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Abstract 

Inspections have been shown to be an effective means of detecting defects 
early on in the software development life cycle. However, they are not always 
successful or beneficial as they are affected by a number of technical and 
managerial factors. To make inspections successful, one important aspect is to 
understand what are the factors that affect inspection effectiveness (the rate 
of detected defects) in a given environment, based on project data. In this pa-
per we look at how management factors, such as the effort assigned and the 
inspection rate, affect inspection effectiveness. We collected data on a number 
of code inspections and performed a multivariate statistical analysis. Because 
the functional form of effectiveness models is a priori unknown, we use a 
novel exploratory analysis technique: Multiple Adaptive Regression Splines 
(MARS). We compare the MARS model with more classical regression models 
and show how it can help understand the complex trends and interactions in 
the data, without requiring the analyst to rely on strong assumptions. Results 
are reported and discussed in light of existing studies. 
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1 Introduction 

Inspections have been shown to be an important defect detection technology 
[12]. However, when one is faced with planning inspections, a number of deci-
sions have to be made. For example, the following questions are considered 
relevant as they are deemed to have an impact on inspection effectiveness, 
that is the capacity of inspections to uncover defects: 

− What overall effort to devote to the inspection? 
− What should be the inspection rate? 
− How many participants to involve? 
− How should the material to be inspected be broken down? 
 
In order to answer such questions, which will be discussed in further details be-
low, we need to develop models that relate defect detection effectiveness to 
variables such as effort, number of participants, or the amount of code in-
spected. To build such effectiveness models, data on inspections need to be 
collected and multivariate statistical analysis techniques are required to exploit 
such data and capture the complexity of the phenomena under study. 

Although we rely on such multivariate models to help predict and understand 
the relationships between defect detection and the variables mentioned above, 
there is, however, a problem that we typically face when building such models. 
Common and mature approaches, such as multivariate regression analysis, re-
quire that we specify beforehand the functional form of the relationships 
among model variables. Because there is little knowledge and theory about in-
spection effectiveness factors [7][3], this is difficult to do without taking the 
risk to fit an inadequate model to the data.  

We are therefore in a typical situation where we need to perform some ex-
ploratory analysis in a multivariate context. Not only we are interested in mod-
eling relationships, e.g., between defect detection and effort, but we would 
like to find out about interactions between variables, that is the way they af-
fect each other’s impact on effectiveness, e.g., effort impact on defect detec-
tion may depend on the inspection rate, that is the pace followed while in-
specting documents.  

This paper will first contribute by using a novel exploratory, multivariate analy-
sis technique (MARS [8]), which has not been used before for building soft-
ware engineering models. MARS is used to help build a defect detection pre-
diction model that is as accurate as possible. For the purpose of evaluating the 
gain of using MARS compared to conventional approaches, we will also build 
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ordinary least squares regression models following classical variable section 
procedures [6]. We will compare the two types of models in terms of their 
goodness of fit, predictive power, and their capacity to help us understand the 
phenomena under study. We will then analyze the MARS multivariate models 
to gain some understanding regarding a number of common hypotheses re-
garding inspection defect detection effectiveness and its relationship to various 
factors such as effort, participants, or inspection rate. From all these results, we 
then provide general recommendations regarding the construction of such 
models in other inspection environments.  

The paper is organized as follows. We first summarize in Section 2 the current 
state of knowledge based on our review of the literature. Then, in Section 3, 
we describe the motivations, the environment in which our study was per-
formed, and the data collection performed. Section 4 introduces the main 
modeling technique used: Multivariate Adaptive Regression Splines (MARS). 
Regression analysis results are then reported in Section 5, followed by MARS 
results in Section 6. The latter section also performs comparisons with results in 
Section 5. Section 7 concludes the paper by summarizing findings and lessons 
learned.  
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2 Managing and Improving Inspections 

In order to improve and control inspections, it is first necessary to identify the 
factors impacting inspection effectiveness, that is the number1 of defects de-
tected. Knowingand understanding these factors will enable us to control them 
when planning and conducting an inspection, so that a maximum defect de-
tection effectiveness can be achieved.  

In this section, we summarize existing empirical results so that we can compare 
our results and discuss them in light of reported data. In the literature, several 
factors have been hypothesized and/or shown to affect the effectiveness of in-
spections. For example, several studies showed that the effort spent on in-
specting an artifact has a major impact on the inspection effectiveness [12]. 
Christenson et al. [3] reported the preparation effort of the inspectors to be 
correlated with the density of defects found. Ebenau [7] identified the exami-
nation rate2 and the preparation rate3 as major drivers of inspection effective-
ness. In a context where defects are searched during meetings (i.e., examina-
tion), spending more effort on preparation (i.e., reading a document) yields a 
higher understanding of the document to be inspected and hence results in 
more detected defects during inspection meetings. Spending more effort on 
examining the document simply increases the thoroughness of the inspection 
and increases the chances of detecting defects.  

