
KIT – Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu

Design and Evaluation of Methods for
Efficient Fuzzing of Stateful Software

Masterthesis

KIT – Karlsruher Institut für Technologie
Fraunhofer IOSB – Fraunhofer-Institut für Optronik,

Systemtechnik und Bildauswertung

Mark Giraud

31 December 2020

Responsible supervisor: Prof. Dr.-Ing. habil. Jürgen Beyerer
Supervising employee: Dr.-Ing. Christian Haas

MSc Anne Borcherding

iii

Erklärung der Selbstständigkeit

Hiermit versichere ich, dass ich die Arbeit selbständig verfasst habe und keine anderen als die
angegebenen Quellen und Hilfsmittel benutzt habe, die wörtlich oder inhaltlich übernomme-
nen Stellen als solche kenntlich gemacht habe und die Satzung des Karlsruher Instituts für
Technologie zur Sicherung guter wissenschaftlicher Praxis in der gültigen Fassung beachtet
habe.

Karlsruhe, den 31 December 2020

(Mark Giraud)

Abstract

Due to increasing connectivity, server software as well as embedded controllers are becoming
ever more prevalent. As such, securing these components against attacks by finding bugs
early in development is becoming more important. In recent years, fuzz testing has become
increasingly popular as an automated testing method for this purpose. Most fuzzing approaches
however only consider targets that process a single input and then exit, limiting their suitability
for highly stateful software like servers or embedded controllers.

This thesis analyses the most recent developments in stateful fuzzing and identifies automatic
state identification as a possible improvement to the existing AFLNet, which currently requires
manual specification. A novel approach for automatic state identification (SNAPP) is proposed,
that uses the coverage information already provided by coverage guided fuzzers. The approach
is implemented and evaluated on the three stateful targets open62541, lightftp, and live555. The
obtained results show that SNAPP performs at least as well and in certain cases better than
AFLNet, without needing a manually constructed input specification in order to extract states.
The results also suggest that initial seed choice plays a key role in stateful fuzzer performance.

Zusammenfassung

Aufgrund der zunehmenden Vernetzung von Server-Software und Embedded-Controllern ge-
winnt das frühzeitige Testen dieser Systeme auf Sicherheitslücken bereits während der Ent-
wicklung an Relevanz. In den letzten Jahren hat Fuzz-Testing zu diesem Zweck zunehmend
an Bedeutung gewonnen. Die meisten Fuzzing-Verfahren wurden jedoch entwickelt, um Sys-
teme zu testen, die eine einzelne Eingabe entgegennehmen und sich dann beenden. Dadurch
lassen sich diese Fuzzer in der Regel nur bedingt auf zustandsbehaftete Server-Software oder
Embedded-Controller anwenden.

Diese Arbeit analysiert die neuesten Entwicklungen im Bereich Fuzzing zustandsbehafteter
Software. Die automatische Zustandserkennung wird als mögliche Verbesserung zu dem bereits
existierenden Fuzzer AFLNet identifiziert, welcher aktuell eine manuelle Spezifikation benötigt,
um Zustände zu extrahieren. Diese Arbeit konzipiert einen neuen Ansatz zur automatischen
Extraktion von Zuständen (SNAPP), der die Coverage-Information verwendet, die Coverage-
Guided-Fuzzern bereits zur Verfügung steht. Der Ansatz wird implementiert und auf den drei
zustandsbehafteten Testzielen open62541, lightftp, und live555 evaluiert. Die durch die Evaluation
erzielten Ergebnisse zeigen, dass SNAPP in den meisten Fällen mindestens genauso gut wie
AFLNet und in manchen Fällen sogar besser abschneidet. Dabei benötigt SNAPP im Gegensatz
zu AFLNet keine manuelle Spezifikation um Zustände zu extrahieren. Die Ergebnisse deuten
auch darauf hin, dass die initiale Wahl des Corpus ausschlaggebend für die Performance der
zustandsbehafteten Fuzzer ist.

vii

Notation

behP (𝑠,𝑚) The behavior of the program P for message𝑚 after processing sequence 𝑠
⟨𝑚1, . . . ,𝑚𝑛⟩ Sequence of messages
𝑥 (𝑖) Element 𝑖 of tuple 𝑥 . Indexing starts at 1
𝔖 Set of states
𝔰 A state in𝔖
S Set of sequences in a state 𝔰
B Set of observed behaviors in a state 𝔰
𝔟 An observed behavior 𝔟 ∈ B

ix

Contents

Contents ix

1 Introduction 1
1.1 Objective . 2
1.2 Outline . 2

2 Background 3
2.1 State Concepts . 3
2.2 OPC UA . 4
2.3 Code Example . 5
2.4 Fuzzers . 7

2.4.1 Blackbox Fuzzing . 9
2.4.2 Whitebox Fuzzing . 10
2.4.3 Greybox Fuzzing . 10

2.5 Coverage Guided Fuzzing . 11
2.5.1 Control Flow Graphs and Basic Blocks 12
2.5.2 Coverage Feedback . 16

2.6 Systems under Test . 16
2.6.1 Hardware . 16
2.6.2 Software . 17

3 Analysis 19
3.1 Challenges of Stateful Fuzzing . 19
3.2 AFLNet . 21

3.2.1 Results . 21
3.2.2 Architecture . 23
3.2.3 Flaky Coverage . 27
3.2.4 Limitations and Possible Improvements 27

3.3 Research Questions . 28

x CONTENTS

4 Methods 31
4.1 Overview . 31
4.2 Message Behavior . 33
4.3 State Identification Algorithm . 35
4.4 Fuzzer-Target-synchronisation . 45
4.5 Mutation Strategy . 47
4.6 State Forkserver . 48

5 Implementation 49
5.1 AFLPlusPlus vs. AFLNet . 49
5.2 AFLPlusPlus modifications . 49
5.3 AFLNet modifications . 51

6 Evaluation 53
6.1 Method . 53

6.1.1 SUT Adjustments . 57
6.1.2 Evaluation Environment . 59

6.2 Results . 60
6.2.1 Average Results per Run . 60
6.2.2 Fuzzer Comparison . 62

6.3 Crashes and Hangs . 73
6.3.1 False Positives . 73
6.3.2 live555 Crash . 74
6.3.3 Found Bugs . 74

7 Discussion 77
7.1 Answering the Research Questions . 77

7.1.1 RQ1 . 77
7.1.2 RQ2 . 78
7.1.3 RQ3 . 81
7.1.4 RQ4 . 81

7.2 Additional Insights . 83
7.3 Limitations . 85

7.3.1 Stability . 85
7.3.2 Speed . 85
7.3.3 State Forkserver . 85

CONTENTS xi

7.4 Related Work . 86
7.4.1 Blackbox State Identification . 86
7.4.2 Stateful Greybox Fuzzing . 87
7.4.3 State Snapshots . 88
7.4.4 Symbolic/Concolic Execution . 88
7.4.5 Target Oriented Fuzzing . 89

7.5 Future Work . 89
7.5.1 Benchmarking . 89
7.5.2 Snapshots . 90
7.5.3 Automatic Derandomisation . 90
7.5.4 Directed fuzzing . 91
7.5.5 Seed Selection and Mutation Strategies 91
7.5.6 State Machine Minimizing . 92
7.5.7 Message Behavior Sensitivity . 92
7.5.8 Response Feedback . 93
7.5.9 Automatic Injection . 93
7.5.10 Memory Feedback . 93

7.6 Overall Findings . 94

8 Conclusion 95

Bibliography 97

List of Tables 103

List of Figures 105

Definitions and Theorems 107

List of Algorithms 109

Listings 111

Glossary 113

1

1 Introduction

In an increasingly digitalized and interconnected world, the relevance of secure IT systems
is becoming more important than ever. Major security relevant bugs like Heartbleed [HB14;
CVE13], Stuxnet [FMC11], or Shellshock [Sel14; CVE14] show that even simple undiscovered
bugs can have a large impact. Most recently, the network management tool Orion, manufac-
tured by SolarWinds, was breached [Goo20a]. The breach exploited bugs in order to gain
access to SolarWinds’ build system, making it possible to execute a supply chain attack. In
this case, the attackers were able to inject a backdoor into software updates distributed by
SolarWinds to a plethora of companies and US government agencies [Goo20b].

In many cases, the causes for these breaches are bugs in parts of the software’s code. Fuzz
testing, i.e. automatically supplying inputs generated by a tool (fuzzer) to a system under test
(SUT) and monitoring the SUT for crashes, has been shown to be able to find bugs abused
for breaches like the aforementioned Heartbleed bug [Whe17]. As such, the Heartbleed bug
could have been prevented by fuzzing the openssl library. Since the inception of fuzzing more
than 30 years ago [Tak+18], even the most basic fuzzing techniques have not diminished in
relevance as shown by Miller et al. in a recent study [MZH20].

Recent fuzzing research, however, mostly considers software that processes a single input
and then terminates. Although these approaches are applicable in a limited way to highly
stateful software like servers or embedded software, Pham et al. [PBR20b] recently showed
that by considering the stateful nature of the SUT, fuzzing performance can be significantly
improved. Their approach AFLNet uses a simple protocol specification in order to split inputs
into individual messages and extract response codes in order to build a state machine that is
used to further guide the fuzzer. Except for blackbox approaches, stateful software fuzzing has
not received much attention until the recent publication of AFLNet. This thesis will investigate
methods for efficient fuzzing of stateful software on the basis of AFLNet as current state of the
art.

This thesis was created in cooperation with and sponsored by Robert Bosch GmbH.

2 1 Introduction

1.1 Objective

Fuzzing more types of software and providing better usability, e.g. automating more steps in
the fuzzing process, is identified by Böhme et al. [BCR20] as one of many current challenges.
They consider especially fuzzing stateful software as open research. As previously discussed,
stateful blackbox fuzzing has already been looked into [Dou+12; RP15; Fit+20; AGP19; Ma+16;
Gas+15], whereas stateful greybox fuzzing has only recently been investigated by Pham et
al. [PBR20b]. Due to more insight into the targets, greybox fuzzing in most cases is able to
perform better than blackbox fuzzing, and as such we will analyze the fuzzer AFLNet by Pham
et al. [PBR20b] to identify possible improvements. This thesis mainly aims to improve the
adaptation of fuzzing for stateful software by reducing the required amount of manual work
when adapting to new targets. This thesis will propose and implement a possible solution that
reduces the manual work required. This is achieved by using the already provided coverage
feedback of AFLNet, instead of responses that need to be parsed, and therefore omitting the
need for a parser. To compare the implemented solution SNAPP against the state of the art, we
will evaluate SNAPP against AFLNet on the three SUTs open62541, lightftp, and live555. In
addition, we will analyze the impact of seed selection for stateful fuzzing and look at possible
performance increases by using snapshotting techniques.

1.2 Outline

The thesis is structured into seven parts. In Chapter 2, the concepts used in this thesis are
briefly introduced. Afterwards, challenges in stateful fuzzing and the current state of the art
are discussed in Chapter 3, and we pose four research questions. Using this analysis as basis,
Chapter 4 then introduces a novel automatic state identification algorithm, and the framework
required for the algorithm to work. The implementation of the proposed techniques is then
discussed in Chapter 5. Next, the evaluation of the implemented fuzzer is presented in Chapter 6
by first discussing evaluation choices and then providing the achieved results. In Chapter 7,
each of the four research questions will be answered on the basis of the achieved results. In
addition, some additional insights and limitations of the current approach will be discussed,
and the thesis is put into context by discussing related work. The chapter is concluded by
directions for future work and an overall summary of the results. Finally, Chapter 8 concludes
this thesis by summarizing the most important aspects.

3

2 Background

This chapter contains some background on fuzzing, and a few definitions to establish a frame-
work in order describe the concepts used in this thesis. We first briefly discuss different state
types and differentiate their meaning in Section 2.1. Next, we introduce a small example pro-
gram that is used throughout this thesis in Section 2.3. In Section 2.4, we then explain fuzzing
and differentiate between different fuzzer types. Afterwards, we discuss coverage guided
fuzzing in detail and introduce definitions for coverage and related concepts in Section 2.5.
Finally, we differentiate different types of SUTs in Section 2.6.

2.1 State Concepts

In the context of fuzzing, a state can refer to multiple concepts. In order to avoid confusion
later on, we differentiate between these concepts in this section. Salls et al. [Sal+20] analyse
current approaches and generalize the state concept by differentiating between two state
concepts. First, they introduce a concrete state as “the snapshot of all processor registers, the
program’s memory, file system operations, or anything else that effects the operation of the
program” [Sal+20]. This means that each time the SUT executes a single operation, the SUT’s
concrete state changes. An input to the SUT thus produces a sequence of concrete states, called
a concrete state trace. The set of all possible concrete state traces is called the concrete state space.
Salls et al. then introduce an abstraction function used by fuzzers in order to map the concrete
state space to an abstract state space. This mapping could for example be the coverage obtained
after executing a certain input.

In the context of protocols, states often are a high level abstraction of the concrete state
space. For our purposes, we will use the term state to refer to a set of concrete state traces that
exhibit “similar” behavior of the SUT. The meaning of “similar” will become clear when the
state identification algorithm is introduced in Chapter 4.

4 2 Background

2.2 OPC UA

OPC UA is a platform independent communication standard for machine to machine com-
munication over various types of networks [Fou17a]. It supports secure communication with
different security policies and also provides measures to assure the identity of OPC UA applica-
tions [Fou17a]. OPC UA uses a server client model, where servers provide services that a client
may use. Similar services are grouped together into service sets. All service sets are listed in
Table 2.2. A server instance however is not required to provide all of these services.

Service Set Description

Discovery Discover Endpoints provided by a Server
SecureChannel Establish a secure communication channel
Session Provides user authentication and manages sessions
NodeManagement Manage nodes in a server’s address space
View Browse a server’s address space and subsets of it
Query Query a set of data in the server’s address space
Attribute Read and write attributes of nodes
Method Call remote procedures in the server’s address space
MonitoredItem Manage monitored items used to monitor attributes
Subscription Manage subscriptions to which monitored items can be attached

Table 2.2: Service sets of the OPC UA standard [Fou17a].

We will briefly describe the services in the following paragraphs. For a more detailed
description of the services the standard should be consulted [Fou17b].

All services listed in Table 2.2, except for the SecureChannel service, require an established
SecureChannel. Most of the services also require the user to be authenticated, meaning that a
session has to be established. Before any of the services can be used by a client, the client needs
to establish a connection via TCP, HTTPS, or Websockets. Afterwards, the client needs to
establish a secure communication channel by using the SecureChannel service set. For services
that require user authentication, the client then needs to establish a session by authenticating
itself with credentials.

The Discovery service set is used by clients to get information about a server’s endpoints. An
endpoint is a possible connection type, e.g. TCP, and a corresponding security configuration,
e.g. unencrypted. The Discovery service set also contains services to find servers by using a
commonly known discovery server, to which other servers can register themselves by using
services part of this service set.

2.3 Code Example 5

OPC UA servers have a so called address space that contains nodes. Clients can create,
modify, and delete nodes by using the services in the NodeManagement service set. Nodes also
have attributes that clients can read, or write by using the services in the Attribute service
set. Nodes might also have methods associated with them that a client can call by using the
Method service set. The View and Query service sets are used by clients in order to browse a
server’s address space and to get subsets of the data in the address space. Finally, clients may
use the MonitoredItem and Subscription service sets in conjunction to monitor attributes of
nodes in the server’s address space. In order to do so, a client first creates a subscription by
using the services provided by the Subscription service set. Then, the client creates monitored
items for attributes that it wants to monitor by using the services in the MonitoredItem service
set. These monitored items are then attached to the subscription. The server sends updates
about the monitored items in the subscription to the client with a periodic interval that can be
configured by the client.
The OPC UA standard also defines a publish/subscribe communication model. We only

consider the previously described services that use the client/server communication model in
this thesis.
In this thesis we will use the open source implementation open62541 of the OPC UA pro-

tocol [Iat+20]. The implementation supports most of the services specified by the OPC UA
standard. Most importantly, it supports the highly stateful NodeManagement, Attribute,
MonitoredItem, and Subscription services, which are relevant for the evaluation in Chapter 6.

2.3 Code Example

In this section, we will look at a small example program that we will use throughout this thesis
in order to explain the concepts used. For ease of understanding we will use a python like
pseudo code instead of c or c++.
We will look at a simplified OPC UA protocol with three message types: OPN, MSG and

ERR. The OPN message is responsible for establishing a connection. It has to be sent first,
in order for any MSG messages to be processed in a meaningful way by the SUT. A MSG
message triggers some kind of processing by the SUT in the do_msg function. In the real OPC
UA protocol this is subdivided into many different message types. For simplicity, we will
only concern ourselves with the CreateNode and DeleteNode messages, and the connection
phase. For the CreateNode MSG and DeleteNode MSG there will be no pseudocode. It is only
relevant that a CreateNode message will create a node with a supplied id. The DeleteNode
message will remove the node with the supplied id if it exists. In case of an unrecognized
message, our example program will simply send an ERR message.

6 2 Background

1 connected = False

2 while True:

3 msg = recv(timeout =0.05)

4 if msg.typ == "OPN":

5 response = do_opn(msg)

6 connected = True

7 elif msg.typ == "MSG" and connected:

8 response = do_msg(msg)

9 elif msg.typ == "CLO" and connected:

10 response = do_msg(msg)

11 connected = False

12 elif msg is not None:

13 response = "ERR"

14 if response is not None:

15 send_response(response)

16 do_background_processing ()

Listing 2.1: Example Program based on OPC UA, modelling a simple server.

The example code modelling this simplified OPC UA protocol can be seen in Listing 2.1.
Usually a server will have to handle new TCP connections and accept them. For simplicity, we
only model the code for an already accepted TCP connection. The recv function in Line 3 will
block for timeout seconds and try to receive a complete message. If a message is received, it
is returned. Otherwise, if the timeout is reached, recv will return None. The send_response
function in Line 15 simply sends the response to the connected client over the TCP connection.

The global variable connected (Line 1) determines if a connection is open. It is initially set
to False. An OPN message will set the connected variable to True. All following messages of
type MSG and CLO can then be processed. A CLO message will reset the connected variable
to False. In case a message has an incorrect type, or was sent in an incorrect connection state,
the program sends an ERR message (Line 12).

In each main loop iteration the program also calls a function do_background_processing

that performs some arbitrary processing in each main loop iteration. For our purposes it is
only important that such processing might occur in each iteration of the mainloop.

The state machine depicted in Figure 2.1 shows the two states this simple protocol can
assume. The transitions depict the received message, and the output that is produced. Invalid
messages will result in a self loop, and an ERR message as output, which is omitted in order to
not clutter the figure.

2.4 Fuzzers 7

disconnectedstart connected
OPN/OPN

MSG/ERR

CLO/ERR

MSG/MSG

CLO/CLO

Figure 2.1: The protocol state machine of the simplified OPC UA protocol.

It should be noted that this state machine models the protocol state behavior, i.e. establish-
ment of a connection. The program has further states when creating and deleting nodes. For
example, if a node with id 1 is created, the program will reflect this in an internal state, such
that it can be deleted at a later point in time. As mentioned in Section 2.1 we will later propose
an approach for an abstraction that does not only identify the protocol states, but is also able
to identify stateful behavior like the one mentioned previously.

2.4 Fuzzers

Fuzzing is the process of testing an SUT by supplying it with automatically generated inputs,
and observing the SUT’s behavior on the generated inputs, in oder to discover bugs. We
will adapt the description of a general fuzzing algorithm from Manès et al. [Man+19]. The
general fuzzing algorithm is depicted in Algorithm 1. A fuzzer usually takes an initial set of
fuzz configurations ℂ, and a maximum time 𝑡limit the fuzzer should run for as input. A fuzz
configuration consists of the parameters for the fuzz algorithm. It can for example be an input
that is modified by the fuzzer, or an input format specification that is used to generate inputs.
If an input is contained in a fuzz configuration, this input is usually called a seed. The set of
fuzz configurations is often referred to as corpus, if it primarily consists of seed inputs. The
maximum time 𝑡limit may be infinite, if for example the fuzzer should run until interrupted by
a user. The output of a fuzzer is usually a set of bugs 𝔹 found during fuzzing.

8 2 Background

Algorithm 1: A generic fuzzing algorithm. (adapted from [Man+19])
Input :ℂ, 𝑡limit
Output :𝔹

1 𝔹← ∅;
2 ℂ← Preprocess(ℂ);
3 while 𝑡elapsed < 𝑡limit ∧ Continue(ℂ) do
4 conf← Schedule(ℂ, 𝑡elapsed,𝑡limit);
5 tcs← InputGen(conf);
6 𝔹′,execinfos← InputEval(conf,tcs,𝑂bug);
7 ℂ← ConfUpdate(ℂ, conf, execinfos);
8 𝔹← 𝔹 ∪𝔹′;
9 return 𝔹

Preprocess(ℂ) → ℂ

The Preprocess function takes a user supplied set of initial fuzz configurations and
returns a possibly modified set. Modifications can include instrumenting the SUT or
precalculating metrics on initial seed inputs.

Schedule(ℂ,𝑡elapsed,𝑡limit) → conf

The Schedule function takes a set of fuzz configurations, and the elapsed and maximum
time as parameters. It selects a fuzz configuration to be used for the current fuzz iteration.

InputGen(conf) → tcs

The InputGen function takes the selected fuzz configuration and generates new test
cases using this configuration. If, for example, the fuzz configuration consists of an input
specification, this specification is used by the function to generate new inputs as test
cases. Another common scenario is the use of seed inputs as fuzz configurations. In this
case, the seed inputs are modified by a mutation algorithm in order to generate new test
cases.

InputEval(conf,tcs,𝑂bug) → 𝔹′,execinfos

The InputEval function takes the selected fuzz configuration, and the test cases gener-
ated from it as input. In addition, the function is supplied a bug oracle. The function
executes the SUT on all test cases and uses the bug oracle to determine whether the
execution of a test case produces a bug. The output of the function is a set of found bugs
𝔹′, and a set of execinfos that contains information about each test case execution.

ConfUpdate(ℂ,conf,execinfos) → ℂ

The ConfUpdate function takes the set of fuzz configurations ℂ, the fuzz configuration

2.4 Fuzzers 9

conf used in the current fuzzing iteration, and the execinfos produced by running
the SUT on the generated test cases as input. The function modifies the set of fuzz
configurations depending on the information acquired when executing the test cases.
Some fuzzers for example use information about execution times to trim the set of fuzz
configurations. It is also possible that the function returns the set of fuzz configurations
unchanged.

Continue(ℂ) → {True,False}
The Continue function takes the set of fuzz configurations ℂ and determines whether
to continue fuzzing. Criteria can for example be that a certain coverage threshold was
reached, or that all possible paths were exhausted.

Fuzzers are usually categorized into whitebox, blackbox, and greybox fuzzers. We will now
briefly discuss the differences of these categories.

2.4.1 Blackbox Fuzzing

The term blackbox fuzzing refers to fuzzing techniques that have no knowledge about the
internals of the SUT. The only way for a fuzzer to interact with the SUT is via the SUT’s input
and output interfaces as depicted in Figure 2.2. The depicted fuzzer uses the generic fuzzing
algorithm described in Algorithm 1. During the InputEval step, a blackbox fuzzer can only
send and receive data to and from the SUT’s I/O interfaces.

