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Abstract

In this paper, we propose multi-level Monte Carlo (MLMC) methods
that use ensemble level mixed multiscale methods in the simulations of
multi-phase flow and transport. The main idea of ensemble level mul-
tiscale methods is to construct local multiscale basis functions that can
be used for any member of the ensemble. We consider two types of en-
semble level mixed multiscale finite element methods, (1) the no-local-
solve-online ensemble level method (NLSO) and (2) the local-solve-online
ensemble level method (LSO). Both mixed multiscale methods use a num-
ber of snapshots of the permeability media to generate a multiscale basis.
As a result, in the offline stage, we construct multiple basis functions for
each coarse region where basis functions correspond to different realiza-
tions. In the no-local-solve-online ensemble level method one uses the
whole set of pre-computed basis functions to approximate the solution for
an arbitrary realization. In the local-solve-online ensemble level method
one uses the pre-computed functions to construct a multiscale basis for a
particular realization. With this basis the solution corresponding to this
particular realization is approximated in LSO mixed MsFEM. In both ap-
proaches the accuracy of the method is related to the number of snapshots
computed based on different realizations that one uses to pre-compute a
multiscale basis. We note that LSO approaches share similarities with
reduced basis methods [11, 21, 22].

In multi-level Monte Carlo methods ([14, 13]), more accurate (and
expensive) forward simulations are run with fewer samples while less ac-
curate (and inexpensive) forward simulations are run with a larger number
of samples. Selecting the number of expensive and inexpensive simulations
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carefully, one can show that MLMC methods can provide better accuracy
at the same cost as MC methods.

In our simulations, our goal is twofold. First, we would like to com-
pare NLSO and LSO mixed MsFEMs. In particular, we show that NLSO
mixed MsFEM is more accurate compared to LSO mixed MsFEM. Fur-
ther, we use both approaches in the context of MLMC to speed-up MC
calculations. We present basic aspects of the algorithm and numerical
results for coupled flow and transport in heterogeneous porous media.

1 Introduction

Multi-phase flow and transport simulations in heterogeneous subsurface forma-
tions are challenging due to a rich hierarchy of spatial scales and uncertainties.
Typical approaches include upscaling or multiscale methods where the solu-
tion is approximated on a coarse grid [8, 12]. In these simulations, effective
media properties or multiscale basis functions are constructed for each coarse-
grid block and they are used to inexpensively solve the problem on a coarse
grid. Coarse-grid simulations help to reduce the computational cost; however,
they can still be very expensive for stochastic problems due to the number of
Monte Carlo (MC) simulations that are needed to make accurate predictions.
Indeed, each MC simulation requires a coarse-grid parameter calculations that
can be expensive, especially when one needs to generate relative permeabilities
or other nonlinear constitutive relations. For this reason, various techniques are
proposed to reduce the number of simulations in Monte Carlo methods. These
approaches include ensemble level upscaling [7] or multiscale methods [3] that
use fewer samples to compute effective properties for the whole ensemble. It is
expensive to apply multiscale methods directly because basis functions need to
be computed for each realization.

In this paper, we discuss two ensemble level mixed multiscale finite element
methods (1) the no-local-solve-online (NLSO) and (2) the local-solve-online en-
semble level method (LSO). The main idea of the ensemble level methods is to
pre-compute multiscale basis functions using a number of permeability realiza-
tions. In the offline stage, in each coarse-grid block, we compute multiscale basis
functions by selecting some realizations from the ensemble. Using these multi-
scale basis functions, our goal is to approximate the solution for an arbitrary
realization. In the LSO method we use the pre-computed functions to build a
multiscale basis in each coarse block for each arbitrary realization at the online
stage. This approach entails of solving a local problem at the online stage and,
therefore, we call it the local-solve-online mixed MsFEM. For the local problems
we have to impose boundary conditions. The main idea of NLSO is to use all
pre-computed basis functions to construct a coarse grid approximation. This
approach does not compute a new multiscale basis function at the online stage
and instead solves a larger coarse-grid system using all pre-computed multiscale
basis functions.

The advantage of NLSO approaches is more evident if limited global infor-
mation [4] is used to construct multiscale basis functions. As it was shown
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(e.g., [4]), one can use single-phase flow information to construct multiscale ba-
sis functions and this can provide several-fold improvement in the accuracy in
two-phase flow simulations. In online stage one needs boundary conditions for
basis functions in the case of LSO. On the other hand, NLSO does not require
any local solves and thus we can take an advantage of accurate multiscale basis
functions computed for selected realizations. For LSO, even if multiscale basis
functions at the offline stage are computed with limited global information, in
the online stage, we impose local boundary conditions which affect the accuracy
of the solution as we show in the paper. Note that LSO approaches are less
expensive and thus we consider them.

In both methods the accuracy of the approximation of the solution for an
arbitrary realization depends on the dimension of the pre-computed basis space.
The more multiscale basis functions we pre-compute the more accurate is the
approximation. In NLSO, one does not need to generate a coarse space for
each new selected realization and simply projects the global solution onto the
ensemble level multiscale space. For both method, NLSO and LSO, respectively,
we consider boundary conditions for the pre-computation which use local or
global information. We compare the NLSO and the LSO methods in terms of
accuracy.

We apply the ensemble level methods in the framework of multi-level Monte
Carlo methods (MLMC) to reduce the computational costs in comparison with
a Monte Carlo method. Multi-level Monte Carlo, introduced by Heinrich ([15])
and later applied to stochastic ODEs by Giles ([14, 13]), and PDEs with stochas-
tic coefficients by Schwab et al.([6]) and Cliffe et al. ([10]). The main idea of
multi-level Monte Carlo (MLMC) is to use a number of samples at different
levels to compute the expected values of quantities of interest. In these tech-
niques, more realizations are used at the coarsest level with inexpensive forward
computations. At the same time, fewer samples are used at the finest, most
expensive to compute level. Combining the results of these computations by
choosing the number of realizations at each level carefully, one can speed-up the
computations. In this paper, we take the dimension of the multiscale space to
be variable in MLMC.