Characteristics of the inspected product can have an impact on the effective-
ness of inspections as well. Some studies [3] [7] reported the size of the in-
spected document to impact inspection effectiveness as a larger document 
usually contain a larger number of defects. Additionally, the “complexity” of a 
product [3] and its initial quality [9] can have an effect on inspection effective-
ness as these factors relate to the defect content of the inspected product. 

The characteristics of the inspection team can also show some effect on in-
spection effectiveness. Porter et al. [10] suggest that an inspection team com-
posed of several inspectors can enable the detection of a wider variety of de-
fects since each inspector is likely to rely on a different expertise. The larger 
and the more varied the team, the better the coverage of the document, thus 
resulting in an increased inspection effectiveness. Additionally, the qualification 
of the inspection participants can impact the effectiveness. Inspectors well 

                                                
1 Using the proportion of defects found would be equivalent as this is the number of detected defects di-

vided by a constant: the total number of defects. 
2  Effort spent examining the document in the inspection meeting per unit of document size (e.g., LOC) 
3 Effort spent reading the document during preparation per unit of document size (e.g., LOC) 
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versed in the application domain can already know about potential defects in 
the inspected product [10] [14] [12].  

Finally, the organization of the inspection process and its infrastructure can 
have an impact on the effectiveness as well. Porter et al. [10] identify the num-
ber of inspection sessions as another factor influencing inspection effective-
ness. Additionally, the defect detection technique chosen for an inspection 
may have an impact on effectiveness as well. For example, more systematic 
techniques may help inexperienced inspectors [11]. 
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3 Case Study Setting and Data Collection 

The work described in this paper took place in a business unit of Siemens AG, 
Germany, which is developing products and services for mobile communication 
and intelligent networks. In this particular business unit, inspections are per-
formed throughout the entire life cycle to ensure the quality of all software ar-
tifacts. Thus, inspections are performed after each of the development phases: 
analysis, design, and coding. Due to the substantial investment in software 
quality through systematic inspections, the quality assurance team’s objective is 
to continuously improve and control the defect detection effectiveness of these 
inspections.  

Because software quality is a major objective in this environment, data is sys-
tematically collected regarding the factors that have been shown to affect in-
spections’ effectiveness in the published literature: the number of inspection 
participants, the type and size of the work product, the size of the change 
from the last version of the work product, the inspection effort, the number of 
defects found (classed into major and minor defects, where major defects are 
those that would lead to a fault or failure in subsequent phases), and the esti-
mated rework effort.  

Depending on the artifact to be inspected, three different kinds of inspection 
methods are applied. First, with the so-called “comment technique”, the arti-
fact is distributed to many inspectors who simply read the document and send 
their comments to the author. There is no formal, precisely defined inspection 
procedure. The second one is an inspection approach, similar to the one de-
scribed in [14], where inspectors use checklists to identify defects during 
preparation and where an inspection meeting is held to collect the individual 
inspectors’ defects. Third, there are “intensive” inspections, which enhance the 
second inspection approach in two ways. First, during the inspection meeting, 
a reader reads parts of the document, which is then discussed by the partici-
pants. In this discussion inspectors also collect the defects they detected during 
preparation. Thus, with intensive inspection, there is more interaction between 
authors and inspectors on the content of the inspected document. Second, a 
discussion takes place on how to prevent defects in the future. 

The data collected for code inspections in this environment and used through-
out the analysis is listed in Table 1. In addition, qualitative data regarding the 
type of inspection performed (as discussed above) and the type of document 
inspected was collected. The definition of these categorical variables is specific 
to the environment under study and only meaningful in that context.  
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Variable Description 
Defects sum of major and minor defects detected in the inspection 
Particip number of participants taking part in the inspection (either in preparation or in 

the meeting) 
Effort total effort spent by the participants for the inspection (including preparation 

effort and meeting effort) in person-minutes 
Sessions number of meetings that were performed to completely inspect a document 

(used when a document is too large to be inspected in one meeting or when 
multiple meetings, each with a specific focus, are performed) 

Dloc size of the change compared to the last version 
Loc total size of the inspected document. 
Iloc size of document’s part actually inspected. 

Table 1: Inspection Measurement 

In addition, based on the data collected, two composite measures are com-
puted: effort per participant (Effpart), inspection rate (Totrate and Rate as Loc 
and Iloc per effort unit, respectively). 