ConfUpdate

ℂ Schedule

InputGen

InputEval

Monitor𝔹

Fuzzer

I/O

SUT
test case

response

observe

Figure 2.2: Blackbox fuzzing using the generic fuzzing algorithm. (Algorithm 1)

10 2 Background

Bug detection also has to be done by observing the I/O behavior of the SUT. For example, a
monitor might be used, that sends an input to the SUT and observes the response, checking its
validity against a reference. If the response is not received, or if it is invalid, the SUT can be
considered to have encountered a bug. Also, it might not be possible to reset the SUT after
each input, making it difficult to determine if a single input caused the SUT to fail, or if a
combination of inputs was responsible for the failure.
Although blackbox fuzzing has its limitations, it still has its place. It can be used to fuzz

remote SUTs that the user has no other access to, for example if the SUT is delivered as an
already assembled hardware device. Furthermore, blackbox techniques are also useful, when
SUTs need to run on embedded hardware and limited resources make instrumentation difficult.
The work by Manès et al. [Man+19] gives an overview of most fuzzers developed up until
the paper’s publication, including blackbox approaches. We will also cover some blackbox
approaches related to this thesis in Section 7.4.

2.4.2 Whitebox Fuzzing

In contrast to blackbox fuzzing, whitebox fuzzing has access to all internals of the SUT as
depicted in Figure 2.3. This includes for example the SUT’s source code. This way whitebox
fuzzers are able to perform systematic exploration of the SUT’s concrete state space (see
Section 2.1). One approach is to use symbolic execution in order to perform such an exploration
of the concrete state space by assuming symbolic values instead of concrete inputs and using a
satisfiability modulo theories (SMT) solver to find inputs that exercise a certain path. However,
since pure symbolic execution results in an explosion of possible concrete state traces, most
approaches combine symbolic execution with concrete execution of the SUT. Whitebox fuzzing
in most cases comes with a much higher overhead than blackbox fuzzing, since whitebox
fuzzing often makes use of SMT solvers and other resource intensive techniques [Man+19].
We discuss whitebox approaches related to this thesis in Section 7.4.

2.4.3 Greybox Fuzzing

Greybox fuzzing approaches sacrifice some of the information available to whitebox approaches,
in order to increase fuzzing performance. These approaches often perform lightweight static
analysis on the SUTs, or inject lightweight instrumentation to the SUTs in order to extract
coverage information or other easy to extract statistics. These analyses or instrumentation
techniques provide an approximation of the SUT’s behavior that is used by the fuzzing algorithm
to generate new test cases more quickly than whitebox approaches would be able to. Notable

2.5 Coverage Guided Fuzzing 11

examples for greybox fuzzers are AFL [Zal+20] and libFuzzer [LLV20]. Both of these approaches
perform coverage guided fuzzing, which we will describe in more detail in the following section.

ConfUpdate

ℂ Schedule

InputGen

InputEval

Monitor𝔹

Fuzzer

I/O

Instrumentation

Source Code

SUT

test case

response

control and observe

Figure 2.3: Whitebox fuzzing using the generic fuzzing algorithm. (Algorithm 1)

2.5 Coverage Guided Fuzzing

As the name suggests, coverage guided fuzzing uses coverage feedback of the SUT in order
to guide the fuzzer. Coverage guided fuzzers perform instrumentation in the Preprocess
function. The instrumentation gathers information about the executed code regions during
runtime of the SUT when processing an input. We will use AFL as a representative example
for most coverage guided fuzzers, since other coverage guided approaches are mostly derived
from either AFL or libFuzzer and libFuzzer is similar to AFL [Man+19].
AFL starts with a set of fuzz configurations ℂ that consists of initial seeds supplied by the

user, and the SUT. The Preprocess function then instruments the SUT such that it gathers
information about which code regions of the SUT were executed. AFL then chooses a seed to
process by calling the Schedule function in the main fuzzing loop. The chosen seed is then
mutated in the InputGen function by a set of mutators. These mutators perform operations
like bit flips, inserting words from dictionaries, or entirely random mutations. Afterwards, the
input generated by mutating the original seed is executed on the SUT. AFL then observes if the
SUT crashes, and gathers the coverage feedback. Finally, if a crash was observed, the crashing
input is added to the set of bugs 𝔹. Otherwise, the ConfUpdate function checks if any code

12 2 Background

regions that were previously not covered are now covered. If this is the case, the input is added
to the set of fuzz configurations ℂ as a seed input. Otherwise, AFL simply discards the input.
Since AFL evolves a set of seeds (the corpus) during its execution, it is also called an

evolutionary fuzzer. In contrast to AFL and other coverage guided fuzzers, some fuzzers are
classified as generative fuzzers, since they use an input specification in order to generate
messages according to the specification. However, the approaches are not exclusive and there
exist approaches, combining evolutionary and generative approaches [WLR20]. In this thesis
we will extend AFLNet, a greybox fuzzer based on AFL, which also uses a combined approach
of generative and evolutionary fuzzing [PBR20b]. In order to understand the concepts used
later on in Chapter 4, we will formally define coverage in the following sections.

2.5.1 Control Flow Graphs and Basic Blocks

In order to describe the behavior of a program it is useful to model it as a control flow graph
(CFG). The code of a program can be split into so called basic blocks. We will define basic
blocks and CFGs similar to Torczon and Cooper [TC07].

Definition 2.1 (Basic Block) A basic block is a maximal length sequence of branch free code.

It begins with a labelled operation and ends with a branch, jump, or predicated operation.

Consider the example program in Listing 2.1. In order to extract its basic blocks, we first
transform the code into an assembly-like pseudo code as seen in Listing 2.2 The basic blocks
are marked in alternating colors as seen in Listing 2.2. Each of the blocks ends with an explicit
jump instruction, or implicitly, because the next line is a label and thus marks the start of a
basic block. The jne instruction for example would produce two edges: One edge from the
first basic block to the second basic block, corresponding to the path when the jump is not
taken, and another edge from the first basic block to the third basic block, corresponding to the
path when the jump is taken. This concept of basic blocks leads us to the definition of the CFG.

Definition 2.2 (Control Flow Graph) A CFG is a directed graph 𝐺 = (𝐵,𝐸). Each vertex

𝑏 ∈ 𝐵 corresponds to a basic block of the program. Each edge 𝑒 = (𝑏𝑖 , 𝑏 𝑗) ∈ 𝐸 corresponds to a

possible transfer of control from basic block 𝑏𝑖 to basic block 𝑏 𝑗 .

The example program in assembly form in Listing 2.2 results in the CFG depicted in Figure 2.4.
Each node label corresponds to the line number of the first line of the corresponding basic
block.

2.5 Coverage Guided Fuzzing 13

1 ,,,,,,,,,,,,connected = False

2 ,,,,,,,,,,,,loop:

3 ,,,,,,,,,,,,msg = recv(timeout =0.05)

4 ,,,,,,,,,,,,cmp msg.typ == "OPN"

5 ,,,,,,,,,,,,jne notOPN

6 ,,,,,,,,,,,,response = do_opn(msg)

7 ,,,,,,,,,,,,connected = True

8 ,,,,,,,,,,,,jmp endif

9 ,,,,,,,,,,,,notOPN:

10 ,,,,,,,,,,,,cmp msg.typ == "MSG" and connected

11 ,,,,,,,,,,,,jne notMSG:

12 ,,,,,,,,,,,,response = do_msg(msg)

13 ,,,,,,,,,,,,jmp endif

14 ,,,,,,,,,,,,notMSG:

15 ,,,,,,,,,,,,cmp msg.typ == "CLO" and connected

16 ,,,,,,,,,,,,jne notCLO

17 ,,,,,,,,,,,,response = do_msg(msg)

18 ,,,,,,,,,,,,connected = False

19 ,,,,,,,,,,,,jmp endif

20 ,,,,,,,,,,,,notCLO:

21 ,,,,,,,,,,,,cmp msg == None

22 ,,,,,,,,,,,,je endif

23 ,,,,,,,,,,,,response = "ERR"

24 ,,,,,,,,,,,,endif:

25 ,,,,,,,,,,,,cmp response == None

26 ,,,,,,,,,,,,je endif2

27 ,,,,,,,,,,,,send_response(response)

28 ,,,,,,,,,,,,endif2:

29 ,,,,,,,,,,,,do_background_processing ()

30 ,,,,,,,,,,,,jmp loop

Listing 2.2: Example Program based on OPC UA, modelling a simple server.

14 2 Background

21 12

6

9 14

17

20

23

24

2728

Figure 2.4: The CFG representing Listing 2.2. Node labels represent the first line number of
the corresponding basic block.

A concrete execution of a program then corresponds to a potentially infinite path through
the CFG 𝑝 = (𝑒1, 𝑒2, . . .) where ∀𝑒𝑖 = (𝑏1𝑖 , 𝑏2𝑖), 𝑒 𝑗 = (𝑏1𝑗 , 𝑏2𝑗) ∈ 𝑝 : 𝑗 = 𝑖 + 1 ⇒ 𝑏2𝑖 = 𝑏1𝑗 . For
example, if the example program never receives any input, it will loop forever following
the path 𝑝 = ((1,2),(2,9),(9,14),(14,20),(20,24),(24,28),(28,2),(2,9), . . .). We will now use the
concept of a path to define path basic block coverage as the amount of times a basic block is
hit for a path taken when executing the program.

Definition 2.3 (Path Basic Block Coverage) Let 𝑃 ⊆ 𝐸∗ be the (infinite) set of possible paths

a program can take and 𝐺 = (𝐵, 𝐸) the CFG that represents the program P. Let C = ℕ |𝐵 | be

the set of possible observed basic block coverage profiles. Then the basic block coverage of a path

𝑝 ∈ 𝑃 is defined as

pbcovP : 𝑃 → C
𝑝 = (𝑒1, 𝑒2, . . .) ↦→

(
𝑐𝑖 | 𝑐𝑖 =

��{𝑒 ∈ 𝑝 | 𝑒 = (𝑏1, 𝑏2) ∧ 𝑏1 = 𝑏𝑖
}��)

In addition to basic block coverage, edge coverage is also interesting, since it provides more
fine-grained information. The definition is very similar to that of basic block coverage. Instead
of counting the amount each basic block was hit on the path 𝑝 , we count the number of times
an edge was traversed.

2.5 Coverage Guided Fuzzing 15

Definition 2.4 (Path Edge Coverage) Let 𝑃 ⊆ 𝐸∗ be the (infinite) set of possible paths a

program can take and𝐺 = (𝐵, 𝐸) the CFG that represents the program P. Let C = ℕ |𝐸 | be the set

of possible observed edge coverage profiles. Then the edge coverage of a path 𝑝 ∈ 𝑃 is defined as

pecovP : 𝑃 → C
𝑝 = (𝑒1, 𝑒2, . . .) ↦→ (𝑐𝑖 | 𝑐𝑖 = |{𝑒 ∈ 𝑝 | 𝑒 = 𝑒𝑖}|)

Since in most cases we will be interested in the coverage a certain input to the program
produces, we will further define the coverage functions to take an input instead of an execution
path. First we will define a function to map an input to the execution path the program will
take, given this input.

Definition 2.5 (cfgpath) Let P be a deterministic program that is represented by the CFG

𝐺 = (𝐵, 𝐸). Let] ∈ 𝐼 = {0,1}∗ be a binary encoded input to the program P and 𝑃 ⊆ 𝐸∗ as before.

We define cfgpathP : {0,1}∗ → 𝑃 to be a function that maps the input] to the concrete execution

path 𝑝 = (𝑒1, 𝑒2, . . .). We consider a concrete execution path to be the edges taken through the

CFG by a concrete state trace.

Extending the definition for cfgpath to nondeterministic programs would be possible. This
would mean that the same input] can map to more than one execution path in the CFG. This
can then result in different coverage profiles for the same input, depending on the randomness.
As we will later see this is not beneficial for fuzzing purposes [LLV20], hence for the purposes
of this thesis we assume that the program is deterministic. We can now define basic-block-
and edge-coverage for an input to the program P.

Definition 2.6 (Basic Block Coverage) Let P be a deterministic program and 𝐼 = {0,1}∗ the
set of all possible binary encoded inputs. Then basic block coverage is defined as

bcovP : 𝐼 → C
] ↦→ pbcov (cfgpath (]))

Definition 2.7 (Edge Coverage) Let P be a deterministic program and 𝐼 = {0,1}∗ the set of all
possible binary encoded inputs. Then edge coverage is defined as

ecovP : 𝐼 → C
] ↦→ pecov (cfgpath (]))

16 2 Background

2.5.2 Coverage Feedback

As mentioned at the beginning of this section, fuzzers like AFL use coverage feedback in order
to evolve a corpus. We will now discuss the used mechanism in more detail. Recall the state
types introduced in Section 2.1. The concrete state space, i.e. the set of possible concrete state
traces, can be mapped to an abstract state space. Coverage guided fuzzing does this by mapping
the execution trace, i.e. a path, of a SUT to the coverage produced by this trace with the ecov
function.

The ecov function is implemented by instrumenting the SUT. AFL for example uses a shared-
memory region in order to share the coverage information between fuzzer and SUT. The fuzzer
inserts startup code into the SUT that initializes this memory region. Each byte in the allocated
region is mapped to one basic block in the program. The basic blocks are then changed to
include an operation that increases the counter in the corresponding memory region when the
basic block is executed.

After the SUT finishes executing, AFL can then read the values in the shared-memory region.
AFL compares the coverage achieved by the input to the overall coverage already achieved.
If a basic block was previously hit zero times and is now covered, the input is considered
interesting and added to the seed corpus. The input is also added to the seed corpus, if a basic
block was covered a greater amount of times than previously observed.

2.6 Systems under Test

This section gives an overview of different SUTs and their peculiarities. We will discuss the
differences between hardware and software SUTs, and different types of software SUTs.

2.6.1 Hardware

Although fuzz testing usually tests software, it is possible that a user does not have direct
access to the software in question. Instead of testing only the software, the alternative then is
to test the hardware device in question and consider it as a blackbox. This situation where only
hardware is available often arises whenmanufacturers integrate parts from othermanufacturers.
Verifying that the integrated parts are secure to a certain degree is required by the IEC 62443
standard, and the standard lists fuzzing as a possible testing measure [Com18]. This warrants
the research done for blackbox fuzzing, since non-blackbox approaches are not applicable
in this case. Further, although there seems to be no research considering this yet, it seems
reasonable to extend fuzzing to actual hardware like integrated circuits.

2.6 Systems under Test 17

2.6.2 Software

Software SUTs are currently the main interest in research. However, software SUTs can vary
largely in their structure. As such, we will group them into different categories and point out
major differences.
Firstly, there are SUTs that are only available as a binary. These binaries can still be

instrumented retrospectively by modifying the assembly, at least enabling fuzzing with greybox
approaches like AFL. Whitebox approaches however are not applicable, since they usually
require knowledge about the original source code.
Secondly, we will consider software where the full source code is available, although the

following categories are also applicable to software where only the binary is available. Fuzzing
was originally created to fuzz command line tools like grep, awk, and many others. These
SUTs all have in common, that they process an input read from a file or from standard input
and then exit, once processing has finished. Such a “classic” SUT is depicted in Figure 2.5.
Although such SUTs can have complex states in their program, the internal state only depends
on a single input that is parsed. Highly complex SUTs for example include compilers like gcc
or clang.

SUT

Stdin/File Stdin/File

read
process input

output

exit

Classic

SUT

InputInputInput InputInputInput

read
process input

(output)

exit

Stateful

Figure 2.5: A “classic” SUT lifecycle (left) compared to a “stateful” SUT lifecycle (right).

We will thus consider “stateful” SUTs separately. The most notable difference between
stateful and non-stateful SUTs is, that stateful SUTs do not exit after processing a single input
as seen in Figure 2.5. Instead, they process a potentially infinite sequence of inputs that evolve

18 2 Background

the internal state over time. The SUT waits for an input, and processes it once it is received.
Afterwards, the SUT may optionally output something, before returning to waiting for new
inputs. The SUT continues with this either until some condition is met, or until the SUT is
killed by a user. As we will see in Chapter 3, this poses challenges, when applying classical
fuzzing approaches like AFL directly.

19

3 Analysis

In this chapter we will take a closer look at the challenge of stateful fuzzing. We will first
identify open issues of current approaches when fuzzing stateful software. Furthermore, we
will take a look at the approach employed by AFLNet [PBR20b], which was able to improve
fuzzing of stateful SUTs that implement protocols like FTP and RTSP. We will then identify
possible improvements of the AFLNet algorithm.

3.1 Challenges of Stateful Fuzzing

Popular grey-box fuzzers like AFL [Zal+20], libFuzzer [LLV20], and honggfuzz [Goo20c]
employ techniques that are effective when fuzzing SUTs that process an input and then exit. It
is important to note the difference of states as described in Chapter 2. As we saw in Section 2.6,
stateful SUTs usually process more than one input without exiting, posing challenges when
applying existing techniques, since they usually test “classic” SUTs that exit after processing
a single input. Although classic SUTs have internal state as well, this state does not persist
across inputs and only depends on a single input and its structure. In contrast, since stateful
SUTs process multiple inputs without exiting, they may have states that evolve over the course
of processing multiple inputs. Hence, it makes sense to try to find abstraction functions (see
Section 2.1) that are able to represent these states such that the fuzzer is able to use this
information to its advantage. As we will see in Section 3.2, AFLNet uses the responses of the
SUT in order to do so.
However, let us first consider the example protocol introduced in Section 2.3. In order to

perform any meaningful operations, a client first has to establish a connection by sending
an OPN message. Afterwards, for example a DeleteNode message can be sent. If there is no
node to remove, this operation will fail, producing an ERR message. However, if previously
a CreateNode message was sent, the DeleteNode command will exercise different behavior
of the SUT than if no CreateNode message was sent. A sequence of inputs that may lead
to interesting behavior of the SUT could thus for example be OPN, CreateNode, and finally
DeleteNode.

20 3 Analysis

For classic fuzzers like AFL that are tailored to classic SUTs the above sequence of messages
is difficult to find. The fuzzer would first have to find three correct messages. Further, the
fuzzer needs to figure out the correct order of the messages. Finally, the arguments of the
messages have to be correct, i.e. the node id argument for CreateNode and DeleteNode has
to be the same. AFL-like fuzzers usually employ random mutation of a set of input seeds. By
using only random mutation of a single seed of input messages it is unlikely to find a sequence
as the one described above. When the random mutations of the input produce no interesting
new behavior of the SUT, fuzzers like AFL try to splice together existing seeds. This helps with
finding message sequences. It is however still unlikely to find a correct sequence, because the
fuzzer has no concept of a message. That is, the fuzzer does not know where to concatenate
inputs in order to produce a correct sequence of inputs. In summary, there seem to be four
main challenges in fuzzing stateful software. We will briefly present them and point towards
possible solution approaches.

Seed Mutation A fuzzer that considers the stateful nature of a SUT has to perform seedmutation
just like classic AFL-like fuzzers. However, in contrast to a classic fuzzer, the stateful
fuzzer should incorporate knowledge about input structure into its mutations, in order
to avoid wasting computing resources on inputs that are instantly rejected. Further,
for stateful software sequences of inputs are relevant. This means the fuzzer needs to
consider not only mutating individual inputs, but also the combination of inputs, i.e. it
has to perform sequence mutations.

Furthermore, when trying to discover new messages, magic values can pose a problem
for the mutation algorithm. Magic value refers to a value like the string "HEL", that
is used in a comparison against an input in order to trigger a specific branch in the
SUT. Finding this value randomly has a probability of 1/224. OPC UA for example has
many more message types than the ones mentioned previously. By using only random
mutations it is unlikely to find the identifiers needed to exercise new message types.
This problem however is not exclusive to stateful fuzzing, since complex file types often
also have magic values that determine the structure of the data contained in the file.
There already exist several approaches to alleviate this, which can be applied to stateful
mutations as well [laf16; Li+17; Asc+19].

Seed Selection Just like any other fuzzer, a stateful fuzzer has to select a seed to mutate. A
stateful fuzzer could incorporate additional information into selecting seeds that promise
to execute specific program states that appear to be more interesting than others.

3.2 AFLNet 21

State Identification An important part of a stateful fuzzer is the state identification. A stateful
fuzzer needs a mechanism to identify states of the SUT, in order to guide the fuzzing
process more effectively. As we have seen in Section 7.4, for blackbox fuzzing approaches
this has already been extensively looked into [Dou+12; RP15; Fit+20; AGP19; Ma+16;
Gas+15]. Blackbox approaches usually use the responses produced by the SUT and try to
extract state information from the responses. This state information is then used to guide
the fuzzer. Greybox fuzzers however can also benefit from more feedback information
from the SUT as shown by Salls et al. [Sal+20].

State Selection Finally, a stateful fuzzer also needs to prioritize the fuzzing of the identified
states. For example, consider the case that the state identification mechanism identified
three states, disconnected, connected, and errored. It seems likely that the most progress
can be made in the connected state, so the fuzzer would then continue fuzzing this
state. However, since the concept of, for example, a connected state is domain specific
knowledge depending on the SUT, the challenge is to find an abstraction that works
reasonably well for most SUTs.

As discussed in Section 7.4, there currently are no approaches regarding fully automatic
greybox fuzzing of stateful software that consider a state evolving over the course of multiple
inputs. The closest approach to this is AFLNet by Pham et al. [PBR20b], that uses greybox
fuzzing combined with state extraction to improve performance on stateful SUTs. Their
approach however requires manual work in order to adapt new protocols. We will now discuss
their approach in detail and identify possible improvements.

3.2 AFLNet

Pham et al. showed that their stateful fuzzer called AFLNet outperforms classic AFL and the
state of the art blackbox fuzzer boofuzz [Per20] significantly on stateful SUTs [PBR20b]. They
construct a state machine by using a protocol specific state extractor in order to guide the fuzzer
in addition to coverage feedback. We will first present the results AFLNet achieved. In order
to motivate possible improvements to AFLNet, we will then introduce AFLNet’s architecture
as described in the original paper. Finally, we will identify locations to improve the AFLNet
algorithm.

3.2.1 Results

Pham et al. show that using stateful fuzzing significantly increases the coverage when compared
to previous approaches. They evaluate their AFLNet fuzzer against the stateful blackbox fuzzer

22 3 Analysis

boofuzz [Per20] and a modified AFL [Zal+20] (referred to as AFLNwe in the following) that can
send the inputs over a network interface instead of standard input or a file. As SUTs, they use
lightftp and live555, two open source implementations of the two popular internet protocols
FTP and RTSP respectively.

Branch Coverage Statement Coverage
% Incr. 𝐴12 𝑝-value % Incr. 𝐴12 𝑝-value

AFLNet vs AFLNwe lightftp 121.06 1.000 < 0.001 79.45 1.000 < 0.001
live555 3.40 0.335 0.076 2.44 0.228 0.003

AFLNet vs boofuzz lightftp 57.73 1.000 0.026 49.72 1.000 0.026
live555 64.13 1.000 0.026 62.09 1.000 0.026

Table 3.1: Mean coverage increase (%Increase), effect size (𝐴12), and statistical significance
(𝑝-value) when comparing AFLNet to boofuzz and AFLNwe, respectively. A
Vargha-Delaney 𝐴12 measure above 0.71 indicates a large effect size in favor of
AFLNet. Statistical significance is computed using the Mann-Whitney𝑈 test (adapted
from [PBR20b]).

