



**Energy Efficiency - Made in Germany** 

# Ways to energy efficiency for the metal and paper industry

18.05.2010 Exportinitiative Energy Efficiency in Sao Paulo

Dr. Kathrin Hesse Fraunhofer-Institut für Materialfluss und Logistik on behalf of the German Federal Ministry of Economics and Technology

www.efficiency-from-germany.info






#### - Fraunhofer-Gesellschaft -



Joseph von Fraunhofer researcher, entrepreneur (1787 – 1826)

- ▶ 60 institutes in Germany
- approximately 17,000 employe
- ► turnover of 1,6 billion €
- ► more than 1,3 billion € from ordered research
- branches in Europe, USA and Asia







## - Fraunhofer Institute for Material Flow and Logistics -



- Founded 1981 in Dortmund
- More than 190 employees
- Approx. 250 student assistants
- Turnover of approx.18 million €, thereof more than 60% from industry, trade and services
- Branches and projects centers in Cottbus, Frankfurt on Main, Prien on Chiemsee
- Branches abroad in Lisbon (Portugal), Beijing (China)





## - Fraunhofer Institute for Material Flow and Logistics -



Section 1: Material Flow Systems Quality Management and Organisational Systems, Planning of Material Flow Systems, Control Technology, Machines and Equipment, Packaging and Trade Logistics



Section 2: Enterprise Logistics Enterprise Planning, Enterprise Modelling, Production Logistics, Maintenance Logistics



Section 3: Logistics, Traffic and Environment Environment and Resource Logistics, Transportation Logistics, Health Care Logistics, Project Centre Airport, Project Centre Traffic, Mobility and Environment





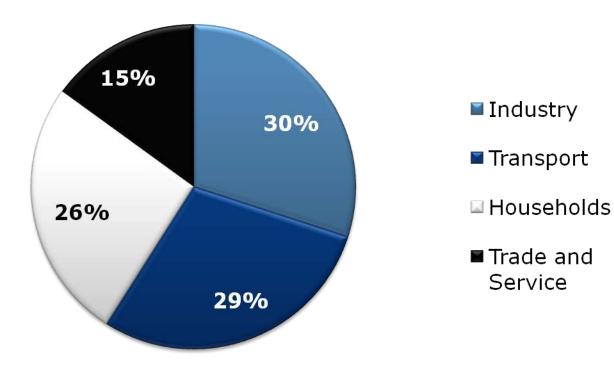
### Contents

- Demand for energy in the industry
- Cleaner Production a strategy for efficiency?
- Supply engineering measures for energy efficiency
- Process engineering measures for resource efficiency





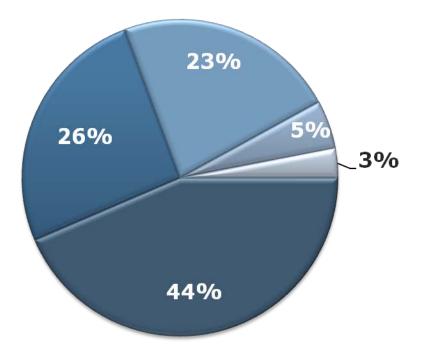
## **Energy Efficiency - Made in Germany**


## Demand for Energy in the industry

www.efficiency-from-germany.info






### Energy demand in German economic sectors Distribution of final energy consumption (2007)

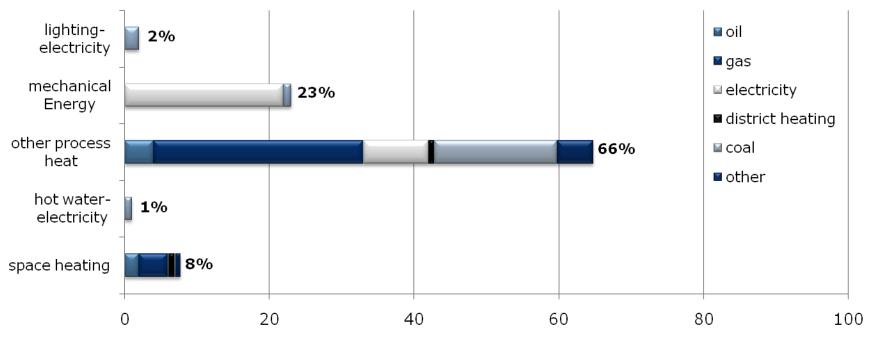






## Energy demand in the German Industry (2007)\* Final energy consumption for industrial applications



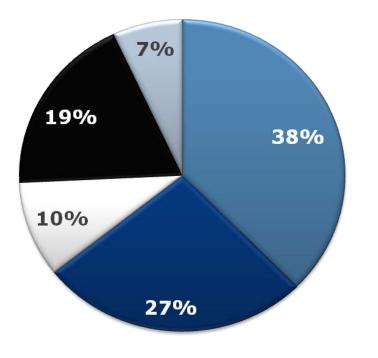

mechanical energy
space heating
other process heat
hot water
lighting

\* without considering stock effects





Energy demand in the German industry (2007) Energy sources by fields of application