In this paper, we take different numbers of samples to generate the multi-
scale space. We show that the NLSO mixed MsFEM using global information
gives more accurate approximation than the LSO mixed MsFEM. More forward
coarse-grid simulations are run using the smaller dimensional multiscale spaces
while less simulations are run using higher dimensional multiscale spaces. We
show that by combining these simulation results in a MLMC framework one
can achieve better accuracy for the same cost as MC. For this combination, one
needs to know the convergence of ensemble level methods with respect to the
coarse space dimension, respectively. One can estimate this rate based on a
small number of apriori computations as discussed in the paper.

We present numerical results where single-phase flow and transport as well
as two-phase flow and transport are tested. Permeability fields in our simula-
tions are described by two-point correlation functions and parameterized using
Karhunen-Loève expansion. In the simulations, we compare saturation profiles
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at certain time instants and run MC computations on the finest coarse model
such that the cost of MC and MLMC computations are the same. Our numer-
ical results show that one can achieve higher accuracy when MLMC is used.
We also compare the accuracy of NLSO and LSO mixed MsFEM. Though LSO
mixed MsFEM is computationally more efficient, it is less accurate compared
to NLSO mixed MsFEM.

The paper is organized as follows. In the next section, we present the model
problem and the mixed multiscale finite element method. In Section 3 we in-
troduce the ensemble level mixed MsFEMs, no-local-solve-online (NLSO) and
local-solve-online ensemble level mixed MsFEM (LSO). Section 4 is devoted to
MLMC using multiscale methods. We present numerical results in Section 5.

2 Preliminaries

In this paper, we will consider two-phase flow and transport in a porous media
under the assumption that the displacement is dominated by viscous effects;
i.e., we neglect the effects of gravity, compressibility, and capillary pressure.
The two phases will be referred to as water and oil, designated by subscripts w
and o, respectively. The governing equations describing this system are given
by coupled pressure and saturation equations (saturation for the water phase)

− div(λ(S)k∇p) = qw + qo, (2.1)

φ
∂S

∂t
+ ∇(vf(S)) = qw, (2.2)

where λ is the total mobility, f(S) is the flux function, and v is the total velocity,
which are

λ(S) =
krw(S)

µw

+
kro(S)

µo

, f(S) =
krw(S)

µwλ(S)
, v = −λ(S)k · ∇p, (2.3)

where S is the water saturation (volume fraction), p is pressure, qw and qo are
volumetric source terms for water and oil, and φ is the porosity. Here, krw(S)
and kro(S) are relative permeabilities of water and oil phases that appear in

Darcy’s law for each phase vj = −krj(S)
µj

k · ∇p, where vj is the phase velocity, k

is the permeability tensor and µj is the phase viscosity. We use a single set of
relative permeability curves.

2.1 Mixed multiscale finite element methods

In this section, we discuss mixed multiscale finite element methods (MsFEM)
following [2, 12]. We write the two-phase flow equation as

(λk)−1v + ∇p = 0 in Ω

div(v) = q in Ω

λk∇p · n = g on ∂Ω.

(2.4)
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We assume Neumann boundary conditions.
Let Vh ⊂ H(div,Ω) and Qh ⊂ L2(Ω)/R be finite dimensional spaces and

V 0
h = Vh ∩H0(div,Ω), where H0(div,Ω) is H(div,Ω) with homogeneous bound-

ary conditions. The numerical approximation of (2.4) on the fine grid is to find
{vh, ph} ∈ Vh ×Qh such that vh · n = gh on ∂Ω and

((λk)−1vh, uh) − (divuh, ph) = 0 ∀uh ∈ V 0
h

(divvh, bh) = (q, bh) ∀bh ∈ Qh,
(2.5)

with the usual L2 inner product, (·, ·).
In a mixed MsFEM one attempts to design the approximation space for ve-

locity in such a way that it contains the small-scale features of the solution. In
a mixed MsFEM, the velocity field is approximated using multiscale basis func-
tions, while piecewise constant functions are used to approximate the pressure
field. In particular, these multiscale basis functions for the velocity field are
constructed for each edge (face) of every block. Let

⋃
Ki = Ω be a partitioning

of the domain in polyhedral elements. We denote with I the multi index set of
pairs of indices of two neighboring blocks, i.e if Ki ∩Ki′ 6= ∅, ι = {ii′} ∈ I. We
denote the interface of two neighboring blocks Ki and Ki′ with Γι , i.e Γι is a
common edge or a face of the blocks Ki and Ki′ .
With a given permeability field k, we compute the corresponding multiscale
basis function for Γι in the following way.

First we compute a function wι,k by solving the following equation:

(-div(k(x)∇wι,k)) |Ki
=





1
|Ki|

if
∫

Ki
q = 0

q
R

Ki
q

else,

(−div(k(x)∇wι,k)) |Ki′
=






−1
|Ki′ |

if
∫

Ki′
q = 0

−q
R

K
i′

q
else,

−k(x)∇wι,k · nii′ =

{
gι on Γι

0 else,

(2.6)

where the choice of gι will be discussed later and nii′ is the normal pointing
from Ki to Ki′ (see Figure 1).

To each auxiliary function wι,k, we associate the multiscale basis function
Ψι,k = −k(x)∇wι,k. When basis functions have been computed for each edge,
we define the finite dimensional space for approximation of the velocity

Vh(k) =
⊕

ι

{Ψι,k},

V 0
h (k) = Vh(k) ∩H0(div,Ω).
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no-flow boundary

Ki

Γι

gι Ki′

nii′

no-flow boundary

Figure 1: Local problem to solve for multiscale basis.

Note that for each permeability field k, we associate a velocity approximation
space Vh(k) that is spanned by the set of basis functions consisting of one
multiscale basis function for each edge of every grid block in the coarse grid. In
Section 3 we introduce to different approximation spaces for the velocity.

The choice of the boundary conditions gι in (2.6) can affect the accuracy
of MsFEM. In the following subsections we introduce two different kinds of
boundary conditions, local and global boundary conditions where for global
boundary conditions, we employ a single-phase flow velocity field.

