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ABSTRACT
Physical Unclonable Functions (PUFs) based on Ring Oscil-
lators (ROs) are a promising primitive for FPGA security.
However, the quality of their implementation depends on
several design parameters. In this paper, we show that ring
oscillator frequencies strongly depend on surrounding logic.
Based on these findings, we propose a strategy for improving
the quality of RO PUF designs by placing and comparing
ROs in a chain-like structure. We also show that an in-
creased RO runtime and RO disabling has a clear positive
effect on the quality of a RO PUF. We implemented a RO
PUF key generation system on an FPGA using our design
strategy. Our results clearly indicate that our proposed de-
sign strategy can significantly improve the quality of a RO
PUF implementation.

Categories and Subject Descriptors
K.6.5 [Management of Computing and Information
Systems]: Security and Protection

General Terms
Security, Measurement, Experimentation

Keywords
Physical Unclonable Function (PUF), FPGA, Ring Oscilla-
tor, Fuzzy Extractor

1. INTRODUCTION
Field Programmable Gate Arrays (FPGAs) gain increas-
ingly in importance as highly flexible alternative to Appli-
cation Specific Integrated Circuits (ASICs). Their reconfig-
uration property enables fast prototyping and updates for
hardware devices even after market launch. These advan-
tages are already exploited in, e.g., automotive applications
[16].

However, FPGAs are more vulnerable to intellectual prop-
erty theft than ASICs. Bitstreams stored in external flash
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memory may be read out and reverse engineered to an analys-
able netlist [15]. This means that not only implementation
details of algorithms can be disclosed but also stored cryp-
tographic keys can be extracted.

One way to prevent reverse engineering attacks, is to en-
crypt the bitstream [5] before saving it to the flash mem-
ory. A decryption engine, included in a high-end FPGA,
then decodes the bitstream while loading it into its internal
memory. Since side-channel attacks against hardware im-
plementations [6] improve continuously, it might be possible
to successfully attack these decryption engines and break
their protection. Also, attacks on ASICs and FPGAs using
a Focused Ion Beam (FIB) to analyse and manipulate the
physical construction of integrated circuits are already fea-
sible today [7]. Hence, FPGA implementations are exposed
to a variety of security threats.

A promising approach towards holistic embedded security
arises through the application of Physical Unclonable Func-
tions (PUFs). These physical structures enable the exploita-
tion of unavoidable variations in manufacturing processes,
e.g., lithographic processes. Signal properties, such as the
propagation delay on metal lines of a microchip, depend on
these variations. Circuits measuring and comparing these
properties can extract PUF responses. These bit strings are
noisy by nature and not uniformly distributed, but suffi-
ciently unique to identify a silicon device. A PUF can be
seen as a function mapping a response to a challenge input
in an unpredictable way. In contrast to challenge-response
authentication, where a PUF has to generate a big amount
of responses to given challenges, i.e., Challenge-Response
Pairs (CRPs), for the purpose of secure key generation, only
a small number of challenges or even only a single one is ap-
plied.

PUFs based on Ring Oscillators (ROs) currently seem to be
the most reasonable PUF construction to securely identify
FPGAs. Their quality has been evaluated in several anal-
yses recently [12, 14] and enjoys great interest within the
scientific community.

However, in order to use PUFs for the generation of cryp-
tographic keys, an additional module, a fuzzy extractor, is
necessary. It consists of an error-correction stage to cancel
noise related errors and an privacy amplification stage to
provide a uniformly distributed key in the end.



In this contribution, we show that the quality of RO PUF
implementations depends on several design parameters. We
demonstrate that ring oscillator frequencies strongly depend
on the logic implemented close to them. Based on this re-
sults, we define a RO pair comparison strategy which con-
siders RO pair placement and selection, RO runtime and
the enable/disable function of ROs in order to improve the
quality of RO PUF responses. We implemented RO PUFs
with configurable runtime and selection strategy to verify
our methods. Our results show clear improvements in qual-
ity of RO PUF responses.