In their experiments, boofuzz was supplied with a detailed model of the protocol, i.e. a state
machine and message templates [PBR20b]. AFLNet and AFLNwe were only supplied with an
initial seed corpus obtained from recordings of common message exchange scenarios [PBR20b].
Compared against boofuzz, AFLNet achieves a significant coverage increase as shown in
Table 3.1. This shows that when using a less detailed model of the protocol (see Section 3.2.2)
in combination with coverage feedback mechanisms as introduced in Section 2.5, a higher
coverage can be achieved than by using a blackbox only approach. Furthermore, the large
coverage increase for AFLNet compared to AFLNwe on lightftp suggests that the stateful
components introduced by AFLNet increase effectiveness of greybox fuzzing. The authors
explain the low coverage increase on live555 with a smaller state machine, i.e. the number
of messages in a valid sequence is smaller [PBR20b]. They also argue that the number of
functional states, i.e. states that are not error states, is smaller [PBR20b].

In general, these results suggest that incorporating state information to greybox fuzzing
increases fuzzing effectiveness. Therefore, in the following section we will look at AFLNets
architecture more closely and identify points to improve the existing approach.

3.2 AFLNet 23

3.2.2 Architecture

AFLNet extends the classic AFL fuzzing algorithm by introducing a request sequence parser
component, a state machine learning component, a target state selector component, a sequence
selector component, and a sequence mutator component as depicted in Figure 3.1.

The initial corpus in AFLNet consists of a set of seeds that contain a complete message, or a
complete sequence of messages. The seeds are first split into individual requests by the request
sequence parser component, before being further processed. This is done by implementing a
function for each supported protocol which parses the protocol header and terminator in order
to find the boundaries of individual requests. Each new message or sequence of messages
added to the corpus is processed in the same way as the initial seeds.

AFLNet replaces the classic AFL mutation component by the sequence mutator component
seen in Algorithm 2. This component first splits the request sequence of the currently processed
seed into three parts 𝑀1, 𝑀2, and 𝑀3. 𝑀1 is a list of requests required to reach the currently
selected state 𝑠 . The candidate subsequence𝑀2 is a list of requests, that can be sent without
leaving the state 𝑠 . The rest of the requests is contained in𝑀3. The candidate subsequence𝑀2

is then mutated by either using traditional greybox mutation operations, or by using sequence
mutation operations. These sequence mutation operations include insertion, duplication,
substitution, or deletion of messages in𝑀2. The insertion and substitution operations choose
a random request from a random seed and either insert it at the beginning or end of 𝑀2, or
replace𝑀2 with the new request.

Algorithm 2: Modified AFL fuzz function to incorporate Sequence mutations and the
splitting of the sequence into𝑀1,𝑀2, and𝑀3.
1 def Fuzz(state, seed):
2 ⟨𝑀1, 𝑀2, 𝑀3⟩ ← seed;
3 𝑀 ′← 𝑀2;
4 for MAX_HAVOC times do
5 for MAX_STACK times do

6 mutator
random←−−−−− AflMutators ∪ {Ins,Sub,Dup,Del};

7 𝑀 ′← mutator(𝑀 ′);
8 end
9 RunTarget(⟨𝑀1, 𝑀

′, 𝑀3⟩);
10 𝑀 ′← 𝑀2;
11 end
12 return;

24 3 Analysis

St
at

e
M

ac
hi

ne
Le

ar
ni

ng

Ta
rg

et
 S

ta
te

 S
el

ec
to

r

Se
qu

en
ce

 S
el

ec
to

r
Se

qu
en

ce

M
ut

at
or

s
Se

rv
er

 U
nd

er
 T

es
t

(m
ut

at
ed

) c
lie

nt
 re

qu
es

ts
S1

...

R
eq

ue
st

Se

qu
en

ce
s

Pa
rs

er
.p

ca
p

fil
es

C
ap

tu
re

d
ne

tw
or

k
tr

af
fic

...
S2

Sn

Se
qu

en
ce

s
C

or
pu

s

se
rv

er

re
sp

on
se

s
(e

.g
.,

“2
00

 O
K

”,

“4
00

 E
R

R
”)

M
es

sa
ge

 P
oo

l

U
SE

R
 fo

o
PA

SS
 fo

o
M

K
D

 d
em

o
Q

U
IT

22
0,

 3
31

22
0,

 3
31

, 2
30

22
0,

 3
31

, 2
30

, 2
57

22
0,

 3
31

, …
, 2

21

...

3 h
ttp

s:
//w

w
w

.tc
pd

um
p.

or
g/

pc
ap

.h
tm

l
4 h

ttp
s:

//w
w

w
.w

ir
es

ha
rk

.o
rg

/

Fi
gu

re
3.
1:
A
FL

N
et

ar
ch
ite

ct
ur
e
ov
er
vi
ew

[P
BR

20
b]
.

3.2 AFLNet 25

It should be noted that all mutation operations done in the inner loop starting in Line 5
stack on top of each other, except for the replacement mutator. The replacement mutator will
discard any previous changes in favor of the randomly selected request. Once MAX_STACK

mutations have been performed, the modified sequence will be sent in Line 9.

The RunTarget function in Line 9 starts the SUT and waits for it to initialize. It then sends the
fuzzed input request by request, awaiting a response after each sent request. After all requests
have been sent, the state machine learning component concatenates the received responses.
It then parses them using a protocol specific response code extraction function in order to
extract protocol specific response codes. Each new response code corresponds to a new state
in the state machine. If a previously observed response code is observed, an edge is added to
the state machine if it does not exist yet.

The remaining two components, the target state selector and sequence selector, each use three
different selection strategies. For both components, a random and a round-robin selection
strategy is supported. The random strategy simply chooses a state or sequence uniformly at
random. The round-robin strategy cycles through the states or sequences respectively. Both
selector components support a third strategy that uses a scoring mechanism. These scoring
strategies are discussed in the following.

Algorithm 3: AFLNets weighted state selection strategy.
1 def ChooseStateFavored():
2 foreach state ∈ States do
3 state.score←

⌈
1000 · 2− log10 [log10(𝑆𝑓 +1)𝑆𝑠+1]2log(𝑆𝑝+1)

⌉
;

// 𝑆 𝑓 is the number of times the state was fuzzed
// 𝑆𝑠 is the number of times the state was selected as a target
// 𝑆𝑝 is the amount of new paths that were discovered during

fuzzing with the state as target

4 end
// Now select a state at random,
// with probabilities based on the scores

5 ∀𝑠 ∈ states : 𝑝𝑠 B 𝑠 .𝑠𝑐𝑜𝑟𝑒/∑𝑠′∈states 𝑠
′.score;

6 state

with 𝑝𝑠←−−−−−− states;
7 return state;

The target state selector scoring function takes into account how often a state was fuzzed,
how often it was selected, and how many new discoveries were made while fuzzing the state.
The function described in Algorithm 3 first calculates a score for each state. It then assigns a

26 3 Analysis

probability to each state and randomly chooses a sample from the set of states according to
the calculated probabilities. A high score corresponds to a high probability to be chosen.

The AFLNet authors reason that in order to identify fuzzer blind spots, rarely exercised
states are assigned a probability to be chosen inversely proportional to the number of times
a sequence was fuzzed in the state and inversely proportional to the number of times the
state was selected [PBR20b]. This is reflected by the term 2− log10 (log10 (𝑆𝑓 +1)𝑆𝑠+1) in the scoring
function in Algorithm 3. In order to increase the probability of discovering interesting inputs
that produce new state transitions or new coverage, the score of a state is also proportional to
the number of discoveries made in the state [PBR20b]. This is reflected by the term 2log(𝑆𝑝+1)

in the scoring function in Algorithm 3. The constant factor of 1000 is an implementation
detail and not important for the overall distribution of probabilities, since it cancels out when
calculating the individual probabilities in Line 5.

The sequence selector scoring uses a slightly adapted scoring mechanism from traditional
AFL. We will not discuss the AFL seed selection mechanism [Zal+20] in detail here but only
highlight two major changes made by AFLNet to the selection strategy. Firstly, in contrast to
AFL, the seed is selected such that it reaches the selected state at least once. That is, seeds
that are not able to reach the currently selected state are skipped entirely. Secondly, seeds
are skipped with probability 0.9 if they were generated in a different state than the currently
selected one. If there are less than ten seeds available that reach the selected state, the seeds
are selected in a round-robin fashion.

The overall control flow of the selection components is displayed in Algorithm 4. As long as
the fuzzer is not signaled to exit, it will select a state according to the previously discussed
state selection algorithm. Then the fuzzer calls the cull queue function analogously to AFL
(see Section 2.5). Afterwards it will select a seed according to the previously discussed seed
selection strategies. The fuzzer will then proceed to fuzz the selected seed in the selected state
as described in Algorithm 2.

Algorithm 4: AFLNet main loop
1 while not exit do
2 state← ChooseState();
3 CullQueue();
4 seed← ChooseSeed(state);
5 Fuzz(state, seed);
6 end

3.2 AFLNet 27

3.2.3 Flaky Coverage

AFLNet executes the program and simply sends data to it and then tries to receive data, waiting
for a specified maximum timeout. This poses a problem for fast SUTs, since the main loop can
run a different amount of times on the same input sequence. For example, if AFLNet is slow
during the current fuzzing iteration, the SUT might be able to run its main loop twice. Another
time, AFLNet might be faster, and the main loop might then only be run once.

This is problematic, since it causes the coverage to differ for the same input sequence. This
nondeterministic behavior also occurs, if the input is slightly mutated, but does not produce
any actual different behavior. If it just loops a different amount because it had more time, it
will be added to the corpus regardless. In order to alleviate this problem, the SUT loop will
have to be synchronised with the fuzzer loop. This is discussed in more detail in Section 4.4.

3.2.4 Limitations and Possible Improvements

We now revisit each component of AFLNet. For each component we will briefly discuss current
limitations and possible improvements. In Section 3.3 we will then discuss which of these
should be handled first, and pose corresponding research questions.

Request Sequence Parser

Recall from Section 3.2.2 that the request sequence parser requires specification in order to
extract message boundaries. Even though the protocol does not have to be fully implemented
in order to extract message boundaries, it is still manual work that has to be performed in
order to be able to fuzz SUTs that have no such implementation yet [PBR20b]. Reducing the
amount of work a user needs to perform in order to start fuzzing, will most likely increase the
rate of adaption. There already exist approaches that try to automatically infer the message
format of a protocol, which could be applied to the request sequence parser, omitting the need
for manual specification [FC18; PP16; Cab+07; Cui+08].

State Machine Learning

Similarly, the state machine learning component needs a specification of the protocol’s messages,
in order to be able to extract the response codes. The previously mentioned automatic message
inference mechanisms could also be applied to the state machine learning component. However,
this only alleviates the problem of manual specification. As the authors of AFLNet also
identified, the response codes in some cases do not convey sufficient state information in order
to improve fuzzer effectiveness [PBR20b]. One approach to alleviate this is to modify the source

28 3 Analysis

code to extend the response codes, such that they convey more state information [PBR20a].
Nevertheless, this again requires manual work and an understanding of the SUTs source code
when adapting a new SUT. A different approach to extract state information when using
greybox fuzzing could be to use the already provided coverage feedback.

Sequence Mutator

The sequence mutator component currently only considers random requests from the entire
corpus for its operations. Böhme et al. recently proposed using the concept of entropy for
a seed to more efficiently guide libFuzzer’s fuzzing process [BMC20]. They define a seed’s
entropy roughly as the amount of information that is gained by executing the program on this
seed. By using this concept they were able to achieve a substantially improved efficiency of the
fuzzer [BMC20]. This concept could be applied to the sequence mutations as well. Instead of
the sequence mutator choosing the request to insert uniformly at random, it seems plausible
that selecting requests with high entropy should yield better results. The same reasoning can be
applied to the sequence selector component. However, in this case the proposed entropy based
scheduling could be directly applied. Another possibility could be to extend the calculation of
the entropy to include the additional information gained by extracting states.

State Selection

Finally, the state selection component can be adjusted. The current state weighting function
only considers the amount of times the state was fuzzed and selected, and the number of
discoveries made in this state. Furthermore, except for their proportionality the choice of how
to put these values in relation seems arbitrary. Possible improvements could thus include
finding additional metrics, or a better weighting function choice.

3.3 ResearchQuestions

Making fuzzing more accessible to more people should always be considered a high priority.
Because if more developers fuzz their software, more bugs can be found, than if the software is
not fuzzed at all. In order to increase adaptation of AFLNet it is worth investigating automated
approaches for the components that currently need manual work in order to adapt new SUTs.
This is why we will only consider the request sequence parser and state machine learning

component. However, since automatic message inference has already been investigated by
others (see Section 3.2.4), we will focus on the state machine learning component for this thesis.
Also, there exists a lot of software especially in the embedded sector that does not provide

3.3 ResearchQuestions 29

much feedback in responses. This makes extraction of information difficult, when considering
only the responses sent by the SUT. Because of this, we will try to use the existing coverage
feedback instead of the responses supplied by the SUT.

Furthermore, because of the stateful nature of the SUTs we consider, it seems plausible that
using a mechanism to snapshot the server in a specific state and continue from that point
onward, could speed up the fuzzing process. This is relevant, because fuzzers like AFL or
libFuzzer are still an order of magnitude faster than AFLNet. We will thus investigate if a
simple snapshotting mechanism can provide a significant performance boost.

Finally, Klees et al. [Kle+18] mention that the initial corpus can have a significant effect on
the results of the fuzzing campaign. We will investigate the effect this has on stateful fuzzing.
Thus, we pose the following four research questions:

RQ1 Can the state identification process be automated by using already provided coverage
information?

RQ2 How effective is a fuzzer using an automated state identification process compared to
the manual approach of AFLNet if measuring performance by using coverage achieved
as metric?

RQ3 Does the seed corpus selection make a difference in achieved coverage when fuzzing
stateful software?

RQ4 Could program state snapshotting improve fuzzing speed and as such effectiveness?

31

4 Methods

In this chapter, we introduce a novel algorithm that can be used to automatically identify states
of an SUT. First, an overview of all changes to AFLNet’s components is provided in Section 4.1.
We afterwards discuss the introduced techniques in detail, starting with the definition of the
concept of message behavior needed to describe the algorithm in Section 4.2. Using the concept
of message behavior, we motivate the state identification algorithm and then formally define it
in Section 4.3. In Section 4.4, we then introduce a synchronisation mechanism, in order to make
the SUT execution more deterministic. This is required in order for the fuzzer to be able to
extract the message behavior. Furthermore, we shortly discuss how AFLNets mutation strategy
was modified. Finally, the concept of a state forkserver is introduced and briefly described.

4.1 Overview

Recall that the objective of this thesis (as motivated in Section 3.3) is to automate AFLNet’s
state machine learning component. Figure 4.1 depicts the changes we introduce in this chapter,
in order to achieve this objective. Components highlighted in cyan are only slightly modified,
whereas components highlighted in green are either replaced, or entirely new.

The biggest change consists of the new state machine learning component, which replaces
the current component of AFLNet. The component in essence builds a mealy automaton
that models the SUT’s state transitions, when provided with a sequence of inputs and a final
message. This approach is described in detail in Section 4.3. However, in order for the approach
to work, the concept of “message behavior” (introduced in Section 4.2) is required. We use the
message behavior as a replacement for the response code extraction employed by AFLNet and
as such eliminate the necessity for manual specification. Furthermore, we introduce a new
synchronisation component that is responsible for making the SUT’s execution deterministic,
which is required for the message behavior extraction. Finally, we slightly modify the existing
sequence mutator component of AFLNet, such that it only mutates the last message, since
this will be a requirement for our algorithm to work correctly. In addition, the probability
with which sequence mutations are performed is changed to depend on information obtained
during state identification.

32 4 Methods

S
ta

te
 M

ac
h

in
e

L
ea

rn
in

g

Ta
rg

et
 S

ta
te

 S
el

ec
to

r

S
eq

u
en

ce
 S

el
ec

to
r

S
eq

u
en

ce

M
u

ta
to

rs
S

er
ve

r
U

n
d

er
 T

es
t

(m
u

ta
te

d
)

cl
ie

n
t

re
q

u
es

ts
S

1
...

R
eq

u
es

t
S

eq
u

en
ce

s
P

ar
se

r
.p

ca
p

 f
ile

s

C
ap

tu
re

d
 n

et
w

o
rk

tr
af

fi
c

...
S

2
S

n

S
eq

u
en

ce
s

C
o

rp
u

s

m
e
s
s
a
g
e

b
e
h
a
v
i
o
r

M
es

sa
g

e
P

o
o

l
S
y
n
c
h
r
o
n
i
z
a
t
i
o
n

C
o
m
p
o
n
e
n
t

Fi
gu

re
4.
1:
A
FL

N
et

ar
ch
ite

ct
ur
e
ov
er
vi
ew

w
ith

ch
an
ge
sh

ig
hl
ig
ht
ed

in
cy
an

an
d
ad
di
tio

ns
hi
gh

lig
ht
ed

in
gr
ee
n.

4.2 Message Behavior 33

4.2 Message Behavior

In this section we define the concept of “message behavior”. This is later needed in order to
describe the newly devised state identification algorithm. Recall that AFLNet uses a request
sequence parser component in order to extract requests from a corpus input file. For now, we
call multiple requests a sequence, and a request sent after such a sequence a message. We later
formally define messages and sequences.

Let us now recall the example program from Section 2.3 (Listing 4.1) and use it as SUT.
Consider the three different sequences of requests in Table 4.1 and the coverage that the
message sent after the sequence produces on the SUT.

1 connected = False

2 while True:

3 msg = recv(timeout =0.05)

4 if msg.typ == "OPN":

5 response = do_opn(msg)

6 connected = True

7 elif msg.typ == "MSG" and connected:

8 response = do_msg(msg)

9 elif msg.typ == "CLO" and connected:

10 response = do_msg(msg)

11 connected = False

12 elif msg is not None:

13 response = "ERR"

14 if response is not None:

15 send_response(response)

16 do_background_processing ()

Listing 4.1: Example Program based on OPC UA, modelling a simple server.

Similar to Definition 2.6, the coverage in Table 4.1 is a tuple of values that correspond to
how often each line was executed, i.e. the first element in the tuple corresponds to how often
the first line was executed and so on. Instead of looking at the coverage of the whole execution
of the SUT, we will consider the coverage caused by the execution of a message sent after a
sequence and call this the message’s behavior. For example, for the first sequence-message
pair the sequence is empty, and we only send the message MSG. The SUT’s execution on this
sequence-message pair leads to the coverage in the first row of Table 4.1. In this case, the
coverage of the entire execution of the SUT corresponds to the coverage the message would
produce, i.e. its behavior. The same holds for the second sequence-message pair.

34 4 Methods

Sequence Message Coverage

⟨⟩ MSG (1,1,1,1,0,0,1,0,1,0,0,1,1,1,1,1)
⟨⟩ OPN (1,1,1,1,1,1,0,0,0,0,0,0,0,1,1,1)

⟨OPN⟩ MSG (1,2,2,2,1,1,1,1,0,0,0,0,0,2,2,2)

Table 4.1: Sequences and the coverage they produce on the program in Listing 4.1.

In the last sequence-message pair, the sequence consists of the OPN request, and the message
is a MSG request. In order to get the coverage the message produces, the coverage after
the sequence, which only consists of the OPN request, (1,1,1,1,1,1,0,0,0,0,0,0,0,1,1,1) can be
subtracted elementwise from the final coverage observed after the sequence-message pair
has been completely processed (1,2,2,2,1,1,1,1,0,0,0,0,0,2,2,2). The coverage, i.e. the behavior, of
the message MSG, then is (0,1,1,1,0,0,1,1,0,0,0,0,0,1,1,1). The resulting behavior when sending
MSG after OPN is different from the behavior observed when sending MSG alone. From this
differing behavior we can conclude that the program must have modified its internal state.
We use this insight to devise an algorithm that infers a state machine using this concept of
message behavior.

Before introducing the state machine algorithm, we formally define message behavior. First,
we extend Definition 2.6 and Definition 2.7 for messages and message sequences.

Definition 4.1 (Message Sequence) Let P be the executable of the SUT and 𝐼 = {0,1}∗ the
input space ofP. Let 𝜒P : 𝐼P → {0,1} be a function depending on the executableP that outputs 1 if
an input can be further processed byP and 0 otherwise. We then call𝑀 = {] |] ∈ 𝐼 : 𝜒 (]) = 1} ⊆ 𝐼

the set of messages P accepts.

We interpret an arbitrary length bit string 𝑠 ∈ 𝐼 as a sequence of messages 𝑠 = (𝑚1,𝑚2, . . .). If
|𝑠 | < ∞ it is possible that the last bits cannot be classified as a message. We will call these bits an

incomplete message.

For network protocols, the function 𝜒 usually uses something simple like a fixed value,
or some kind of delimiter to determine when a message is complete. The FTP protocol for
example separates the input into messages by using the sequence \r\n as delimiter. Another
often occurring input separation function is a fixed width header, which specifies the length of
the body.1 The function 𝜒 would in that case output 1 if the input contains the header, and the
amount of bits specified in the header.

With Definition 4.1 and Definition 2.7 we can now define the behavior of a message in context
of a previous sequence of inputs. For this definition, we will only consider finite sequences.

1 A notable example is the IP protocol

4.3 State Identification Algorithm 35

An infinite sequence would never allow a last message to be applied to the program, hence
rendering the concept useless.

Definition 4.2 (Message Behavior) LetP be the executable of the SUT and C the set of possible

coverage profiles for P. Further, let𝑀 and 𝐼 be as in Definition 4.1. We define the behavior of the

program P for a message𝑚 after a sequence of previous messages 𝑠 = ⟨𝑚1, . . . ,𝑚𝑛⟩ as

behP : 𝑀∗ × 𝐼 → C
(𝑠,𝑚) ↦→ ecov (⟨𝑚1, . . . ,𝑚𝑛,𝑚⟩) − ecov (⟨𝑚1, . . . ,𝑚𝑛⟩)

where the subtraction of the coverage profiles is performed elementwise on the tuples.

In essence, Definition 4.2 defines the behavior of the program for a message 𝑚 after a
sequence 𝑠 to be the coverage profile of the message𝑚, after the program has processed the
messages of the sequence 𝑠 . As noted in the exemplary discussion at the beginning of this
section, a crucial observation is that Definition 4.2 implies that if behP (𝑠1,𝑚) ≠ behP (𝑠2,𝑚)
for message𝑚 and sequences 𝑠1 and 𝑠2 with 𝑠1 ≠ 𝑠2, we must have observed some kind of state
change of the program. Otherwise, the message𝑚 would have produced the same behavior,
as long as the SUT is deterministic. This leads us to the algorithm described in the following
section.

4.3 State Identification Algorithm

We will now describe the devised algorithm to identify different program states. The devised
approach does not directly identify states that correspond to a protocol state. Rather, we
try to identify a mealy automaton that models the behavior of the SUT. Sending a message
corresponds to traversing an edge in the SUT’s automaton. Since we model a mealy automaton,
traversing an edge produces an output, which in our case is the behavior of the message
sent. We construct this automaton by sending inputs to the SUT and observing the behavior
they exhibit. If we find a message for which the observed behavior contradicts our already
constructed state machine model, the conflict is solved by changing the model accordingly.
A contradiction occurs, if a message exhibits two different behaviors when sent in the same
state. We now use the example protocol introduced in Section 2.3 (repeated in Listing 4.1) to
motivate the algorithm, before describing it formally.

