
A publication by Fraunhofer IESE

A Knowledge Management Lifecycle
for Experience Packages
on Software Engineering Technologies

Technical Report

Authors:
Andreas Birk
Felix Kröschel

IESE-Report No. 007.99/E
Version 1.0
February 1999

Fraunhofer Einrichtung
Experimentelles

IESE

Software Engineering

Fraunhofer IESE is an institute of the
Fraunhofer Gesellschaft.
The institute transfers innovative software
development techniques, methods and
tools into industrial practice, assists com-
panies in building software competencies
customized to their needs, and helps them
to establish a competetive market position.

Fraunhofer IESE is directed by
Prof. Dr. Dieter Rombach
Sauerwiesen 6
D-67661 Kaiserslautern

vCopyright © Fraunhofer IESE 1999

Abstract

Software engineering can benefit very much from customised knowledge man-
agement solutions. These should rely on reusable experience that is modelled
explicitly and stored in central repositories. Few approaches exist yet that pro-
vide such knowledge management support to software engineering. Those that
support it cover usually only part of the knowledge management lifecycle of the
reusable artefacts.

This paper suggests a knowledge management lifecycle for experience about
software engineering technologies and their application contexts. It primarily
aims at supporting the planning of software projects and improvement pro-
grammes. The lifecycle model is substantiated by a tool implementation and evi-
dence from an industrial trial application.

vi Copyright © Fraunhofer IESE 1999

viiCopyright © Fraunhofer IESE 1999

Table of Contents

1 Introduction 1

2 Knowledge Management and Software Engineering 4
2.1 Requirements on Knowledge Management of Software

Engineering Technologies 4
2.2 A Survey of Knowledge Management Tools 6
2.3 Observations from the Tools Survey 8

3 Technology Experience Bases 11

4 A Knowledge Management Lifecycle for Technology
Experience Packages 13

5 Knowledge Acquisition of Technology Experience
Packages 15

6 Technology Selection Support Using Technology
Experience Packages 17

7 Empirical Evaluation of Technology Experience
Packages 20

8 An Example Technology Experience Base 23

9 Conclusions 24

Acknowledgements 24

References 25

viii Copyright © Fraunhofer IESE 1999

1

Introduction

Copyright © Fraunhofer IESE 1999

1 Introduction

Software engineering plays a key role in today’s public life. Nearly every product
of the manufacturing or service industries depends to a wide extent on soft-
ware. The source of software engineering’s impressive success is a tremendously
fast progress in developing and deploying new technology (cf. [You93]). How-
ever, despite these achievements, stories about computing problems and fail-
ures are spread over the news quite frequently. These troubles seem not to fit
into the picture of a successful new branch of engineering. A number of recent
investigations have shown that the main cause of software engineering’s fail-
ures is the same as for its successes: New technology–and, in the case of project
failures, the inability to manage it successfully (cf. [Sta95], [KPM95], and
[Gla98]).

The inherent risk of technology failure in software projects calls for a better
management of our knowledge about technologies and their application con-
texts. Since the beginning of software engineering much effort has been put
into the development of new technologies. Less attention has been paid to their
application and empirical evaluation. We argue that this lack of information
about when a certain technology can be applied most appropriately and when it
should not be applied is the main reason for many technologies-caused project
failures.

A knowledge management approach to the application of software engineering
technologies has two basic requirements: (1) Precise and operational definition
of software engineering technologies, and (2) the systematic investigation and
documentation of the application contexts of technologies. While the first issue
has already been subject to many research efforts, mainly in the area of process
modelling (cf. [RV95], [CKO92]), the application contexts of technologies have

2. SET GOALS

3. CHOOSE MODELS4. EXECUTE

5. ANALYSE

6. PACKAGE 1. CHARACTERISE

Figure 1: The Quality Improvement Paradigm.

2

Introduction

Copyright © Fraunhofer IESE 1999

hardly been addressed, yet. For this reason, we have been focusing our research
around the following questions: How can technology application contexts can
be modelled?, and how can concrete context models be gained, used for sup-
porting project planning, and evolved based on experience from technology
application? This paper presents results from this work. It introduces so-called
technology experience packages (TEPs) for modelling. Further, a lifecycle model
for developing, using, and maintaining TEPs is presented. For each lifecycle task
possible support is illustrated using a prototypical tool implementation.

Our approach builds on the Quality Improvement Paradigm (QIP) / Experience
Factory (EF) approach [BCR94]. The QIP is a six-step cycle for continuous
improvement in software engineering (see Figure 1). It serves also very well as a
knowledge management paradigm for the software domain (cf. [TA97]). The EF
is the associated infrastructure for organisational learning (see Figure 2). It dis-
tinguishes the project organisation, whose main concern is software develop-
ment, from the Experience Factory, whose main concern is to learn about soft-
ware development and to support the project organisation with useful
experience. Core component of the EF is the Experience Base (EB), a repository
of relevant software engineering experience. The EB contains a collection of
experience packages that consist of a reusable artefact (e.g., a process model,
an effort prediction model, or a code module) and information about when–i.e.,
in which situations–the reusable artefact can be applied.

Throughout this paper, focus is put on software engineering technologies.
Therefore, we refer to a specialised variant of experience bases: Technology
experience bases (TEBs), that contain technology experience packages (TEPs). As
software engineering technology we refer to every technique, method, or tool
used for software engineering [BCR94]. Special attention is paid to process tech-
nologies, such as inspection methods and methods for performing measure-
ment programmes.