In the analysis that follows, we only considered inspections in which at least 
one defect was found. The rationale for this selection was that, based on our 
discussion with the quality management team, we suspected that some of 
these zero-defect inspections might not have been thoroughly performed. In 
particular the ones performed according to the rather loose “comment tech-
nique” represented 77% of all zero-defect inspections and were particularly 
suspect. Since we could not collect information regarding the inspection proc-
ess conformance or the initial quality of inspected documents, we decided it 
would be more prudent to eliminate these observations from the analysis. To 
perform such quality checks and decide on the validity of the data for the 
analysis at hand is usual when collecting data in industrial settings. Our goal 
here is to make sure we use relatively clean, valid data to identify significant in-
spection effectiveness factors. The heuristic we used is rough but appeared to 
be effective at getting cleaner relationships. These inspections detecting zero 
defects should be carefully investigated, as they may be the symptom of a 
problem.  

After filtering out zero defect inspections, our data set was composed of 237 
observations (code inspections). 27% of the code inspected was in assembler 
and the remainder in the programming language CHILL. The proportions for 
“comment”, “intensive”, and default (standard checklists) inspections were 
43%, 40%, and 17%, respectively. The inspection type data, however, was 
deemed unreliable by the quality management team and, as a result, did not 
turn out to be useful for building defect prediction models.  
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4 Multivariate Adaptive Regression Splines 

When analyzing and modeling the relationship between fault detection and in-
spection effort, as well as other potential effectiveness factors mentioned ear-
lier, one of the main issues is that relationships between these variables are ex-
pected to be complex (non-linear) and to involve interaction effects. Because 
we currently know little about what to expect and because such relationships 
are also expected to vary from one organization to another, analyzing inspec-
tion data in order to understand what affects inspections’ effectiveness is usu-
ally a rather complex, exploratory process.  

When using conventional regression techniques, the risk to fit the data with 
models that may be simplistic is rather difficult to avoid. For example, we typi-
cally resort to log-linear models to handle non-linear relationships [6]. But this 
comes with a number of drawbacks such as forcing the model to have a null 
intercept or making the analysis of interactions impossible (as the whole log-
linear model is a multiplicative expression). An alternative to model such com-
plex relationships is artificial neural networks. However, such models are diffi-
cult to interpret [5] as it is nearly impossible to assess the impact of individual 
independent variables on the dependent variables and their interactions. Inter-
pretation is key in our context, as the models we build are not just used for 
prediction purposes but are also used to support decision-making and, from a 
more general perspective, gain a better understanding of software engineering 
processes.  

MARS is a novel statistical method presented in [8] and supported by a recent 
tool developed by Salford Systems4. At a high level, MARS attempts to ap-
proximate complex relationships by a series of linear regressions on different 
intervals of the independent variable ranges (i.e., subregions of the independ-
ent variable space). It is very flexible as it can adapt any functional form and is 
thus suitable to exploratory data analysis. One challenge though is to find the 
appropriate intervals on which to run independent linear regressions, for each 
independent variable, and identify interactions while avoiding overfitting the 
data. This is the purpose of the search algorithms proposed by the MARS 
methodology. Though these algorithms are complex and out of the scope of 
this paper, MARS is based on a number of simple principles. They are intro-
duced below in order for the reader to understand the results presented in 
later sections. It is also interesting to note that the results in [5] show that for 
datasets of sizes comparable to what we use in this study, MARS models are 
more likely to be accurate than artificial neural networks. 

                                                
4 www.salford-systems.com 
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Figure 1 illustrates a simple example of how MARS would attempt to fit data, 
in a two dimension space (where Y and X are the dependent and independent 
variables, respectively), with piece-wise linear regression splines. A key concept 
is the notion of knots, which are the points that mark the end of region of 
data where a distinct linear regression is run, i.e., where the behavior of the 
modeled function changes. Figure 1 shows two knots: x1 and x2. They delimit 
three intervals where different linear relationships are identified. MARS search 
algorithms identify appropriate knots in an automated way, though a number 
of search parameters have to be set by the user. Of course, in a case with 
higher dimensions and interactions between independent variables, the search 
becomes much more complex but the fundamental principles remain the same. 
The reader is referred to [8] for further details. In order to model the concept 
of knots and piece-wise linear regression splines, MARS uses the concept of 
basis function. These are functions of the form:  

max(0, X-c), or 

max(0, c-X) 

where X is an independent variable and c a constant.  

Such basis functions re-express an independent variable X by mapping it to 
new variables, which are of the form described above. For max(0, X-c), X is set 
to 0 for all values of X up to some threshold value c and is equal to X for all 
values of X greater than c. By mixing the two types of basis functions pre-
sented above and providing adequate values for c, it is possible to approximate 
any functional shape.  

Determining the right knots (threshold values c) is a key challenge addressed by 
MARS search algorithms. In short, basis functions are used as the new inde-
pendent variables of our regression estimation models. MARS also looks for in-
teraction terms among basis functions, thus leading to the modeling of the in-
teractions among independent variables.  
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Figure 1: Example Knots in MARS 

In addition, MARS provides some insight regarding the importance of variables 
as predictors of defect detection effectiveness, the dependent variable. MARS 
refits the model after removing all terms involving the variable to be assessed 
and calculates the reduction in goodness of fit. All variables are then ranked 
according to their impact on goodness of fit. An optimal MARS model, in 
terms of goodness of fit, is the one with the lowest generalized cross-
validation (GCV) measure.  