Each state consists of two sets that are used by the algorithm as depicted in Figure 4.3. The
first set S contains the sequences of messages that are able to reach this state, i.e. the set of
paths through the state machine that reach the state. The second set B contains the behaviors

36 4 Methods

S ∅
B ∅

start

Figure 4.2: Initial state of the state machine.

observed when sending messages in the state. Each entry consists of a set of sequences (the
context set) that were already sent in combination with the message, and the message’s behavior,
provided one of the sequences in the context was sent in order to reach the state. As previously
mentioned, the edges of the state machine correspond to sending a message and observing the
message’s behavior as output. It should be noted, that the output depends on the path taken
through the state machine. Also, the edges can be inferred from the sets S and B. For the
examples, we will explicitly model the edges in the figures. Later on in the formal description,
we will omit the edges.

S {⟨⟩}

B ⟨⟩ MSG beh(⟨⟩ ,MSG)
⟨⟩ OPN beh(⟨⟩ ,OPN)

start

MSG/beh(⟨⟩ ,MSG)
OPN/beh(⟨⟩ ,OPN)

Figure 4.3: State of the state machine after observing MSG and OPN messages.

We start with an empty state machine as depicted in Figure 4.2. The set of sequences S
that are able to reach this state is initially empty. The set of behaviors observed when sending
messages in the state B is also empty, since we did not send any inputs yet.

Now consider the case that we send a MSG message to the SUT. We simply add the message
to the current state, since this is the first message we send. This produces a self loop as seen in
Figure 4.3. In order to add the message, we add a new behavior entry to B. Since we only sent
a single message, we add the empty sequence to the context set of the message. We add the
message MSG as the second value of the behavior entry. We set the last value of the behavior
entry to the behavior of the message provided that the empty sequence was first sent.

4.3 State Identification Algorithm 37

If we then send an OPN message to the SUT, we encounter a different case. Since now
the empty sequence was already sent previously, we look for a state that is reachable by this
sequence. In this case, this is the initial state. The way we construct our automaton in the
following guarantees that a sequence reaches exactly one state, and as such identifies a state.
Since we never sent the message OPN before, we add a behavior entry in the set of behaviors.
This is also depicted in Figure 4.3.

S {⟨⟩ , ⟨𝑂𝑃𝑁 ⟩}

B ⟨⟩ MSG beh(⟨⟩ ,MSG)
⟨⟩ , ⟨OPN⟩ OPN beh(⟨⟩ ,OPN)

start

MSG/beh(⟨⟩ ,MSG)
OPN/beh(⟨⟩ ,OPN)

OPN/beh(⟨OPN⟩ ,OPN)

Figure 4.4: State of the state machine after observing the sequence ⟨OPN⟩ with message OPN.

The interesting cases occur, when we send a message that we previously sent. In this case
it is possible that we observe a different behavior if we send the message with a different
sequence than previously. Consider sending the sequence ⟨OPN⟩ and message OPN. Since the
example program behaves the same no matter how many times an OPN message is sent, the
behavior does not change, i.e. beh(⟨⟩ ,OPN) = beh(⟨OPN⟩ ,OPN). In this case we simply add
the new sequence to the set of sequences S that are able to reach the state, and to the context
of the behavior of the OPN message as depicted in Figure 4.4. This corresponds to adding the
new edge OPN/beh(⟨OPN⟩ ,OPN).
Now consider sending the sequence ⟨𝑂𝑃𝑁 ⟩ and the message MSG. For this sequence the

behavior will be different, since the connected variable is now set to true by the OPN message.
The MSG message therefore exercises a different behavior than if it were sent with an empty
sequence. We cannot add the message behavior as previously, since that would produce
contradicting outputs along the existing edge for the input MSG. If we added the edge, this
would result in two edges with the same input but different outputs, resulting in a state machine
that is nondeterministic, and as such not being a mealy automaton. In order to alleviate this,
we modify the state machine as seen in Figure 4.5. We first remove the sequence ⟨OPN⟩ from
the state’s S set and move it to a newly created state, since the new state can be reached by

38 4 Methods

S {⟨⟩}

B ⟨⟩ MSG beh(⟨⟩ ,MSG)
⟨⟩ OPN beh(⟨⟩ ,OPN)

start

S {⟨OPN⟩}

B ⟨OPN⟩ MSG beh(⟨OPN⟩ ,MSG)
⟨OPN⟩ OPN beh(⟨OPN⟩ ,OPN)

MSG/beh(⟨⟩ ,MSG)

OPN/beh(⟨⟩ ,OPN)

MSG/beh(⟨OPN⟩ ,MSG)
OPN/beh(⟨OPN⟩ ,OPN)

Figure 4.5: State of the state machine after observing the sequence ⟨OPN⟩ with message MSG.

this sequence. In order to reflect this, we redirect the edge with the OPN message with the
behavior that was observed with an empty sequence to the new state, since we found that
sending an OPN message produces a contradiction, and as such indicates that sending the OPN
message changes the state of the SUT. The edge with the OPN message that was observed
with the sequence ⟨OPN⟩ is moved to the new state, and we also add an edge for the current
observation to the new state. This is also reflected in the behavior set B.

Finally, consider the state machine to be as seen in Figure 4.3. If we then send the sequence
⟨𝑂𝑃𝑁 ⟩ and the message MSG at this point in time, we will still observe contradicting behavior,
since the behavior of the MSG message will differ from sending it after the sequence ⟨⟩. Adding
the edge to the state machine would again yield an invalid mealy automaton because it would
introduce nondeterministic transitions, i.e. the same input would produce different outputs

4.3 State Identification Algorithm 39

S {⟨⟩}

B ⟨⟩ MSG beh(⟨⟩ ,MSG)
⟨⟩ OPN beh(⟨⟩ ,OPN)

start

S {⟨𝑂𝑃𝑁 ⟩}
B ⟨OPN⟩ MSG beh(⟨OPN⟩ ,MSG)

MSG/beh(⟨⟩ ,MSG)

OPN/beh(⟨⟩ ,OPN)

MSG/beh(⟨OPN⟩ ,MSG)

Figure 4.6: State of the state machine after observing the sequence ⟨OPN⟩ with message MSG.

on the same edge. In contrast to the previous case however, the sequence will be new. In this
case we look for the state where the contradiction occurs and create a new state containing
the newly sent sequence and behavior as seen in Figure 4.6. The edge of the OPN message is
redirected like in the case seen in Figure 4.5.

After introducing the algorithm on a high level via the provided examples, we now formally
define the algorithm. In order to do so, we first define our notion of a state.

Definition 4.3 (State) A state 𝔰 = (S,B) is a tuple of a set of already seen sequences S =

{𝑠1 = (𝑚1, . . . ,𝑚𝑛) , . . . } and a set of observed behaviors B = {𝔟1, . . . }. An observed behavior

𝔟 ∈ B is a 3-tuple 𝔟 = (𝔠 = {𝑠1, . . . } ,𝑚, behP (𝑠,𝑚)) consisting of a set of sequences 𝔠, a message

𝑚 and the observed behavior of𝑚 given a sequence 𝑠 ∈ 𝔠. We will call 𝔠 the context in which a

message behavior was already observed.

In order to keep the notation simple, for the following description of the algorithm we
assume that elements are mutable. For example, an update of S in the form of S ← S ∪ {𝑠 ′}

40 4 Methods

means that the set was modified. This modification will be visible in𝔖 without reassigning
anything. Also, in order to denote access to a tuple member at position 𝑖 , we will write 𝑥 (𝑖) for
some tuple 𝑥 . In contrast to arrays in most programming languages, we will start indexing
from 1 instead of from 0, i.e. the first element of the tuple is 𝑥 (1) .

With Definition 4.3 we can now describe the algorithm to construct a state machine during
fuzzing of the SUT executable P. The algorithms initial state is described in Algorithm 5. We
start with one initial state 𝔰1. The sequences are initially empty, and the observed behavior set
is empty as well. The two helper sets 𝜎 and ` are used to determine if a sequence or message
respectively has been sent previously. Both 𝜎 and ` are initially empty.

For the following we will consider input] ∈ 𝐼 that was generated by the fuzzer and sent
to the target P. The input] can be interpreted as a sequence of messages (see Definition 4.1)
𝑠 =

(
𝑚′1, . . . ,𝑚

′
𝑛,𝑚

′) of length 𝑛 + 1. For the algorithm we will consider the prefix sequence
𝑠 ′ =

(
𝑚′1, . . . ,𝑚

′
𝑛

)
and the last message𝑚′. For the description of the algorithm we also use the

concept of a current state. The current state refers to the state the fuzzer is currently using to
generate messages from, i.e. the fuzzer sends a sequence that reaches the state, and then sends
one or more mutated messages. If the fuzzer only sends one mutated message, the sequence
will still be known. However, if the fuzzer sends more than one mutated message, the sequence
will get longer, resulting in possible state transitions that the algorithm will identify.

Algorithm 5: Statemachine initialization.
1 𝔰1 ← (∅, ∅) // Initial state
2 𝔖← {𝔰1} // Set of states
3 𝜎 ← ∅ // Set of already sent sequences
4 ` ← ∅ // Set of already sent messages

The state machine update behavior is described in Algorithm 6. The algorithm checks
whether the fuzzer has sent the sequence 𝑠 ′ or the message𝑚′ previously by performing a
lookup in the sets 𝜎 and ` respectively. This results in the four cases in Lines 2, 4, 6 and 8
which we will discuss in detail in the following paragraphs. After handling the appropriate
case, the sequence 𝑠 ′ and message𝑚′ are simply added to the helper sets 𝜎 and ` respectively
for future lookups in Lines 11 and 12.

The first case of the update algorithm is described in Algorithm 7. In this case the fuzzer sent
a sequence and message that were never sent before. Since this is the first time the sequence
𝑠 ′ and message𝑚′ are sent, there will be no conflicting behavior. Hence, we insert both the
sequence and the message’s behavior into the currently selected state 𝔰.

4.3 State Identification Algorithm 41

Algorithm 6: Statemachine update.
Input :The set of observed sequences 𝜎 , the set of observed messages `, the set of

states𝔖, the current state 𝔰, the currently observed sequence 𝑠 ′ and the
currently observed message𝑚′

1 def StateMachineUpdate(𝜎, `,𝔖, 𝔰, 𝑠 ′,𝑚′):
2 if 𝑠 ′ ∉ 𝜎 ∧𝑚′ ∉ ` then // new sequence and new message
3 𝔖←CaseNewSNewM(𝔖, 𝔰, 𝑠 ′,𝑚′);
4 else if 𝑠 ′ ∈ 𝜎 ∧𝑚′ ∉ ` then// already observed sequence and new message
5 𝔖←CaseOldSNewM(𝔖, 𝔰, 𝑠 ′,𝑚′);
6 else if 𝑠 ′ ∉ 𝜎 ∧𝑚′ ∈ ` then// new sequence and already observed message
7 𝔖←CaseNewSOldM(𝔖, 𝔰, 𝑠 ′,𝑚′);
8 else if 𝑠 ′ ∈ 𝜎 ∧𝑚′ ∈ ` then // already observed sequence and message
9 𝔖←CaseOldSOldM(𝔖, 𝔰, 𝑠 ′,𝑚′);

10 end
11 𝜎 ← 𝜎 ∪ {𝑠 ′};
12 ` ← ` ∪ {𝑚′};
13 return 𝜎, `,𝔖

Algorithm 7: Statemachine update case: new sequence and new message.
Input :The set of states𝔖, the current state 𝔰, the currently observed sequence 𝑠 ′ and

the currently observed message𝑚′
1 def CaseNewSNewM(𝔖, 𝔰, 𝑠 ′,𝑚′):
2 (S,B) ← 𝔰;
3 S ← S ∪ {𝑠 ′};
4 𝔟′← ({𝑠 ′} ,𝑚′, behP (𝑠 ′,𝑚′));
5 B ← B ∪ {𝔟′};
6 return𝔖

The second case of the update algorithm is described in Algorithm 8. Similar to Algorithm 7,
since this is the first time the fuzzer sent message𝑚′, there cannot be a different behavior.
However, since the sequence 𝑠 ′ was previously sent, it has to be contained in some sequence
set S of a state 𝔰 = (S,B). The algorithm searches for that state, i.e. the state that is reachable
by the sequence 𝑠 ′, and creates a new behavior entry 𝔟′ for the newly sent message and adds it
to the set of observed behaviors B. By construction of the state machine, since we model a
deterministic mealy automaton, each state is uniquely identified by one or more sequences, i.e.
each sequence is contained in at most one state.

The last two of the four cases in Algorithm 6 are the interesting ones, since the fuzzer
will now have sent the message in a previous iteration. The algorithm now determines if the

42 4 Methods

Algorithm 8: Statemachine update case: observed sequence and new message.
Input :The set of states𝔖, the current state 𝔰, the currently observed sequence 𝑠 ′ and

the currently observed message𝑚′
1 def CaseOldSNewM(𝔖, 𝔰, 𝑠 ′,𝑚′):
2 𝔰′← (S,B) ∈ 𝔖 with 𝑠 ′ ∈ S;
3 𝔟′← ({𝑠 ′} ,𝑚′, behP (𝑠 ′,𝑚′));
4 B ← B ∪ {𝔟′};
5 return𝔖

message was already seen in a different sequence context. As previously discussed with the
example protocol, the idea then is to restructure the state machine, if the sequence produces a
behavior of the message that conflicts with the already seen behavior.

Algorithm 9: Statemachine update case: new sequence and observed message.
Input :The set of states𝔖, the current state 𝔰, the currently observed sequence 𝑠 ′ and

the currently observed message𝑚′
1 def CaseNewSOldM(𝔖, 𝔰, 𝑠 ′,𝑚′):
2 (S,B) ← 𝔰;
3 if ∃𝔰′ = (S′,B ′) ∈ 𝔖 : ∃𝔟 ∈ B ′ :

(
𝑚′ = 𝔟 (2) ∧ behP (𝑠 ′,𝑚′) ≠ 𝔟 (3)

)
then

4 S̃ ← {𝑠 ′};
5 �̃�← ({𝑠 ′} ,𝑚′, behP (𝑠 ′,𝑚′));
6 B̃ ←

{
�̃�
}
;

7 �̃� ←
(
S̃, B̃

)
;

8 𝔖←𝔖 ∪ �̃�;
9 else
10 S ← S ∪ {𝑠 ′};
11 end
12 return𝔖

The case handling a new sequence and a previously seen message is described in Algorithm 9.
The algorithm first checks whether there exists a state 𝔰′ such that it contains an observed
behavior 𝔟 to message𝑚′ that has a conflicting message behavior (Line 3). That is, the already
observed behavior 𝔟 (3) is different from the currently observed one behP (𝑠 ′,𝑚′). If this is the
case, the sequence s’ must have triggered some kind of state change in the program. Otherwise,
the behavior (i.e. the code that𝑚′ triggered the execution of) would not have changed. The
algorithm reflects this by creating a new state �̃� and adding the sequence 𝑠 ′ to the set of
sequences for this state (Line 4). Then, the algorithm creates a new observed behavior for
sequence 𝑠 ′ and message𝑚′ and adds it to the state (Lines 5 and 6). Finally, the state is added

4.3 State Identification Algorithm 43

to the set of states𝔖 (Line 8). If there is no state that satisfies the condition, the fuzzer adds
the newly sent sequence 𝑠 ′ to the set of sequences of the current selected state 𝔰 (Line 10).

Algorithm 10: Statemachine update case: observed sequence and observed message.
Input :The set of states𝔖, the current state 𝔰, the currently observed sequence 𝑠 ′ and

the currently observed message𝑚′
1 def CaseOldSOldM(𝔖, 𝔰, 𝑠 ′,𝑚′):
2 𝔰′← (S,B) ∈ 𝔖 with 𝑠 ′ ∈ S;
3 if ∃𝔟 ∈ B :

(
𝑠 ′ ∉ 𝔟 (1) ∧𝑚′ = 𝔟 (2) ∧ behP (𝑠 ′,𝑚′) ≠ 𝔟 (3)

)
∧ |S| > 1 then

4 S̃ ← {𝑠 ′};
5 �̃�← ({𝑠 ′} ,𝑚′, behP (𝑠 ′,𝑚′));
6 B̃ ←

{
�̃�
}
∪
{(
{𝑠 ′} , 𝔟 (2) , 𝔟 (3)

)
| 𝔟 ∈ B : 𝑠 ′ ∈ 𝔟 (1)

}
;

7 �̃� ←
(
S̃, B̃

)
;

8 S ← S \ {𝑠 ′};
9 𝔖←𝔖 ∪ �̃�;

10 B ←
{(
𝔟 (1) \ {𝑠 ′} , 𝔟 (2) , 𝔟 (3)

)
| 𝔟 ∈ B : 𝔟 (1) \ {𝑠 ′} ≠ ∅

}
11 else
12 if ∃𝔟 ∈ B :

(
𝑚′ = 𝔟 (2) ∧ behP (𝑠 ′,𝑚′) = 𝔟 (3)

)
then

13 𝔟 (1) ← 𝔟 (1) ∪ {𝑠 ′};
14 else
15 𝔟← ({𝑠 ′} ,𝑚′, behP (𝑠 ′,𝑚′));
16 B ← B ∪ {𝔟};
17 end
18 end
19 return𝔖

Finally, Algorithm 10 describes the case when dealing with both a previously sent sequence,
and a previously sent message. First, the algorithm selects the state 𝔰′ which was previously
observed to be reachable by the sequence 𝑠 ′. Afterwards, the algorithm performs a check
in order to determine if the state 𝔰′ needs to be split such that a valid mealy automaton
is obtained. Similar to Algorithm 9, the condition in Line 3 checks whether a conflicting
behavior to message 𝑚′ was observed. Only the behaviors for the state 𝔰′ are considered,
since the algorithm previously determined that the sequence 𝑠 ′ is able to reach this state. The
algorithm searches the set of observed behaviors for an observed behavior for the message
𝑚′ with differing message behavior behP (𝑠 ′,𝑚′). In addition, the algorithm requires that
the sequence was not previously sent in combination with this message. For deterministic
programs this condition is not necessary, but since in practice most programs have some
nondeterministic behavior, the algorithm performs the check, in order to not modify the state

44 4 Methods

machine erroneously. The split is also not performed, if the considered state has only one
sequence, since splitting would then create an exact copy of the candidate and leave behind an
empty state.

If all conditions for splitting are met, a new state �̃� is created. The sequence set S̃ will contain
the sequence 𝑠 ′ (Line 4). The new behavior is added to the new state (Line 5). For each old
behavior in 𝔅 that was previously observed with 𝑠 ′, the algorithm adds a new behavior with
only 𝑠 ′ as sequence context to the new state (Line 6). Afterwards, the sequence 𝑠 ′ is removed
from the sequence set of the old state 𝔰′ and the new state �̃� is added to the set of states𝔖
(Lines 8 and 9). Finally, the sequence 𝑠 ′ is removed from all behavior contexts of the old state,
and if the context would be empty afterwards, the behavior is removed entirely (Line 10).

Otherwise, if the message behavior was seen in the state 𝔰′ before, the algorithm adds the
sequence 𝑠 ′ to the corresponding observed behavior’s sequence set (Line 13). If the message
behavior was not seen in the state 𝔰′ before, it is added to the set of observed behaviors (Lines 15
and 16).

In Algorithm 8 and Algorithm 10 the algorithms select the state 𝔰′ by looking for a state that
contains the sequence 𝑠 ′. There is always exactly one state that satisfies this condition, i.e. the
states are uniquely identified by one or more sequences. In other words, each sequence can
reach exactly one state (since our state machine is deterministic) and each state is reachable by
one or more sequences, i.e. there exist one or more paths through the state machine for each
state. Formally this can be written as

∀𝔰1 = (S1,B1) ∈ 𝔖,∀𝔰2 = (S2,B2) ∈ 𝔖 : ∀𝑠 ∈ S1 ∪ S2 : 𝑠 ∈ S1 ∧ 𝑠 ∈ S2 ⇒ 𝔰1 = 𝔰2.

The algorithm only modifies states in Algorithm 7, Algorithm 8, Algorithm 9, and Algorithm 10.
In Algorithm 7 and Algorithm 9 the sequence is new, meaning it is not contained in any state
yet. Adding the sequence to any one state, will not violate the invariant. In Algorithm 8 the
sequence was already sent previously by the fuzzer. The algorithm fetches the state with the
sequence and only adds a behavior to the corresponding state. This also does not violate the
invariant, since the set of sequences is never changed. Finally, in Algorithm 10 the algorithm
uses the sequence again to fetch the corresponding state. If the algorithm splits the state (if
branch), the sequence is removed from the old state and added to the newly created state.
This preserves the invariant. If the state is not split (else branch), the set of sequences is not
modified, also preserving the invariant.

4.4 Fuzzer-Target-synchronisation 45

4.4 Fuzzer-Target-synchronisation

The algorithm introduced in the previous section depends on whether the message behavior
can reliably be extracted. As we will now see, without some additional modifications to the
SUT this is not always possible. The best case would be if the SUT blocks until a message
is received and only then continues with its execution. However, if we look at the example
program (Listing 4.1) again this is not the case, since the recv function only blocks for 50
milliseconds. If no message was received, the message processing is skipped, and no response
is sent, but the main loop will call the do_background_processing function.

Let us consider the sequence ⟨OPN⟩ with message MSG again. In Table 4.1, the coverage
for this sequence-message pair is (1,2,2,2,1,1,1,1,0,0,0,0,0,2,2,2). However, it is possible that it
takes more than 50 milliseconds for the network to deliver the message. If that is the case,
the example program will return None from the recv call because the timeout was reached.
Then the program will iterate once, and only call do_background_processing. Afterwards,
the program will once again block on recv. In case the message arrives now, this will result in
a coverage profile of (1,3,3,3,1,1,2,1,1,0,0,1,0,3,2,3).

If we calculate the message behavior as described in Section 4.2 for this scenario, we obtain
the message behavior (0,2,2.2,0,0,2,1,1,0,0,1,0,2,1,2,) for the sequence ⟨OPN⟩ with message MSG.
However, recall that previously we arrived at the message behavior (0,1,1,1,0,0,1,1,0,0,0,0,0,1,1,1)
for the sequence ⟨OPN⟩ with message MSG. These differing message behaviors for the same
sequence violate the assumption that the program is deterministic and will reduce the effective-
ness of the algorithm described in Section 4.3. Furthermore, the nondeterminism introduced
by the timing behavior of the network might reduce the effectiveness of the fuzzer in general.

1 signal_main_loop_completed ()

2 wait_for_fuzzer_to_allow_iteration ()

Listing 4.2: Injected synchronisation code.

In order to alleviate this problem, we introduce a synchronisation mechanism between
the fuzzer and the SUT. In addition to the coverage instrumentation the fuzzer injects when
compiling the target program P during the Preprocess step (see Section 2.4), the fuzzer will
inject the set of instructions listed in Listing 4.2 in the main loop of the target program P. In
the case of our example program (Listing 4.1) the code is injected between Line 2 and Line 3.
The injected code signals the fuzzer that the program has completed one iteration of the main
loop and then waits for the fuzzer to signal that another iteration can be performed.

46 4 Methods

Fuzzer SUT

send(message)

signal_allow_target_iteration()

wait_for_target_main_loop_completed()

main loop code

signal_main_loop_completed()

wait_for_fuzzer_to_allow_iteration()

recv(timeout)

data

looploop [data is empty]

Figure 4.7: Sequence diagram of the interaction between fuzzer and target when sending a
single message.