2.2 Mixed MsFEM using local information

In [9], piecewise constant coarse-scale fluxes on the boundary of the coarse
elements are used, i.e.,

gι =
1

|Γι|
.

In this case, the boundary conditions do not contain any fine-scale informa-
tion that is in the velocity field of the reference solution. In general, we also
consider as a local approach any other boundary conditions that involve local
information, e.g., permeabilities within the local domain.

2.3 Mixed MsFEM using limited global information

For accurate approximations of the fluxes, the velocity should contain fine-scale
features similar to the solution. Approaches such as oversampling or limited
global information [16, 12] are introduced for mixed finite element methods.
The main idea of these techniques is to use larger regions for local problem
computations, i.e., the local problems are solved in larger regions and then
the basis functions are computed using only the interior information. In the
following we use

gι =
v · nii′∫

Γι
v · nii′ds

,

with the ’global’ velocity v which solves the single-phase flow equation (2.4).
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Here, we note that global approaches are known to be more accurate for a
given realization of the permeability field ([4]). However, they are computa-
tionally more expensive, since the boundary condition depends on the ’global’
velocity v which requires to solve a global fine-scale problem.

3 Ensemble level methods for mixed MsFEM

The main idea of ensemble level multiscale methods is to construct local basis
functions that can be used for any member of the ensemble. These calcu-
lations involve selecting some ensemble members and constructing multiscale
basis functions for them. The computations are divided in offline and online
computations. In this section we introduce two ensemble level methods for
mixed MsFEM, the no-local-solve-online ensemble level method (NLSO) and
the local-solve-online ensemble level method (NLSO). In both methods the of-
fline part is to construct sets of basis functions based on a few (Nl) realizations
of the solution. We choose these realizations randomly or use proper orthogonal
decomposition (POD) to identify best local basis functions in the norm defined
by POD for the velocity field. In general we can also choose offline realizations
following the techniques used in reduced basis methods (cf.[21, 22]). For both
methods we can use either boundary conditions using global single-phase flow
information or local information.

The main idea of NLSO is to use all pre-computed basis functions to con-
struct a coarse-grid approximation. This is done by projecting the solution onto
the space of pre-computed basis functions. On the other hand, LSO computes a
few (one in our case) multiscale basis functions per edge by projecting the local
problem onto the space of pre-computed basis functions. The local problem typ-
ically requires some boundary conditions. For a given realization, we can only
use local boundary conditions because the use of limited global information will
involve solving a global single-phase flow equation. For this reason, as we will
show that LSO is less accurate compared to NLSO when global information is
used.

3.1 No-local-solve-online ensemble level method (NLSO)

The no-local-solve-online mixed MsFEM method was introduced in [3]. The
main idea is to pre-compute multiscale basis functions on a coarse-grid block
for a few randomly chosen realizations. These basis functions are further used
to solve the global flow equation (2.4). In particular, at each interior edge Γι

and for a few coefficients kj(x) = k(x, ωj), 1 ≤ j ≤ Nl, we define the multiscale
basis functions Ψι,kj

(x) = −kj(x)∇wι,kj
. Whereas wι,kj

denotes the solution of
(2.6) with the coefficient kj(x).

These basis functions are used to solve the equation on a coarse grid for
an arbitrary realization of the permeability without re-computing new basis
functions. Following [3], we employ an approximation space for the velocity
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that is defined for multiple kj , i.e., we use

V NLSO
h =

Nl⊕

j=1

Vh(kj).

The coarse space of all the pre-computed basis functions is used to solve the
equation (2.4) on a coarse grid. This velocity we use to solve the transport
equation (2.2) with an implicit scheme to determine the saturation.

Therefore we solve the equations on a Nl × |I| coarse space (since we have
Nl basis functions on each edge instead of one).

Since the basis functions do not change during the online stage, we can
pre-compute the integrals such as

∫
Ψι,kj

Ψι′,k′

j
.

To identify the best local basis we use proper orthogonal decomposition.
Therefore we compute the Ñ eigenvalues with the largest absolute value and
the corresponding eigenvectors Ṽi = (Ṽ 1

i , · · · , Ṽ Nl

i ), 1 ≤ i ≤ Ñ , of the matrix
BT

ι Bι. Here Bι denotes the matrix of pre-computed multiscale basis functions
for an edge ι, i.e., of Bι =

(
Ψι,kj

)
1≤j≤Nl

. We denote with V the matrix of the

scaled eigenvectors, i.e., for each column of the matrix it holds: Vi = 1
PNl

j=1
Ṽ

j
i

Ṽi.

For POD multiscale basis functions we use the columns of B̃ = BV . We have
implemented the POD approaches using the L2 inner product of the velocity. We
observe an improvement of the approximation of the velocity and the saturation
(cf. Section 5.3). For instance, we get a velocity error of 0.14% with POD and
0.09% without POD for an isotropic Gaussian distribution. For the saturation
we have 2.02% with POD and 1.32% without POD. The gain in the POD
approach is larger for the velocity since we consider the L2 inner product of
the velocity. It is not clear if this inner product is optimal for the quantity of
interest: the water saturation. The choice of an optimal inner product for the
saturation will be investigated in future work. For MLMC convergence we have
not observed any gain using the POD approach. (cf. Section 5.6).

3.2 Local-solve-online ensemble level method (LSO)

The local-solve-online ensemble level method is similar to a reduced basis ap-
proach (e.g., [11, 21]). However, in comparison to reduced basis methods where
the realizations fulfill special properties, we select the realizations for the pre-
computations randomly. We apply the local-solve-online ensemble level method
in the context of mixed multi-scale FEM as follows. The offline part coincided
with the offline part of the above introduced NLSO method. We construct sets
of basis functions based on a few (Nl) randomly chosen realizations of the coef-
ficient kj(x) = k(x, ωj), 1 ≤ j ≤ Nl or we can use POD to select basis functions
as described above.