The function f̂ is the MARS prediction model based on basis functions. Y is the 
dependent variable−the number of defects detected in our case−and there are 
N observations in the dataset. C(M) is the cost-complexity measure of a model 
containing M basis functions.  
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Besides the usual computation of the squared prediction error, there is a cost 
incurred per basis function included in the model so as to avoid overfitting, 
much like adjusted R2 in least-squares regression. In other words, C(M) is used 
to penalize model complexity, prevent the overfitting of data, and promote the 
parsimony of models. This is usually defined as  

C(M) = M 



Multivariate Adaptive Regression 
Splines 

Copyright © Fraunhofer IESE 2001 10

in linear least-squares regression and this is what we use in this paper. The loss 
in GCV associated with removing all the basis functions in which a variable is 
involved is the measure used to assess its importance in a MARS model.  

Other measures of goodness of fit can be used to assess regression models 
from a practical standpoint. In particular, we will use four of them in this pa-
per.  

− Absolute Relative Error (ARE):  
 

|actual – estimated| 
 

− Magnitude of Relative Error relative to the actual value (MRE):  
 

|actual – estimated| / actual 
 

− Magnitude of Relative Error relative to the estimated value based on a re-
gression model (MRE’): 

 
|actual – estimated| / estimated 

 
− Coefficient of determination of the regression model (R2 between actual 

and predicted defects) 
 
Looking at the above measures is relevant, especially when the models are to 
be used for prediction. However, as discussed in [4], they cannot really be used 
to compare the plausibility of non-nested models, i.e., determine which model 
fits the closest to reality. Therefore, such goodness-of-fit measurements should 
be used and interpreted with care.  

A few other technical issues need to be considered when using MARS. In [5], 
simulations and case studies show that MARS is sensitive to outliers (i.e., ob-
servations in empty parts of the sample space, which are more difficult to de-
tect in multidimensional settings) and strong collinearities among independent 
variables5. In the analysis below, we will attempt first to remove outlying, over-
influential observations in the sample space before building any model. How-
ever, to retain the objectivity of the analysis results, outliers will be kept during 
the validation stage of the models (see cross-validation below). These outliers 
will be identified using the Jackknife Mahalanobis distance (distance from the 
sample space multivariate mean or centroid) [6]. We will verify whether obser-
vations showing a very large Mahalanobis distance have an overinfluential ef-
fect on the multivariate models that we build. If this is the case, they should be 

                                                
5 Note that these problems also affect the reliability of variable selection procedures used to build least 

squares regression models. MARS may, however, be more sensitive to it because of the automated com-
putations of optimal knots.  
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removed for model building. The main motivation here is to make sure that no 
one observation will distort the models being built. In the case study presented 
below, one observation was clearly outlying and hence removed for model 
building purposes.  Because of space constraints, the detail of this analysis 
cannot be shown here. Regarding collinearity, we will use Principal Component 
Analysis (PCA) [6] to identify strongly collinear variables belonging to the same 
principal component. One variable from each principal component will then be 
allowed to enter the MARS models. These procedures aim at preventing, to the 
best extent possible, the computation of spurious results by MARS search pro-
cedures. This would otherwise prevent us from building stable, accurate mod-
els and understand the inspection processes.  
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5 Multivariate Regression Analysis 

We first used conventional procedures for investigating the inspection data by 
applying multivariate, ordinary least squares regression [6]. Our goal is to use 
the least-squares regression results as a comparison baseline to assess the 
benefits of using MARS. As discussed above, we identified and eliminated one 
outlier. Then in order to prevent the use of independent variables being 
strongly collinear, we run a Principal Component Analysis (PCA) on all the vari-
ables in Table 1 and the composite measures. We ended up with 6 principal 
components that explained 97% of the variance in the data set (see [1] for de-
tails). The variables Effort and Effpart  as well as Rate and Iloc, respectively, 
were part of the same principal component. In other words, each of the vari-
able pairs capture an orthogonal dimension in the dataset. In order to avoid 
strongly correlated covariates, as discussed in Section 4, we decided to only al-
low Effort and Rate to enter the model and leave Effpart and Iloc out [1]. A 
multivariate regression analysis was then run, using a backward variable selec-
tion procedure [6]. The obtained (log-linear) regression model for code inspec-
tions has the following form 

)ln()ln()ln( 21 rateaeffortaadefects o ++=  

Because of space constraints, we refer the reader to [1] for complete details on 
the regression procedures we followed. Estimation statistics for the estimated 
coefficients a

i
 are shown in Table 2. For each coefficient, we provide: its esti-

mate, the standard error of the estimate, the t-ratio of the coefficient, the sta-
tistical significance of the coefficient (i.e., the probability that the coefficient is 
equal to zero), and the standardized beta coefficient.  