On the fuzzer side the required code is listed in Listing 4.3. We focus on the general concept
here and refer to the implementation2 for error handling and other implementation details. The
fuzzer performs some initial setup and waits for the SUT to wait for the fuzzer. Afterwards, the
code in Listing 4.3 is executed for each message. First, the fuzzer sends the message, allowing
for some time such that the message can arrive at the target. Then the fuzzer signals the SUT
that it can perform a single iteration of its mainloop, after which the fuzzer waits for the SUT
to complete its iteration. As soon as the SUT signals that it has completed an iteration of its
mainloop, the fuzzer tries to receive data from the SUT. This is repeated until the SUT sends
a response, after which the fuzzer proceeds with sending the next message in the same way.
The interaction between the fuzzer and the SUT is depicted in Figure 4.7.

2 https://github.com/mlgiraud/AFLplusplus-stateful

https://github.com/mlgiraud/AFLplusplus-stateful

4.5 Mutation Strategy 47

1 send(message)

2 data = None

3 while not data:

4 signal_allow_target_iteration ()

5 wait_for_target_main_loop_completed ()

6 data = recv(timeout)

Listing 4.3: Fuzzer side of the synchronisation mechanism for a single message.

4.5 Mutation Strategy

Since one of the assumptions required for the state identification algorithm described in
Section 4.3 is that sequences are only modified at the end, we modify the mutation strategy a
bit in contrast to AFLNet. We leave the mutation strategies for the content of messages the
same, i.e. the same as AFL and AFLNet.

For the sequence mutation, AFLNet uses the operations insert after, insert before, replace,
and duplicate. We omit the duplicate operation for our approach, since this is covered by insert
after and insert before when the selected message is the same as the currently mutated one.
Also, instead of separating the seed into three parts (see Section 3.2), we always mutate the
last message of the seed. This also allows for a simpler implementation, and the optimization
discussed in section Section 4.6.

Instead of adding the sequence mutations to the set of normal mutations that is uniformly
sampled, we instead use a scoring function to determine when to do sequence mutation and
when to use the normal afl mutations. This means that we, in contrast to AFLNet, preserve
the probabilities for the original mutations when performing havoc mutations. However,
similar to AFLNet the information gained by building a state machine is incorporated into
the mutations by shifting the threshold for doing sequence mutations. The probability to do
sequence mutation is calculated as

𝑃 (mutate sequence) = max
(

1
1 + 𝑒−0.5(𝐵−4𝑆−log10 (𝑎+1))

, 0.1
)
,

where 𝐵 is the number of behaviors in the currently selected state, 𝑆 is the number of sequences
in the currently selected state, and 𝑎 is the number of times the state was fuzzed. The probability
to use the normal AFL havoc mutations is then 𝑃 (mutate havoc) = 1 − 𝑃 (mutate sequence).
The chosen function is a logistic function with 4𝑆 as the midpoint and a growth rate of 0.5.
The midpoint is shifted in favor of havoc mutations proportional to the number of times the

48 4 Methods

state was fuzzed, i.e. the older the state gets the more havoc mutations are prioritized, by the
logarithmic term.
The intuition for choosing this function is that a high ratio of sequences to behaviors

indicates that we have to first find new behaviors in order to try and differentiate between
them. On the other hand, if the ratio of sequences to behaviors is low, i.e. if we have more
behaviors than sequences, it makes sense to try to find a sequence that produces a different
behavior for a message that was sent in the current state. Also, instead of choosing a hard
threshold where only either sequences mutations or havoc mutations are performed, the
logistic function allows for a soft transition around the midpoint. This means that there is
always a slight possibility to still do sequence mutations when the threshold is in favor of
havoc mutations and vice versa. The sequence probability is capped at a minimum of 0.1 in
order to always leave the possibility of sequence mutations. It should be noted that the values
in the function as well as the shifting of the midpoint were arrived at by intuition and testing
out a few combinations. The focus of this thesis is primarily on the state identification part.
Due to time constraints these values were not investigated further.

4.6 State Forkserver

Chen et al. describe a different approach to stateful greybox fuzzing [ClV19]. Their approach
uses a multi-state forkserver, that can fork the SUT at specific states in order to improve fuzzing
performance. We try to adapt a similar approach, where the SUT is set to a specific state and
then forked from that state.
For a sequence 𝑠 = (𝑚1, . . . ,𝑚𝑛) and message 𝑚 the fuzzer first sends the messages

𝑚1, . . . ,𝑚𝑛 . It then signals the SUT to enter forkserver mode. Afterwards, the forkserver
can be used to spawn new process instances of the SUT in this state. The actual fuzzing is then
performed on the message𝑚. Each fuzzing iteration thus only has to clone the existing process
and send the fuzzed message, instead of having to send the complete sequence 𝑠 each time.

49

5 Implementation

In Chapter 4 we propose an approach to automate the state identification component of AFLNet.
We also propose additional changes required in order to make the proposed approach work. In
order to evaluate the concepts in Chapter 6, we implement them on AFLPlusPlus, in order to
then compare them with AFLNet. This chapter discusses why we choose AFLPlusPlus instead
of modifying AFLNet in Section 5.1. Furthermore, we give an overview of the modifications
done to AFLPlusPlus, and present the datastructures used for implementing the state machine
in Section 5.2. The actual implementation is available on github.1

5.1 AFLPlusPlus vs. AFLNet

We now briefly discuss why AFLPlusPlus was chosen as implementation basis instead of
AFLNet. AFLNet is based on AFL, a predecessor of AFLPlusPlus. AFLPlusPlus comes with
many addons to AFL that implement recent research [Heu+20]. Additionally, compared to AFL,
AFLPlusPlus is built in a more modular fashion, making it easier to implement modifications
and new functionality. AFLPlusPlus seems to be the superior fuzzer, since it implements all
the features of AFL and more. We chose not to modify AFLNet, since the state machine works
differently to our approach. This would have necessitated changing most of the code added
by AFLNet. Instead, we chose to port the functionality added by AFLNet relevant to sending
messages over the network to AFLPlusPlus, and add the state machine implementation on
top of that. This also makes it possible to later integrate the developed stateful fuzzer as an
AFLPlusPlus addon in order to increase adaptation.

5.2 AFLPlusPlus modifications

This section briefly highlight where changes were made to AFLPlusPlus. We also highlight the
structure of the state machine. The actual implementation is not discussed, since it does not
differ conceptually from the pseudo code introduced in Chapter 4.

1 Private repository: https://github.com/mlgiraud/AFLplusplus-stateful. For access please contact
mark.giraud@iosb.fraunhofer.de

https://github.com/mlgiraud/AFLplusplus-stateful

50 5 Implementation

The entry point of AFLPlusPlus is contained in afl-fuzz.c. This file contains the code
that parses command line parameters and the main loop of the fuzzer. The parameter parsing
needed for AFLNet relevant parts was integrated into this file. Additionally, a separate main
loop was introduced that runs when fuzzing stateful software, instead of the default fuzzing
loop. The main difference is that after each queue cycle the selected state is chosen, according
to AFLNet’s scoring policy.

The actual fuzzing happens in the fuzz_one function in afl-fuzz-one.c. Instead of using
the seed selection from AFLNet, the same strategy was implemented differently, by using
the already existing functionality of seed skipping. At the start of the fuzz_one function, a
function is called, that performs the same checks AFLNet would do, and then skips the seed, if
it did not pass. This also effectively divides the seed queue up into a queue for each state. As
we will shortly see, each queue entry now has a state associated with it, similar to AFLNet,
such that any seed not belonging to the currently selected state is simply ignored. In addition,
the region extraction was implemented similarly to AFLNet, with the key difference that now
only the last region is mutated as motivated in Chapter 4. Lastly, the havoc mutation phase
was adapted to include the sequence mutations as described in Section 4.5.

In order to enable fuzzing over the network, most of the code from AFLNet was adapted into
afl-forkserver.c. This file contains most of the code responsible for communicating with
the SUT and for spawning new instances of the SUT. The function responsible for sending
individual messages was modified in order to accommodate for the synchronisation mechanism
introduced in Section 4.4. As synchronisation primitive, two semaphores were used. One of
the semaphores is used by the fuzzer to signal the SUT that it may loop, i.e. the fuzzer posts
the semaphore, and the SUT waits on the semaphore. The other semaphore models the other
direction, i.e. the fuzzer waits on the semaphore for the SUT to post, corresponding to the
fuzzer waiting for the SUT to pause. The SUT part of the synchronisation code was added
to afl-llvm-rt.o.c, which gets compiled into the afl-clang compiler used to compile the
SUTs. The compilation process then injects the actual code into the SUT.

The implementation of the state machine is split in two files. First, the afl-fuzz.h file was
modified to include all necessary declarations. The observed behaviors 𝔟 (see Definition 4.3)
were implemented as a struct containing a hashset of sequence hashes, the message in a hashed
form, and the behavior in a hashed form. States were modeled as a struct containing a hashmap
of sequences indexed by the sequence hash (corresponding to S in Definition 4.3), a hashmap
of behaviors that is indexed by using the message hash (corresponding to B in Definition 4.3),
multiple statistics values, and a few helper variables. The sequence hash map maps a hash of a
sequence to another map. This map maps message hashes to the corresponding queue entries.
This way it is easy to retrieve queue entries via a combination of sequence and message, and

5.3 AFLNet modifications 51

when splitting the entries can easily be rearranged. The actual state machine is modeled as
another struct that contains a list of states, and two hashmaps corresponding to the helper sets
𝜎 and ` in Algorithm 5. Instead of implementing 𝜎 and ` as sets, they were implemented as
hashmaps in order to easily retrieve the state associated with the sequence or message.

The implementation of Algorithms 5 to 10 is contained in the new file afl-fuzz-net.c. In
addition, the file also contains the region extraction functions from AFLNet, which had to be
slightly adapted to accommodate for the different structures in AFLPlusPlus.
Finally, the state snapshotting mechanism was prototypically implemented on top of the

aforementioned mutations by modifying the function injected into the main loop of the SUT.
In essence, the function that is called in each main loop iteration is modified to include a check
if a flag is set. If this flag is set, the SUT will enter a forkserver function similar to the one
already present for the unmodified AFLPlusPlus. Instead of using the default forkserver to
fork a new SUT instance, this new forkserver is used. The flag that determines when to enter
the forkserver mode is set after sending the last input of the sequence just before sending the
fuzzed message.

5.3 AFLNet modifications

Some minor modifications had to be made in order to run the evaluation. First, during initial
evaluations AFLNet kept crashing randomly after a few hours, making it impossible to run
48 hour evaluation runs. This issue2 was caused by errors when writing the test file to disk.
However, since this functionality is only required for SUTs that read their input from a file,
it is not required for evaluating our targets. The solution was to simply remove the code in
question.3 Second, since AFLNet currently does not save timestamps for seed files, they had
to be added to the output in order to later plot the coverage achieved over time.4 Lastly, the
OPC UA protocol is currently not supported by AFLNet yet. In order to add support for OPC
UA, later needed for our evaluation in Chapter 6, the request sequence parser and state machine

learning components had to be extended. The request sequence parser was extended by adding
a new extract_requests_opcua5 function that splits an input into separate OPC UA requests.
In order to do this the UA_TcpMessageHeader_decodeBinary function, which is part of the

2 https://github.com/aflnet/aflnet/issues/20
3 https://github.com/mlgiraud/aflnet-1/blob/863bbb2b77da8d4a106224221aa0273fefaf5f1c/

afl-fuzz.c#L3335
4 https://github.com/mlgiraud/aflnet-1/blob/863bbb2b77da8d4a106224221aa0273fefaf5f1c/

afl-fuzz.c#L3980
5 https://github.com/mlgiraud/aflnet-1/blob/863bbb2b77da8d4a106224221aa0273fefaf5f1c/

aflnet.c#L582

https://github.com/aflnet/aflnet/issues/20
https://github.com/mlgiraud/aflnet-1/blob/863bbb2b77da8d4a106224221aa0273fefaf5f1c/afl-fuzz.c#L3335
https://github.com/mlgiraud/aflnet-1/blob/863bbb2b77da8d4a106224221aa0273fefaf5f1c/afl-fuzz.c#L3335
https://github.com/mlgiraud/aflnet-1/blob/863bbb2b77da8d4a106224221aa0273fefaf5f1c/afl-fuzz.c#L3980
https://github.com/mlgiraud/aflnet-1/blob/863bbb2b77da8d4a106224221aa0273fefaf5f1c/afl-fuzz.c#L3980
https://github.com/mlgiraud/aflnet-1/blob/863bbb2b77da8d4a106224221aa0273fefaf5f1c/aflnet.c#L582
https://github.com/mlgiraud/aflnet-1/blob/863bbb2b77da8d4a106224221aa0273fefaf5f1c/aflnet.c#L582

52 5 Implementation

open62541 parser, was used. This function extracts the message type, and the message size of
a message. The extracted message size is then used to extract the rest of the message. Very
similarly, the state machine learning component was modified. In order to support OPC UA,
the extract_response_codes_opcua function had to be implemented. The function uses the
same decoding function of the open62541 parser as before and extracts the individual responses.
The message type is now used as the response code that the state machine uses to identify
states. Except for some additional boilerplate code needed to integrate the modifications, no
additional changes were made to AFLNet.

53

6 Evaluation

This chapter evaluates the previously developed approach on three SUTs. The first SUT
open62541 is an open source implementation of the OPC UA protocol stack [Iat+20]. The
second SUT live555 is an open source implementation of the commonly used streaming protocol
RTSP [Pro20]. The third and last SUT lightftp is an open source implementation of an FTP
server [Gau20]. The latter two SUTs are both evaluated by the AFLNet paper [PBR20b] as
well, which enables a direct comparison of our newly developed approach against AFLNet. For
the evaluation we follow most of the guidelines presented for fuzzing evaluation by Klees et
al. [Kle+18].

We first discuss the evaluation method in Section 6.1. Afterwards, we present the achieved
results in Section 6.2. Finally, we analyse the individual crashes and hangs discovered by the
fuzzers, checking for false positives in Section 6.3.

6.1 Method

In order to answer the research questions posed in Section 3.3, we perform multiple evaluation
runs. The interpretation and discussion of the results listed in this chapter follow in Chapter 7.
The implementation of the methods introduced in Chapter 4 will be called SNAPP (Stateful-
Network-AFLPlusPlus) for the remainder of the thesis, and the forkserver version will be called
FSNAPP. For convenience, we list the research questions once more:

RQ1 Can the state identification process be automated by using already provided coverage
information?

RQ2 How effective is a fuzzer using an automated state identification process compared to
the manual approach of AFLNet if measuring performance by using coverage achieved
as metric?

RQ3 Does the seed corpus selection make a difference in achieved coverage when fuzzing
stateful software?

RQ4 Could program state snapshotting improve fuzzing speed and as such effectiveness?

54 6 Evaluation

In order to answer RQ1 and RQ2, we perform at least one evaluation run for SNAPP and
AFLNet respectively for each of the three SUTs open62541, lightftp, and live555. Table 6.2
lists all the SUT-corpus-fuzzer configurations used for the evaluation. The inputs generated
by each fuzzer during the evaluation runs are then executed on a coverage instrumented
executable in order to compare the coverage achieved by each fuzzer. We chose lightftp and
live555 as SUTs, because they are the primary SUTs used for the Evaluation of the AFLNet
implementation [PBR20b]. By comparing AFLNet and SNAPP on these SUTs, we can draw
indirect comparisons with the fuzzers, boofuzz and AFLNwe, which AFLNet was evaluated
against. Since AFLNet is currently state of the art for stateful greybox fuzzing, we use it as
baseline to compare our approach against.

We additionally include the open62541 SUT, because it is a single threaded implementation
of the highly stateful OPC UA protocol (see Section 2.2). For further evaluations, we only use
this SUT, since it is the most stateful of the three and has the largest codebase (see Table 6.1).
It also behaves in the most deterministic way, since it uses no multithreading and supports
disabling randomization out of the box, making it an ideal fuzzing target.

Klees et al. recommend using the same version of SUTs in order to make informal or indirect
comparison possible [Kle+18]. For lightftp and live555 we thus use the same commit as used by
Pham et al. [PBR20b]. For open62541 we use the most recent version as of August 19, 2020.
All SUTs are listed in Table 6.1 with the corresponding version used for fuzzing. Klees et al.
also argue, that a larger set of SUTs should be used. However, we only use the three SUTs
in Table 6.1, arguing that due to their stateful nature they are a suitable sample for the software
we want to test. Also, evaluating more SUTs would not have fit into the timeframe of this
thesis.

SUT Name Protocol LOC BBS Commit Hash

open62541 OPC UA 54 904 30 255 ee275e79310280a71fad3b21f6d430c0c046091b
lightftp FTP 2 236 1 147 5980ea1a0ee0e5c3015275f93445626f8c25c83a
live555 RTSP 31 119 15 903 ceeb4f462709695b145852de309d8cd25e2dca01

Table 6.1: Evaluation SUTs and their protocols, lines of code (LOC), number of basic blocks
(BBS) and the git commit hash of the version used for the evaluation. All protocols
are based on TCP.

Since Klees et al. [Kle+18] recommend running a fuzzer for at least 24 hours we run each
fuzzer for 48 hours, because the network enabled fuzzers are slower than regular afl due to
networking delays. We also run a longer evaluation on the open62541 SUT, in order to check if

https://github.com/open62541/open62541/commit/ee275e79310280a71fad3b21f6d430c0c046091b
https://github.com/hfiref0x/LightFTP/commit/5980ea1a0ee0e5c3015275f93445626f8c25c83a
https://github.com/rgaufman/live555/commit/ceeb4f462709695b145852de309d8cd25e2dca01

6.1 Method 55

and how much the performance varies after 48 hours. This longer run is only be performed on
open62541 due to time constraints.

For the seed corpora we manually select messages and message sequences specific to each
SUT. Using an empty seed corpus would most likely not yield meaningful results for measuring
the effectiveness of a stateful fuzzer [Kle+18; Myt+09], since only correct message sequences
will be processed in a meaningful way by the SUT. The evaluation runs for lightftp and live555
are performed on the same seeds used by Pham et al. [PBR20b], indicated by the “aflnet” entries
in the corpus column in Table 6.2. We slightly modify the corpus by adding the individual
messages contained in the corpus’ seed sequences as seeds. The reasoning behind this is that
SNAPP needs individual messages such that the state identification algorithm can be initialized
properly. In future work this could be done automatically by SNAPP, but was not implemented
due to time constraints.

SUT Corpus Fuzzer

open62541

7d-large SNAPP
AFLNet

large SNAPP
AFLNet

small
SNAPP
fsnapp
AFLNet

lightftp aflnet SNAPP
AFLNet

live555 aflnet SNAPP
AFLNet

Table 6.2: SUT-corpus-fuzzer configurations used to produce the evaluation results in Sec-
tion 6.2.

In order to answer RQ2 we plot the covered basic blocks over time. Each comparison figure
consists of two plots. The first one plots the best, worst and mean run. The second one plots
the mean and confidence interval. This way we can argue about outliers (runs that perform
much better or worse compared to the mean), and most interestingly the mean performance of
AFLNet compared to SNAPP.

To answer RQ3 we perform two evaluation runs on open62541 with different corpora. The
first corpus listed in Table 6.3 only contains messages required to establish a SecureChannel and
a Session, since these are required for almost all services [Fou17b]. Additionally, it contains a few

56 6 Evaluation

Message Type Description

HEL message Required before OpenSecureChannel.
OpenSecureChannel Required before any other Message except HEL.
CloseSecureChannel Closes the Channel and TCP connection.

CreateSession Required before ActivateSession.
ActivateSession Required for most services.

CloseSession Closes an established session. The channel stays open.
GetEndpoints Lists the endpoints of the server. Does not require a session.

Read Used to read attributes of a node in the servers nodeset.
Write Used to write attributes of a node in the servers nodeset.

HistoryRead Same as Read and Write but for historical valuesHistoryUpdate
Publish Used to get notification on existing subscriptions.

CreateMonitoredItems Creates and adds a monitored item to a subscription.
DeleteMonitoredItems Removes a previously created monitored item.

Table 6.3: Message types contained in the small fuzzing corpus.

basic service requests. The Publish, CreateMonitoredItmes, and DeleteMonitoredItems requests
require a subscription to exist. The messages to create such a subscription were intentionally
omitted in order to analyze how the fuzzer behaves in cases where an intermediate message is
not contained in the initial corpus.

The second corpus listed in Table 6.4 contains more service requests in addition to those
listed in Table 6.3. The remaining request types of the discovery service were included. In
addition, the complete view service set was added. The view service is used to navigate through
the address space of the SUT. The address space can be modified by the attribute service, which
is already contained in Table 6.3. However, the NodeManagement service is also able to modify
the address space, which is why we include it here. Further, since the MonitoredItem requests
in the small corpus Table 6.3 require a subscription, we add all request types of the subscription
set to the corpus, and the remaining MonitoredItem requests. With this bigger corpus the
fuzzer has a template for every request type (see Section 2.2) that the SUT can handle.

Finally, in order to answer RQ4, we perform another evaluation run on open62541 with
the small corpus (Table 6.3). However, this time instead of using SNAPP, we run a slightly
modified version called FSNAPP that implements the state snapshotting technique described
in Section 4.6.

6.1 Method 57

Message Type Description

FindServers
Discovery service requestsFindServersOnNetwork

RegisterServer

Browse

View service requests
BrowseNext

RegisterNodes
UnregisterNodes

TranslateBrowsePathsToNodeIds

CreateSubscription

Subscription service requests.
ModifySubscription
SetPublishingMode

Republish
DeleteSubscriptions

ModifyMonitoredItems Modifies monitored items. Create/Delete in Table 6.3
SetMonitoringMode Sets the monitoring mode of monitored items.

Call Part of the MethodService. Calls a remote procedure.

AddNodes

NodeManagement service requests.AddReferences
DeleteReferences

DeleteNodes

Table 6.4: Message types contained in the large fuzzing corpus in addition to those in Table 6.3.

6.1.1 SUT Adjustments

In order to make the SUTs fuzzable, some minor adjustments to the SUTs are required. We
discuss the necessary changes on a high level. The implementation details are contained in the
artifacts accompanying this thesis.

open62541

For open62541 there are already some adjustments available since it is continually fuzzed by
oss-fuzz [Aiz+16]. These adjustments can be enabled by supplying a build flag, which are
enabled for fuzzing and coverage runs. An additional flag that disables random generator
seeding is also enabled. This ensures that the program is as deterministic as possible.

For the session service this flag enables saving the authentication token and reusing it later
on such that the fuzzer does not have to guess the token. Usually the token received after

58 6 Evaluation

sending a CreateSessionRequest has to be used in the following ActivateSessionRequest in order
to proceed [Fou17b]. This check is essentially disabled by internally overwriting the token
in the received request with the saved token that was returned in the previous response. For
the SecureChannel service the flag disables the sequence number and channel id checks of the
protocol. These checks are normally performed for security reasons [Fou17c]. They however
introduce a value dependency between messages that is hard for fuzzers to overcome.

In addition to the aforementioned changes, we disable the SecureChannelToken verification
and introduce a deterministic clock. The SecureChannelToken is removed, because for each
message of type MSG, the token id in the request header is matched with the currently active
token id in the server [Fou17c]. We simply remove this check such that the fuzzer does not
have to guess the exact token id in order to make progress, since guessing the correct id is
very unlikely. The clock is also replaced by a simple counter that is increased each mainloop
iteration. Otherwise the SUT would exercise nondeterministic behavior every time the clock is
sampled.
Finally, for SNAPP the mainloop injection function is placed inside the ua_server.c file

inside the main server loop. Also, the wait time for select is disabled in order to speed up
fuzzing. This could only be done for SNAPP. For AFLNet, disabling the select timeout resulted
in decreased stability and slower execution times.