The remainder of this paper is organised as follows. Section
2 gives a brief overview of previous work related to our con-
tribution. Reasons for a trend towards ring oscillator based
PUFs are given in Section 3. In Section 4, we show that RO
frequencies depend on their spatial location and the logic
surrounding them. Our comparison strategy to improve the
quality of PUF responses is explained in Section 5. An im-
plementation analysis of our comparison strategy is found
in Section 6, as well as a discussion about the results of an
FPGA implementation of a RO PUF key extraction system.
Our contribution is completed by a conclusion in Section 7.

2. RELATED WORK
In 2002, Gassend et al. introduced the first PUFs based on
silicon structures [2]. Their implementation on an FPGA
included eight self-oscillating loops consisting of 32 buffers
and one inverter each. To measure the delay differences of
each loop, their oscillations were counted during a period of
typically 220 clock cycles at 50 MHz (approx. 0.02 s). The
results were clear: the measurement involves a certain level
of noise, but the information extracted from present delay
variations allows to uniquely identify a silicon device. Fur-
ther, it was stated that environmental changes, e.g., temper-
ature increase from 25 to 50 ◦C and supply voltage variation
between 2.5 V and 2.7 V cause a higher level of noise in an
FPGA’s PUF response.

An arbiter-based PUF model was analysed by Lim et al. in
2005 [10]. Besides determining the quality of their proposed
symmetric delay structure, their focus was set on authenti-
cation by utilizing CRPs depending on the physical struc-
ture. It was also shown that non-linear functions, e.g., feed
forward arbiters, have to be introduced to destroy the lin-
ear dependence between challenge and response in order to
render modelling attacks considerably harder.

The RO PUF was introduced by Suh and Devadas in 2007
[18]. Five inverters and one AND-gate, to enable the circu-
lation, form a single ring oscillator. In the cited document,
an implementation of 1024 oscillators is described, where all
oscillator outputs are connected to inputs of two multiplex-
ers to select a pair of oscillators and compare the counter
values, representing the oscillator frequencies. To enhance
the reliability of compared pairs, a 1-out-of-8 scheme is ap-
plied, which chooses the best pair of oscillators out of eight
pairs available. It requires seven times more bits to gener-
ate a response, but also limits the probability of different
responses from the same chip to 0.48% even for worst-case
environmental changes. Maiti and Schaumont pursued a
similar, but more optimized approach in [13] by introducing
configurable ring oscillators. During the enrolment phase,

the optimal configuration for largest distances of compared
oscillator frequencies is determined and saved (3 bits per os-
cillator). They also suggest to compare adjacent RO pairs
by controlled oscillator placement, which we will extend to
a chaining strategy for optimized RO comparison.

In [3], PUFs based on SRAM memories were proposed to
provide an FPGA intrinsic security primitive. The great
advantage is that no FPGA resources are occupied by this
PUF construction, but unfortunately most FPGA devices
automatically reset all SRAM blocks after power-up. A sim-
ilar approach was described in [11], where random start-up
values of flip-flops are exploited. However, the extraction
of these start-up values has to be done by the configura-
tion controller or by a specific circuit, which has to be reset
externally after every start-up, which makes it impractical.

Another idea, the Butterfly PUF, was presented by Kumar
et al. in 2008 [9]. Here, bits are generated from two cross-
coupled latches, which leave their meta-stable state after
releasing the excite signal and tend to output a high or low
voltage level depending on manufacturing variations of in-
volved latches and wires.

In [14], Morozov et al. analysed the influence of FPGA in-
ternal routing for proposed FPGA PUF types and conclude
that Arbiter PUFs and Butterfly PUFs are not as appropri-
ate for stable identification as RO PUFs.

Fuzzy extractor implementations on FPGAs have been pro-
posed by Bösch et al. in 2008 [1]. They utilise concatenated
error-correcting codes and a family of universal hash func-
tions (Toeplitz hash) to generate uniformly distributed and
noise-free cryptographic keys.

3. FPGA PUF CONSTRUCTIONS
SRAM PUFs offer a good basis for key generation, but as
they are not realisable on every FPGA, they are not suit-
able as a general FPGA PUF primitive. Flip-Flop PUFs
require manual bitstream modifications and a special read-
out technique, which makes them impractical. During our
research, we investigated Arbiter PUFs, Butterfly PUFs and
Ring Oscillator PUFs, but focused on the latter for the fol-
lowing reason. FPGA routing renders symmetric Arbiter
PUF and Butterfly PUF design very hard as explained in
Section 3.2.