Section 2 addresses the interface between knowledge management and soft-
ware engineering. It provides a survey of selected knowledge management solu-

experience base
experience
engineer

project team
project organization 1

experience factory

project organization n

feedback,
lessons learned,
deliverables

software knowledge
derived from past projects

activities:
1. characterise
2. set goals
3. choose models
4. execute

activities:
5. analyse
6. package

Figure 2: The Experience Factory.

3

Introduction

Copyright © Fraunhofer IESE 1999

tions from software engineering and other fields. The concept of technology
experience bases is introduced in Section 3. Sections 4 to 7 present a lifecycle
for managing knowledge about software engineering technologies and their
application domains. A project on the development of a TEB and its experiences
are reported in Section 8. Section 9 presents the main conclusions from our
work.

4

Knowledge Management and
Software Engineering

Copyright © Fraunhofer IESE 1999

2 Knowledge Management and Software Engineering

Knowledge management can provide beneficial support to software engineer-
ing (cf. [BSA99], [Eri92]). This section explores the interface between these two
areas. First, requirements on knowledge management of software engineering
technologies are identified (Section 2.1). These are then used in Section 2.2 to
survey and characterise relevant knowledge management tools. Finally, conclu-
sions are derived from this survey that pin-point further needs for methodology
and tool support.

Knowledge management is a term that is still widely discussed and that has no
comprehensive and widely accepted definition yet. A concise definition that is
widely appropriate for software engineering follows a definition proposed by
O’Leary [OL98']:

Knowledge management is the formal management of knowledge for facili-
tating creation, access, reuse of knowledge, and learning from its applica-
tion, typically using advanced technology.

This definition reflects the need of a learning organization for identifying knowl-
edge, for storing it appropriately, for making it accessible, and for easing its
reuse. Experience gained from reusing the stored knowledge items should be
deployed to further evolve and extend the stored body of knowledge.

2.1 Requirements on Knowledge Management of Software Engineering Technologies

The need for knowledge management support in software engineering–in par-
ticular for the management of knowledge about software engineering technol-
ogies and their application contexts–can be specified in the form of require-
ments. In the following, a set of such requirements is provided. Some of these
have been derived from the literature ([Hen97b], [BR91]). Others stem from an
analysis of knowledge management needs concerning software engineering
technologies (cf. [BSA99]).

Support the entire lifecycle of reusable artefacts

A knowledge management system should support the entire lifecycle of the
managed artefacts (or experiences or knowledge items), involving their creation,
their retrieval and reuse, as well as the feedback of experience from using them.

5

Knowledge Management and
Software Engineering

Copyright © Fraunhofer IESE 1999

Similarity-based retrieval

Retrieval of reusable artefacts should be based on appropriate similarity mea-
sures that do not require exact matches between a retrieval query (i.e., the spec-
ification of reuse requirements) and the retrieved reusable artefacts. This is nec-
essary for knowledge reuse in software engineering, because the characteristics
of software projects can differ quite much. So it is very likely that relevant reus-
able artefacts are characterised in a form that is not exactly matching a reuse sit-
uation.

Retrieval based on incomplete information

Retrieval of reusable artefacts should not require that for all attributes using
which the artefacts are indexed information is provided in the retrieval query.
This is necessary, because knowledge retrieval is usually performed at the begin-
ning of a software project when some characteristics of the forthcoming project
are not yet known. It should be possible to omit these characteristics when
defining a retrieval query.

Possibility to evolve the experience base

The TEB should provide mechanisms for adding new knowledge artefacts, as
well as for adding or removing attributes of existing objects. It should also be
possible to generalise or specialise existing objects. This is necessary in order to
support continuous learning and improvement in software engineering.

Support different types of knowledge

The experience base should support a variety of different knowledge types. They
can have different representation structures, different access and usage pro-
cesses, as well as different levels of maturity and reliability.

Precise representation of reusable artefacts

Reusable artefacts should be represented and stored–as far as possible–using a
precise and sufficiently formal knowledge representation. This is needed for clar-
ifying the semantics of the artefacts as well as for allowing for automated sup-
port of knowledge usage and maintenance.

Intuitive characterisation of reusable artefacts

Reusable artefacts–and in particular their application context–should be defined
using terms that are intuitive to the knowledge users. This is important to assure
that the experience base is accepted from its users and to allow for efficient
usage processes.

6

Knowledge Management and
Software Engineering

Copyright © Fraunhofer IESE 1999

Links between reusable artefacts

Explicit links should be established between related artefacts in the experience
base. This is needed for being able to exploit relationships during maintenance
and retrieval. For instance, technologies should be linked with the processes in
which they can be applied.

There are also additional requirements that are important for the technical reali-
sation of an experience base. Examples are access via the internet or intranet,
view support, and information security. These are not addressed further,
because the focus here is on the methodological concepts of knowledge man-
agement in software engineering.

2.2 A Survey of Knowledge Management Tools

Many knowledge management approaches rely mainly on the organisation of
knowledge exchange between human agents (cf. [Wii95] [OL98'] [Sen90]
[SKR+94]). However, our objectives for knowledge management in software
engineering are to make knowledge assets explicit (e.g., in the form of technol-
ogy experience packages), to store them in repositories that are widely accessi-

Table 1: Comparison of selected knowledge management tools
Support

the entire
lifecycle of

reusable
artefacts

Similarity-
based

retrieval

Retrieval
based on

incomplete
information

Possibility to
evolve the
experience

base

Support dif-
ferent types

of knowl-
edge

Precise repre-
sentation of

reusable
artefacts

Intuitive char-
acterisation
of reusable

artefacts

Links
between
reusable
artefacts

Bore

Msmt Plan-

ning

KONTEXT

WebME

IDS

Ontobroker

Kactus

Dedal

QuestMap

eule2

LotusNotes/

Domino

LiveLink

AnswerGar-

den

 = comprehensive support = support exists in part = support is not explicit, but the tool offers some means to develop it

7

Knowledge Management and
Software Engineering

Copyright © Fraunhofer IESE 1999

ble (i.e., technology experience bases), and to provide computer support for the
management of this knowledge.