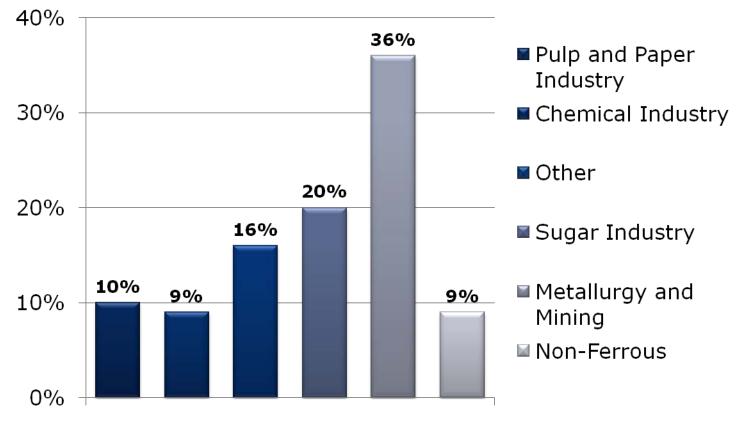



in percentage





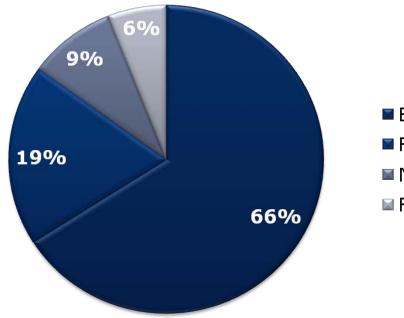
## Energy demand in Brazilian economy sectors Distribution of final energy consumption (2007)




- Industy
- Transport 🖬
- 🗆 Energy
- Other Sectors
- Non-energetic Use






### Energy consumption in the Brazilian industrial sector (2007)







### Energy Matrix of Brazilian Pulp and Paper Industry (2008)



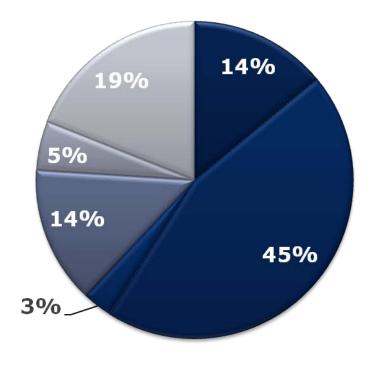
- Black Liquor\*
- Fire Wood
- Natural Gas
- 🖬 Fuel





### German metal industry – key facts

- Initial situation
  - Energy costs in the metal industry are in the order of about 0.3% to 6% of the annual turnover
- Processes
  - Large range of processing methods and their combinations
  - Wide spectrum of various companies regarding processing steps, manufacturing facilities, production types, degree of mechanization
- Strategy for increasing energy efficiency
  - Reduction of energy demand
  - Optimization of energy application







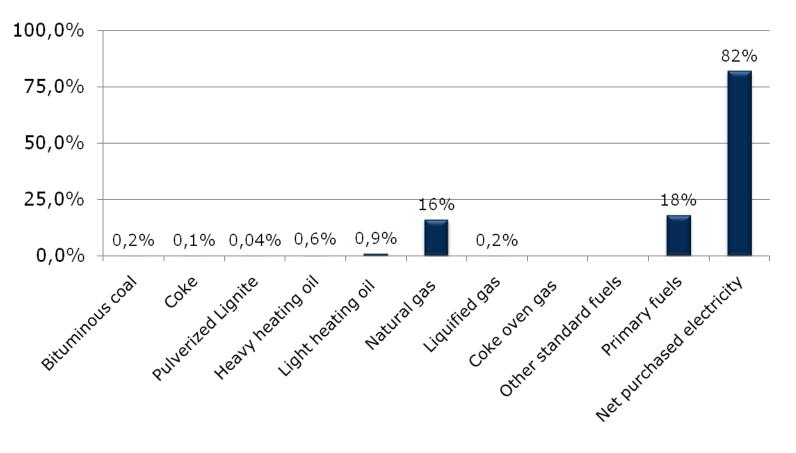



## Energy expenditure in the German metal industry (2008)



Bituminous coal

- Coke and coke breeze (dry)
- Heavy heating oil
- Natural gas , other gases

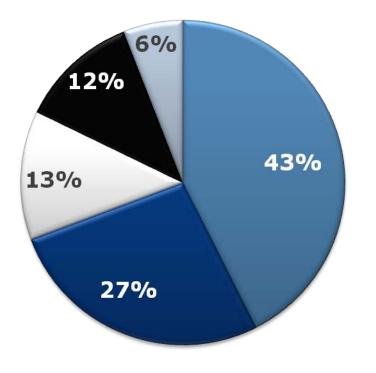

■Coke oven gas

■ Net purchased electricity





## Energy expenditure in the German non-ferrous metal industry (2008)




Source: Rheinisch-Westfälisches Institut für Wirtschaftsforschung, Monitoringbericht 2008