After we have solved (2.6) for each realization we define for every edge

ι = {ii′} a space V ι
h :=

⊕Nl

j=1 Ψι,kj
. In this space V ι

h we approximate in the
online stage the solution w̃ι,k̃ of the auxiliary problem (2.6) with some local
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boundary conditions with the coefficient k̃(x) = k(x, ω̃) for a random ω̃. As an
approximation space for the velocity we define now

V LSO
h =

⊕

ι∈I

{Ψ̃ι,k̃},

for Ψ̃ι,k̃ = −k̃(x)∇w̃ι,k̃.
For each computed multiscale velocity we solve the transport equation (2.2)

to compute the saturation.
In this approach we use a different multiscale basis for each coefficient. That

is the reason why the integrals
∫

Ψ̃ι,k̃Ψ̃ι′,k̃ over a coarse block cannot be pre-

computed. However, since each basis function Ψ̃ι,k̃ is a linear combination of
the pre-computed basis functions Ψι,kj

, 1 ≤ j ≤ Nl, the calculations can be
done inexpensively using pre-computed quantities.

As in the previous approach NLSO we can use POD to find the best local
basis. Again we observe an improvement in the numerical simulations for ap-
proximating the velocity and the saturation (cf. Section 5.3). Analogous to the
NLSO method the use of POD does not change the results for MLMC and MC
significantly.

3.3 Comparison of LSO and NLSO

In contrast to the NLSO method, the online computations of the LSO method
are divided into two parts, first one solves in each interior edge of the coarse
region a local problem of size N2

l to get a basis for a chosen realization. Once
multiscale basis functions are identified for each edge, the global problem is
solved on a coarse grid by projecting the solution. In the NLSO approach we
solve the equations on a Nl times larger coarse space (since we have Nl basis
functions on each edge instead of one) while the accuracy of the method is not
sacrificed at the expense of a specific boundary condition.

If the boundary condition gι in (2.6) uses the local information which does
not depend on the permeability, the NLSO and the LSO approach have almost
the same accuracy. In the NLSO case we approximate the velocity with

v =
∑

ι∈I

Nl∑

j=1

cιjΨι,kj

and in the LSO approach with

v =
∑

ι∈I

cιΨ̃ι,k̃ =
∑

ι∈I

cι

Nl∑

j=1

cjΨι,kj
.

This is exactly the same if we have the freedom to choose cj . Note that the
coefficients cj in LSO are determined from the solution of local problems that
compute basis functions.
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Solve for velocity in V NSLO
h

Define velocity approximation space:

V NSLO
h =

⊕Nl

j=1 Vh(kj)

Solve for saturation

Solve for velocity in V SLO
h

Define velocity approximation space:

V LSO
h =

⊕
ι Ψ̃ι,kml

For each edge ι solve for

a multiscale basis Ψ̃ι,kml
∈⊕Nl

j=1 Ψι,kj

Select NL realizations of the permeability:
kj,1 ≤ j ≤ NL

For each realization kj

solve a single-phase flow problem

to obtain a global velocity solution vj.

Define Vh(kj) =
⊕

ι Ψι,kj
.

For each realization kj and edge ι

solve for a multiscale basis function Ψι,j

depending on the global velocity vj.

Select an abitrary realization of the permeability kml
:

Online stage

Solve for saturation

NLSO MsFEM LSO MsFEM

Offline stage

Figure 2: Comparison of LSO and NLSO.
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Global information is important as it was demonstrated in [20, 12] theoret-
ically and numerically. This is particularly true when the problem is solved
multiple times. In this section, our goal is to show that when global informa-
tion is used one cannot use LSO type approaches and need NLSO if an accurate
solution is sought.

Since the cost of the online computation of the NLSO approach does not
depend on the boundary condition gι it is reasonable to choose limited global
boundary conditions. The first part of the online computations of the LSO
method is to solve the auxiliary problem (2.6). Boundary conditions using
global information would increase the computational cost of the method. With
this choice of boundary condition there would be no computationally gain of
an ensemble level method compared to a standard mixed MsFEM method for
each particular realization in our setup. Therefore we choose local boundary
conditions for the online part of the LSO method (global for the offline part).
With this choice of boundary conditions the computational cost for NLSO and
LSO is comparable. The NLSO approach is more accurate than the LSO method
if global boundary conditions are used as we will show in Section 5.3.

4 Multi-level Monte Carlo methods using en-
semble level mixed MsFEM

First we introduce multi-level Monte Carlo in a general way and after that
we combine it with the introduced ensemble level mixed MsFEMs, NLSO and
LSO. Denote G a generic random function, G = G(x, ω). We are interested
in the efficient computation of the expectation of G, denoted by E(G). The
idea of multi-level Monte Carlo (MLMC) methods is to consider the quantity of
interest at different levels l. We introduce levels smaller than L, such as L−1,...,
1 where we assume that the computation at the smallest level is cheap, while
less accurate, to compute and G0 = 0. Particularly, we assume ‖Gl −G‖ ∼ 1

N
β

l

,

with N1 ≤ N2 ≤ · · · ≤ NL and β > 0. Nl is related to the accuracy of the
approximation (see discussion below). As an approximation of the expectation
E(G) we use the multi-level approximation

EL(GL) =

L∑

l=1

EMl
(Gl −Gl−1) , (4.1)

where EMl
denotes the arithmetic mean with Ml samples.

For error estimates, we consider the root mean square errors

‖E(GL) − EL(GL)‖ :=
(
E(‖E(GL) − EL(GL)‖2

B)
) 1

2 (4.2)
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with an appropriate norm ‖ · ‖B. We get

‖E(GL) − EL(GL)‖

= ‖E
(

L∑

l=1

(Gl −Gl−1)

)
−

L∑

l=1

EMl
(Gl −Gl−1) ‖

≤
L∑

l=1

‖(E − EMl
)(Gl −Gl−1)‖

≤
L∑

l=1

1√
Ml

‖Gl −Gl−1 − E(Gl −Gl−1)‖

.

L∑

l=1

1√
Ml

‖G−Gl‖ +
1√
M1

.

L∑

l=2

1√
Ml

1

Nβ
l

+
1√
M1

.

