
Abstract -- Structure from motion refers to a technique to 

obtain 3D information from consecutive images taken with a 

moving monocular camera. In order to do this, the camera 

motion performed between two consecutive images needs to be 

known. 

In the work reported in this contribution, we investigated 

the precision of the odometry data of a commercially available 

passenger car. 

In order to identify the required precision, we developed an 

error model based on camera parameters and the bicycle 

model. We investigated two options, both being based on speed 

measurements. The first one uses steering angle measurements, 

the second one uses measurements of the yaw rate. 

Concluding, we found out that the specified precision of all 

odometry data available is sufficient to solve structure from 

motion. Long-term measurements empirically confirm the 

precision values given in the specification.  

This result encouraged us to actually implement a 

structure-from-motion approach which yields depth 

information as predicted from the theoretical 

considerations. 

Further work needs to be carried out in order to compensate 

for roll motions.  

Index terms—structure from motion, scene reconstruction, 

advanced driver assistance systems, pre-crash sensing, 

integrated safety systems 

I. INTRODUCTION 

In order to support car drivers in everyday traffic 

situations optical systems are often used to recognize the 

environment of the car. In many cases 2D image 

information is not sufficient because of missing depth 

information. Therefore a binocular set-up is frequently used. 

Alternatively a single camera mounted on a moving vehicle 

can be used to extract the 3D-structure of the scene. This 

method is called Structure-from-Motion (SfM) [Jer91]. SfM 

can also be used as a fallback solution for binocular set-ups, 

e. g. if one camera is affected due to dirt or technical 

breakdown.  

For the extraction of absolute 3D data using SfM one 

needs to know the distance and the relative orientation 

between two consecutive images acquisition positions 

(Figure 1). The knowledge of these parameters allows the 

usage of the same algorithms for monocular set-ups as being 

used for binocular set-ups.  

The estimation of the camera motion is usually done via 

the F-Matrix ([Har00], [Luo97]). It provides only a scaled 

translation vector and requires thus assumptions about the 

scenery (e.g. no independently moving objects) and is 

computationally expensive. In order to obtain the actual 

length of the vector without any a-priori knowledge about 

the observed scene, odometry data is required. Having these 

data an absolute 3D-reconstruction is possible. 

 

Figure 1: Platform motion yields stereo vision 

geometry. 

The objective of the work reported in this contribution is 

to investigate whether the precision of the odometry data 

available from a commercially available passenger car is 

sufficient to perform this task without adding any additional 

sensors to the car. As shown in Figure 1 we consider a side-

looking video camera which is used for a side pre-crash 

application. 

As a first step we developed an error model which 

enables us to derive the required precision of the odometry 

data (Section II.B). We then experimentally determined the 

actual precision by means of a dead reckoning path 

reconstruction. The resulting accumulated errors confirm 

that the available precision is sufficient to perform SfM. 

II.  REQUIREMENT ANALYSIS 

A. Basic requirement consideration 

A.1 Refresh rate 

To assess the minimum frame rate that is necessary to 

operate the system, we made the following assumptions 

(Figure 2):  

To detect an object it needs to be fully visible in at least 

two consecutive frames. With a given camera aperture angle 

of 80°, and a maximum velocity of the camera-carrying 

vehicle of 100 km/h, we assume observed objects of width 

of 2 m or less at a distance of at least 2 m. We obtain a 

minimum frame rate of 20.48 Hz as a lower bound for such 

a system.  
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Figure 2: Object size and distance to determine 

minimum sampling rate. 

A.2 Camera 

The camera we use is a Basler A601f-HDR. The sensor 

has a resolution of 640x480 (VGA). Each pixel measures 

9.9 x 9.9 µm. 

B. Error Model 

Our error model has two parts. One describes the 

rotational requirement, the other one describes the 

translational precision requirements. The required precision 

is based on the assumption that the image on the camera 

sensor should not be displaced by more than one pixel from 

the calculated position. The rotational error model is based 

on the bicycle motion model [Zom87] (Figure 3). 