There is quite a number of tools available–either as research prototypes or as
commercial tools–that address knowledge management. Some of these are spe-
cialised to knowledge management in software engineering. Abecker et al.
[ADK98] distinguish between process-oriented and product-oriented tools. Pro-
cess-oriented tools aim at supporting or facilitating knowledge exchange
between human agents during their work processes. Examples are groupware
systems and intranet solutions. These tools are usually not particularly effective
for supporting the management of knowledge about software engineering
technologies and their application contexts. Product-oriented tools focus on the
knowledge assets to be reused. These tools offer appropriate concepts for the
knowledge management of software engineering technologies and application
contexts.

Table 1 shows a collection of selected knowledge management tools and
describes them with regard to the requirements stated in the previous section.
The following tools have been included into the survey: Bore ([Hen97a]
[Hen97b]) manages knowledge that supports the execution of corporate soft-
ware development processes. It contains guidelines, lessons learnt, and fre-
quently asked questions, following a case-based approach to knowledge repre-
sentation and management. Gresse von Wangenheim et al. [CGvW98] are
developing a tool for capturing experiences about GQM measurement planning
(in the following denoted as Msmt Planning). KONTEXT [Krö98] is a tool for
managing the knowledge about software engineering technologies and their
application contexts. It is described in more detail below, in Sections 4 to 7.
WebME, a web-based tool for providing measurement data to project manage-
ment has been developed at NASA’s the Software Engineering Laboratory
([RZ93] [TZ98]). These four tools are all knowledge management solutions that
are designed for specific software engineering tasks. The following tools are
designed primarily for other domains, or they provide generic knowledge man-
agement infrastructures.

The expert system IDS [IBM] has been developed for the aircraft industry by
making use of data-mining techniques for diagnosing purposes. Ontobroker
[FDES98] is an intelligent search tool (e.g. for searching the internet) based on
ontologies. KACTUS [SWI97] provides an interactive environment for browsing,
editing and managing (libraries of) ontologies. A representation of a device
model is used by the tool Dedal [ded95] for indexing and retrieving multimedia
information about a designed device. The hypermedia groupware system Quest-
Map (cf. [Shu97], [Sys98], and [CY93]) integrates different media and links the
captured knowledge into a structure supporting the discussion process. Eule2
[Rei97] is a knowledge-based system for supporting office work in the life insur-
ance domain. It integrates knowledge bases of different knowledge-based sys-
tems. The collaboration process in an organisation is supported by the widely

8

Knowledge Management and
Software Engineering

Copyright © Fraunhofer IESE 1999

used groupware tool Lotus Notes/Domino [Lot]. For instance, it provides services
for electronic mails, storing various types of documents and information, and it
allows for annotating documents. The tool LiveLink [Tex] incorporates elements
of collaborative work support and web agents on a document-centred knowl-
edge base. By using AnswerGarden [MT90] two different types of knowledge
are combined: recorded knowledge can be retrieved and individuals with knowl-
edge of some kind are made known to the rest of the organization. Information
access is organised through posing diagnosis questions.

These tools and their underlying methodologies represent quite different philos-
ophies of knowledge management. It was a purpose of the survey to provide a
broad overview and to place the four SE-specific tools into the context of other
kinds of knowledge management tools. Please note that the classification
schemes (i.e., the symbols in the table cells of Table 1) of different evaluation cri-
teria (i.e., the table columns) can have slightly different semantics. The survey is
not meant to rank the tools. Its objective is to illustrate that there exists a variety
of technical solutions to common knowledge management requirements.

2.3 Observations from the Tools Survey

The knowledge management tools characterised in Table 1 can be evaluated
using the requirements listed in Section 2.1. This evaluation provides an over-
view of the state of the art in knowledge management for software engineering
applications. This section identifies the observations from the survey and briefly
outlines needs for further tool support.

Support the entire lifecycle of reusable artefacts

The four tools that are specific to software engineering provide specialised sup-
port for more than one lifecycle phase. Bore and KONTEXT have a usage model
that comprises all lifecycle phases from insertion of new knowledge via knowl-
edge use to knowledge evolution. Other tools do either address only the core
phase of knowledge use (then nothing is indicated in the table), or they support
some kind of knowledge evolution without modifying specific artefacts. The lat-
ter is especially true for process-oriented knowledge management tools such as
workgroup support systems.

Similarity-based retrieval

Similarity-based retrieval involving some kind of similarity function is realised in
Bore, Measurement Planning, and KONTEXT. Other tools realise similarity-based
retrieval using some other concepts such as heuristics. Lotus Notes/Domino
offers the basic infrastructur for implementing similarity-based retrieval mecha-
nisms.

9

Knowledge Management and
Software Engineering

Copyright © Fraunhofer IESE 1999

Retrieval based on incomplete information

Again, Bore, Measurement Planning, and KONTEXT use explicit characterisation
schemes for specifying queries and allow queries in which some characteristics
are omitted (i.e., retrieval with incomplete information). This is also true for Kac-
tus and Dedal. Other tools don’t use characterisation schemes for knowledge
representation and retrieval, but they allow for some kind of open retrieval.

Possibility to evolve the experience base

Dynamic extension and modification of the experience base is a standard fea-
ture that is provided by all surveyed tools in that new knowledge items can be
added, removed, or modified. Specific support for automated generalisation or
specialisation is not provided at all.