One should notice, that the quality and possibilities of an
FPGA PUF implementation always depend on the tools pro-
vided by FPGA manufacturers and the internal low-level de-
sign of their devices. During the following paragraphs, we
concentrate on tools and structures of a Xilinx Spartan-3E
device. However, it would be an important step to evalu-
ate advantages and disadvantages of PUF design on other
FPGA platforms, e.g., Altera devices, with different low-
level concepts and design tools.

3.1 Ring Oscillator PUFs
RO PUFs are based on manufacturing variations of silicon
devices. The frequency of ring oscillators, built of an odd
number of inverters, depends on these manufacturing varia-
tions. The general structure proposed by Suh and Devadas
[18] is shown in Figure 1. It consists of several ROs from



which two are selected by a challenge signal using a mul-
tiplexer and are each connected to a counter. During the
enable signal is high, the counters increment with the oscil-
lators’ frequencies, representing their frequencies when dis-
abling the oscillators again. A final relative comparison of
the counter values generates a logical 0 or 1 for this RO pair,
depending on which oscillator had the higher frequency.
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Figure 1: RO PUF structure

3.2 Hard Macro Design
The key to solid PUF design is the usage of lowest-level
FPGA engineering techniques. The Xilinx software FPGA
Editor enables the creation of hard macros, which are man-
ually placed, routed and configured designs, which can be
instantiated multiple times in an FPGA design. This fea-
ture can be exploited to design an exactly defined ring os-
cillator and instantiate it several times. Figure 2 shows two
nearly identical three-inverter ring oscillators, implemented
in a single Configurable Logic Block (CLB), the basic divi-
sion of a Xilinx FPGA.

Figure 2: Hard macro with local routing for two
three-inverter ring oscillators in one CLB

To ensure identical routing for all RO instances, only local
routing (within a CLB) is allowed, which can be achieved
with three-inverter ROs in Spartan-3E devices. Arbiter PUF
and Butterfly PUF architectures are not satisfied by instan-
tiation of identically layout. They require symmetric routing
on local and non-local wires, which is very hard to achieve,
as shown in [14]. Therefore, RO PUF are currently the best
choice for general FPGA PUF designs.

4. SPATIAL FREQUENCY DEPENDENCE
In [13] Maiti and Schaumont showed that ring oscillator fre-
quencies depend on their location on an FPGA die, e.g.,
frequencies of ROs at the edges of an FPGA are slower than
central ROs. We show that logic placed around ROs has an
influence on their frequencies and also causes a significant
spatial dependence.

(a) (b)

(c) (d)

Figure 3: Spatial frequency distribution of 2712 ROs
on a Spartan-3E, influenced by surrounding logic

In order to analyse the spatial dependence of RO frequen-
cies, we instantiated an array of 2712 ring oscillators with
the hard macro shown in Figure 2 to cover more than half of
a Spartan-3E die. Additionally, a RS232 interface, counter
and comparison logic was implemented to allow measure-
ments on all RO frequencies. To analyse the internal envi-
ronmental changes within an FPGA depending on surround-
ing logic, we restricted us to four example cases where the
placement of all interface and measurement logic, a distur-
bance source, was predefined. In the first case, it was limited



to the left corner of the empty floorplan space as depicted in
Figure 3(a), in the second one, only the right corner was al-
lowed, see Figure 3(b). The third case was the area directly
at the border of the RO array as shown in Figure 3(c) and
the fourth one was as far as possible away from the array
of oscillators as depicted in Figure 3(d). Of course, other
cases based on other logic can be defined for future analy-
ses. However, we believe that these cases are representative
and allow drawing conclusions about spatial dependence of
RO frequencies.

In Figure 3, the frequencies of all implemented oscillators
are depicted by different colours at the floorplan position of
the corresponding RO. The presented results show that the
position of interfaces and read-out logic significantly alters
the intra-die conditions.