To equate the error terms we choose

Ml = C





N2β

L , l = 1(
NL

Nl

)2β

, 2 ≤ l ≤ L,
(4.3)

then we end with

‖E(GL) − EL(GL)‖ = O

(
1

Nβ
L

)
. (4.4)

We are interested in predicting of the saturation field and will measure the
mean square error in the saturation field. We use both ensemble level mixed
MsFEMs -NLSO and LSO- to calculate Gl where Nl realizations of the perme-
ability field are chosen to compute the basis for the whole ensemble.

At each level l we select a different number of realizations of the permeability
field Nl, N1 ≤ N2 ≤ · · · ≤ NL to build a low dimensional approximation space
for velocity that captures both small scale (sub coarse-grid) spatial variability
in the permeability data and stochastic variability due to uncertainties in the
data. In particular, we calculate the velocity at level l for Ml realizations to
get saturations Sl,m with 1 ≤ l ≤ L and 1 ≤ m ≤ Ml to build the MLMC
approximation of the expected value of the fine scale saturation. For clarity we
summarize the basic steps below.

1. Generation of coarse grid.

• Partition the domain into a coarse grid. The coarse grid is a par-
titioning of the fine grid where each cell in the fine grid belongs to
a unique block in the coarse grid and each coarse grid block is con-
nected. [1].
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2. Construction of multiscale approximation space Vh:

• Select NL realizations from the stochastic permeability distribution.

• For each selected realization 1 ≤ j ≤ NL:

– Solve (2.4) on the fine grid using a suitable mass conservative
numerical method to obtain a ’global’ velocity solution vj .

– Compute the multiscale basis functions: For each edge Γι, ι =
{ii′}, set

gι(kj) =
vj · nii′∫

Γι
vj · nii′ds

,

and solve (2.6) to obtain wι,kj
and subsequently Ψι,kj

.

– Define Vh(kj) =
⊕

ι Ψι,kj
.

3. Multi-level mixed MsFEM computations for estimating an expectation at

level l, 1 ≤ l ≤ L:

• Select Ml realizations of the permeability kml
, 1 ≤ ml ≤Ml.

• LSO method:

– Compute: Ψ̃ι,kml
∈ V ι

h =
⊕Nl

j=1 Ψι,kj
by solving (2.6) with kml

and local B.C..

– Define V LSO
h =

⊕
ι{Ψ̃ι,kml

}
– Solve two-phase flow and transport (2.1)-(2.2) for Sl,m. At each

time step, the velocity field is constructed by solving (2.1) on a
coarse grid using V LSO

h .

• NLSO method:

– Define V NLSO
h =

⊕Nl

j=1 Vh(kj).

– Solve two-phase flow and transport (2.1)-(2.2) for Sl,m. At each
time step, the velocity field is constructed by solving (2.1) on a
coarse grid using V NLSO

h .

• Calculate the arithmetic mean

EMl
(Sl − Sl−1) =

1

Ml

Ml∑

m=1

(Sl,m − Sl−1,m) . (4.5)

4. MLMC approximation of E(S)

EL(SL) =

L∑

l=1

EMl
(Sl − Sl−1). (4.6)

Next, we discuss the work for MLMC and compare it with MC. We will
consider two cases: single-phase flow (λ(S) = 1 and f(S) nonlinear) and two-
phase flow. In both cases, we will compare the saturation field at a certain
time instant. In all simulations, we will ignore the cost of pre-computations as
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basis functions are fixed throughout the simulations. Note that we have almost
the same numerical costs for NLSO and for LSO, if we assume we solve the
pressure equation optimally. The computational cost for solving the pressure
equation each time instant with Nl basis functions (at level l) for a coarse
grid Hj is 2

(
H−1

j − 1
)
N2

l H
−1
j . For LSO we solve at each interior edge an

N2
l problem and solve the pressure equation for only one set of basis functions

we get 2
(
H−1

j − 1
) (
N2

l + 1
)
H−1

j . In the following we neglect the costs of
solving the pressure equation for one set of basis functions in LSO, such that
we end with the same numerical costs for NLSO and LSO. But of course it is
possible to calculate the online multiscale LSO basis of each edge in parallel,
such that the computational time for LSO is much smaller. In our simulations,
we will equate the cost of solving the pressure equation for MC and MLMC and
compare the accuracy of these approximations. Although for single-phase flow
this comparison is accurate (up to the cost of computation of basis functions),
one needs to take into account the cost of solving the saturation equation in
two-phase flow and transport simulations. The cost of the computation for the
saturation equation at each time instant is the same at any level because we use
a coarse-grid velocity field. We note the cost of solving the pressure equation
is larger than that for the saturation equation on a coarse grid because the
convergence of iterative solvers requires many iterations for multiscale problems
and there are more degrees of freedom. Since we use several basis functions per
coarse edge in the ensemble level multiscale method, the cost computing the
pressure solution can be several times larger than that of the saturation equation
because the coarse system is several times larger for the pressure equation. We
will ignore the cost of saturation computation on a coarse grid in two-phase flow
examples.

We have the following computational costs for MLMC based on pressure:

WMLMC

=

L∑

l=1

(
2
(
H−1

j − 1
)
N2

l H
−1
j

)
Ml

= 2N2β
L H−1

j (H−1
j − 1)

(
L∑

l=2

N2−2β
l +N2

1

)
.

We compare the costs with the computational costs for MC

WMC =
(
2
(
H−1

j − 1
)
N̂2H−1

j

)
M̂. (4.7)

In our numerical simulations, we will equate the work and compare the accuracy
of MLMC and MC. When comparing the work, we will calculate the number
of realizations for detailed two-phase flow and transport simulations that are
needed.

We have observed that the accuracy of ensemble level multiscale methods
increases as we increase the dimension of the coarse space (see [3] and the
discussions below). However, this accuracy can not be estimated, in general.
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We propose the use of an empirical procedure that allows, based on simulations
with a few samples, to estimate the convergence rate of ensemble level mixed
MsFEM; further, using these estimates we select the number of realizations, Mi

(see (4.3)) in MLMC.