Support different types of knowledge

Every tool represents multiple types or dimensions of knowledge. But only some
tools do also allow for extending the set of pre-defined knowledge types or are
fully open with regard to the managed knowledge types.

Precise representation of reusable artefacts

Most tools apply some formal or at least well-defined structured knowledge or
data representation. But some, mainly the hypertext-based ones, do not have a
particularly well-organised, finer-grained representation scheme.

Intuitive characterisation of reusable artefacts

KONTEXT is different from the other tools in that it offers a specific representa-
tion concept for characterising the reusable artefacts in an intuitive manner. This
is done using a redundant characterisation structure that has one view which
models the intuitive terms used by decision makers, while the other view pro-
vides a precise and unambiguous definition of context characteristics. Most
other tools allow for using intuitive identifiers of knowledge items, but only as
far as object identity can be assured.

Links between reusable artefacts

Most tools have some kinds of links between reusable artefacts thus that rela-
tions between associated kinds of knowledge can be explored by the user.
These clusters of linked artefacts thus establish some new kind of “higher-
order” object and allow the user to explore it interactively. Ontology-based sys-
tems (i.e., Ontobroker and Kactus) do of course also implement links between
objects. But these objects are mostly of similar kind, and the linked entities do

10

Knowledge Management and
Software Engineering

Copyright © Fraunhofer IESE 1999

not establish a really complex new knowledge structure (other than the ontol-
ogy itself).

As overall conclusion from the survey it can be noted that there exists a wide
variety of knowledge management solutions. Some have been designed specifi-
cally for use in software engineering, and these offer quite a wide spectrum of
features. For several of the requirements, KONTEXT offers the most advanced
support among these tools. Lotus Notes/Domino is potentially satisfying all
requirements. But it would require some considerable implementation effort to
actually establish these functions.

Future developments would be needed most in the areas of comprehensive life-
cycle support (i.e., offering specific support for inserting new knowledge and
evolving the already represented knowledge), support for automated generali-
sation and specialisation of artefacts1, improved integration of multiple different
knowledge types, and the definition of intuitive views on the stored knowledge,
which can be tailored to the needs of certain user groups.

1 Basic technologies for this are provided for instance from the field of machine learning.

11

Technology Experience Bases

Copyright © Fraunhofer IESE 1999

3 Technology Experience Bases

The technology experience base (TEB) is the basic repository of knowledge
about software engineering technologies and their application contexts onto
which our approach is based. It has been introduced briefly in Section 1. In the
following, the structure of TEBs is explained in some more detail.

A TEB has basically two kinds of contents: (1) A collection of technology experi-
ence packages (TEPs) and (2) a collection of background definitions and taxono-
mies (see Figure 3). A TEP contains the definition of the respective technology
(usually in the form of a process model) and specifies for which process (e.g.,
software design or measurement) it can be applied, which product quality (e.g.,
reliability or maintainability) of which product type (e.g., embedded control sys-
tems or medium-sized information systems) can be yielded using the technol-
ogy, and in which context situation this application and quality impact of the
technology can be expected (cf. [Bir97]). The context situation is defined
through a set of context characteristics. A context characteristic is an attribute/
value pair that defines a characteristic of a software project such as team size or

Sponsor turnover stay promoted leave

Personnel turnover low medium high

Business unit homogeneity high medium low

Availability of external researchers involved available none

Trustworthiness of msmt. program high medium low

Application Context

Technology Goal/Question/Metric method

Process Measurement

Product Quality Timeliness

Product Software Product (any)

...

Application Goal

ID TEP-23.1

Title GQM for Project Monitoring

Status Validated

...

TEP "GQM for Project Monitoring"

. . .

Technology Experience Packages Background Definition and Taxonomies

Technologies

Processes

Products

Product Qualities

Figure 3: Technology experience packages and their relations to background definitions and taxonomies.

12

Technology Experience Bases

Copyright © Fraunhofer IESE 1999

degree of management commitment. The attribute and its definition is referred
to as context factor. A collection of associated context factors forms a context
model.

Background definitions and taxonomies are needed for achieving uniform defi-
nitions of the contents of TEPs, for avoiding redundant storage of these TEP
contents, and to provide an index structure for experience retrieval. Hence, each
concept contained in a TEP has an associated background definition and is part
of a taxonomy. A TEB contains–among others–taxonomies of technologies, pro-
cesses, products, and product qualities.

13

A Knowledge Management
Lifecycle for Technology
Experience Packages

Copyright © Fraunhofer IESE 1999

4 A Knowledge Management Lifecycle for Technology Experience
Packages

The tool survey in Section 2 has shown that most knowledge management
approaches are lacking yet a comprehensive lifecycle support for the managed
knowledge artefacts. In this and the following sections we use the case of tech-
nology experience packages to illustrate how such a comprehensive lifecycle
support can look like. The approach is substantiated by examples from a specia-
lised knowledge management tool.

The knowledge management lifecycle for TEPs involves three main phases (Fig-
ure 4):

• Gaining TEPs using knowledge acquisition and other techniques.

• Using TEPs to support software engineering, e.g., for technology selection
during the planning of software projects or improvement programmes.

• Updating and evolving TEPs based on the empirical evaluation of software
projects that have applied them.

In addition, we briefly address the topic of building and installing a TEB (Section
5).

Technology Experience Package

Technology Definition

Technology Application Context

Technology Experience Base

Available Body of
Organisational Knowledge

(implicit and explicit)

Software Project
or Improvement Programme

Technology
SelectionKnowledge

Acquisition
Empirical

Evaluation

Figure 4: The lifecycle model of technology experience packages.