Coefficient Estimate Std Error t Ratio Prob>|t| Std Beta 
a0 -3.1360 0.3112 -10.07 <.0001 0 
a1 0.7522 0.0470 15.99 <.0001 0.7759 
a2 0.2445 0.0332 7.37 <.0001 0.3573 

Table 2: Regression Estimation Statistics  

The fit of the model can be characterized by the adjusted R2 (which accounts 
for the increased number of independent variables in a multivariate regression 
model [6]) for the multivariate model described above. We can also compute 
the adjusted R2 in the normal domain, that is considering Defects instead of 
ln(Defects). The adjusted R2 in the log and normal domains are 0.52 and 0.56, 
respectively. The results therefore tell us that our regression model explains lit-
tle more than 50% of the variance in number of defects. This means that im-
portant effectiveness factors are still not captured by our data collection. The 
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mean relative error of the model is 0.51, 0.51, and 2.72, for MRE, MRE’, and 
ARE, respectively. This tells us that 50% of the predictions show a relative error 
of 50% or above and an absolute error of approximately 3 defects or more.  

In this model, the inspection effort and rate of the document show a signifi-
cant impact on the number of defects detected. Estimated regression coeffi-
cients are significantly lower than one and thereby confirm that the relation-
ships are not linear and show diseconomies of scale for effort. A straightfor-
ward interpretation is that more effort or a higher rate spent on inspections al-
lows the inspectors to obtain a more thorough understanding of the docu-
ment, thus resulting in the detection of more defects. The impact of the in-
spected document size can simply be explained by the fact that, if more of the 
document is inspected, assuming a somewhat constant defect density, more 
defects are to be detected. It is important to note that the log-linear model 
suggests that the number of defects detected does not grow proportionally to 
effort, rate or inspected Locs. There are several possible interpretations for this. 
For example, as reported in [16], when inspected document size grows there 
are fatigue effects resulting in lower effectiveness to find defects.  
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6 MARS Analysis 

We present below the results obtained when performing a MARS analysis to 
our inspection data.  

We will allow the same predictor variables as in the log-linear models to enter 
the MARS models, making sure no strong collinearities are present among 
variables that can enter the MARS model. We will first provide the models built 
by the MARS procedures and their validation results. Then, we will provide an 
interpretation of the modeling results.  

6.1 Model Building and Validation 

The basis functions identified by MARS search algorithms are described in 
Table 3.  We can right away identify a number of interaction effects and, in 
particular, interactions between effort (as captured by basis function BF1) and 
a number of other variables. Such interactions can be seen in the table when 
basis functions are part of the definition of other basis functions, e.g., BF1 in 
BF4. Because of many such interactions, Table 3 suggests that the model is far 
from being additive and that interactions will play an important role in building 
an accurate model for code inspections. Models and interactions will be further 
discussed below.  

Basis Functions 
BF1 = max(0, EFFORT - 30.000); 
 BF4 = max(0, PARTICIP - 10.000) * BF1; 
 BF9 = max(0, DLOC - 3000.000) * BF1; 
 BF11 = max(0, SESSIONS - 4.000) * BF1; 
 BF14 = max(0, 0.250 - RATE ) * BF1; 
 BF19 = max(0, EFFORT - 3600.000); 
 BF21 = max(0, EFFORT - 2100.000); 
 BF24 = max(0, 4200.000 - EFFORT ); 
 BF25 = max(0, PARTICIP - 9.000) * BF24; 
 BF27 = max(0, LOC - 29.999) * BF19; 
 BF28 = max(0, DLOC - 4.000) * BF21; 
 BF30 = max(0, 0.433 - RATE ) * BF21; 

Table 3: MARS Basis Functions  

Table 4 provides a ranking of the variables by order of importance. Variables 
with no impact at all are not shown. As described above, this is computed 
based on the reduction in goodness of fit when the variable is removed (i.e., all 
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the basis functions involving the variable are removed). The loss in GVC is de-
noted as “-gvc” in Table 4. The column “Importance” shows the relative im-
portance (percentage) of variables as compared to the best one (i.e., effort 
here). Confirming the regression analysis results, we can see that Effort is by 
far the most important variable determining defect detection effectiveness. To 
a lesser extent the change delta in terms of lines of code (Dloc), the number of 
lines of code of the artifact inspected (Loc), the rate at which inspections are 
taking place (Rate), and the number of sessions (Sessions) have also a signifi-
cant effect on defects detected. These results are rather intuitive as the larger 
the amount of code modified and inspected, the larger the number of defects 
detected. The impact of inspection rate has been mentioned in a number of ar-
ticles [1] [7] [3] and is confirmed by our analysis. We will get back to these is-
sues later in this section.  

