

Comparison of Carrier Lifetime Measurements and Mapping Using Time Resolved Photoluminescence and $\mu\text{-PCD}$

Linköping University

B. Kallinger¹, M. Rommel¹, L. Lilja², J. Hassan², I. Booker², E. Janzen², J.P. Bergman²

¹Fraunhofer IISB, Schottkystrasse 10, 91058 Erlangen, Germany

²Department of Physics, Chemistry and Biology, Linköping University, SE-581 83 Linköping, Sweden

Aim

Comparison of carrier lifetime measurements, using either time resolved photoluminescence (TRPL) or microwave-detected photoconductivity decay (u-PCD), on the same SiC epitaxial layers.

Wafers

- 1. Quarter of 4" 4H SiC. 43 μm , 2x10^{15} cm^{-3}. High density of ingrown stacking fault.
- 2. Older 2" 4H SiC substrate. 43 μ m, 1.5x10¹⁵ cm⁻³.

High dislocation density, and surface processed.

3. State-of-the-art 4" SiC substrate. 30 μ m, 2x10¹³ cm⁻³

Techniques

TRPL : Tripled Nd:YLF-laser, 350 nm, Excitation density < 10^{15} cm⁻³ μ -PCD : Laser-diode, 350 nm,

Excitation density > 10¹⁶ cm⁻³

Conclusions

- TRPL gives values about half of the μ -PCD, as expected from recombination theory [1].
- Both techniques show similar variations related to substrate defects.
- Both techniques are sensitive for the presence of in-grown stacking faults in the epitaxial layer.

[1] P. B. Klein, J. Appl. Phys. 103 (2008) 033702.

Acknowledgments

The Swedish Research Council (VR) is gratefully acknowledged for financial support.