14

A Knowledge Management
Lifecycle for Technology
Experience Packages

Copyright © Fraunhofer IESE 1999

For gaining TEPs a particular focus is put on knowledge acquisition techniques,
because we claim that much knowledge about the application context of soft-
ware engineering technologies exists already implicit in the minds of experi-
enced software professionals, or it is distributed over a large number of different
media throughout a software organisation (cf. [BSA99]). Knowledge acquisition
is considered to be the most beneficial source of knowledge when setting up a
new TEB. The usage of TEPs and their empirical investigation are closely related
to software projects or improvement programmes for which appropriate tech-
nologies are needed, and in which they are used.

A prototypical tool has been implemented for supporting the knowledge man-
agement lifecycle for TEPs. The tool is called KONTEXT (KnOwledge maNage-
ment based on the application conTEXt of software engineering Technologies).
It offers functions for the knowledge modelling tasks involved in knowledge
acquisition and empirical evaluation of TEPs, as well as for the entire technology
selection process. In the following sections, these functions of KONTEXT are
explained in more detail.

15

Knowledge Acquisition of
Technology Experience Packages

Copyright © Fraunhofer IESE 1999

5 Knowledge Acquisition of Technology Experience Packages

Most software organisations and experienced software professionals know
much about the application contexts of software engineering technologies.
However, this knowledge is often implicit or distributed over a large number of
sources and hardly accessible. For this reason, knowledge acquisition is the pre-
ferred approach to quickly gain a large number of TEPs and to populate an ini-
tial TEB.

Alternative or additional information sources for developing TEPs are the soft-
ware engineering literature, software measurement programmes, data mining
and information research (using past project documentation, existing measure-
ment data, or other organisational files), as well as empirical investigations such
as surveys or case studies. However, all these techniques can also benefit from
prior knowledge acquisition efforts that provide grounded hypotheses about the
technologies and their application context.

The initial construction of TEBs, which should afterwards be extended and
updated continuously, can in principle be done according to the following basic
steps:

1 Identify and define the set of relevant technologies.

2 Determine the required target set of TEPs by specifying their processes, prod-
uct types, and product qualities.

3 Conduct a pre-study of past projects in which the technologies have been
used and collect relevant information from literature.

4 Develop background definitions and taxonomies of all relevant concepts that
are to be represented in the TEB (e.g., precise operational technology defini-
tions, process taxonomies, product quality definitions and taxonomies).

5 Conduct knowledge acquisition in order to gain context characteristics of the
TEPs.

6 Model the TEPs based on the knowledge gained from knowledge acquisition.

7 Verify the modelled TEPs.

8 Validate the TEPs.

16

Knowledge Acquisition of
Technology Experience Packages

Copyright © Fraunhofer IESE 1999

Figure 5 depicts the user interface of the TEP modelling component of KON-
TEXT. The leftmost part of the window guides the user through the process of
modelling a collection of TEPs. It involves the insertion of a new technology, ini-
tialisation of a new TEP, modification of a selected or new TEP, as well as verifi-
cation and validation of TEPs. The rightmost part of the window offers the func-
tionality to perform the selected process step, in this case the modification of a
selected TEP. The entire TEP is displayed and each component of it can be mod-
ified or extended.

Verification and validation of TEBs are very important. KONTEXT supports the
automatic verification of TEPs such as completeness checks and some basic con-
sistency checks. The extensive user guidance of KONTEXT avoids widely that
wrong kinds of information could be inserted. Validation is currently supported
through offering a well-structured report view on TEPs for inspection. Plans for
future validation features involve several kinds of simulation-based and multi-
expert checking.

Figure 5: Modifying a technology experience package.

17

Technology Selection Support
Using Technology Experience
Packages

Copyright © Fraunhofer IESE 1999

6 Technology Selection Support Using Technology Experience
Packages

A TEB can be beneficial for a multitude of tasks in software engineering, such as
technology transfer and software risk management. As initial task to be sup-
ported, we focus on the selection of technologies during the planning of soft-
ware projects and improvement programmes. We claim that this task is the one
where decision support based on TEBs occurs most frequently and where it has
the most direct impact on software development.

The selection of software engineering technologies during the planning of soft-
ware projects and improvement programmes should follow the paradigm of
informed decision making. There is a large variety of factors affecting the
“right” decision, and the result of the decision can be highly critical to the suc-
cess of a software organisation. Hence, tool support is required for supporting
human decision making rather than for prescribing an “optimal solution”.

We base the decision support process implemented in KONTEXT on the princi-
ples of comprehensive reuse as introduced by Basili and Rombach [BR91]. This
results in the following multi-staged decision support and selection process:

1 Determine the candidate processes for which a new technology can be
applied, the product type to be developed, and the product quality goal to be
achieved. – This information allows to pre-select a set of candidate technolo-
gies and their TEPs. From the context characteristics of these TEPs, a custom-
ised characterisation questionnaire can be constructed. It will be used to
characterise the forthcoming project or improvement programme in a form
that is suitable to conduct similarity-based retrieval of those TEPs that are
most appropriate for the given reuse situation.

2 Characterise the forthcoming software project or improvement programme
using the customised characterisation questionnaire. – Using this characteri-
sation, a similarity-based ranking of the candidate TEPs can be conducted.
This ranking is expected to support the final selection decision to be drawn
by the human decision maker (i.e., the planner of the project or improvement
paradigm).

3 Select the most appropriate technology (or technologies) for the forthcoming
project or improvement programme. – This selection should be justified
explicitly in order to facilitate the achievement of commitment and as a basis
for later evaluation of the decision.