Variable Importance - gcv 
EFFORT 100.000      312.942 
DLOC 62.006      178.804 
LOC 45.308      139.755 
PARTICIP 39.235       128.567 
RATE 38.770       127.775 
SESSIONS 12.632       98.497 

Table 4: Relative Variable Importance  

Table 4 shows that the two significant defect detection predictors (Effort, Rate) 
were already selected in the log-linear regression model. The MARS model is 
essentially a richer model in the sense that it models additional effects (Dloc, 
Loc, Participants, Sessions) and automatically identifies relevant interactions. 
This is what we would expect from such a data mining procedure: to uncover 
additional information from the data as no restrictive assumptions are made 
regarding the model’s functional form or interactions. We will see below how 
the goodness of fit and predictive capability improved as a result from using 
additional covariates and a different functional form for the regression equa-
tion.  

Variable Estimate Std Error t ratio Prob>|t| 
Constant 2.218 0.807 2.748 0.006 
BF 1 0.008 .71E-03 11.453 .<.0001 
BF 4 0.003 .29E-03 10.435 <.0001 
BF 9 .34E-05 .22E-06 15.282 <.0001 
BF 11 -0.005 0.001 -4.400 <.0001 
BF 14 -0.037 0.007 -5.441 <.0001 
BF 25 -0.003 49E-03 -5.375 <.0001 
BF 27 .91E-06 .82E-07 11.051 <.0001 
BF 28 -.46E-05 .42E-06 -10.786 <.0001 
BF 30 -0.033 0.006 -5.549 <.0001 

Table 5: MARS Regression Statistics 
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Though the regression model presented in Table 5 is more complex than the 
log-linear regression model, the number of covariates (9) is still very reasonable 
as compared to the number of observations (236). We want to ensure that the 
model generated is stable and will be accurate over other datasets. A typical 
rule of thumb is to have a minimum of 10 data points for each covariate in a 
regression model. MARS parameters have to be set to avoid overfitting with a 
too large number of covariates, i.e., basis functions. As mentioned in [5], this is 
relatively easy with the recent MARS tool but is outside the scope of this paper. 

Table 6 summarizes the comparison of goodness of fit of the two models. Sev-
eral measures are presented as all provide valid insights into goodness of fit. R2 
is informative about the percentage of defect variance explained by the regres-
sion models. We can see from Table 6 that the coefficient of determination R2 
(or rather the adjusted R2, which is adjusted for the number of covariates) of 
the MARS regression (0.785) significantly outperforms the log-linear regression 
model (0.559). Table 6 also shows the results regarding the relative error of the 
models.  

A log-linear model gives more weight to observations with smaller actuals (due 
to the log transformation), i.e., they weigh more on the estimation of regres-
sion coefficients. Since smaller actuals tend to yield higher MREs, lower MREs 
resulting from log-linear models are in fact more of a mathematical artifact 
than an evidence of better goodness of fit. Furthermore, regression models op-
timize R2, not relative error, and they should be compared on that basis. But it 
is also a well-known fact that comparing non-nested regression models with R2 
may be misleading [4]. A better way of comparing the plausibility of non-
nested regression models is the J-test (See [1] for relevant details and [4] for a 
complete description). This test confirms very clearly that the MARS model is 
more plausible than the log-linear model and is therefore more appropriate for 
interpretation purposes.  

We also evaluated the predictive power of the log-linear model and the MARS 
model using cross-validation [5]. We randomly divided up the dataset (includ-
ing the outlier as discussed before) into 10 subsets. Each subset was in turn 
used as a test set and the complementary set was used to refit both models. 
Thus, each observation in each subset was predicted using a model that was 
built on the other subsets. The goal is to obtain a more realistic picture of the 
predictive power of the models as the goodness of fit tends to give optimistic 
results. 

 R2 adjusted Mean ARE Mean MRE Mean MRE’ 
MARS model 0.78 5.33 1.05 0.58 
Log-Linear model 0.56 6.49 0.78 0.76 

Table 6: Comparison of goodness of fit  
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Cross-validation yields a R2 of 0.532 and 0.647 between actual and predicted 
defects, for the log-linear and the MARS models, respectively. It is clear that a 
better goodness of fit is obtained with MARS, based on the exact same data. 
However, we can see that the MARS R2 is, as expected, significantly lower that 
the goodness-of-fit R2 (0.785) when running a cross-validation. This is not the 
case of the log-linear model, probably because it is based on less covariates (2 
and 9, for the log-linear and MARS models, respectively) and therefore yields 
more accurate estimated regression coefficients. In general, we have to expect 
that MARS models show more covariates and this may be a significant draw-
back, depending on the data set size.  

In addition, looking at the distributions of the difference between actual and 
predicted defects showed clearly that the log-linear model is biased in the 
sense that it tends to underpredict the number of defects. But because of size 
constraints, the reader is referred to [1] for further details on this matter.  