For the translational error model we first have to specify 

a worst case scenario as the required one-pixel accuracy is 

depth-dependent. We defined 2 m distance from the side-

looking camera as worst case. 

The vehicle provides the following odometry data: 

velocity v, yaw rate ψ&  and steering angle δ. Other known 

quantities are the wheel base l and the length lh between the 

yaw rate sensor position S and the rear axle as shown in 

Figure 3. 

B.1 Bicycle motion model 

According to the bicycle model we assume that the car is 

performing a circular motion around the ICR (instantaneous 

centre of rotation) with a fixed radius Rh. Rh may vary 

between two consecutive frames. For straight-ahead motion, 

the ICR lies at infinity. 

The model doesn’t include any roll or pitch motion. 

Furthermore, it doesn’t cover neither skidding nor tyre slip. 

 

Figure 3: Bicycle motion model. 

Rh can be derived from the odometry data in two different 

manners. 

From the steering angle δ: 

 

From the yaw rate ψ& : 

 

B.2 Angular accuracy 

To find the necessary angular precision, we calculate the 

camera rotation angle α that leads to a displacement of 

1 pixel. α has different values for the central area of the 

camera sensor and its marginal area. In the remainder we 

use the stricter requirement from the sensor margin (Figure 

4). 

 

Figure 4: Angular precision from the geometry of the 

camera sensor. 
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Figure 5: Required and actual precision using 

steering angle.  

The required precision of the steering angle is 

 

This leads to problems in the case of very fast motion 

combined with a very low refresh rate (e.g. more than 100 

km/h and frame rates less than 20 Hz) as can be seen in 

Figure 5. 

 

Similarly we obtain for the yaw rate 

 

Using yaw rate measurements, the difference 

between required and actual precision is higher than 

using steering angle measurements and it remains 

asymptotically constant for higher velocities as 

depicted in Figure 6. 

 

Figure 6: Required and actual precision using yaw 

rate. 

B.3 Translational accuracy 
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Figure 7: Required translational precision 

 The one-pixel displacement  granularity is depth-

dependent for translational motion. Assuming that objects 

are at a range of at least 2 m, we yield a required 

translational precision of 5.66 mm. At a speed of 100 km/h 

and an aperture angle of 40° at 20 Hz refresh rate the 

necessary precision of the estimated translation must be 

within 0.41%. 

To illustrate how strong this requirement is one may 

perform the following calculation: The maximum 

translational error which may result from acceleration of 10 

m/s² at the sampling frequency of 10 Hz offered by the 

vehicle may in the worst case become as large as 5 cm per 

sampling interval. However, we will see later that path 

reconstruction works quite well even if it is not perfectly 

met. 

III. EXPERIMENTS 

A. Path reconstruction 

To evaluate the data we did a path reconstruction using 

dead reckoning. We concatenated the circular trajectory 

arcs calculated with the linear bicycle model. This yields a 

non-differentiable path which could not be driven with a car 

in reality. But assuming a sufficiently high sampling rate, 

this is a good approximation to the real trajectory. 

It is obvious that the better the reconstructed trajectory 

matches the reference track, the more precise is the position 

estimation between two consecutive frames. 

Our first approach showed that the path reconstruction 

did not properly match reality. We found out that this is 

because of the non-linearities of the odometry data. Our first 

linear compensation approach helped to correct the velocity 

estimation but could not cope with the errors in estimation 

of the turning radius. Therefore we developed a nonlinear 

correction model that represents the actual situation 

(nonlinearites in the steering linkage) better. We found the 

yaw rate data also to exhibit nonlinear behaviour. 

The nonlinear model we use for correcting the angles is 

“simple squashing” (SQ1). A more sophisticated model 

would be “sigmoid squashing” (SQ2). These functions are 
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defined as 

 
 

The parameter a denotes the range of correction that is 

applied, s describes the smoothness of the transition. The 

parameter o denotes the offset where the turning point of the 

sigmoid function is located. 

The path reconstruction is done separately for steering 

angle and yaw rate measurements.  