The first characteristics one observes, are the circular ar-
eas of lower frequencies around the position of the read-out
and measurement logic. Our analysis results show that the
communication and read-out logic ’radiates’ a condition to
decrease frequencies, for each case depicted in Figure 3. One
possible effect could be a local temperature rise which orig-
inates from flowing currents in the comparison logic and
drops with increasing distance to it. Our measurements do
not allow conclusions about which effect, e.g., temperature,
exactly causes frequency deviations. However, they clearly
indicate that frequencies of ROs depend on their spatial lo-
cation and on surrounding logic.

Second, a stripe pattern is visible over the whole area. This
depicts the fact, that the ring oscillator implementations of
Figure 2, although nearly identical, still show a noticeable
mean frequency difference of approximately 10 MHz. There-
fore, only exactly identically routed oscillators may be com-
pared to avoid predetermined comparison results.

When looking closer, the locations at the bottom borders
of Figures 3(a)-3(d) again show slower frequencies instead
of higher although they have the largest distance to the
measurement logic. This might result from higher energy
densities at the die borders because of nearby output buffer
locations or local heat accumulation.

Comparing Figures 3(c) and 3(d), one will find that moving
the logic farther away only shows little improvement.

Since the effects influence not only the edge of our oscillator
array, the idea of placing dummy cells around it, as proposed
in [17], is not applicable here. A comparison strategy is
needed to overcome this disturbances.

5. RO COMPARISON STRATEGY
In previous publications, only little focus was put on the
circuitry for creating a PUF response from comparing os-
cillators. We identified three parameters, which influence
the quality and resource usage of the overall system and
are therefore critical for area, time or power constrained de-
vices. First, we present a place and map method to avoid
foreseeable comparison results of oscillator pairs because of
their location. It allows to extract n − 1 bits from n os-
cillators while comparing only neighbouring ROs. Second,
we show that an increasing RO comparison runtime has a

positive effect on measurement errors of oscillator frequen-
cies. Third, advantages and disadvantages for a mechanism
to only enable the actually measured ring oscillators are bal-
anced. However, other parameters, such as placement and
design of frequency counters and RO output multiplexers
may influence the quality of a RO PUF, but are not consid-
ered in our strategies.

5.1 RO Pairs
In [13] the authors extracted n− 1 bits from n ROs. In or-
der to avoid correlation of response bits, i.e., no comparison
result can be foreseen when knowing all other comparison
results, we use this approach as basis for our strategy. As
shown in [13], the quality of RO PUFs increases with con-
trolled RO placement. We extend this idea to a chain-like
placement and comparison strategy.

Based on our observations in Section 4, we conclude that
only completely identical ROs, with identical hard macros,
are allowed to be used for comparison in order to avoid fore-
seeable comparison results. However, it might be necessary
to use two RO types as shown in the hard macro of Figure 2,
because of design specific area constraints. In this case, two
PUF arrays of different types have to be considered. Only
RO pairs of the same type are to be compared to generate
the overall PUF response. For example, if a response of 128
bits is necessary, it can be achieved by 129 ROs of type 0,
but if this is not possible for any reasons, a combined so-
lution of 65 type 0 and 65 type 1 ROs is imaginable. One
should notice that m types of ROs in a PUF design require
n + m oscillators to extract n bits.

In order to create a RO PUF challenge, a list of RO pairs
to be compared has to be chosen carefully. Closely located
pairs are exposed to similar spatial conditions. Therefore, we
suggest to compare only oscillators which are direct neigh-
bours. To achieve this while still enabling a simple counter
based selection mechanism, we propose a chain-like approach
in the following paragraphs.

We label all available n ring oscillators with 0 to n− 1. To
simplify and optimize oscillator comparison, a counter runs
from 0 to n−2 and always selects two consecutive oscillator
outputs with a multiplexer. Step by step, these pairs are
compared and n− 1 bits are extracted.
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Figure 4: Spatial RO mapping strategies

With our results of Section 4 in mind, we also propose a
spatial chain mapping of ROs. Since ROs are often organ-
ised in arrays as shown in Figures 4(a) and 4(b) or even in
unshaped structures as depicted in Figure 4(c), mapping the
numbered oscillators to the physical layer of an FPGA de-
mands a strict pattern. Figure 4(a) shows that wrong physi-



cal mapping can cause long distance comparisons. Based on
our results of Section 4, we believe that these long distance
comparisons might produce predetermined results because
of different dependence on local conditions. Chain-like map-
ping as shown in Figures 4(b) and 4(c) achieves comparison
pairs which are exposed to the same spatial intra-die condi-
tions and therefore minimizes the risk of location predefined
comparison results. Many FPGA design tools allow con-
trolled placement of hard macro ROs and therefore enable a
low footprint RO PUF challenge circuitry. This guarantees
an optimized selection of RO pairs to compare with a single
counter.