Based on the discussions above, the MARS model seems to provide a better 
basis for interpreting the impact of various factors on code inspection effec-
tiveness. This is discussed below where we focus our attention on interactions 
between factors, as modeled by the MARS model, and their implications in 
terms of decision making and gaining a better understanding of the code 
inspection process.  

6.2 Model Interpretation 

To help interpreting the models, we visualize 2-way interactions between inde-
pendent variables.  

Figure 2 is a typical example of two-way interactions that can be observed by 
graphical means from a MARS model. This figure represents the model pre-
dicted surface for the dependent variable (i.e., number of defects detected) 
when only considering the interaction effect of two variables. In other words, 
the 3-D graph captures only part of the model’s effect, i.e., the interaction ef-
fect of two variables that contributes to the final model defect prediction. 
More precisely, in Figure 2, the “contribution” axis is in this case -0.037*BF14 - 
0.033*BF30 and the other axes are simply the variables involved in the interac-
tion terms: Rate and Effort. The MARS tool shifts values on the contribution 
axis so that the minimum value is 0. Color codes (here shown as gray scales) 
represent different contribution value intervals. Though the absolute values on 
the contribution axis are not easy to interpret and not of interest here, the 
shape of the surface modeling the interaction allows us to better understand 
how the effectiveness factors interplay. Note that the MARS tool only displays 
the part of the space that is populated by observations and some surfaces may 
appear truncated.  
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A grid is also drawn to help the reader get a better sense of the modeled sur-
face in three dimensions. Higher-level interactions may be present in the data, 
but they are difficult to visualize and interpret. We will not investigate them 
here. 

 

 

Figure 2: Interaction between Rate and Effort 

From Figure 2, we can see that the interaction of Rate and Effort indicates an 
interval (roughly between 25 and 50 lines per hour) on the inspection rate 
measurement scale that is optimal, i.e., an increase in effort provides a higher 
pay-off in that interval. It would therefore be desirable that inspection rates 
remain in that interval for maximum return on investment. However, in prac-
tice, other factors may come into play, like the time and people actually avail-
able to perform an inspection on an artifact to be certified before a deadline. 

It is now interesting to compare our optimal rates with the existing literature. 
Ebenau [7] reports an optimal rate of 150 lines per hour. It is however reported 
that the rates were not planned and the smallest observed rates were slightly 
above 50 lines per hour. Moreover, he simply used a linear regression between 
rate and defect density to estimate this “optimal” rate. It is worth noting that 
the resulting correlation coefficient of this regression was weak and its signifi-
cance mainly due to two outliers. Another major difference with our inspec-
tions is that the programming language inspected was C. Gilb et al [16] found, 
based on numerous experiences, that effective individual inspections of soft-
ware development task products usually lies between 0.5 to 1.5 pages an 
hour, where a page is roughly around 50 lines. They state that, though such 
slow rates shock people initially, we have to remember that inspections include 
cross-checking against check-lists and other documents and may involve sev-
eral passes where inspectors focus on different types of faults. In light of the 
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existing reported rates, and considering their level of uncertainty, the optimal 
rate determined by the MARS analysis is within plausible range. 

Ebenau [7] notes that we should expect optimal rates to vary across organiza-
tions and inspections as the type of work products, their complexity and size, 
and the expertise of the inspectors vary significantly. It is therefore important 
for organizations not to rely on published rates to plan their inspection but to 
identify their own, optimal rates. MARS can be of assistance in doing this.  

In Figure 3 we can see that for a given effort value, the higher DLOC (i.e., LOC 
changed, added, or deleted), the more defects, and therefore the higher the 
impact of effort on defect detection. This is visible by observing how the con-
tours change as DLOC increases. This is a plausible trend: the larger the 
change, the higher the number of defects introduced, the more defects de-
tected for a given effort value. This result reinforces the evidence that the 
MARS model is a plausible one. Also, one may predict, based on the amount of 
change in the code, the number of resulting defects to be expected and derive 
the resulting correction effort. Decisions to implement changes and plan 
change effort can be based on impact analysis (to estimate Dloc) and the use 
of the MARS model.  

Another interesting observation is that as effort increases, the impact of DLOC 
on the number of defects increases up to a point, and then decreases. Though 
not everything can be explained in such an exploratory data analysis, this might 
reflect the fact that when a certain amount of effort−which is strongly related 
to effort per participant in our case−goes below or over a certain threshold 
(roughly below or above 2000 or 6000 man minutes, respectively), inspections 
tend to be less effective. In the former case, people may not have the time to 
really understand the documents they are inspecting and find fewer defects. 
The latter case is somewhat more complex to understand (e.g., may be due to 
fatigue effects in reported in [16]), is based on fewer observations, and should 
be the object of further enquiry. A strange surface shows up for high effort 
values and low DLOCs, but it very likely spurious as we have relatively few ob-
servations in that area. That might be, for example, the result of poor quality 
data collection or an idiosyncrasy of the MARS method, but it is hard to say. In 
general, regardless of the method used for exploratory analysis, we cannot ex-
pect to explain all observed trends at the smallest level of detail.  
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Figure 3: Interaction between DLOC and Effort 