5 Numerical results

In our numerical examples, we will consider permeability fields described by two-
point correlation functions. We will use the Karhunen-Loève expansion (KLE)
to parameterize these permeability fields and apply the MLMC algorithm as
described above. We will compute the number of MC realizations needed to
achieve the same amount of work and compare the accuracy of MLMC and
MC. First, we briefly describe the permeability parameterization and then we
will present numerical results.

5.1 Permeability parameterization

To obtain the permeability field in terms of an optimal L2 basis, we use the
Karhunen-Loève expansion (KLE) [19]. For our numerical tests, we truncate
the expansion and represent the permeability matrix by a small number of
random parameters. We briefly recall the facts of the KLE. Consider Y (x, ω) =
log[k(x, ω)], where ω represents randomness. We assume that E[Y (x, ω)] = 0
and R(x, y) = E [Y (x)Y (y)]. We will expand Y (x, ω) as

Y (x, ω) =
∞∑

k=1

Yk(ω)ψk(x), Yk(ω) =

∫

Ω

Y (x, ω)ψk(x)dx,

where ψk(x) is an orthonormal basis that are eigenvectors of R(x, y) when dis-
cretized. More precisely, {ψk} is a complete basis in L2(Ω). It follows that
ψk(x) are eigenfunctions of R(x, y):

∫

Ω

R(x, y)ψk(y)dy = λkψk(x), k = 1, 2, . . . , (5.1)

where λk = E[Y 2
k ] > 0. Note that E(YiYj) = 0 for all i 6= j. Denoting

ηk = Yk/
√
λk (E(ηk) = 0 and E(ηiηj) = δij), we have

Y (x, ω) =

∞∑

k=1

√
λkηk(ω)ψk(x), (5.2)

where ψk and λk satisfy (5.1). The randomness is represented by the scalar
random variables ηk. After the discretization of the domain Ω in a rectangular
mesh, we truncate the KLE (5.2) to finite terms. We only keep the leading
order terms (quantified by the magnitude of λk) and capture most of the energy
of the stochastic process Y (x, ω). For an N -term KLE approximation YN =∑N

k=1

√
λkηkψk, the energy ratio of the approximation is defined as e(N) :=
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E‖YN‖2

E‖Y ‖2 =
PN

k=1
λk

P

∞

k=1
λk

. If λk, k = 1, 2, . . . , decay very fast, then the truncated KLE

would be a good approximation of the stochastic process in the L2 sense.
We will consider two types of correlation functions. The first one is log-

Gaussian

R(x, y) = σ2 exp
(
−|x1 − y1|2

2l21
− |x2 − y2|2

2l22

)
, (5.3)

and the next one is log-Exponential

R(x, y) = σ2 exp
(
−|x1 − y1|

l1
− |x2 − y2|

l2

)
. (5.4)

In the above formula, l1 and l2 are the correlation lengths in each dimension,
and σ2 = E(Y 2) is a constant that represents the variance of the permeability
field. In the first case, we expect faster decay of eigenvalues compared to the
second case, log-Exponential, for a given set of correlation lengths.

5.2 Experimental setup

In our simulations we consider the traditional quarter-of-a-five-spot with no-flow
boundary conditions. The domain Ω is a square and we inject water at the upper
left corner while the producer is placed at the lower right one. The pressure
equation (2.1) is solved with mixed MsFEM and we solve for the saturation
with an implicit scheme. In the numerics we solve (2.1) on a coarse grid or on
a fine grid. If we solve on the fine grid, we take the transport equation with the
right-hand side zero. On the fine grid we solve a single-phase flow problem and
on the coarse grid a two-phase flow problem. In both cases the permeability
field Y (x) is given on a 100 × 100 fine Cartesian grid. As mentioned above,
we consider Gaussian and Exponential covariance functions. In all examples we
have σ2 = 2. In particular we consider:

• Isotropic Gaussian field: correlation length l1 = l2 = 0.2, stochastic di-
mension 10

• Anisotropic Gaussian field: correlation length l1 = 0.5 and l2 = 0.1,
stochastic dimension 12

• Isotropic Exponential field: correlation length l1 = l2 = 0.2, stochastic
dimension 300

• Anisotropic Exponential field: correlation length l1 = 0.5 and l2 = 0.1,
stochastic dimension 350

To build the multiscale basis, we generate NL independent realizations of the
permeability.

We have also selected a POD basis as described in Section 3. But we have
not observed any gain for MLMC. For this reason we mostly show the results for
randomly chosen realization for the offline stage. We briefly show some results
using the POD approach to pre-compute the multiscale basis for two-phase flow.
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The multiscale basis functions are not recomputed during the simulations,
i.e., they are computed at time zero. We compare the MLMC accuracy of the
saturation at a certain time instance (PVI= 0.8) with the accuracy of standard
MC at level L with the same amount of costs; therefore, we choose

M̂ =

∑L
l=1N

2
l Ml

N2
L

. (5.5)

As reference, we use the arithmetic mean of Mref samples of the saturation
solved with the multiscale velocity where the basis is calculated for the per-
meability realization which is used in the pressure equation. We denote the
reference saturation with Sref . We consider the square root of the arithmetic
mean of square of the relative L2 errors, e.g., for MLMC we consider

MLMC error =

√√√√ 1

J

J∑

j=1

‖Sref − Sj
MLMC‖2

L2

‖Sref‖2
L2

, (5.6)

where Sj
MLMC denotes the MLMC approximation of the expectation for a given

set of permeability realization {k1, · · · , kNL
} to compute the multiscale basis

functions (cf. (2.6)) and different realizations {k1, · · · , km1
} to solve the flow

an transport equations (cf. (2.1)-(2.2)) to compute the saturation.

5.3 Comparison of the NLSO and LSO approach for single-
phase flow

In this section we briefly study the differences of the two ensemble level mixed
MsFEM and the influence of the choice of different boundary conditions using
local or limited global information for single-phase flow.

We show that methods using local boundary conditions have a residual error
no matter how many basis functions we pick.