18

Technology Selection Support
Using Technology Experience
Packages

Copyright © Fraunhofer IESE 1999

In KONTEXT, we have implemented several features that we consider beneficial
for informed decision making in software engineering. Our pilot implementation
demonstrates that these are practical solutions for advanced tool support for
knowledge management in software engineering:

• Investigation of background information within the decision support process
(e.g., technology definitions can be viewed before the final selection decision
is drawn).

• Exploration of concurrent scenarios during the decision process. For instance,
different characterisations of the forthcoming project can be used concur-
rently for similarity-based retrieval, and the results can be compared.

• Offering multiple different decision support mechanisms (e.g., multiple simi-
larity functions or different multi-attribute decision making algorithms

Figure 6: Selecting a technology

19

Technology Selection Support
Using Technology Experience
Packages

Copyright © Fraunhofer IESE 1999

[MPE96]; the decision maker can select the mechanism he/she regards most
appropriate for the current type of selection).

• Backtracking and iteration of sub-steps of the decision process before the
final decision is drawn. An example is the application of different decision
support mechanisms using the same baseline information. Such a redundant
decision process can increase the confidence in the results gained.

• Explicit justification of the final decision, in order to motivate the decision
maker that he/she fully rationalises the decision.

The user interface of KONTEXT offers these features in its technology selection
dialogue. It is shown in Figure 6. The rightmost column of the window guides
the user through the multiple actions involved in technology selection. Among
others, these are the preparation of the decision making by providing needed
baseline information (e.g., characterisation of the forthcoming software
project), the selection of a decision support method, and the drawing of the
final decision and justifying it. The rightmost part of the window shows the dia-
logue for selecting baseline data for running a decision support algorithm that
has been selected in a previous step. The baseline data involves one of possibly
multiple alternative characterisations of the forthcoming project and a set of
candidate TEPs. Since KONTEXT logs all activities of the decision process and
their intermediate results, a hierarchy of gradually constrained sets of candidate
technologies results from the iterative application of decision support algo-
rithms. The second list in the window presents this hierarchical list of sets of
candidate technologies and allows for selecting one of these sets. The technolo-
gies contained in the selected candidate set are depicted in the list at the bot-
tom of the window.

For later evaluation of the application of the selected technology, the context
characterisation and the entire trace of the decision support process are stored
in the TEB. The following section explains how this information is used for refin-
ing and updating the TEB.

20

Empirical Evaluation of
Technology Experience Packages

Copyright © Fraunhofer IESE 1999

7 Empirical Evaluation of Technology Experience Packages

Objective of the empirical evaluation of technology experience packages is to
possibly refine and update the contents of the TEB. When a technology is
applied in a software project, this can be used as a case to investigate whether
the information contained in a TEP is appropriate. The core question of empirical
analysis is: Does the technology, when applied for the specified process and
within the defined application context, really have an observable impact on the
respective product quality? This question can be split into two separate investi-
gations: (1) Has the product quality been achieved?, and (2) is the actual context
situation of the project or improvement programme the same as defined in the
TEP’s context model and as it was expected when the technology was selected?

Depending on how the answers to these questions look like, there can be differ-
ent consequences of empirical evaluation of TEPs:

• If the evaluation shows that the technology had significant impact on the
product quality and that the actual application context was the same as in
the TEP, then the contents of the TEB might be confirmed and provided with
additional evidence. This would create deeper trust in the effectiveness of the
technology when used later in similar application contexts.

• If the technology’s impact on the product quality or the actual context char-
acteristics were not as expected, then some kind of correction of the TEB is
needed. Depending on the exact evaluation results and the contents of the
TEB, the modifications can be quite different, ranging from small modifica-
tions of context models to the introduction of new variants of technologies
and the partial re-design of multiple TEPs. For instance, it could turn out that
a TEP on software inspections should better be split into two separate TEPs
for variants of software inspections with and without inspection meeting.
This would also require new, modified context models that clearly distinguish
between the application contexts of the two inspections variants.

A detailed explanation of the analysis strategy for the empirical evaluation of
TEPs would exceed the scope of this paper. Please refer to [BJvS99] for further
details. The main objective is to identify a causal link between application of the
technology and the achieved product quality under special consideration of the
impact of the project context.

KONTEXT supports empirical evaluation by the following features:

• The trace of the technology selection process (cf. Section 6) including the ini-
tial characterisation of the project context (i.e., the expected characteristics

21

Empirical Evaluation of
Technology Experience Packages

Copyright © Fraunhofer IESE 1999

of the forthcoming project) are stored in the TEB as a basis for future evalua-
tion.

• The actual context situation at the end of the project can be supplied. It is
then stored in the TEB.

• KONTEXT offers a user dialogue that guides through the process of analysing
the deviations between initially expected context characteristics, actual
project characteristics, and the TEP’s context model (see Figure 7).

The object model of KONTEXT’s TEBs (see Figure 8) contains objects for repre-
senting information about projects and about the application of selected tech-
nologies in these projects (technology application case). This way, KONTEXT
integrates abstract information about reusable artefacts (i.e., the TEPs) with con-
crete information about the actual reuse of these artefacts. This is not only ben-
eficial for empirical analysis of technology application. It also provides informa-
tion relevant for informed decision making during technology selection.

Figure 7: Empirical post-project analysis of a technology application case.