From Figure 4, we see that when the number of participants increases, more 
defects are found at a constant effort level. This is visible from looking at how 
the contours bend downward as the number of participants increases. On the 
range we can observe in our dataset (1 to 17), increasing the number of par-
ticipants seems to increase inspection effectiveness. As mentioned before and 
reported in [10], this is likely due to the fact that with a larger number of par-
ticipants, the inspection is more likely to include people with the right exper-
tise. Now, a cost-benefit analysis, including the cost of additional participants 
in the equation, would be necessary to make useful recommendations. 

For looking at the interactions in the figures above, we can first conclude that 
interactions seems to be key in modeling the effects of typical inspection fac-
tors on code inspections. A model that does not account for such interactions, 
such as log-linear regression models, is likely to be inadequate, as supported by 
the cross-validation results above. Common sense can also provide us with 
relatively straightforward explanations for many of these interactions.  

We have seen above that many of the interactions modeled by MARS may be 
extremely useful to gain understanding about the inspection process and pro-
vide decision support. From Figures 2, 3, and 4, respectively, we can decide 
about the inspection rate (Rate), the maximum size of the documents to in-
spect6, or the number of participants (Particip). The MARS model is therefore 
not only useful for planning purposes (e.g., inspection and correction effort 
planning) but also to help management decisions regarding inspections’ effec-

                                                
6 based on their corresponding effort, using the optimal inspection rate, and in order to prevent fatigue ef-

fects 
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tiveness. The results presented here cannot be systematically generalized to 
other environments. But similar data collection and analysis procedures should 
help every organization make its own, optimal decisions. 

 

 

Figure 4: Interaction between Participants and Effort 
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7 Conclusions 

This paper has focused on investigating the impact of a number of inspection 
factors, such as effort or inspection rate, on inspection effectiveness. A sub-
stantial amount of data was collected on code inspections and a novel explora-
tory modeling technique was used to improve our understanding of the under-
lying structures in the data: Multivariate Adaptive Regression Splines (MARS).  

The results have shown that inspection effort and rates were very important 
defect detection drivers. Their effect is, however, interacting. That is, the im-
pact of effort on effect detected is optimal within a certain code inspection 
rate (roughly 25 to 50 lines of code an hour). In addition, we have seen that 
the size of changes, the size of inspected artifacts, and the number of partici-
pants all interact with effort and are also important to predict defects detec-
tions.  

From a more general standpoint, MARS has helped us better understand and 
uncover the complex relationships and interactions that exist in inspection 
data. The MARS model turned out to be a richer model, accounting for more 
factors, than the linear model we developed. In most cases, simple intuitive ex-
planations could be given for interactions. Though not every result can be 
readily explained, MARS has nevertheless shown to be a useful exploratory 
data analysis tool in our context. MARS also seems to be a potentially useful 
technique to obtain more accurate models than with standard linear regression 
analysis. However, as discussed in [1], the dataset has to be large enough and 
the underlying structure in the data has to warrant such an analysis: strong 
non-linearity and interactions must be present.  

In terms of applications, the model we have presented here can be used for a 
number of purposes. First, with respect to planning, the number of defects can 
be predicted for a project’s planned inspections. Change effort can then be de-
rived and planned for. Second, in terms of quality control, management may 
use MARS results to determine reasonable inspection effort, numbers of par-
ticipants, and rates, thus maximizing inspection effectiveness.  

It is interesting to note that our MARS model for code inspections supports 
some previous empirical results and hypotheses in the inspection literature. As 
expected and reported by Christenson et al [3], inspection effort plays also a 
very important role. Both the document and change size of the code (Loc, 
Dloc) plays here a significant role and this is similar to what both Christenson 
et al. and Ebenau [7] reported. Ebenau estimates inspection size by considering 
new and changed material and the interfaces to other work products. That lat-
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ter attribute is missing in our dataset and should probably be part of our future 
data collection. The number of participants and sessions also shows a signifi-
cant impact as in the work by Porter et al [10]. The inspection rate shows to be 
a significant factor as reported by Ebenau [7] and Gilb et al [16].  

Though some of the results here are common with other reported studies, they 
cannot be readily generalized to other environments. However, the type of 
data collection and analysis that was performed in this study can be reused in 
any environment where inspections need to be better understood and con-
trolled. Our study, performed in a representative development environment, 
has shown that it was practically feasible to undertake such measurement and 
obtain useful, interpretable models. Furthermore, from a practical and subjec-
tive standpoint, the feedback we received from practitioners and quality engi-
neers was clearly positive. 
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