## Electricity demand in the German metal industry for selected processes



 Mechanical manufacturing
Thermal manufacturing
Compressor, heating

Surface treatment

■ Office, Lighting



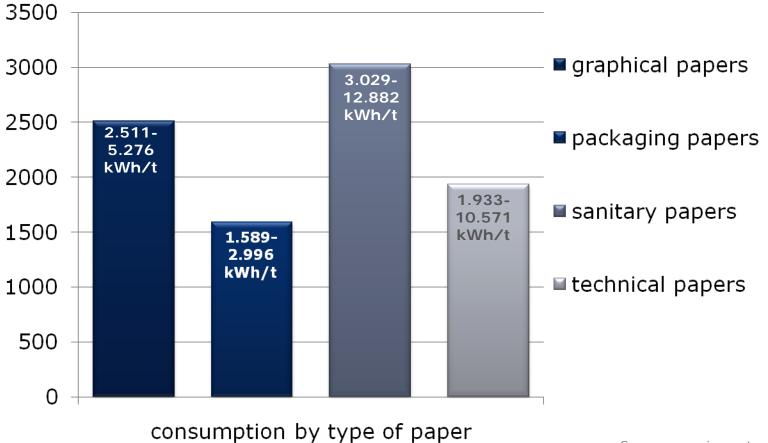


## German Pulp and Paper Industry – key facts

- Initial situation
  - The pulp and paper industry belongs to Germany's fifth largest industrial energy consumers
  - During the last years the share of energy costs relating to the turnover was approx. 10%
- Processes
  - Half-stock production (pulp, mechanical pulp or recycled fiber)
  - Stock preparation
  - Paper machine (Fourdrinier machine)
  - Finishing
- Strategy for increasing energy efficiency
  - Reduction of energy demand
  - Optimization of energy application



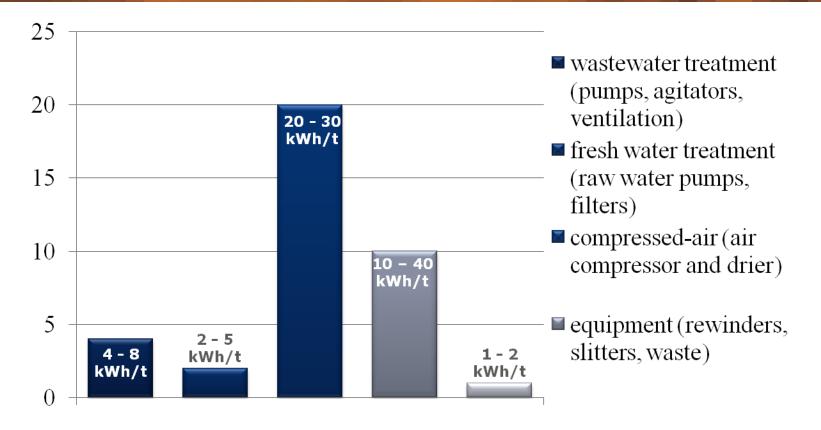





Source: energieagentur.nrw






## Energy consumption in the German paper industry for different paper products







## Energy consumption in the German paper industry for supply engineering







Energy Efficiency - Made in Germany

## Cleaner Production – a strategy for efficiency?

www.efficiency-from-germany.info





### **Energy efficiency by Cleaner Production**

- Objective
  - Prevention or reduction of harmful environmental impacts by choice and optimization of a suitable production method
- Ecological AND economical benefits
  - Improvement of process flows
  - Optimization of the use of resources
  - Improvement of the emission situation
  - Reduction of production costs
  - Decreasing the quantities of waste and wastewater
- Proceeding
  - Coarse analysis = assessment of the actual state
  - Macro analysis = identification of potentials for improvement
  - Micro analysis = preparation of cleaner production measures





## **Cleaner Production in electroplating industry**

- Initial situation
  - High water and energy consumptions for realizing optimum surfaces
- Proceeding
  - Examination of all relevant material flows and processes in a electroplating plant