22

Empirical Evaluation of
Technology Experience Packages

Copyright © Fraunhofer IESE 1999

Technology
Application Case

Technology
Experience

Package

Application
Success

Project

Consolidated
Context

Initial Context

< applies

*

Context Model
1 1

1

1

*

applied in >

11

Figure 8: Technology Application Case, Project, and Technology Experience Package

23

An Example Technology
Experience Base

Copyright © Fraunhofer IESE 1999

8 An Example Technology Experience Base

A technology experience base of the presented kind is currently being devel-
oped in ESPRIT project PROFES1. The objective of PROFES is to support industries
that have strong product-related quality requirements, such as the embedded
systems industry, with an improvement methodology that focuses improvement
actions on those elements of the software development process that contribute
most to the critical product quality factors. It places emphasis on the continuous
learning about the impacts that software engineering technologies and the pro-
cesses in which they are applied have on product quality. This information is
modelled in the form of so-called product/process dependencies (PPDs) and
stored for reuse in a central repository.

The PPD repository is widely analogous to the technology experience base intro-
duced above. PPDs deploy the representation scheme of TEPs. The usage pro-
cesses on the PROFES PPD repository are designed in accordance with the pre-
sented TEP lifecycle model.

The PROFES PPD repository contains information about software engineering
technologies that has been collected from multiple literature sources and from
three industrial software organisations that have participated in the PROFES
project. It will be offered for public use via the internet. So other software
organisations can use the PROFES PPD repository to support the identification of
improvement actions (i.e., the selection of technologies that are to be applied in
forthcoming software projects) in their improvement programmes. They also will
be able to feed back their experience and thus help to evolve and extend the
repository.

First experience from the industrial applications of PROFES substantiate core
components of the presented TEP lifecycle model: The TEP representation
schema has proven appropriate for representing the information needed within
technology experience bases, knowledge acquisition has shown effective for
gaining TEPs, and the importance of product quality goals, processes, and con-
text factors has been demonstrated (cf. [BJvS99]). Strategies for selection of
technologies will be subject of further investigation during the PROFES-internal
trials phase of the PPD repository. Future results will be reported in [PRO].

1 ESPRIT project 23239, PROFES (PROduct Focused improvement of Embedded software Processes); fund-
ed by the European Commission. http:/www.iese.fhg.de/Profes

24

Conclusions

Copyright © Fraunhofer IESE 1999

9 Conclusions

The systematic management of knowledge about software engineering technol-
ogies and their application contexts is expected to reduce the risk of technolo-
gies-caused failure of software projects. Hence, knowledge management can be
regarded an important means for further improvement of software engineering
practices.

The Quality Improvement Paradigm (QIP) / Experience Factory (EF) approach
([BCR94]) provides appropriate solution concepts for realising customised
knowledge management of experience on software engineering technologies
that is packaged for reuse during the planning of software projects and
improvement programmes. This experience is modelled explicitly in the form of
so-called technology experience packages (TEPs) that are stored in repositories
called technology experience bases (TEBs).

We have suggested a structure for organising TEBs and a comprehensive lifecy-
cle model (1) for gaining TEPs through knowledge acquisition techniques, (2) for
using them to support technology selection during the planning of software
projects and improvement programmes, as well as (3) for updating and evolving
TEPs based on the empirical evaluation of software projects.

Our approach differs from existing ones in that it addresses all three phases of
the lifecycle model at a considerably detailed technical level. It provides guid-
ance for organising and running technology experience bases. A prototypical
tool called KONTEXT has been implemented in order to illustrate and substanti-
ate the methodological concepts. An industrial trial application has provided
first empirical evidence for the validity of the approach.

Acknowledgements

We want to thank our collegues at the SLI department of Fraunhofer IESE for
the many valuable discussions and the feedback they have provided to our
work. Markus Nick has provided comments on an earlier version of this paper.

25

References

Copyright © Fraunhofer IESE 1999

References

[ADK98] Andreas Abecker, Stefan Decker, and Otto Kühn. Organizational
memory. In "Das aktuelle Schlagwort" im Informatik Spektrum,
volume 21 of 4, pages 213–214. Springer Verlag, August 1998.

[BCR94] Victor R. Basili, Gianluigi Caldiera, and H. Dieter Rombach. Experi-
ence Factory. In John J. Marciniak, editor, Encyclopedia of Software
Engineering, volume 1, pages 469–476. John Wiley & Sons, 1994.

[Bir97] Andreas Birk. Modelling the application domains of software engi-
neering technologies. Technical Report 014.97/E, Fraunhofer IESE,
August 1997.

[BJvS99] Andreas Birk, Janne Järvinen, and Rini van Solingen. A validation
approach for product-focused process improvement. Technical
Report IESE-Report No. 005.99/E, Fraunhofer Institute for Experi-
mental Software Engineering, Kaiserslautern, Germany, 1999.

[BR91] Victor R. Basili and H. Dieter Rombach. Support for comprehensive
reuse. IEEE Software Engineering Journal, 6(5):303–316, September
1991.

[BSA99] Andreas Birk, Dagmar Surmann, and Klaus-Dieter Althoff. Applica-
tions of knowledge acquisition in experimental software engineer-
ing. In Proceedings of the 11th European Workshop on Knowledge
Acquisition, Modeling, and Management (EKAW’99), Berlin, 1999.
Springer. To be published.

[CDR95] CDR, Center for Design Research. http://gummo.stanford.edu/html/
gcdk/dedal/index.html, 1995.

[CGvW98] R. Barcia C. Gresse von Wangenheim, A. von Wangenheim. Case-
based reuse of software engineering measurement plans. In Proc. of
the 9th Int. Conference on Software Engineering and Knowledge
Engineering (SEKE), 1998.

[CKO92] Bill Curtis, Marc I. Kellner, and Jim Over. Process modeling. Commu-
nications of the ACM, 35(9):75–90, September 1992.