The OPC UA protocol also supports encryption of messages [Fou17c]. We do not enable this
for our fuzzing runs and only concentrate on the unencrypted communication. Due to the
nature of cryptography, guessing a correctly encrypted message is very unlikely, hindering
the fuzzer from making any kind of meaningful progress. Disabling these checks means
that fuzzing will not be able to reach and execute code that is related to the encryption and
decryption of messages. In order to test this code, a different approach would be required.
However, omitting this code should not have much effect on the results for any code that is
executed after these security checks, i.e. the number of basic blocks and bugs found after the
security mechanisms should not vary much.

lightftp

For lightftp we employ the same changes the AFLNet authors used in order to evaluate their
fuzzer. We slightly modify them, in order to provide a cleaner shutdown for the SUT when
terminated by the fuzzer. The SUT spawns a thread for each connection. Since we do not
want multiple connections in order to be as deterministic as possible, the code is modified such
that every time it spawns a new thread, the spawning thread waits for the spawned thread
to finish, and then exits itself. This means that only one thread will be active at a time, and a

6.1 Method 59

thread can only ever spawn one other thread, meaning the program is essentially executed
sequentially. We also make sure that the SUT cleanly exits when terminated by the fuzzer, by
adding handlers for the SIGINT and SIGTERM signals. Finally, for SNAPP the recvcmd function
is modified. The blocking recv call is replaced by a non blocking call that is called in a loop.
The loop exits, once a message was received or the socket was closed. In each iteration, before
calling recv, the mainloop injection function is called in order to synchronise the SUT with the
fuzzer.

live555

For live555 we also employ the same changes the ALFNet authors used in order to evaluate
their fuzzer. The only change required for both fuzzers is fixing the session id to the value
8888. For SNAPP the mainloop injection function is placed inside the while loop in the
BasicTaskScheduler0::doEventLoop function. Furthermore, the timeout for the select call
in the BasicTaskScheduler::SingleStep function is set to zero in order to speed up the
fuzzing process. Finally, a handler for the SIGINT and SIGTERM signal is added, that sets a stop
flag, such that the server cleanly shuts down when signaled to do so by the fuzzer.

6.1.2 Evaluation Environment

The different fuzzer-SUT-corpus configurations are evaluated on the system specified in Ta-
ble 6.5. During evaluation no other cpu intensive tasks were performed on the system.

Resource Type Description

Kernel Linux 4.15.0-122-generic
Distribution Ubuntu 18.04.5 LTS
CPU Intel Xeon CPU E5-2630 v4 (2464 MHz, 40 cores)
Ram 264 032 996 kB

Table 6.5: Evaluation system specification.

As previously discussed, each fuzzer-SUT-corpus combination is run for at least 48 hours on
20 different instances. Since there is a total of 11 of such combinations (see Table 6.6), running
everything sequentially is not feasible. Doing so would take at least 48 hours ·20 ·11 = 440 days.
Speeding up the evaluation process by simply running everything in parallel is also not possible
without further adjustments. Because the SUTs require communication to happen over the
network, running multiple instances in parallel on the same machine requires the ports of one
fuzzing instance to not conflict with those of another.

60 6 Evaluation

In order to alleviate this, we run each fuzzing instance in a separate docker container. The
docker container isolates the hosts resources such that each instance can operate as if running
on a dedicated machine. Each container is bound to one dedicated cpu core, such that the effect
of kernel scheduling is minimized. To achieve a fair comparison, each fuzzing combination is
run in isolation, i.e. only 20 instances are ever run in parallel, and they all belong to the same
fuzzer-SUT-corpus configuration.
By running the evaluation in parallel using docker as a virtualization layer, the evaluation

time is reduced to roughly 48 hours · 9 + 7 days · 2 = 32 days. The running time for two out of
the 11 fuzzer-SUT-corpus configurations was chosen to be one week each in order to analyze
the long term behavior of the fuzzers.

6.2 Results

This section lists the results achieved by the evaluation runs. The coverage used in the following
tables and figures was collected by supplying the inputs discovered by the fuzzer to a llvm-cov
instrumented executable. This executable has all modifications for fuzzing enabled, but is not
instrumented by the fuzzer. By doing this, each fuzzing run can be executed on the exact
same executable. The coverage achieved by each individual input is then accumulated for each
following input, and finally plotted as seen in the following figures.

6.2.1 Average Results per Run

Table 6.6 contains the final results achieved for each individual fuzzer-SUT-corpus configuration
averaged over all 20 runs. The second column contains the corpora used for the runs. The
7d-large corpus entry in Table 6.6 refers to the corpus described in Table 6.4 and, in contrast
to all other corpora, it was executed for seven days. The large and small corpora refer to
Table 6.4 and Table 6.3 respectively. For lightftp and live555 we use the same corpus “aflnet”
as the original paper by Pham et al. [PBR20b]. The table lists the average hangs, crashes and
executions achieved by each fuzzer. A crash refers to an actual crash of the SUT, i.e. the fuzzer
detected that the program terminated unexpectedly while sending the inputs. A hang refers
to a timeout of the SUT during fuzzing. For the performed experiments this timeout was
configured to 1 second. If after 1 second the SUT has not exited yet, the fuzzer will kill the
SUT and register the input as a hang. In addition, it also contains the average stability, the
average total coverage achieved in basic blocks and relative to the total number of basic blocks.
Stability is a value calculated by AFL that represents how deterministic the program behaves
during fuzzing, with 1 meaning the program is completely deterministic, and 0 meaning the

6.2 Results 61

program is completely nondeterministic. The value is determined with the help of the coverage
feedback received during fuzzing [Zal+20].

Table 6.6 ist structured in a way such that the runs that are later compared against each other
are adjacent. Each of the pairs of SNAPP and AFLNet also has an entry in Table 6.7, where the
coverages are compared, and the statistical significance is presented. The only exception is
the open62541 run with a small corpus. For these three runs, each combination of fuzzers is
compared, as such resulting in three entries in Table 6.7.

The crashes and hangs listed in Table 6.6 are analysed in Section 6.3. In all cases AFLNet
is able to perform more executions of the SUT than SNAPP, meaning that AFLNet is able to
execute the tests quicker. The stability for almost all open62541 test cases is greater than 0.9,
meaning that the program behaves mostly deterministic. However, the AFLNet run over seven
days on open62541 has slightly worse stability with a value of 0.86. Also, the FSNAPP run with
the small corpus on open62541 has significantly worse stability amounting to only 0.47.

The BB and BB% columns show how much of the SUTs’ code was covered. The percentages
correspond to the ratio of BBs hit relative to the total amount of BBs of the target (listed in
Table 6.1). The values in the BB column are used for the comparisons in Table 6.7.

SUT Corpus Fuzzer Hangs Crashes Executions Stab. BB BB%

open62541

7d-large SNAPP 0.00 4.95 2 830 749 0.97 10 191 34
AFLNet 166.15 0.00 4 439 589 0.86 9 873 33

large SNAPP 0.00 1.10 892 540 0.97 9 979 33
AFLNet 43.35 0.00 1 621 957 0.91 9 554 32

small
SNAPP 0.00 0.25 1 184 972 0.97 8 116 27
FSNAPP 0.11 0.00 3 316 521 0.47 8 547 28
AFLNet 20.10 0.00 2 306 884 0.96 8 459 28

lightftp aflnet SNAPP 0.00 0.00 743 943 0.78 629 55
AFLNet 60.50 0.00 1 007 982 0.10 627 55

live555 aflnet SNAPP 117.25 0.00 1 519 658 0.30 3 560 22
AFLNet 0.00 262.70 2 095 367 0.03 3 521 22

Table 6.6: Final statistics (hangs, crashes, executions, stability, basic blocks, and basic blocks in
percent of the total basic blocks) for each SUT-corpus-fuzzer evaluation configuration
averaged over all 20 runs.

62 6 Evaluation

Basic Block Coverage
% Incr. 𝑝-value Figure

SNAPP vs AFLNet
open62541 −4.05 0.038 6.1

lightftp 0.31 0.946 6.2
live555 1.11 0.091 6.3

FSNAPP vs AFLNet open62541 1.04 0.222 6.4

FSNAPP vs SNAPP open62541 5.31 0.005 6.5

SNAPP vs AFLNet (large) open62541 4.44 < 0.001 6.6

SNAPP vs AFLNet (long) open62541 3.22 < 0.001 6.7

Table 6.7: Mean coverage increase and statistical significance (𝑝-value) when comparing SNAPP
and FSNAPP to AFLNet.

6.2.2 Fuzzer Comparison

Table 6.7 depicts the percent increase of basic block coverage and the statistical significance
of the results, when comparing different fuzzers. The first three rows compare SNAPP and
AFLNet on the three different SUTs open62541, lightftp, and live555. The next two rows
compare FSNAPP (SNAPP with the state snapshotting enabled) against AFLNet and SNAPP
respectively on open62541. The last two rows compare SNAPP and AFLNet on the large corpus
on open62541. However, the comparison in the last row (SNAPP long vs AFLNet) uses the
evaluation data on the large corpus where both fuzzers ran for seven days. The statistical
significance in Table 6.7 is computed by means of the Mann-Whitney𝑈 test [MW47]. The test
is performed on the final 20 coverage samples of each of the two fuzzing runs The coverage
data used to calculate the percentages is the average of the final coverage from all 20 samples.
For each comparison in Table 6.7 there is a figure comparing the two runs. The first plot in
each figure compares the mean, and the best and worst runs of the two fuzzers. The second
plot compares the averages and confidence intervals of the two fuzzers. In all cases AFLNet is
colored blue, while SNAPP is colored orange.

SNAPP vs AFLNet In Figure 6.1 we can see the comparison of SNAPP and AFLNet on
open62541 with the small corpus. This is the only run that resulted in less total achieved
coverage for SNAPP compared to AFLNet, corresponding to a −4.05% coverage drop, as seen
in Table 6.7 in the first row. The comparison of SNAPP and AFLNet on the small corpus for
open62541 is statistically significant, since the 𝑝-value 0.038 is less than 0.05. In Figure 6.1b we
can see that the mean coverage of SNAPP is always less than that of AFLNet. The confidence

6.2 Results 63

intervals however start overlapping after 24 hours. However, even though SNAPP performs
worse on average than AFLNet, in Figure 6.1a we can see that the best run of SNAPP performed
better than the best run of AFLNet.

In Figure 6.2 we can see the comparison of SNAPP and AFLNet on lightftp. The run resulted
in 0.31% higher coverage for SNAPP when compared to AFLNet, with the corresponding
𝑝-value being 0.946, as seen in Table 6.7 in the second row. As we can see in Figure 6.2b,
SNAPP performs worse than AFLNet for the majority of the test time on average. However,
after 40 hours SNAPP catches up to AFLNet and even achieves slightly better coverage on
average. The best run for SNAPP and AFLNet as seen in Figure 6.2a achieve similar coverage,
but when considering the worst runs, SNAPP performs better than AFLNet.

Finally, the comparison of SNAPP and AFLNet on live555 is depicted in Figure 6.3. The run
resulted in 1.11% higher coverage for SNAPP when compared to AFLNet, with the correspond-
ing 𝑝-value being 0.091, as seen in Table 6.7 in the third row. SNAPP again on average performs
worse in the beginning, but catches up to AFLNet after 10 hours as seen in Figure 6.3b. The
worst run of SNAPP performs better than the worst run of AFLNet as seen in Figure 6.3a. The
best run for SNAPP also performs better than the best run of AFLNet, but the difference is not
as noticeable.

FSNAPP vs SNAPP and AFLNet Figure 6.4 depicts the comparison of FSNAPP with AFLNet
with the small corpus on open62541. The run resulted in 1.04% higher coverage for SNAPP
compared to AFLNet, with the corresponding 𝑝-value being 0.222, as seen in Table 6.7 in the
fourth row. As in the previous cases, FSNAPP performs worse than AFLNet in the beginning,
but in contrast to SNAPP (see Figure 6.1), FSNAPP catches up to AFLNet after 35 hours as seen
in Figure 6.4b. After 35 hours, the coverage for the best run of FSNAPP jumps a large amount,
and after 44 hours once more, setting it above the best run of AFLNet as seen in Figure 6.4a.
The worst run for both FSNAPP and AFLNet are similar, with the FSNAPP run performing
slightly better.

In Figure 6.5 SNAPP and FSNAPP are compared with the small corpus on open62541. The run
resulted in 5.31% higher coverage for FSNAPP compared to SNAPP, with the corresponding
𝑝-value being 0.005, indicating that the result is statistically significant, as seen in Table 6.7
in the fifth row. On average FSNAPP outperforms SNAPP as seen in Figure 6.5b. However,
the best run of SNAPP outperforms the best run of FSNAPP after 24 hours as seen in fig. 6.5a.
The worst run of FSNAPP and SNAPP perform similarly, with the FSNAPP run being slightly
better.

64 6 Evaluation

SNAPP vs AFLNet (large corpus) In Figure 6.6 the comparison of SNAPP with AFLNet
with the large corpus on open62541 is depicted. The run resulted in 4.44% higher coverage for
SNAPP compared to AFLNet, with the corresponding 𝑝-value being less than 0.001, indicating
that the result is statistically significant, as seen in Table 6.7 in the fifth row. On average,
SNAPP outperforms AFLNet as seen in Figure 6.6b. The confidence intervals also do not
overlap in contrast to the previously discussed runs. The worst run of SNAPP performs better
than the average of AFLNet, and the best run of AFLNet performs worse than the average of
SNAPP as seen in Figure 6.6a.
This evaluation run was repeated in the same configuration, but for a longer duration.

The results can be seen in Figure 6.7. The run resulted in 3.22% higher coverage for SNAPP
compared to AFLNet, with the corresponding 𝑝-value being less than 0.001, indicating that the
result is statistically significant, as senn in Table 6.7 in the sixth row. Similar to the short run,
the achieved coverage for SNAPP on average is higher than for AFLNet, and the confidence
intervals do not overlap as seen in fig. 6.7b. However, the worst run of SNAPP in this case is
now slightly worse than the average of AFLNet, but still better than the worst run of AFLNet
as seen in Figure 6.7a. The best run of SNAPP is still better than the best run of AFLNet, but
compared to the short run, the best run of AFLNet now performs better than the average of
SNAPP.

For the long-running test we also plot the individual coverages achieved per file in percent
of total basic blocks in the file. The coverage is displayed as box-plot in Figure 6.8. For each file
the coverage is plotted per fuzzer. The upper bound of a box corresponds to the upper quartile,
whereas the lower bound of the box corresponds to the lower quartile. The line inside the
box corresponds to the median. The whiskers’ length is determined by the last value that lies
inside 1.5 times the interquartile range. All other data points outside this range are depicted as
points.

6.2 Results 65

(a) Mean, Best, and Worst run

(b) Mean and confidence interval

Figure 6.1: Coverage comparison in basic blocks over time of AFLNet (blue) with SNAPP
(orange) on open62541.

66 6 Evaluation

(a) Mean, Best, and Worst run

(b) Mean and confidence interval

Figure 6.2: Coverage comparison in basic blocks over time of AFLNet (blue) with SNAPP
(orange) on lightftp.

6.2 Results 67

(a) Mean, Best, and Worst run

(b) Mean and confidence interval

Figure 6.3: Coverage comparison in basic blocks over time of AFLNet (blue) with SNAPP
(orange) on live555.

68 6 Evaluation

(a) Mean, Best, and Worst run

(b) Mean and confidence interval

Figure 6.4: Coverage comparison in basic blocks over time of AFLNet (blue) with FSNAPP
(orange) on open62541 with the state forkserver enabled.

6.2 Results 69

(a) Mean, Best, and Worst run

(b) Mean and confidence interval

Figure 6.5: Coverage comparison in basic blocks over time of SNAPP (green) with FSNAPP
(orange) on open62541.

70 6 Evaluation

(a) Mean, Best, and Worst run

(b) Mean and confidence interval

Figure 6.6: Coverage comparison in basic blocks over time of AFLNet (blue) with SNAPP
(orange) on open62541 with a bigger corpus.

6.2 Results 71

(a) Mean, Best, and Worst run

(b) Mean and confidence interval

Figure 6.7: Coverage comparison in basic blocks over time of AFLNet (blue) with SNAPP
(orange) on open62541 with a bigger corpus over a duration of 7 days.

72 6 Evaluation

(a) Files where average coverage of AFLNet is worse than SNAPP

(b) More files where average coverage of AFLNet is worse than SNAPP

Figure 6.8: Final coverage in percent of BB across all runs by file for AFLNet (blue) and SNAPP
(orange) on open62541 for the 7 day run. Files with the same basic blocks hit are
omitted. Percentages relative to the total basic blocks per file.

6.3 Crashes and Hangs 73

(c) Files where average coverage of AFLNet is better than SNAPP

Figure 6.8: Final coverage in percent of BB across all runs by file for AFLNet (blue) and SNAPP
(orange) on open62541 for the 7 day run. Files with the same basic blocks hit are
omitted. Percentages relative to the total basic blocks per file. (cont.)

6.3 Crashes and Hangs

In order to conclude the evaluation we briefly discuss the results in Table 6.6. We also take a
look at two bugs that were discovered and fixed before the actual evaluation runs.

6.3.1 False Positives

For open62541 only SNAPP found crashing inputs. However, these inputs are only able to
crash the fuzzer-instrumented executable. When executed on the executable used to gather
the coverage information, they do not result in a crash. This points toward a bug in the
instrumentation logic of the fuzzer. Due to the difficulty of debugging the instrumented
executable, the bug causing the crash could not be found. Since the bug only occurs on very
few inputs, the results of the evaluation are still relevant.

74 6 Evaluation

The hangs found by AFLNet on open62541 were tested by randomly picking 5 inputs for
each run. Testing every hang manually would have required too much time, since there are
more than 4000 such inputs. For all samples, none of them actually caused the server to hang
more than a second. Some inputs consist of very large inputs that naturally take longer to
process.

For lightftp the hangs were sampled as well, by randomly picking 5 inputs for each run. This
also did not yield any actual hangs.

The live555 evaluation yielded on average 263 crashes for AFLNet and on average 117 hangs
for SNAPP. However, when testing a random sample of 5 inputs categorized as crashes by
AFLNet for each run, no crash could be reproduced on either the fuzzer instrumented executable,
or the coverage instrumented executable. The inputs categorized as hangs by SNAPP were
evaluated like this as well. Most of the hangs could not be reproduced. Some of them however
could be reproduced, but the cause of the hang was that the session id was fixed to the value
8888 for fuzzing and this caused an endless loop. The endless loop occurs, because live555
wants to generate a new session id, because the current one is already used. Since the value is
fixed, however, this will always be the case, resulting in an endless loop. However, this is not
an actual issue, since the value is only fixed for the fuzzing process.

6.3.2 live555 Crash

One of the hangs sampled from the SNAPP evaluation resulted in a crash on the actual exe-
cutable. The hang in question is id:000067,src:000340,time:37986884,op:havoc,rep:16,
in the results of the first evaluation run. The live555 executable crashes with a segmentation
fault. When compiled with sanitizers, they identify the fault as a use-after-free, and the bug
seems to correspond to the CVE 2019-7314.1 When updating to the most recent version, the
crash does not occur anymore.

6.3.3 Found Bugs

During the development of the fuzzer and the integration of the SUTs the following two bugs
were found in open62541.

The first bug2 does not crash the server. However, it violates the protocol specification,
since it is possible to initiate a connection by starting with the OPN message, instead of a HEL
message as required by the specification. The client simply does not configure its protocol
parameters. The server then just assumes the default values and continues as if a HEL message

1 https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-7314
2 https://github.com/open62541/open62541/commit/a2c677cab669f2913dd50936ab1640da8a9760f3

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-7314
https://github.com/open62541/open62541/commit/a2c677cab669f2913dd50936ab1640da8a9760f3

6.3 Crashes and Hangs 75

was received. However, the specification requires that the communication is initiated with a
HEL message [Fou17c].

The second bug3 results in a crash of the server. By sending multiple messages in the same
TCP packet where any message except the last results in an error, the server crashes, because
it transitions into an error state, but still continues to process any remaining messages. This
will then access already freed memory, resulting in the crash.

The first bug could not have been discovered by the fuzzers, because it does not result in
a crash of the server or any kind of undefined behavior. The second bug was so severe, that
it would have caused most of the inputs of the fuzzer to result in a crash. This would have
hindered a sensible evaluation. Before running the actual fuzzing campaigns, both bugs were
thus fixed with a pull request4 to the open62541 repository.

3 https://github.com/open62541/open62541/commit/b74eadae948a730d63948b18fb854ee641ada787
4 https://github.com/open62541/open62541/pull/3831

https://github.com/open62541/open62541/commit/b74eadae948a730d63948b18fb854ee641ada787
https://github.com/open62541/open62541/pull/3831

77

7 Discussion

In this chapter we interpret the results of the evaluation presented in the previous chapter.
We first answer each research question posed in Chapter 3 in Section 7.1. Afterwards, we
discuss some additional insights gained from the evaluation data in Section 7.2. Further, we
discuss some limitations of the current approach that were identified during the evaluation. In
Section 7.4 we then discuss approaches related to this thesis, followed by proposals for future
work in Section 7.5. Finally, we conclude the discussion in Section 7.6 by summarizing the
overall findings.

7.1 Answering the ResearchQuestions

We now use the evaluation data presented in Chapter 6 in order to answer the research
questions posed in Section 3.3.

7.1.1 RQ1: Can the state identification process be automated by using already
provided coverage information?

In Chapter 4 we introduced new mechanisms in order to extract state information from
already provided coverage feedback. In order to answer RQ1, we presented the evaluation
runs in Chapter 6 comparing the coverage achieved over time on multiple fuzzer-SUT-corpus
combinations.

We repeat Table 6.7 here for convenience. The results presented in Table 7.1 suggest that in
most cases SNAPP performs at least as well as AFLNet. The only case where SNAPP performs
worse is for open62541 on a small corpus. Although the result is statistically significant
(𝑝 < 0.05), the overall decrease in coverage is only −4.05%. It should be noted however, that
in the 48 hours the test ran for, AFLNet fuzzed the SUT nearly twice as much as SNAPP (see
Table 6.6). Since SNAPP’s implementation uses a very rudimentary synchronisation measure,
the speed can most likely be improved such that SNAPP runs as fast as AFLNet. This in turn
could reduce the difference in achieved coverage to a statistically not significant amount such
that the fuzzers achieve comparable performance. The results for FSNAPP, which implements

78 7 Discussion

Basic Block Coverage
% Incr. 𝑝-value Figure

SNAPP vs AFLNet
open62541 −4.05 0.038 6.1

lightftp 0.31 0.946 6.2
live555 1.11 0.091 6.3

FSNAPP vs AFLNet open62541 1.04 0.222 6.4

FSNAPP vs SNAPP open62541 5.31 0.005 6.5

SNAPP large vs AFLNet open62541 4.44 < 0.001 6.6

SNAPP long vs AFLNet open62541 3.22 < 0.001 6.7

Table 7.1: Mean coverage increase and statistical significance (𝑝-value) when comparing SNAPP
and FSNAPP to AFLNet.

a simple snapshotting mechanism (see section 4.6), show that using snapshot mechanisms is a
feasible approach in order to improve the performance of SNAPP. FSNAPP achieves better
coverage than AFLNet as seen in Figure 6.4 and Table 7.1. Overall, we can conclude that the
automatic state extraction used by SNAPP can successfully replace the manual approach used
by AFLNet, since it performs at least as well as AFLNet on all but one SUT-corpus configuration.