- Results
  - Reduction of surface losses of the heating boilers by the installation of heat exchangers (reduction of energy use by 10%)
  - Optimization of a production line by improved process organization in the procedure of rinsing water (reduction of water and chemical use by 20%)
  - Reduction of the fresh water supply by rain water exploitation (coverage of fresh water share up to 80% by rain water)





Energy Efficiency - Made in Germany

## supply engineering – measures for energy efficiency

www.efficiency-from-germany.info





## Measures in the field of supply engineering I

- Lighting
  - Raise of the lights degree of effectiveness
  - Change of the geometric arrangement in the room
  - Adjustment of the lighting intensity and duration
- Compressed air
  - Check and removal of leakages
  - Optimal sizing of the compressors and pipes
  - Adapted processing of the compressed air
- Ventilation plants
  - Orientation towards actual requirements
  - Accomplishment of the plants
  - Geometric arrangement of airflow











### Measures in the field of supply engineering II

- Cooling systems and air condition plants
  - Check of the required temperature level
  - Generation of process cooling with cooling towers or groundwater
  - Elimination of heat sources from air-conditioned areas
- Heating systems and thermal insulation
  - Measures for the heat recovery
  - Automatic regulation of heaters
  - Insulation of plants and buildings
- Electric motor
  - Choice of engines of a higher efficiency class
  - Use of speed regulated drives











### Technology: Lighting in a production hall in the metal sector

- Initial situation
  - Lights with white-coated trapezoid metal reflectors
  - Equipped with T8 lamps, 58W and conventional electrical ballast
- Energy efficiency measures
  - Lights with highly efficient reflectors
  - Daylight dependent lighting regulation
  - Replacement of conventional electrical ballast (KVG) by electronic (EVG)
- Saving potential
  - Energy: 970.000 kWh/a (72%)
  - Costs: 78.000 €
  - Invest: 142.000 €











#### Technology: leakage reduction in the compressed-air system

- Initial situation
  - 28% of the produced compressed-air was used in the compensation of leakage losses
- Energy efficiency measures



- Reduction of leakages in the distribution networks, in the mountings and in the connecting pipes by 5% to 23%
- Use of speed regulated compressors
- Reduction of electricity consumption of the compressedair supply due to a better utilisation of the compressors
- Saving potential
  - Energy: 1.386.325 kWh/a (20%)
  - Reduction of emissions: 762 t CO<sub>2</sub>/a



#### of Economics and Technology

**Technology:** 

Federal Ministry

## ventilation and air-conditioning

- Initial situation
  - An energy analysis detected a clear overdimensioning as well as an improvement needy regulation at a building services installation
- Energy efficiency measures
  - Adjustment of supply and exhaust air quantities of the ventilation systems
  - Requirements on heating, air conditioning and hygiene
  - Reduction of the supply and exhaust air quantities
  - Control of the supply and exhaust air levels
- Saving potential
  - Energy: 2.566.000 kWh/a
  - Costs: 198.000 €
  - ▶ Invest: 227.500 €













#### Technology: Optimization of process heat

- Initial situation
  - Alunorte Alumina do Norte do Brazil S.A. energy efficiency in aluminum production
- Energy efficiency measures
  - Reducing the fine dust circulation through cyclone optimization thus reducing pressure losses and improving heat utilization
  - Optimization of process operation
- Saving potential
  - Energy: 56.095.000 kWh/a (6%)
  - costs: 1.360.000 €
  - Invest: 100.000 €
  - Reduction of emissions: 18.000 t CO<sub>2</sub>/a











Energy Efficiency - Made in Germany

## process engineering – measures for resource efficiency

www.efficiency-from-germany.info





Technology: Optimization of a manufacturing method in the product development

## Near net shape casting/forming

Machining from the solid



Manufacturing from a preformed blank

Source: demea (2010)

330 g





## Technology: Optimization of a manufacturing method in the product development

- Initial situation
  - High share in machining waste
  - High tool wear
- Energy efficiency measures
  - Use of preformed blanks instead of solid materials
- Saving Potential
  - ▶ 50% lesser material waste
  - Lesser tool wear due to lower machining forces
  - Gain of efficiency by reducing the handling times
  - ≥ 2.370.000 € saving potential










## Conclusions

- Demand for energy in the industry
- Method for establishing efficiency: Cleaner Production
- Examples for energy efficiency in the field of supply engineering
- Example for resource efficiency in the field of process engineering







## Thank you for your attention!

Dr. rer. nat. Kathrin Hesse

Fraunhofer Institute for Material Flow and Logistics IMLDepartment Environment and Resource LogisticsJoseph-von-Fraunhofer-Str. 2-444137 DortmundTelephone+49 (0) 231 9743-364Telefax+49 (0) 231 9743-77364E-Mailkathrin.hesse@iml.fraunhofer.de