5.2 RO Runtime
In order to enable exploitation of frequency variations of
ROs to extract unique bit strings, one has to precisely mea-
sure those frequencies. For RO PUFs, frequency measure-
ment is performed by incrementing counters using a ring os-
cillator’s output during a specified time. Higher frequencies
lead to higher counter values.

We show that the runtime, during which a RO pair is com-
pared, has significant influences on the present measurement
error and therefore on the quality of a RO PUF. A first re-
quirement is, that runtime and corresponding counter sizes
are matched with the estimated maximal RO frequency, in
order to avoid counter overflows. Further, the runtime spec-
ification has to be balanced between reliable RO discrimi-
nation and fast response extraction. Especially the latter
might be critical for embedded cryptographic applications
that are limited in time.

If fclk is a system’s clock frequency and nclkcyc is the num-
ber of clock cycles during which ROs are enabled, the re-
sulting maximum measurement error emeasure,max can be
calculated as follows:

emeasure,max = ± fclk

2 · nclkcyc
(1)

Assume a circuit with a very short read-out time, which en-
ables two counters only for a single cycle of a 50 MHz clock.
Measurements of this circuit resulting in counter values of
1, 2, 3, ..., x would represent frequencies of 50, 100, 150, ..., x ·
50 MHz respectively. This means, all frequencies between
25 and 75 MHz will be mapped to 50 MHz and so forth, re-
sulting in a maximum measurement error of emeasure,max =
25 MHz. For an array of hard macro ROs, assuming a RO
frequency range from 175 to 225 MHz with a mean value of
200 MHz, an error of 25 MHz would be unacceptable.

Therefore, the measurement time for RO comparisons should
always be chosen in respect to a carefully defined maximum
measurement error. For instance, if a maximum error of
0.1 MHz is required on a 50 MHz clocked system, the run-
time for each RO pair has to be at least nclkcyc = 50 MHz

2·0.1 MHz
=

250 cycles. This defines the lower bound on RO comparison
runtime.

One should also notice that enable signal propagation de-
lay deviations can cause comparison errors. By increasing
measurement time, these delays lose their significance.

Upper bounds on RO runtime are always determined by
the application using RO PUFs, since the evaluation time
of a large number of RO pairs might be time-critical. For
example, an evaluation of 1001 ROs (1000 RO pairs), based
on the parameters calculated in the previous example, would
last at least 1000 · 250 · 20 · 10−9 s = 5 · 10−3 s. The only way
to accelerate evaluation, would be to measure and compare
several RO pairs in parallel, which again causes a larger
hardware footprint.

5.3 RO Disabling
In Section 4, we showed that RO frequencies strongly depend
on surrounding logic and the resulting local environmental
changes. Therefore, we believe that oscillators also depend
on neighbouring ROs. As a result, we suppose that a RO
enabling/disabling strategy can improve quality.

A trivial enable/disable strategy is activating all oscillators
with a single enable signal every time RO pairs are compared
as depicted in Figure 5(a). However, an array of running
ROs might cause changes in local temperatures and electro-
magnetic emission. These parameters might again alter the
intra-die environment and increase the present noise level.
This results in decreased measurement precision.

We only enable currently compared ROs and keep all oth-
ers disabled as shown in Figure 5(b). The advantages of
implementing such an enabling module are power consump-
tion reduction for battery powered devices and less noise on
RO pair comparisons. A disadvantage, shown in the follow-
ing implementation results, is the additional, not negligible,
need of hardware resources to build this selection logic.
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Figure 5: RO enable/disable strategies

6. IMPLEMENTATION RESULTS
We implemented a group of RO PUFs on a Xilinx Spartan-
3E FPGA, to demonstrate the positive effects of our pro-
posed strategies on the quality of RO PUFs. Further, we im-
plemented a key extraction system based on our RO PUFs
and a fuzzy extractor architecture as an example applica-
tion.