Therefor we pre-compute 12 basis functions with either local or global bound-
ary conditions. We study the influence based on an isotropic Gaussian and an
anisotropic Exponential distribution. For the selected realization kj we consider
the L2-error between the water saturation computed with one of the ensemble
level methods with either local or global boundary conditions and a reference
saturation. As reference we use either the fine-scale water saturation, Sj

ref ,

or the multiscale saturation, Sj
refloc, where the basis is calculated for the re-

alization kj with local boundary conditions. In our case the local boundary
conditions are a combination of the permeability in different cells. Note, that
the goal is not to compare local and global boundary conditions but the goal
is to compare the NLSO and LSO approaches. We show that the LSO method
does not remove the residual error. In Table 1 we computed the mean L2-errors
of 100 different realizations for all the combinations. Again, note that we solve
the online problem for LSO with local boundary conditions. The mean error
between the reference saturation with local and global boundary conditions is
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isotropic Gaussian anisotropic Exponential

gNLSO gLSO lNLSO lLSO gNLSO gLSO lNLSO lLSO
‖Sref − S‖ 0.33 16.06 1.91 16.16 16.18 33.60 21.47 34.00
‖Srefloc − S‖ 16.21 1.88 16.02 0.75 30.18 19.88 27.19 17.59

Table 1: Mean errors (percent) of 100 realizations for the different methods and
boundary conditions for the single-phase flow example.

approximately 16% for the Gaussian and 34% for the Exponential distribution.
It is known from literature (cf. [4]) that the source of the errors are the local
boundary conditions and boundary conditions using global information should
be used to overcome this problem.

From the table we see that in the LSO method we introduce an additional
error by solving the online problem with local boundary conditions. The NLSO
seems to be a good approximation of the fine-scale saturation, while the solution
of LSO is closer to the local reference. For instance, we have an error of less than
1% for the NLSO with global boundary conditions for the Gaussian distribution.
The error of the LSO approach to the global reference is of the same size as
the error between the global reference and the local one independent of the
underlying distribution. In both approaches global boundary conditions give
the better approximation of the fine-scale saturation. For this reason we will
consider only global boundary conditions in the following. In Figure 3 we show
the water saturations with global boundary conditions for one sample of the
isotropic Gaussian and the anisotropic Exponential random field.
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(b) Anisotropic Exponential

Figure 3: Water saturation for global boundary condition for the different meth-
ods.
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5.4 Convergence rate

In Section 4 we assume ‖Gl − G‖ = C 1

N
β

l

=: δl, with δ1 > δ2 > · · · δL. In this

section we investigate δl where G denotes the saturation with the basis calcu-
lated for the permeability realization which is used in the pressure equation and
Gl the saturation with a pre-computed basis for Nl permeability realizations.
With these δls, it is possible to find appropriate choices of realizations Ml at
each level, namely

Ml = C






(
1

δL

)2

(std(G) + δ21), l = 1
(

δl

δL

)2

, 2 ≤ l ≤ L.

In the previous section we observed that the LSO approach does not converge
to the fine scale saturation. For this reason we consider the NLSO case only.
Furthermore, we observe similar convergence rates if we choose the realization
for the pre-computations randomly or if we use the POD approach. So we
present the results for the random selection case. For further studies we refer
to [17].

To determine the convergence rate, we choose N = (3, 6, 12) and calculate
the mean over M = 100 permeability realizations as follows. For 10 sets of
permeability realizations we compute the multiscale basis and each of these
sets we use to compute the error for 10 different permeability realizations. We
compute the arithmetic mean of the 10× 10 numbers. The resulting δs depend
on the underlying distribution of the covariance function, but at least in the two-
phase flow example the ratio δl

δL
remains almost the same for all distributions.

For the Gaussian distributions (isotropic and anisotropic) we get approximately
(2.7, 1.6, 1) and for the Exponential ones (2.0, 1.5, 1). In the single-flow case the
ratio is the same for the isotropic and anisotropic Exponential distribution we
get for the ratios (1.6, 1.3, 1). If the covariance is Gaussian, the decay is much
faster than in the Exponential case and the decay is even much faster for the
isotropic Gaussian distribution. The ratios in the isotropic Gaussian case are
(13.6, 5.1, 1) and in the anisotropic Gaussian (5.2, 2.6, 1).

5.5 Single-phase flow

As mentioned above, we denote the example as single-phase flow, if the total

mobility λ(S) = 1. We take the flux term f(S) = S2

S2+(1−S)2 (see (2.2)). Since

the mobility does not depend on the saturation, we solve (2.1) only once and
update the transport equation for each time step.

The parameters we use for our simulation and the resulting relative errors
for the different distributions are summarized in Table 2. In Figure 4 we have
plotted the water saturation for the different covariance functions (isotropic and
anisotropic Gaussian, isotropic and anisotropic Exponential) and the different
methods (MLMC and MC) in the case of NLSO. In Figure 5 we used LSO.
We choose the numbers of samples at each level as M = (70, 20, 10) and the
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isotropic Gaussian anisotropic Gaussian isotropic Exponential anisotropic Exponential
(N1, N2, N3) (3, 6, 12) (3, 6, 12) (24, 48, 96) (24, 48, 96)
(M1,M2,M3) (70, 20, 10) (70, 20, 10) (70, 20, 10) (70, 20, 10)

N̂ 12 12 96 96

M̂ 20 20 20 20
MMCref 500 500 500 500
MLMC error NLSO 0.0758 0.0847 0.0934 0.0889
MC error NLSO 0.1439 0.1222 0.1389 0.1343

MC error
MLMC error NLSO 1.90 1.44 1.49 1.51
MLMC error LSO 0.1101 0.1189 0.1781 0.1711
MC error LSO 0.3027 0.4244 0.2112 0.1839

MC error
MLMC error LSO 2.75 3.57 1.19 1.07

Table 2: Parameters and errors for the single-phase flow example.

dimension of the approximation space (defined as number of independent sam-
ples selected to construct the multiscale space) for the Exponential distributions
eight times larger than for the Gaussian tests. We equate the computational
costs and compare the resulting relative errors for MLMC and MC. With this
choice of realizations for MLMC, we get for MC with equated costs M̂ = 20,
where M̂ is the number of permeability realizations needed for forward simula-
tions. We repeat these calculation for 20 sets of multiscale basis function, i.e.,
J = 20 in (5.6).