After calculating the calibration parameters the 

reconstruction matches the reference satisfyingly well 

(Figure 10). 

B. Test scenarios and parameter estimation 

We defined two scenarios for our experiments: 

In the first scenario we drove 60 m straight forward and 

backward in a manner that the endpoint was exactly the 

same as the initial point. This has been done to check the 

measured length of the track and the behaviour at very little 

curvature. Results of the reconstruction of the forward-

backward scenario using yaw rate are shown in Figure 8. 

 

Figure 8: Path reconstruction of the straight scene 

with unified correction parameters (forward-backward 

scenario). 
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Figure 9: Test circuit to estimate the parameters of 

SQ1 and SQ2. 

The second scenario was driving the circuit depicted in 

Figure 9. Here we wanted to test the performance on a curvy 

track. This test was performed four times. Slow and fast, 

each clockwise and counter-clockwise. In this way, all 

steering direction changes have been covered as this circuit 

contains several left to right and right to left changes as well 

as curvy to straight and straight to curvy changes. Those 

runs were used in order to calibrate the correction 

parameters. 

Combining the parameters of each run, we obtained a 

unified parameter set that improves the results drastically 

with respect to the uncorrected results. 

It turned out that the reconstruction based on steering 

angle was always less accurate than the reconstruction based 

on yaw rate. Even using the more versatile SQ2 function did 

not yield a path reconstruction that was as good as the result 

based on the usage of the yaw rate. 

Figure 8, Figure 10 and Figure 11 show some of the yaw 

rate-based results. Each sequence used for these tests had 

2500 frames at a frame rate of 30 Hz. Figure 10 shows 

uncalibrated and calibrated results of a circuit run. The 

sequence used in Figure 11 is kind of a “real life” sequence 

because it contains strong acceleration as well as braking, 

parts with low curvature, parts with high curvature and 

different kinds of steering changes. At this run the true 

trajectory intersects itself. The calibrated reconstruction 

gives results which come much closer to reality. 

  

Figure 10: Path reconstructions via yaw rate of the 

circuit runs before (red) and after (blue) applying the 

calibration. 

 
Frame 440 

 
Frame 1452 

 

Figure 11: “Real life” test run and path 

reconstruction using uncalibrated yaw rate (red) and 

calibrated yaw rate (blue).  Frame 440 and frame 1452 

are the frames where the true trajectory intersects itself. 
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C. Practical Field Test: Structure from Motion 

To test the odometry data in a practical manner we 

integrated these data into an already existing stereo system 

for side crash pre-sensing [Aprosys]. Instead of using two 

calibrated cameras with known relative orientation we used 

the odometry data to determine the extrinsic parameters 

between the image acquisition positions of two consecutive 

images of one single camera which is mounted on the side 

of the vehicle. Furthermore the camera has been calibrated 

with respect to the vehicle coordinate system. Thus the 

rotation and the translation of the vehicle can be 

transformed to the camera coordinate system. Once these 

parameters are known (in particular the translation and the 

rotation of the camera centre) we can calculate sparse 3D 

density maps with the same algorithm that is already 

implemented in the stereo system. 

 

Figure 12: Reconstructed depth value subject to 

rectified disparity and baseline b with fixed focal length 

f=360 [pixel]. 

 

Figure 13: The reconstruction error subject to 

rectified disparity with fixed focal length f=360 [pixel] 

and a maximum baseline error of 5 cm. 

Using rectification methods (e. g. [Tru00]), one can 

calculate the depth coordinate Z w.l.o.g. as  

 

with focal length f, baseline b and disparity d. 

Figure 12 demonstrates how Z behaves with respect to the 

disparity and to different baseline values. The focal length f 

is fixed at 360 pixel which is approximately the value of the 

wide-angle camera we used for the real tests. As one can see 

in the diagram a erroneous magnitude of the translational 

motion leads to different depth values. In addition Figure 13 

shows how the error of the calculated depth value strongly 

increases as the disparity decreases. This graph may be seen 

as an upper boundary as we established a maximum 

translational error of 5 cm.  