6.1 RO Quality
To monitor the quality of our RO PUFs, we used two cri-
teria, reliability and uniqueness, defined in [12]. However,
for reliability, Maiti and Schaumont only consider Hamming



distances to a reference response, although every response
could be a reference response. For uniqueness, only one re-
sponse per device is used, but it is not stated how to select or
calculate this response. In order to obtain complete results,
we extend the proposed definitions to consider all distances
between all responses.

6.1.1 Reliability
Reliability characterizes intra-device variations of PUF re-
sponses R. To measure it, each of m PUF devices is evalu-
ated x times. Depending on the test purpose, environmental
conditions are kept stable or altered accordingly. Then, the

average of the percentage Hamming distance
d(Rj,u,Rj,v)

n
×

100% between each of the measured n-bit responses Rj,u and
Rj,v of each device j is calculated, where u and v run from 1
to x to address every recorded response. Since reliability is a
positive measure, we define a maximum of 100% as the most
desirable result and subtract the calculated average from it.
Reliability is then defined as follows:

RPUF =100%− 1

m×
x−1P
i=1

i

× (2)

mX
j=1

x−1X
u=1

xX
v=u+1

d(Rj,u, Rj,v)

n
× 100%

Reliability is an average property, but when specifying error-
correcting methods for a PUF system, also the maximum re-
sponse deviation is significant. It is defined as the maximum
percentage Hamming distance between two intra-device re-
sponses out of all devices.

6.1.2 Uniqueness
Uniqueness characterizes inter-device variations of PUF re-
sponses R. Its calculation can be done with the same x
responses of each of the m PUF devices as described for
reliability. This estimate is defined by the average of the

percentage Hamming distance
d(Ri,u,Rj,v)

n
× 100% between

all n-bit responses Ri,u and Rj,v of two different devices i
and j out of all m devices. u and v run from 1 to x to
address every recorded response of each device. Uniqueness
is then defined by the following equation, with an optimal
value of 50%:

UPUF =
1

x2 ×
m−1P
k=1

k

m−1X
i=1

xX
u=1

mX
j=i+1

xX
v=1

d(Ri,u, Rj,v)

n
× 100%

(3)

Uniqueness values below 50% indicate correlation between
PUF responses and therefore lower PUF quality.

6.2 PUF Test Array: 129 ROs, 128 RO Pairs
We implemented five instances of 129 ROs in non-overlapping
areas in each of two Spartan-3E1200 devices. These ten PUF
devices represent only a small test group, but they already

allow to show improvements with our strategies. The avail-
able 128 RO pairs enable the extraction of 128-bit responses.

First, the 129 oscillators were placed in random order within
the given area of each PUF ’device’. This allows us to com-
pare our chain placement approach with random placement.

Second, all oscillators were physically placed by our pro-
posed chain-like system as shown in Figure 4(b). Hence, the
challenge, a list of RO pairs, is created by a counter and
only direct neighbouring oscillators are compared.

Our configurable VHDL design allowed to synthesize and
test all PUFs with specified RO runtimes and different en-
able/disable strategies. Runtime was increased from 10 cycles
at 50 MHz to 10240 cycles. For three chosen runtimes, the
feature of RO enable selection was activated. Environmental
conditions were not altered intentionally, because the main
focus of this test was to show the effects of our proposed
strategy, even under normal conditions.

Table 1: Quality improvement by chain-like place-
ment (RO runtime: 640 clock cycles)

Placement Reliability Maximum Uniqueness
response
deviation

random 99.20% 4.69% 43.40%
chain 98.28% 6.25% 48.51%

The comparison of random and chain-like placement is shown
in Table 1. Uniqueness improves by approx. 5% with the use
of our chaining strategy. Using random placement, where
long distance comparisons are likely to happen, causes a loss
in uniqueness and provides more foreseeable comparison re-
sults. Reliability and maximum response deviation seem to
be better in the random case, but this is only because more
RO comparison results stay at a fixed, placement dependent
value.

