- 4. Post Processing
- 5. Conclusion and Outlook

Fraunhofer

5. Conclusion and Outlook Lightweight Design and the Outcome

operation phase

production phase

5. Conclusion and Outlook Efficiency Potential of Optimized Process Chains

Light Weight Designed Components

Product optimization

efficient lightweight design:

- \rightarrow right material for right application
- → functional integration (intelligent components)
- → multiple tailored component properties
- \rightarrow increased component strength
- \rightarrow optimized part dimensions

Process optimization

efficient production:

- \rightarrow shorted process chains
- → minimized matching effort (forming &joining in one step)
- → reduced number of single components (reduce joining effort)
- \rightarrow reduced logistic efforts
- → high resource and cost efficiency
- → increased product flexibility

5. Conclusion and Outlook Challenges in Future Production Scenarios

how to solve the resource problem?

1st approach: more efficient use of existing resources

2nd approach:

exploitation of new resources

Change in the paradigm of entrepreneurship!

Today: success is maximum profit with minimum capital effort

Future: success is maximum profit with minimum effort on resources*

* Prof. Neugebauer, president of the Fraunhofer Society

Thank you for your kind attention!