In the NLSO case we get for MLMC relative errors of approximately 9 per-
cent and for MC approximately 13 percent. This result is almost independent
of the underlying distribution, but note that for the Exponential test cases the
computational work is eight times larger than for the Gaussian ones. So the MC
error is 1.5 times larger than the MLMC one. In the LSO case we introduce
an additional error by projecting the multiscale basis onto the space of the Nl

pre-computed basis functions due to the local boundary conditions. So both
errors are larger, but the MC error is about 3 times larger than the MLMC one.

We observe similar results if the POD approach is used. So we show the
results for the random case. We will only show some results for the POD case
in the two-phase flow example (cf. Section 5.6).

Again we note that one could do the computations of the multiscale basis
of the LSO method in parallel and so it is possible to decrease the errors by
keeping the computational time fixed.

5.6 Two-phase flow

We consider a 5 × 5 coarse grid, such that every grid block contains a 20 × 20
cell partition from the fine grid. We choose µw = 1, µ0 = 1, krw(S) = S2 and
kro(S) = (1−S)2. We solve the pressure equation on the 5× 5 coarse grid with
mixed MsFEM for each time step. The parameters we use for our simulation and
the resulting relative errors for the different covariance functions (isotropic and
anisotropic Gaussian, isotropic and anisotropic Exponential) are summarized
in Table 3. In Figure 6 we have plotted the water saturation for the different
distributions and the different methods (MLMC and MC) in the case of NLSO
and in Figure 7 we used LSO In all tests we use the same number of realizations
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(d) Anisotropic Exponential

Figure 4: Water saturation for the different methods and distributions for single-
phase flow using NLSO
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Figure 5: Water saturation for the different methods and distributions for single-
phase flow using LSO.
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isotropic Gaussian anisotropic Gaussian isotropic Exponential anisotropic Exponential
(N1, N2, N3) (3, 6, 12) (3, 6, 12) (24, 48, 96) (24, 48, 96)
(M1,M2,M3) (70, 20, 10) (70, 20, 10) (70, 20, 10) (70, 20, 10)

N̂ 12 12 96 96

M̂ 20 20 20 20
MMCref 500 500 500 500
MLMC error NLSO 0.0522 0.0497 0.0529 0.0543
MC error NLSO 0.0989 0.0849 0.0947 0.0898

MC error
MLMC error NLSO 1.90 1.71 1.79 1.65
MLMC error LSO 0.0448 0.0854 0.0581 0.1161
MC error LSO 0.0839 0.1056 0.1039 0.1274

MC error
MLMC error LSO 1.72 1.24 1.79 1.10
MLMC error POD NLSO 0.0479 0.0563 0.0568 0.0583
MC error POD NLSO 0.0884 0.0937 0.0972 0.0911

MC error
MLMC error LSO 1.85 1.67 1.71 1.56
MLMC error POD LSO 0.0565 0.0843 0.0652 0.1299
MC error POD LSO 0.0992 0.1083 0.0952 0.1524

MC error
MLMC error LSO 1.76 1.29 1.46 1.17

Table 3: Parameters and errors for the two-phase flow example.

for MLMC and following the same number of realizations for MC with equated
costs. Namely M = (70, 20, 10) and M̂ = 20. But the number of basis functions
differs for the Gaussian and Exponential cases. For the Exponential test, the
dimension of each level is eight times larger than for the Gaussian. This means
we increase the costs by eight. As in the single-phase example we choose J = 20
in (5.6).

If we use NLSO the MC error is approximately 1.75 times larger than the
MLMC error. Note that the gain is slightly larger for the isotropic distributions
than for the anisotropic ones. For all distributions we end with a relative MLMC
error of approximately 5 and a MC error of 9 percent. For LSO the errors are
comparable. However, in this example we find that the gain is larger for isotropic
distributions in comparison to the anisotropic ones. In the isotropic cases the
MC error is about 1.75 times larger and for the anisotropic ones 1.2 times larger.
Independent of the method -NLSO or LSO- we expect the ratio to increase if
more levels are used.

Next we briefly mention POD results and show the convergence rate does not
improve. As you can see in Table 3 some of the errors decrease, e.g., for NLSO
with Gaussian distribution, and some increase, e.g., NLSO with anisotropic
Gaussian. For NLSO the ratio of the MC and the MLMC error decreases slightly
if we use POD for the offline computations of the basis functions. For LSO in
most cases these ratios increase. However, since there is no clear trend for the
errors, we see no gain in using the POD approach for MLMC.

6 Conclusions

In this paper, we combine multiscale finite element methods -NLSO and LSO-
and multi-level Monte Carlo (MLMC) techniques to speed-up Monte Carlo sim-
ulations. The multiscale methods solve the flow equation on a coarse grid with
pre-computed basis functions using a few members of the ensemble. These basis
functions are used to approximate the solution on a coarse grid for an arbitrary
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Figure 6: Water saturation for the different methods and distributions for two-
phase flow using NSLO.
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Figure 7: Water saturation for the different methods and distributions for two-
phase flow using LSO.
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realization. The use of larger dimensional coarse spaces yields more accurate
solutions. In multi-level Monte Carlo methods ([14, 13]) more accurate (and
expensive) forward simulations are run with a fewer samples while less accurate
(and inexpensive) forward simulations are run with a larger number of samples.
Selecting the number of expensive and inexpensive simulations carefully, one
can show that MLMC can provide a better accuracy at the same cost as MC. In
our simulations, we use various dimensional coarse spaces and perform a num-
ber of forward simulations at different resolutions. These simulations results are
further used within the MLMC framework to speed-up MC calculations. We
present basic aspects of the algorithm and numerical results for coupled flow
and transport in heterogeneous porous media.
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