Table 2 shows the results for our runtime and enable/disable
strategies. Tests with the smallest runtime configuration of
10 cycles showed an unacceptable uniqueness value of 30.42%.
Uniqueness improves while increasing measurement time un-
til a value of 640 cycles, which equals a measurement error
of ±0.04 MHz. For longer runtimes, no improvements in
uniqueness are observed.

Curiously, the enable/disable selection logic does only have
a slightly positive effect on reliability, but also a slightly
negative effect on uniqueness. On the other hand, the maxi-
mum response deviation is lowered by almost 1% every time
the selection module is activated. However, the large re-
sources required for the module make it only interesting for
reliability critical applications.

Regarding runtime, between 40 and 10240 cycles, an im-
provement of approximately 5% in maximum response de-
viation is observable. This confirms the effectiveness of in-
creased measurement time in order to obtain more reliable
PUFs with a higher quality.

Hardware resources for larger comparison counters and re-



Table 2: RO PUF quality results (*includes an RS232 interface: 93 slices, 75 registers and 124 LUTs)
Runtime Maximum Enable Counter Reliability Maximum Uniqueness Read-out time Spartan-3E (slices,
(50 MHz measure- signal size response (for 128 bits, registers, LUTs)*
cycles) ment error deviation at 50 MHz)
10 ±2.50 MHz all 6-bit 98.39% 7.81% 30.42% ≈ 0.03 ms 499, 232, 847
40 ±0.63 MHz all 8-bit 97.85% 10.16% 45.55% ≈ 0.10 ms 502, 238, 858
40 ±0.63 MHz select 8-bit 97.94% 9.36% 45.45% ≈ 0.10 ms 608, 238, 1067
160 ±0.16 MHz all 10-bit 97.45% 8.59% 48.02% ≈ 0.41 ms 508, 245, 866
640 ±0.04 MHz all 12-bit 98.28% 6.25% 48.51% ≈ 1.64 ms 512, 251, 874
640 ±0.04 MHz select 12-bit 98.96% 5.47% 47.05% ≈ 1.64 ms 617, 250, 1082
2560 ±9.77 kHz all 14-bit 98.65% 5.47% 48.65% ≈ 6.55 ms 516, 257, 882
10240 ±2.44 kHz all 16-bit 99.16% 5.47% 47.82% ≈ 26.21 ms 521, 264, 890
10240 ±2.44 kHz select 16-bit 99.19% 4.69% 46.38% ≈ 26.21 ms 624, 262, 1101

lated logic are negligible compared to the enable logic mod-
ule, but the listed read-out times might become critical for
some applications. Time optimized read-out strategies, other
than parallel read-out with a higher hardware footprint,
have to be investigated in future.

6.3 128-bit RO PUF Key Extraction System
In order to demonstrate an example FPGA application based
on RO PUFs, we implemented a key extraction system.
Therefore, we also show how many RO pairs are needed
to generate a 128-bit key reliably.

RO PUFs can be used to generate cryptographic keys from
physical structures without actually storing the key. We
implemented a 128-bit RO PUF key extraction system to
analyse its applicability and its resource requirements.

Noisy, non-uniformly distributed sources, such as RO PUF
responses, have to be processed by a fuzzy extractor to ob-
tain stable, uniformly distributed keys. These modules con-
sist of two stages, an error-correcting, noise eliminating stage
and a redistributing hashing stage. The first step is usually
based on error-correcting code constructions, which are ca-
pable of detecting and correcting a defined number of bit
errors. The corrected responses are then transformed by a
universal hash function to achieve a uniform distribution of
keys.

In Figure 6, our hardware architecture modules are depicted,
which were needed to implement the helper data protocol of
[1]. First, the protocol requires an enrolment phase where
a reference PUF response is read and corresponding helper
data is generated. Afterwards, the created key can be re-
constructed any time by applying the saved helper data to
the PUF system.

To the best of our knowledge, no statistical entropy analyses
of RO PUFs have been carried out yet. In [9], an entropy
for Butterfly PUFs is assumed for the calculation of required
PUF cells. Since our aim is the demonstration of an exam-
ple key extraction application, we also assume an arbitrarily
chosen entropy of 0.95. Beginning with the requirement of
generating a 128-bit key, we find 128

0.95
≈ 135 bits needed to

be hashed. As described in [8] and [1], we utilize a hard-
ware design of a Toeplitz hash function to achieve a uniform
distribution.