We verified the utility of the odometric data by 

displaying corresponding epipolar curves in two 

consecutive frames, using the extrinsic parameters resulting 

from the motion of the vehicle. As corresponding points in 

two images have to lie exactly on these curves, it is easy to 

see whether the calibration parameters are good or not. So 

once the correspondent epipolar curves are known, 

reconstruction can be done using standard algorithms 

([Dang02]). Figure 14 shows an example of a scene on a 

parking lot with a straight forward motion and a velocity of 

24 km/h. Further analysis has shown that even in curvy 

motion the epipolar curves corresponded well. 

 

Figure 14: Correspondent epipolar curves, generated 

using odometry data. Frame 122 and 123 are taken from 

the Karlsruhe parking lot sequence. 
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Figure 15: 3D analysis of the Lindau parking lot 

sequence with monocular SfM using odometry data. 

Finally a real test performance run was done. To simplify 

matters we chose a rigid scene. The recordings for the test 

series were sampled with 40 Hz at a nearly constant speed 

of 25 km/h. This corresponds to b=~0.17 m. The whole 

parking lot sequence (Figure 15) contains 1200 images. 

Calculated 3D points and their projections onto the 

calibrated ground plane are displayed both in the top view 

(right part of Figure 15) and in the original image (left part). 

So every 3D point is visualized in the camera image as a 

line. This representation helps to identify outliers. The top 

view of the scene also shows the world coordinate frame 

with the horizontal x-axis headed to the tangential direction 

of motion. Additionally the [Aprosys] algorithm returns 

object hypotheses (illustrated as boxes in Figure 15) and the 

objects’ estimated motion directions. The shape of the 

parking cars are well visible.  

Figure 15 reveals a “fishbone” effect. That means that 

adjacent 3D points are not reconstructed continuously but 

spread as is visible in the top view. This artefact is caused 

by the usage of integer feature point coordinates and 

relatively small baseline values when calculating SfM. For 

this reason it is strongly recommended to calculate subpixel 

accurate feature point coordinates to avoid this 

phenomenon. 

IV. ANALYSIS 

A. Data quality 

Our investigations show that an assumed steering angle 

granularity of 1/6° as an upper bound is a reasonable value 

considering the nonlinearities in the steering mechanics. 

This is enough for velocities up to 100 km/h and at least a 

20 Hz refresh rate. 

The coarsest quantization in the yaw rate data provided 

by the vehicle is 0.24°/s which is far below the acceptable 

error. 

The velocity values 2.2 km/h are all reported as zero. 

This is probably due to a quantizer dead zone. The 

resolution is 0.1 km/h. One has to keep in mind that the 

velocity data is only updated every 100 ms and therefore is 

reported as constant throughout several frames. Data quality 

does not meet the requirements seen in Section II.B.3. 

Furthermore we showed that odometry data is sufficient 

to do an absolute, metric 3D reconstruction of a rigid scene.  

V. SUMMARY AND CONCLUSION 

We found out that the accuracy of the odometry data of a 

standard commercially available passenger car is sufficient 

to do Structure-from-Motion for regular motion (no 

skidding, standstill, etc.). 

We obtained better results using the yaw rate data 

compared to the steering angle data. This may be because 

the steering angle is, unlike the yaw rate, sensitive to tire 

slip. Furthermore it is especially important that the steering 

angle around straight ahead (zero) position is reported as 

accurately as possible [Det05]. Probably a better 

understanding of the mechanical causes of the nonlinearities 

described in Section III.A would help. 

It is important to remember that the path reconstruction 

as a whole is just a means to show how small the 

accumulated error is throughout the trajectory. This in turn 

implies the small error between two frames. We can rule out 

that these errors are cancelling out each other because the 

reconstruction works well on several different tracks with 

different characteristics. 

Further studies must be done to recover the effect of full 

breaking, sliding, strong and fast curvatures and different 

velocities on the reliability of odometry data.  
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