7.1.2 RQ2: How effective is a fuzzer using an automated state identification
process compared to the manual approach of AFLNet if measuring
performance by using coverage achieved as metric?

We now compare the two approaches SNAPP and AFLNet in more detail. Recall, that in order
to directly compare SNAPP to AFLNet we ran a fuzzing campaign on each SUT also used
by Pham et al. in the AFLNet paper [PBR20b]. For lightftp this resulted in almost identical
coverage achieved on average after 48 hours as seen in Table 6.6, Table 7.1, and Figure 7.1a.
Since we used the same corpus and the same SUT version for both lightftp and live555 as Pham
et al. [PBR20b], we can also indirectly compare the achieved results to AFLNwe and boofuzz.
AFLNet achieved a 121% coverage increase compared to AFLNwe (see Table 7.2), so we

should expect similar results when comparing SNAPP to AFLNwe. The same reasoning can be
applied to the results achieved for boofuzz. A direct comparison should be made in the future,
but due to time constraints we limit ourselves to the indirect comparison for now. It should
also be mentioned that lightftp is a comparatively small SUT, having only a total of 2 236 lines
of code. This means that the complexity of the SUT is not as high as for example open62541
with its 54 904 lines of code, and as such it is easier for a fuzzer to achieve high coverage.

7.1 Answering the ResearchQuestions 79

(a) lightftp

(b) live555

Figure 7.1: Coverage comparison in basic blocks over time of AFLNet (blue) with SNAPP
(orange)

80 7 Discussion

Branch Coverage Statement Coverage
% Incr. 𝐴12 𝑝-value % Incr. 𝐴12 𝑝-value

AFLNet vs AFLNwe lightftp 121.06 1.000 < 0.001 79.45 1.000 < 0.001
live555 3.40 0.335 0.076 2.44 0.228 0.003

AFLNet vs boofuzz lightftp 57.73 1.000 0.026 49.72 1.000 0.026
live555 64.13 1.000 0.026 62.09 1.000 0.026

Table 7.2: Mean coverage increase (%Increase), effect size (𝐴12), and statistical significance
(𝑝-value) when comparing AFLNet to boofuzz and AFLNwe, respectively. A Vargha-
Delaney 𝐴12 measure above 0.71 indicates a large effect size in favor of AFLNet.
Statistical significance is computed using the Mann-Whitney 𝑈 test. Adapted
from [PBR20b]

For live555 the achieved coverage for SNAPP and AFLNet is also very similar as seen in
Table 6.6, Table 7.1, and Figure 7.1b. This can again be indirectly compared against the results
achieved by boofuzz and AFLNwe on live555. However, for live555 the results should be
interpreted with a grain of salt, since the stability (see Section 6.2.1) of the fuzzer was low,
i.e. 3% for AFLNet and 30% for SNAPP. This means that the executable behaved in a very
nondeterministic way, potentially hindering the fuzzer from progressing in a meaningful
way. This assumption is reinforced by the coverage curves in Figure 7.1b. The coverage only
marginally increases after the first 6 hours, suggesting that the fuzzer had difficulty finding
new interesting inputs. Also, compared to all other SUTs, the best and worst runs of live555
are not far apart, which is also reflected in the confidence interval being small compared to the
other SUTs. In Section 7.3 we discuss possible causes for this nondeterministic behavior.

Finally, the runs performed on open62541 show, that when choosing an extensive corpus that
contains a template for all message types the SUT can process, SNAPP is able to outperform
AFLNet as seen in Figure 6.6 and Figure 6.7. We discuss the meaning of the corpus choice in
more detail in the following section, answering RQ3.

Overall, we can conclude that SNAPP is able to achieve similar or better coverage on stateful
SUTs compared to AFLNet. Most importantly, SNAPP does so without needing a manual
specification of the response code extraction function. Additionally, if the SUT does not supply
much information via response codes, the approach used by SNAPP can be used to still identify
states by using already supplied coverage feedback. This approach also works, even if the
source code of the SUT is not available, and it is only available as a binary. Although in that
case the derandomisation and synchronisation injection becomes more difficult, since the
binary has to be modified.

7.1 Answering the ResearchQuestions 81

7.1.3 RQ3: Does the seed corpus selection make a difference in achieved
coverage when fuzzing stateful software?

Discovering new states often corresponds to finding a new sequence of messages in which each
message passes the parsing stage in order to be processed further by the SUT. These sequences
are found by combining already known messages into a new sequence, or by mutating existing
sequences with the mutation operations described in Section 4.5. Since this requires already
known messages, the first step before mutating a sequence is finding new messages that pass
the parsing stage. This can be done either by mutating existing messages, or by supplying the
fuzzer more initial testcases that contain valid messages. An obvious hypothesis is therefore,
that adding more message types to the initial corpus should increase the performance of the
fuzzer.

Basic Block Coverage
% Incr. 𝑝-value Figure

AFLNET 12.94 < 0.001 7.2a
SNAPP 22.95 < 0.001 7.2b

Table 7.3: Mean coverage increase and statistical significance (𝑝-value) when comparing small
and large corpus runs of AFLNet and SNAPP respectively.

In order to verify this hypothesis, we ran the open62541 SUT on two corpora with different
sizes (see Table 6.3 and Table 6.4). For both AFLNet and SNAPP the larger corpus results in a
significant increase of the achieved coverage as seen in Table 6.6. These results are also plotted
once more in Figure 7.2, directly comparing AFLNet and SNAPP respectively on a small and
large corpus. Interestingly, the increase in percent for SNAPP is almost 1.8 times as high than
that of AFLNet, suggesting that SNAPP can handle a more diverse initial corpus better. We
discuss possible reasons for this in Section 7.2.

As we have seen, the achieved coverage can be significantly improved by supplying a better
initial corpus to the fuzzer that contains a more diverse set of message types. This suggests
that the fuzzer performance could possibly be increased by using a generational approach in
order to generate valid messages for the fuzzer. We discuss this further in Section 7.5.

7.1.4 RQ4: Could program state snapshotting improve fuzzing speed and as
such effectiveness?

Chen et al. [ClV19] propose an approach using a stateful forkserver in order to fuzz stateful
SUTs. Their work is covered in Section 7.4. We adapted a similar forkserver approach for state

82 7 Discussion

(a) AFLNet on open62541 with a small corpus (blue) with a large corpus (cyan)

(b) SNAPP on open62541 with a small corpus (green) with a large corpus (orange)

Figure 7.2: Coverage comparison in basic blocks over time.

7.2 Additional Insights 83

snapshotting (see Section 4.6). The results seen in Table 6.6, Table 7.1, Figure 6.4, and Figure 6.5
show that the snapshotting mechanism increases the performance of SNAPP. FSNAPP (the
SNAPP version with enabled snapshotting) is able to achieve 5.31% more coverage compared
to SNAPP. This increase in coverage is statistically significant and shows that a snapshotting
approach can be used to increase performance. However, since only a rudimentary version
without any optimizations was implemented due to time constraints, the performance increase
can possibly be further increased. Furthermore, problems with correct restoring of snapshots
arose during implementation that are further discussed in Section 7.3. Overall we can conclude
that snapshotting techniques are able to increase fuzzer performance and are worth further
investigation (see Section 7.5).

7.2 Additional Insights

By comparing the final achieved average coverage per source file on open62541, some additional
insights can be gained. The three plots in Figure 6.8 depict a box plot. Each source file has its
own column. The left (blue) and right (orange) box plot depicts the final coverage achieved
for all twenty runs with the big corpus over 7 days on open62541 of AFLNet and SNAPP
respectively. Files with no difference in basic blocks over all runs are omitted.

An interesting observation is that all files handling a part of the subscription service exhibit
a high variance for AFLNet compared to SNAPP. The files in question are plotted together
once more in Figure 7.3. The subscription service model is highly stateful. The standard lists
five different states with a total of 27 different transitions. In order to model this complex
statemachine, AFLNet would need a very detailed message encoder/decoder akin to a small
client. Implementing such a model is error prone and requires more work in order to adapt
new protocols. The implemented parser thus only decodes messages and extracts state IDs
up to the SecureChannel layer. AFLNet can thus not identify any states that are observed in
a higher layer. SNAPP however, is able to fuzz these deep states more effectively as seen in
Figure 7.3 because of its automatic state identification component. AFLNet seems to however
perform slightly better on files that are reachable without deep state dependencies. As seen
in Figure 7.3b, for the files handling the session service, the securechannel service, and the
discovery service the coverage results are in favor of AFLNet. All of these services are directly
reachable from the states modeled for AFLNet, and the inter-message dependencies are not as
complex as those for the subscription services. Overall, this indicates that SNAPP is able to
successfully fuzz deeper states of the open62541 target than AFLNet.

84 7 Discussion

(a) Only files concerning the session service are shown.

(b) Only files concerning the securechannel, session and discovery service a re shown.

Figure 7.3: Final coverage in percent of BB across all runs by file for AFLNet (blue) and SNAPP
(orange) on open62541 for the 7 day run. Percentages relative to the total basic
blocks per file.

7.3 Limitations 85

7.3 Limitations

We now discuss limitations encountered with the current approach of AFLNet and SNAPP.
First, we look at fuzzer stability. Afterwards we consider speed concerns, and finally we
examine problems of the current snapshotting approach.

7.3.1 Stability

As already mentioned in Section 7.1, the stability (see section 6.2.1) of the live555 SUT is very
low. In order to understand why this is the case, we have to consider what the live555 SUT
does. The live555 code itself is mostly deterministic. It is single threaded, and uses very little
random number queries. The random seed and clock could have been made deterministic as
well as done for open62541, but we chose not to do so, in order to achieve comparable results
to Pham et al. for AFLNet [PBR20b].
The actual problem arises when considering the syscalls live555 makes. Since live555 im-

plements the streaming protocol RTSP, the code makes extensive use of file operations. Since
the execution times and behavior of these syscalls depend on the hardware configuration
and kernel behavior, a single input can behave differently if it is sent more than once. The
same problem exists for syscalls like send and recv that handle the network messages. In
order to alleviate this problem, the syscalls would most likely have to be intercepted by the
fuzzer in order to introduce deterministic behavior. We discuss possible approaches further in
Section 7.5.

7.3.2 Speed

The current implementations of AFLNet and SNAPP both perform an order of magnitude slower
than conventional fuzzers like AFL or libFuzzer. Although this speed loss is compensated by
more efficient mutations, there is still potential for increased speed as shown by the forkserver
experiment. In the fuzzing community the consensus is, that fuzzers should be as fast as
possible, due to the nature of random testing [LLV20]. The reasoning being, that more inputs
tested result in a higher probability of finding bugs.

7.3.3 State Forkserver

The state forkserver implemented for this thesis did not work on the live555 and lightftp SUTs.
The reason for this is that both SUTs use file operations. The implemented forkserver simply
forks the SUT after it has received the messages in a sequence (see Chapter 5). It is important
to note that the open file descriptors persist across such forks. For the network connection

86 7 Discussion

this is intended, and works as expected. However, file descriptors for actual files on disk have
additional state, like the position of the cursor inside the file. Since this additional state data is
not reset in between fork calls, the program behaves in an unexpected way for every fork but
the first.

For example, consider that the current snapshot has one open file with the cursor set at the
beginning. If the first forked instance then processes an input that sets the file descriptor of an
open file to the middle of the file, this change will persist for the next forked instance. The
second forked instance will then start from a point where the cursor in the open file is in the
middle, which is not the correct state as it would be expected. This problem also manifests
itself, if any files are created or deleted after the snapshot point. We discuss possible solutions
for this problem in Section 7.5.

7.4 Related Work

In this section we discuss work related to the problem of fuzzing stateful software. We first
cover existing blackbox approaches in Section 7.4.1 and greybox approaches in Section 7.4.2.
Afterwards, we briefly discuss related approaches for state snapshots in Section 7.4.3. In
Section 7.4.4 we then explain the relevance of symbolic execution for stateful fuzzing. Finally,
we cover approaches to target oriented fuzzing in Section 7.4.5 that are relevant for guiding a
fuzzer to locations that were identified as interesting.

7.4.1 Blackbox State Identification

As already mentioned in Section 3.1, the state identification process using blackbox approaches
has seen extensive research recently [Dou+12; RP15; Fit+20; AGP19; Ma+16; Gas+15]. The
approach by Doupé et al. [Dou+12] uses a similar insight to the one introduced in Chapter 4.
Their work focuses on blackbox testing of web applications. As such, they send requests
to the web application and observe the responses, parsing them in order to extract relevant
information. They make the observation that when sending an identical request twice and
getting a different response, the state of the web application must have changed. The difference
to the state identification algorithm introduced in Chapter 4 is, that our approach uses coverage
feedback of the SUT and as such is independent of the SUT, as long as it can be instrumented to
provide coverage feedback. In contrast, their approach is specific to web applications and uses
a parser that extracts information about the links contained in a web page. This information is
then used similarly to the message behavior defined in Definition 4.2.

7.4 Related Work 87

Other approaches can be categorized into active and passive state machine learning. Active
state machine learning approaches like those of De Ruiter et al. [RP15] and Fiterau-Brostean et
al. [Fit+20] use interaction with the SUT to gain information used to infer a state machine.
Passive state machine learning approaches like the Pulsar fuzzer by Gascon et al. [Gas+15]
only have access to a fixed set of data that is supplied to the algorithm like a set of network
captures of the relevant protocol in order to extract the state machine.

Finally, there are also model based approaches like boofuzz [Per20], Peach [Tec20], or the
work by Ma et al. [Ma+16]. These approaches usually require the user to specify a message
and/or state model for the fuzzer to start fuzzing. In contrast to these approaches, our approach
avoids manual specification of a state machine model, and only requires a simple parser that is
able to split an input string into individual requests. Also, in general, greybox fuzzers like our
approach have an advantage over blackbox approaches, since the obtained coverage feedback
allows for more fine-grained steps during mutation.

7.4.2 Stateful Greybox Fuzzing

There already exist greybox approaches that consider the stateful nature of SUTs. Steelix by Li et
al. [Li+17] uses state information of the program extracted by static analysis and instrumenting
the SUT. The state information Steelix extracts concerns the comparison progress on locations
identified by the static analysis. Further, Wang et al. [Wan+20] use static analysis and feed
the obtained results to the fuzzer, guiding it to operation sequences that are more likely to
exercise use-after-free behavior. Both of these approaches regard the fine-grained state space
of the program for single inputs in contrast to our approach, which tries to find states that are
relevant for dependencies between multiple inputs.

Lastly, Aschermann et al. [Asc+20] recently developed a fuzzer called IJON. Their fuzzer
uses source code annotations in order to give the fuzzer feedback in situations, where coverage
feedback is of no use. For example, if the state is contained entirely in memory, but execution
paths are the same until a relevant change to the memory region has been made, the fuzzer
will not get any new feedback by only observing coverage information. Their solution in this
case is to provide additional feedback to the fuzzer by inserting an annotation that for example
returns the memory contents to the fuzzer, making changes to that region observable for the
fuzzer. However, this requires manually inspecting the source code of the program in order to
identify where to put annotations.

88 7 Discussion

7.4.3 State Snapshots

Similar to the approach by Chen et al. [ClV19], we showed that using program state snapshotting
can improve fuzzing performance, because restoring the snapshot is faster than restoring the
state by sending the required inputs. The work by Dong et al. [Don+20] follows a similar
approach. Their use case is specific to android app testing. Because of the testing environment,
it is difficult to save input sequences to restore a state. Instead, they use the snapshotting
mechanisms of virtualbox, saving an entire virtual machine state and restoring it later on if
needed. Key difference in the mutation strategy is, that mutations do not start from the same
state for each mutation done, but are performed on top of each other. The states are only used
as means to travel back in time to a previously observed state that was considered interesting,
if the fuzzer reaches a dead end.

7.4.4 Symbolic/Concolic Execution

Symbolic execution describes the process of using a constraint solver, in order to find a concrete
input that exercises a specific part of the program. This approach can be categorized as whitebox
fuzzing, since the program is not executed, and full source code knowledge is needed. Concolic
execution on the other hand usually combines symbolic execution with actual executions of
the program. A noteworthy example for concolic execution is the angr framework [Sho+16].

Angr is used by Driller, a fuzzer developed by Stephens et al. [Ste+16]. Traditional fuzzing
often has difficulties trying to pass complex checks in the SUTs code, while concolic execution
suffers from path explosion when used alone. By using concolic execution only for checks
where the traditional fuzzers has difficulties, Driller is able to mitigate the weaknesses of each
approach. Although their work does not directly consider the challenges in stateful fuzzing, it
is nevertheless relevant. Their work can be used to more effectively find valid inputs, which
are essential for efficient sequence mutations as we discuss in Section 7.5.

Further work in this direction includes QSYM by Yun et al. [Yun+18], which improves
efficiency over driller by loosening the strict soundness requirements of symbolic execution,
and REDQUEEN by Aschermann et al. [Asc+19]. REDQUEEN uses an approach leveraging
what the authors call “input-to-state correspondence”, meaning that parts of the input often
end up in the program state unmodified. However, their approach only tackles the problem of
overcoming difficult checks for single inputs similar to Driller and QSYM, in contrast to our
approach, which tries to find sequences of inputs.

7.5 Future Work 89

7.4.5 Target Oriented Fuzzing

Target oriented fuzzing has been successfully employed to guide fuzzers to specific code
locations. Target oriented fuzzing can for example be used to guide the fuzzer to newly
introduced code in a repository. By only fuzzing the code difference, the available resources
are concentrated on previously unfuzzed code, instead of using them to fuzz code that has
already been fuzzed.

AFLGo by Böhme et al. [Böh+17] uses an annealing-based power schedule in order to assign
more power to seeds that are closer to one or more desired target locations. AFLGo generates
inputs without knowledge of the SUT’s input structure. The TOFU fuzzer developed by Wang
et al. [WLR20] identifies this as a problem. They reason that random changes to a valid input
can change the input in such a way, that it is invalid and as such increases the distance from
the target location. Because of this, TOFU uses user supplied input specifications in order to
produce valid inputs to the SUT. They also use a different target guidance approach that is
based on the distance between basic blocks in the CFG of the SUT.

7.5 Future Work

In this section we briefly motivate directions to move forward as a follow up to this thesis. We
first discuss the need for a benchmarking suite and further tests in Section 7.5.1. Afterwards,
we motivate approaches to improve performance and stability of the fuzzer and SUT in
Sections 7.5.2 and 7.5.3. We then proceed with suggesting possible improvements to the
mutation and seed selection components in Sections 7.5.4 and 7.5.5. Finally, we propose multiple
approaches to further improve the state machine components in Sections 7.5.6 to 7.5.10.

7.5.1 Benchmarking

Comparing fuzzer effectiveness across different fuzzing approaches is difficult, because there
is no de facto benchmarking strategy yet [Kle+18]. In this thesis we evaluate our approach
against AFLNet as the baseline by using the achieved coverage as comparison metric. Hazimeh
et al. [HHP20] argue, that this metric alongside with crash count or ground-truth bug counts
is insufficient for use in fuzzer comparisons. They motivate the need of a benchmarking suite
that contains a diverse range of SUTs with a number of known real-world bugs. However,
their developed benchmarking suite Magma mostly considers stateless software.
A possible next step is to extend the Magma benchmarking suite to include more stateful

software. Further, reevaluating the approach developed in this thesis against AFLNet and other
fuzzers on the developed benchmark should provide additional insights.

90 7 Discussion

7.5.2 Snapshots

As we have seen previously, using snapshots to rewind the program to a specific state, instead
of restoring the state by re-sending the inputs, is able to increase fuzzer performance. However,
the approach used in this thesis also is not portable and only works for programs that do
not have external state in the form of for example configuration or database files. It sounds
plausible to use virtualization, in order to alleviate the aforementioned problems, since creation
and restoration of snapshots for virtual machines has already been implemented. Although
this works, it is currently orders of magnitude slower than simply restarting the program from
its initial state and restoring the state by sending all required inputs. The recent work by
Schumilo et al. [Sch+21] tries to address this problem by developing methods to drastically
increase the speed of virtual machine snapshot creation and restoration. Their approach is
intended for hypervisor fuzzing but could be extended to stateful fuzzing.

7.5.3 Automatic Derandomisation

In the evaluation in Chapter 6, we saw that the stability of the SUTs influences the perfor-
mance of the fuzzer. The stability is essentially a measure for how deterministic the SUT is.
Derandomising targets often involves disabling the seeding of random generators and using
deterministic clocks. Instead of relying on the user to derandomise the targets, a different
approach could be to automatically derandomise the SUT. This could be done by fuzzing the
program and identifiying sources of randomness, which can then be patched out by automat-
ically recompiling the program or modifying the binary. However, this approach could be
difficult to implement, since binary patching or source code modification is hard, when trying
to preserve the functionality of the SUT. A different approach could be to mask out unstable
regions in the coverage map. Although this should be easy to implement, it might not work
depending on the SUT. If the randomness for example propagates through the program making
most of it nondeterministic, this approach would not work.
Furthermore, multi threaded applications are inherently random if the kernel uses non-

determinism during scheduling. Such applications could be made deterministic by using a
deterministic scheduling algorithm.
Finally, calls that perform some kind of I/O operation are also sources of randomness.

Network operations for example depend on delays introduced by the network or kernel. A
recv call might return different amounts of data, depending on how fast the data arrives and
how it is reassembled. Also, file operations for example leave behind external state that needs
to be cleaned up properly. Possible solutions to automatically deal with these problems include
virtualization and mocking of syscalls. The virtualization however faces the same issues as

7.5 Future Work 91

mentioned in Section 7.5.2. The preeny project [Sho20] already provides some methods to
remove random seeding and redirect network sockets to stdin/stdout, and would be worth
investigating for this purpose.

7.5.4 Directed fuzzing

Stateful fuzzing tries to separate the program into different states in order to concentrate
fuzzing on those states that promise to yield the most results. In oder to concentrate the
fuzzing on these states, AFLNet and the approach in this thesis limit the selected seeds to
those that are able to reach this state. However, the mutation strategy that mutates the seeds is
still random. Target oriented fuzzing [Böh+17; WLR20] or concolic execution [Asc+19; Ste+16;
Yun+18] techniques could be applied in order to guide the fuzzer even further to code locations
relevant to the selected state.
A different possible approach could be to utilize target oriented fuzzing in order to guide

the fuzzer to code that promises to reveal more state information. These locations could either
be extracted by using static analysis, or by using the feedback gained during fuzzing. Consider
the case that multiple states have already been discovered. The fuzzer could then identify the
code locations that led to the discovery of each state and focus on fuzzing those locations in
order to find more states.

7.5.5 Seed Selection and Mutation Strategies

Böhme et al. [BMC20] describe Entropic, an approach using entropy as a measure of how
much information is revealed about the SUT by individual seeds. They then use this entropy to
weight the seeds, reasoning that seeds with high entropy promise to reveal more information
about the SUT when fuzzed further, and achieve performance increases by doing so.

AFLNet and SNAPP currently use the standard AFL seed weighting for seed selection, and a
completely random choice for the requests to use in sequence mutations. It seems plausible
that adapting the entropy approach for seed selection in our context can boost performance
as well. It should be investigated if and how the calculation of the entropy can incorporate
information of the state machine. Furthermore, it could be worth investigating how entropy
could be used for the request selection in the sequence mutator component. A possible idea is
to adapt the ideas of Entropic to sequences of inputs, in order to find requests to insert into a
sequence that increase the entropy of the sequence.