In [1], Bösch et al. proposed hardware architectures for
Reed-Muller and Golay code decoders on FPGAs. The au-
thors state that a combination of these codes and repetition
codes are very area efficient solutions. An obvious disad-
vantage is, that they require approx. double the number
of source bits than BCH code designs, because their error-
correction properties are not as strong as those of BCH
codes.

In order to save source bits, which again require hardware
resources in case of a RO PUF, we compared several ver-
sions of BCH codes and concatenations of BCH and repe-
tition codes. We calculated the residual error probability
as defined in [1], which should be less than the Failure In
Time (FIT) rate of the used FPGA. A value below 10−6

is a good pessimistic requirement. At the same time, the
second parameter - required source bits - should be kept as
small as possible. Based on our results above, we assume
a bit error rate pb = 0.08 for a reliable RO PUF construc-
tion. Our code comparison results are listed in Table 3. The
BCH(255,37,45) code shows a low residual error probability
while requiring an acceptable number of 1020 source bits.

Table 3: Error probabilities and source bits of pos-
sible error-correcting codes (for 135 bits)

Error-correcting code Error Source
probability bits

BCH(127,15,27) 0.75 · 10−6 1143

BCH(127,22,23) 0.66 · 10−4 889

BCH(255,37,45) 0.18 · 10−6 1020

BCH(255,71,29) 0.22 · 10−1 510

BCH(511,76,85) 0.57 · 10−10 1022

BCH(511,139,54) 0.16 · 10−1 511

BCH(1023,143,126) 0.75 · 10−6 1023

REP(3,1,1) + BCH(255,71,29) 0.11 · 10−14 1530
REP(5,1,1) + BCH(255,139,15) 0.31 1275

In [4], a tool for generating BCH codecs in VHDL language
was designed. We used it to generate a BCH(255,37,45)
encoder and decoder, which represent our error correction
module.

We implemented 1021 ROs with an optimized read-out cir-
cuitry to obtain a high quality PUF. Further, our designed
fuzzy extractor system consists of a universal hash function,
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Figure 6: Key extraction system modules

an error-correcting stage and a key extraction algorithm sim-
ilar to the one explained in [1]. For communication pur-
poses, an RS232 interface was added to our architecture.
Xilinx ISE synthesis results for a Spartan-3E1200 FPGA
led to the following utilization: 6622 registers (38%), 13490
LUTs (77%), 8429 slices (97%). The fraction of the error-
correcting module is estimated to be approx. 42% of the
required slices, while the RO array occupies approx. 10%.
The hash implementation requires approx. 4% of this design
and the wide XOR module approx. 9%. A disadvantage of
this design is that the helper data is also saved within FPGA
resources and occupies approx. 10%. The RS232 interface,
which has access to the PUF response, helper data and gen-
erated key, uses another approx. 3%. Approx. 22% consist
of control logic, a pseudo random number generator and
module interfaces.

The size of this construction, admittedly not fully optimized
yet, is unacceptable for low-cost FPGAs, since it does not
leave much resources for the actual application. The error-
correcting code module occupies a significant fraction, there-
fore reasonable trade-off between required source bits and
area efficient error-correcting code implementations could
improve the resource usage of key extraction systems. Fur-
ther, a even higher quality of PUF responses could lower the
number of required source bits. An optimized control system
and a trade-off between serial and parallel processing could
reduce the amount of required FPGA resources, also. How-
ever, there is a strong need to investigate PUF systems with
a significantly smaller footprint to enhance the applicability
of PUFs in small and middle size FPGAs.

7. CONCLUSION
We have shown that RO frequencies strongly depend on their
spatial location on an FPGA because of surrounding logic al-
tering intra-die conditions. Based on this fact, we proposed
a chain-like mapping strategy for controlled physical place-

ment of oscillators. We were able to demonstrate RO PUF
quality improvements by adjusting RO runtime and usage
of an enable/disable logic module. Our contribution is com-
pleted by an implementation of a RO PUF key extraction
system.
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