[CY93] J. Conklin and E. Yourdon. Groupware for the new organization.
American Programmer, sept 1993.

26

References

Copyright © Fraunhofer IESE 1999

[Eri92] Henrik Eriksson. A survey of knowledge acquisition techniques and
tools and their relationship to software engineering. Journal of Sys-
tems and Software, (19):97–107, 1992.

[FDES98] Dieter Fensel, Stefan Decker, Michael Erdmann, and Rudi Studer.
Ontobroker: The very high idea. In Proceedings of the 11th Interna-
tional Flairs Conference (FLAIRS-98), Sanibel Island, Florida, May
1998.

[GDS98] GDSS, Group Decision Support Systems. http://www.gdss.com/
om.htm, 1998.

[Gla98] Robert Glass. Software Runaways. Prentice Hall, 1998.

[Hen97a] Scott Henninger. Capturing and formalizing best practices in a soft-
ware development organization. In Proc. of the 9th Int. Conference
on Software Engineering and Knowledge Engineering (SEKE), 1997.

[Hen97b] Scott Henninger. Case-based knowledge management tools for
software development. In Automated Software Engineering: An
International Journal, volume 4. Kluwer Academic Publishers, 1997.

[IBM98] IBM. http://www.software.ibm.com./data/ids/, 1998.

[KPM95] KPMG Ltd. Runaway projects–cause and effects. Software World,
26(3), 1995.

[Krö98] Felix Kröschel. A system for knowledge management of best soft-
ware engineering practice. Master’s thesis, University of Kaiserslaut-
ern, Kaiserslautern, Germany, November 1998.

[Lot] Lotus. http://www.lotus.com.

[MPE96] Mansooreh Mollaghasemi and Julia Pet-Edwards. Making Multiple-
Objective Decisions. IEEE Comuter Society Press, 1996.

[MT90] Ackerman M.S. and Malone T.W. Answergarden: A tool for grow-
ing organizational memory. In Proc. of the ACM Conference on
Office Information Systems, pages 31–39, 1990.

[O’L98] Daniel O’Leary. Using ai in knowledge management: Knowledge
bases and ontologies. IEEE Intelligent Systems, pages 34–39, May/
June 1998.

[Ope] Open Text. http://www.opentext.com.

27

References

Copyright © Fraunhofer IESE 1999

[PRO] PROFES. ESPRIT project 23239 (Product-FOcused improvement of
Embedded Software processes). http://www.ele.vtt.fi/profes/.

[Rei97] Ulrich Reimer. Knowledge acquisition for content selection. In 21st
Annual German Conference on AI ’97, Freiburg, September 1997.
http://www.dfki.uni-kl.de/km/ws-ki-97.html.

[RV95] H. Dieter Rombach and Martin Verlage. Directions in software pro-
cess research. In Marvin V. Zelkowitz, editor, Advances in Comput-
ers, vol. 41, pages 1–63. Academic Press, 1995.

[RZ93] Li N. R. and M. V. Zelkowitz. An information model for use in soft-
ware management estimation and prediction. In Second Interna-
tional Conference on Information and Knowledge Management,
pages 481–489, Washington, DC, November 1993.

[Sen90] Peter M. Senge. The Fifth Discipline. The Art and Practice of The
Learning Organization. Bantam Doubleday Dell Publishing Group,
Inc., New York, 1990.

[Shu97] S. Buckingham Shum. Negotiating the construction and reconstruc-
tion of organisational memories. Journal of Universal Computer Sci-
ence, 3(8):899–928, 1997.

[SKR+94] Peter M. Senge, Art Kleiner, Richard B. Ross, Bryan J. Smith, and
Charlotte Roberts. The Fifth Discipline Fieldbook. Strategies and
Tools for Building a Learning Organization. Bantam Doubleday Dell
Publishing Group, Inc., New York, 1994.

[Sta95] Standish Group. CHAOS, 1995. www.standishgroup.com/
chaos.html.

[SWI97] Department of Social Science Informatics Sociaal
Wetenschappelijke Informatica. http://www.swi.psy.uva.nl/projects/
newkactus/reports.html, 1997.

[TA97] Carsten Tautz and Klaus-Dieter Althoff. Using case-based reasoning
for reusing software knowledge. In D. Leake and E. Plaza, editors,
Proceedings of the Second International Conference on Case-Based
Reasoning. Springer Verlag, 1997.

[TZ98] Roseanne Tesoriero and Marvin Zelkowitz. A web-based tool for
data analysis and presentation. IEEE Internet Computing, 2(5):63–
69, 1998.

28

References

Copyright © Fraunhofer IESE 1999

[Wii95] Karl Wiig. Knowledge management methods. practical approaches
to managing knowledge. In Knowledge Management: The Central
Management Focus for Intelligent-Acting Organizations, volume 3.
Schema Press, Ltd, 1995.

[You93] E. Yourdon. Decline & Fall of the American Programmer. Comput-
ing. Yourdon Press, 1993.

21.06.2005,
report.docinfo

Copyright 1999, Fraunhofer IESE.
All rights reserved. No part of this publication may
be reproduced, stored in a retrieval system, or trans-
mitted, in any form or by any means including,
without limitation, photocopying, recording, or
otherwise, without the prior written permission of
the publisher. Written permission is not needed if
this publication is distributed for non-commercial
purposes.

Document Information

Title: A Knowledge Manage-
ment Lifecycle for
Experience Packages
on Software Engineering
Technologies

Date: February 1999
Report: IESE-007.99/E
Status: Final
Distribution: Public