In addition, the ratio of sequence mutation to normal message mutation used in AFLNet and
SNAPP (see Section 4.5), should be further analysed. Currently, AFLNet uses a fixed ratio and

92 7 Discussion

SNAPP uses a weighted ratio depending on information gathered for each state. These values
are currently chosen in an arbitrary way and need to be evaluated separately in the future.

Finally, the message mutation algorithm for SNAPP as well as AFLNet is currently adapted
from AFL. Although these mutations proved to be effective, they do not consider dependencies
between individual messages. Thus, a next step would be to devise techniques that are able to
find such dependencies, allowing the fuzzer to direct its efforts towards fuzzing these values
more effectively. Dynamic tainting as used by Mathis et al. [MGZ20] for example promises to
be a good starting point for this.

7.5.6 State Machine Minimizing

The currently implemented approach only adds new states and as such the state machine only
gets bigger. This could lead to problems when the amount of states gets too large, making
it difficult to properly weight individual states. It is therefore worth investigating how the
obtained state machine can be minimized. For example, if there is a sequence ⟨𝐴,𝐵,𝐶,𝐷⟩ with
message𝑀 that leads to state 𝑆 , the sequence could be analyzed in order to determine which
messages are not necessary to obtain the behavior of𝑀 . If for example 𝐴 can be omitted from
the sequence without changing the behavior of𝑀 , the sequence could be shortened to ⟨𝐵,𝐶,𝐷⟩.
However, it should be noted that it is possible that 𝐴 changed the state and information is lost
by omitting it. It is possible that this state change would have been observed after fuzzing
more messages with this sequence. As such, when to perform such a minimization step should
also be looked into.

7.5.7 Message Behavior Sensitivity

In this thesis we used the exact coverage profile of a message as message behavior. However,
this means that even the slightest change in coverage means that the behavior changes, and
as such a new state is identified. It should be investigated if reducing the sensitivity of the
message behavior could improve the performance of the fuzzer. A small change in execution
does not necessarily correspond to a meaningful state change. Consider for example that two
sequences simply causes a variable to be set to two different values. If the final message now
causes a formatting function to be called, the formatting function might execute different
paths for the two different values. Although this is interesting behavior, since new code was
executed, it might not be necessary to categorize this as a new state.
A possible approach to reduce the message behavior sensitivity could be to group certain

basic blocks together. Each basic block difference in such a group could then contribute to a
kind of score of the group. The group would only be considered as different, if the score is

7.5 Future Work 93

high enough, i.e. if enough basic blocks in the group differ. The work by Doupé et al. [Dou+12]
uses a similar approach to ours. Instead of comparing the obtained responses of the SUT bit by
bit, they group together the output obtained by the SUT using so-called link vectors obtained
by parsing the response. Although this approach is very specific to their use case of fuzzing
web applications, it can serve as starting point to reduce message behavior sensitivity.

7.5.8 Response Feedback

Currently, the approach of this thesis only uses the coverage feedback of the SUT in order to
identify states. However, as mentioned in Section 7.4.1, blackbox approaches are also able to
identify states. A next step would be to combine the two state identification techniques, either
by keeping two separate state machine models, or by combining the identification approaches
into one. Still, regardless of how the approaches are combined, since one of our goals was to
achieve protocol independence, the black box approach has to be protocol independent.

7.5.9 Automatic Injection

The current approach described in Chapter 4 requires injecting a function into the mainloop of
the program. Since one of the goals of the automatic state identification was to reduce manual
work required, a next step would be to automate the injection. A possible approach could be
to use the CFG of the SUT in order to identify the main loop.

Also, a different concept to modifying the SUT by injecting code for synchronisation could
be to use the ptrace API [Ker20]. The ptrace API is used by debuggers to for example set
breakpoints and get notified once they are hit. Using this API would have the benefit that the
SUT does not have to be recompiled in order to enable the synchronisation. This also makes it
possible for the fuzzer to adaptively change the synchronisation point if necessary.

7.5.10 Memory Feedback

The current approach of identifying the states does not cover states that are exclusively
represented in memory. That is, if the program executes the same code twice, the state can
still be different. For example, consider two different inputs. If they are just passed on into
memory, the code paths are the same, but memory content differs. Although the SUT executes
the same code for both inputs, the content saved in memory can produce different execution
paths later on. Coverage will not be a helpful metric in this case. The fuzzer would only save
one of the inputs to the seed corpus and discard the second one, even though the input might
have been more interesting later on, when the content of the memory is read.

94 7 Discussion

Although the IJON paper by Aschermann et al. [Asc+20] tackles this problem by using
annotations to enable feedback for situations like this, their approach still requires inserting
the annotations manually in the right locations. It should be investigated how to identify
such locations, and how to insert the correct annotations. In order to identify locations where
annotations can be placed it might be possible to use the number of accesses to specific memory
addresses. The intuition behind this being, that many accesses to the same memory address
corresponds to a location where state is stored.

7.6 Overall Findings

The performed evaluation shows that the new automatic state identification approach developed
in this thesis and prototypically implemented as SNAPP achieves similar or better results
compared to AFLNet. However, in contrast to AFLNet we are able to achieve these results
without the need for manual specification. Furthermore, our approach seems to be able to test
deep state dependencies better than AFLNet when given a large initial corpus. This is the first
step to a fully automated stateful greybox fuzzer, with the second step consisting of eliminating
the need for a manually specified request sequence parser. We can also conclude that the
selection of the initial corpus plays a key role if messages are not generated according to a
generator specification. The importance of the initial corpus selection could also be reduced
when eliminating the manual request sequence parser, if a generator is used to automatically
generate an initial seed according to an automatically extracted specification. Overall, we can
conclude that SNAPP provides an improvement over AFLNet, and a good starting point to
even further increase automation and efficiency for stateful greybox fuzzing.

95

8 Conclusion

Fuzzing more types of software and providing better usability, e.g. automating more steps in
the fuzzing process, is identified by Böhme et al. [BCR20] as one of many current challenges.
They consider especially fuzzing stateful software as open research. The objective of this thesis
was thus to design and evaluate new methods for efficient fuzzing of stateful software. In
order to achieve this objective, we analyzed the existing approaches, and identified AFLNet
as the only stateful fuzzer that currently follows a greybox approach. We saw that AFLNet
by Pham et al. [PBR20b] is able to significantly outperform classic fuzzers like AFL and also
blackbox approaches like boofuzz. However, we identified that AFLNet needs a manually
specified extraction function to identify states, reducing the adaptation rate of the fuzzer,
because of the manual work required when adapting to new SUTs. In order to alleviate this,
we conceived a new algorithm that automatically infers a state machine during fuzzing of the
SUT. We also described a synchronisation mechanism required to make the program more
deterministic, such that the automatic state identification is able to function correctly. In order
to evaluate our approach we implemented the algorithms using AFLPlusPlus as basis, and
called our new fuzzer SNAPP. We then performed an evaluation on the three open source
targets open62541, lightftp, and live555, of which the latter two were also tested in the original
AFLNet paper [PBR20b]. The evaluation compared the fuzzers’ achieved coverages over the
course of 48 hours each, and for one evaluation run on open62541 over the course of 7 days.
The achieved results indicate that SNAPP performs at least as well as AFLNet in most cases,
and in some cases even performs better than AFLNet. However, in contrast to AFLNet, SNAPP
does not need manual specification in order to infer a state machine, while still achieving
similar or better performance. Especially for the 7-day evaluation done on a large initial
corpus, SNAPP outperformed AFLNet by 3.22% in a statistically significant manner when
comparing the achieved final coverage. We also saw that the initial corpus choice makes a
significant difference, resulting in a 22.95% increase for SNAPP when comparing the final
achieved coverage of the small and large initial corpora. The evaluation further showed, that
the performance of SNAPP can be further increased by using a primitive state snapshotting
mechanism.

96 8 Conclusion

Overall, this thesis showed that coverage feedback can successfully be employed to auto-
matically identify states in order to achieve similar or better coverage than the state of the art
greybox stateful fuzzer AFLNet, without needing to manually specify an extraction function
for the states. We also showed that the initial corpus choice is important, and motivated a
plethora of directions to move forward in.

97

Bibliography

[AGP19] V. Atlidakis, P. Godefroid, andM. Polishchuk. “RESTler: Stateful RESTAPI Fuzzing.”
In: 2019 IEEE/ACM 41st International Conference on Software Engineering (ICSE).
2019, pp. 748–758.

[Aiz+16] Mike Aizatsky et al. Announcing OSS-Fuzz: Continuous fuzzing for open source

software. 2016. url: https://opensource.googleblog.com/2016/12/announc
ing-oss-fuzz-continuous-fuzzing.html (visited on 12/04/2020).

[Asc+19] Cornelius Aschermann et al. “REDQUEEN: Fuzzing with Input-to-State Corre-
spondence.” In: NDSS. 2019.

[Asc+20] C. Aschermann et al. “IJON: Exploring Deep State Spaces via Fuzzing.” In: 2020
IEEE Symposium on Security and Privacy (SP). Los Alamitos, CA, USA: IEEE Com-
puter Society, May 2020, pp. 893–908. url: https://doi.ieeecomputersociety.
org/10.1109/SP40000.2020.00050.

[BCR20] Marcel Boehme, Cristian Cadar, and Abhik Roychoudhury. “Fuzzing: Challenges
and Reflections.” In: IEEE Software PP (Aug. 2020).

[BMC20] Marcel Böhme, Valentin Manes, and Sang Kil Cha. “Boosting Fuzzer Efficiency:
An Information Theoretic Perspective.” In: (2020).

[Böh+17] Marcel Böhme et al. “Directed Greybox Fuzzing.” In: Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications Security. CCS ’17. Dallas,
Texas, USA: Association for Computing Machinery, 2017, pp. 2329–2344. url:
https://doi.org/10.1145/3133956.3134020.

[Cab+07] Juan Caballero et al. “Polyglot: Automatic Extraction of Protocol Message Format
Using Dynamic Binary Analysis.” In: Proceedings of the 14th ACM Conference

on Computer and Communications Security. CCS ’07. Alexandria, Virginia, USA:
Association for Computing Machinery, 2007, pp. 317–329. url: https://doi.
org/10.1145/1315245.1315286.

https://opensource.googleblog.com/2016/12/announcing-oss-fuzz-continuous-fuzzing.html
https://opensource.googleblog.com/2016/12/announcing-oss-fuzz-continuous-fuzzing.html
https://doi.ieeecomputersociety.org/10.1109/SP40000.2020.00050
https://doi.ieeecomputersociety.org/10.1109/SP40000.2020.00050
https://doi.org/10.1145/3133956.3134020
https://doi.org/10.1145/1315245.1315286
https://doi.org/10.1145/1315245.1315286

98 Bibliography

[ClV19] Yurong Chen, Tian lan, and Guru Venkataramani. “Exploring Effective Fuzzing
Strategies to Analyze Communication Protocols.” In: Proceedings of the 3rd ACM
Workshop on Forming an Ecosystem Around Software Transformation. FEAST’19.
London, United Kingdom: Association for Computing Machinery, 2019, pp. 17–23.
url: https://doi.org/10.1145/3338502.3359762.

[Com18] International Electrotechnical Commission. IEC 62443 Security for Industrial Au-

tomation and Control Systems Standard. 2018.

[Cui+08] Weidong Cui et al. “Tupni: Automatic Reverse Engineering of Input Formats.” In:
Proceedings of the 15th ACM Conference on Computer and Communications Security.
CCS ’08. Alexandria, Virginia, USA: Association for Computing Machinery, 2008,
pp. 391–402. url: https://doi.org/10.1145/1455770.1455820.

[CVE13] CVE-2014-0160 Heartbleed bug. Dezember 2013. url: https://cve.mitre.org/
cgi-bin/cvename.cgi?name=cve-2014-0160 (visited on 12/20/2020).

[CVE14] CVE-2014-6271 Shellshock. Sept. 2014. url: https : / / nvd . nist . gov / vuln /
detail/CVE-2014-6271 (visited on 12/20/2020).

[Don+20] Zhen Dong et al. “Time-travel Testing of Android Apps.” In: (May 2020).

[Dou+12] Adam Doupé et al. “Enemy of the State: A State-Aware Black-Box Web Vulnerabil-
ity Scanner.” In: 21st USENIX Security Symposium (USENIX Security 12). Bellevue,
WA: USENIX Association, Aug. 2012, pp. 523–538. url: https://www.usenix.
org/conference/usenixsecurity12/technical-sessions/presentation/

doupe.

[FC18] Rong Fan and Yaoyao Chang. “Machine Learning for Black-Box Fuzzing of Network
Protocols.” In: Information and Communications Security. Ed. by Sihan Qing et al.
Cham: Springer International Publishing, 2018, pp. 621–632.

[Fit+20] Paul Fiterau-Brostean et al. “Analysis of DTLS Implementations Using Protocol
State Fuzzing.” In: 29th USENIX Security Symposium (USENIX Security 20). USENIX
Association, Aug. 2020, pp. 2523–2540. url: https://www.usenix.org/confer
ence/usenixsecurity20/presentation/fiterau-brostean.

[FMC11] Nicolas Falliere, Liam OMurchu, and Eric Chien. “W32. stuxnet dossier.” In:White

paper, Symantec Corp., Security Response 5.6 (2011), p. 29.

https://doi.org/10.1145/3338502.3359762
https://doi.org/10.1145/1455770.1455820
https://cve.mitre.org/cgi-bin/cvename.cgi?name=cve-2014-0160
https://cve.mitre.org/cgi-bin/cvename.cgi?name=cve-2014-0160
https://nvd.nist.gov/vuln/detail/CVE-2014-6271
https://nvd.nist.gov/vuln/detail/CVE-2014-6271
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/doupe
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/doupe
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/doupe
https://www.usenix.org/conference/usenixsecurity20/presentation/fiterau-brostean
https://www.usenix.org/conference/usenixsecurity20/presentation/fiterau-brostean

Bibliography 99

[Fou17a] OPC Foundation. OPC Unified Architecture Specification Part 1: Overview and

Concepts. Version 1.04. OPC Foundation. Nov. 2017. url: https://opcfoundatio
n.org/developer-tools/specifications-unified-architecture/part-1-

overview-and-concepts/.

[Fou17b] OPC Foundation. OPC Unified Architecture Specification Part 4: Services. Version
1.04. OPC Foundation. Nov. 2017. url: https://opcfoundation.org/develope
r-tools/specifications-unified-architecture/part-4-services/.

[Fou17c] OPC Foundation. OPC Unified Architecture Specification Part 6: Mappings. Version
1.04. OPC Foundation. Nov. 2017. url: https://opcfoundation.org/develope
r-tools/specifications-unified-architecture/part-6-mappings/.

[Gas+15] Hugo Gascon et al. “Pulsar: Stateful Black-Box Fuzzing of Proprietary Network
Protocols.” In: Security and Privacy in Communication Networks. Ed. by Bhavani
Thuraisingham, XiaoFeng Wang, and Vinod Yegneswaran. Cham: Springer Inter-
national Publishing, 2015, pp. 330–347.

[Gau20] Roman Gaufman. Live555 Git Mirror. 2020. url: https://github.com/rgaufman/
live555 (visited on 12/04/2020).

[Goo20a] Dan Goodin.Microsoft president calls SolarWinds hack an act of recklessness. Dec. 18,
2020. url: https://arstechnica.com/information-technology/2020/12/
only-an-elite-few-solarwinds-hack-victims-received-follow-on-

attacks/?comments=1 (visited on 12/20/2020).

[Goo20b] Dan Goodin. Russian hackers hit US government using widespread supply chain

attack. Dec. 18, 2020. url: https://arstechnica.com/information-techno
logy/2020/12/russian-hackers-hit-us-government-using-widespread-

supply-chain-attack/?comments=1 (visited on 12/20/2020).

[Goo20c] Google. Honggfuzz. 2020. url: https://honggfuzz.dev/ (visited on 12/08/2020).

[HB14] The Heartbleed Bug. Apr. 2014. url: http : / / heartbleed . com/ (visited on
12/20/2020).

[Heu+20] Marc Heuse et al. American Fuzzy Lop plus plus (afl++). 2020. url: https://
github.com/AFLplusplus/AFLplusplus (visited on 12/22/2020).

[HHP20] Ahmad Hazimeh, Adrian Herrera, and Mathias Payer. “Magma.” In: Proceedings
of the ACM on Measurement and Analysis of Computing Systems 4.3 (Nov. 2020),
pp. 1–29. url: http://dx.doi.org/10.1145/3428334.

https://opcfoundation.org/developer-tools/specifications-unified-architecture/part-1-overview-and-concepts/
https://opcfoundation.org/developer-tools/specifications-unified-architecture/part-1-overview-and-concepts/
https://opcfoundation.org/developer-tools/specifications-unified-architecture/part-1-overview-and-concepts/
https://opcfoundation.org/developer-tools/specifications-unified-architecture/part-4-services/
https://opcfoundation.org/developer-tools/specifications-unified-architecture/part-4-services/
https://opcfoundation.org/developer-tools/specifications-unified-architecture/part-6-mappings/
https://opcfoundation.org/developer-tools/specifications-unified-architecture/part-6-mappings/
https://github.com/rgaufman/live555
https://github.com/rgaufman/live555
https://arstechnica.com/information-technology/2020/12/only-an-elite-few-solarwinds-hack-victims-received-follow-on-attacks/?comments=1
https://arstechnica.com/information-technology/2020/12/only-an-elite-few-solarwinds-hack-victims-received-follow-on-attacks/?comments=1
https://arstechnica.com/information-technology/2020/12/only-an-elite-few-solarwinds-hack-victims-received-follow-on-attacks/?comments=1
https://arstechnica.com/information-technology/2020/12/russian-hackers-hit-us-government-using-widespread-supply-chain-attack/?comments=1
https://arstechnica.com/information-technology/2020/12/russian-hackers-hit-us-government-using-widespread-supply-chain-attack/?comments=1
https://arstechnica.com/information-technology/2020/12/russian-hackers-hit-us-government-using-widespread-supply-chain-attack/?comments=1
https://honggfuzz.dev/
http://heartbleed.com/
https://github.com/AFLplusplus/AFLplusplus
https://github.com/AFLplusplus/AFLplusplus
http://dx.doi.org/10.1145/3428334

100 Bibliography

[Iat+20] Chris-Paul Iatrou et al. open62541 Git Repository. 2020. url: https://github.
com/hfiref0x/LightFTP (visited on 12/04/2020).

[Ker20] Michael Kerrisk. ptrace Linux Manual Page. 2020. url: https://man7.org/
linux/man-pages/man2/ptrace.2.html (visited on 12/17/2020).

[Kle+18] George Klees et al. “Evaluating Fuzz Testing.” In: Proceedings of the 2018 ACM
SIGSAC Conference on Computer and Communications Security. CCS ’18. Toronto,
Canada: Association for Computing Machinery, 2018, pp. 2123–2138. url: https:
//doi.org/10.1145/3243734.3243804.

[laf16] lafintel. Circumventing Fuzzing Roadblocks with Compiler Transformations. Aug.
2016. url: https://lafintel.wordpress.com/2016/08/15/circumvent
ing- fuzzing- roadblocks- with- compiler- transformations/ (visited on
06/24/2020).

[Li+17] Yuekang Li et al. “Steelix: Program-State Based Binary Fuzzing.” In: Proceedings of
the 2017 11th Joint Meeting on Foundations of Software Engineering. ESEC/FSE 2017.
Paderborn, Germany: Association for Computing Machinery, 2017, pp. 627–637.
url: https://doi.org/10.1145/3106237.3106295.

[LLV20] LLVM-Project. libFuzzer. Nov. 2020. url: https://llvm.org/docs/LibFuzzer.
html (visited on 11/17/2020).

[Ma+16] R. Ma et al. “Test data generation for stateful network protocol fuzzing using a
rule-based state machine.” In: Tsinghua Science and Technology 21.3 (2016), pp. 352–
360.

[Man+19] V. J. M. Manès et al. “The Art, Science, and Engineering of Fuzzing: A Survey.” In:
IEEE Transactions on Software Engineering (2019), pp. 1–1.

[MGZ20] Björn Mathis, Rahul Gopinath, and Andreas Zeller. “Learning Input Tokens for
Effective Fuzzing.” In: ISSTA - ACM SIGSOFT International Symposium on Software

Testing and Analysis. July 2020, pp. 1–11. url: https://publications.cispa.
saarland/3135/.

[MW47] H. B. Mann and D. R. Whitney. “On a Test of Whether one of Two Random
Variables is Stochastically Larger than the Other.” In: Ann. Math. Statist. 18.1 (Mar.
1947), pp. 50–60. url: https://doi.org/10.1214/aoms/1177730491.

[Myt+09] ToddMytkowicz et al. “ProducingWrong Data without Doing Anything Obviously
Wrong!” In: SIGPLAN Not. 44.3 (Mar. 2009), pp. 265–276. url: https://doi.org/
10.1145/1508284.1508275.

https://github.com/hfiref0x/LightFTP
https://github.com/hfiref0x/LightFTP
https://man7.org/linux/man-pages/man2/ptrace.2.html
https://man7.org/linux/man-pages/man2/ptrace.2.html
https://doi.org/10.1145/3243734.3243804
https://doi.org/10.1145/3243734.3243804
https://lafintel.wordpress.com/2016/08/15/circumventing-fuzzing-roadblocks-with-compiler-transformations/
https://lafintel.wordpress.com/2016/08/15/circumventing-fuzzing-roadblocks-with-compiler-transformations/
https://doi.org/10.1145/3106237.3106295
https://llvm.org/docs/LibFuzzer.html
https://llvm.org/docs/LibFuzzer.html
https://publications.cispa.saarland/3135/
https://publications.cispa.saarland/3135/
https://doi.org/10.1214/aoms/1177730491
https://doi.org/10.1145/1508284.1508275
https://doi.org/10.1145/1508284.1508275

Bibliography 101

[MZH20] Barton P. Miller, Mengxiao Zhang, and Elisa R. Heymann. The Relevance of Classic
Fuzz Testing: Have We Solved This One? 2020. arXiv: 2008.06537 [cs.SE].

[PBR20a] Van - Thuan Pham, Marcel Böhme, and Abhik Roychoudhury. AFLNet Github
Repository. 2020. url: https : / / github . com / aflnet / aflnet (visited on
12/09/2020).

[PBR20b] Van - Thuan Pham, Marcel Böhme, and Abhik Roychoudhury. “AFLNet: A Grey-
box Fuzzer for Network Protocols.” In: Proceedings of the 13rd IEEE International

Conference on Software Testing, Verification and Validation : Testing Tools Track.
2020.

[Per20] Joshua Pereyda. boofuzz. 2020. url: https://boofuzz.readthedocs.io/en/
stable/ (visited on 12/08/2020).

[PP16] Jibesh Patra and Michael Pradel. “Learning to Fuzz: Application-Independent Fuzz
Testing with Probabilistic, Generative Models of Input Data.” In: (2016).

[Pro20] LightFTP Project. LightFTP Git Repository. 2020. url: https://github.com/
hfiref0x/LightFTP (visited on 12/04/2020).

[RP15] Joeri de Ruiter and Erik Poll. “Protocol State Fuzzing of TLS Implementations.”
In: 24th USENIX Security Symposium (USENIX Security 15). Washington, D.C.:
USENIX Association, Aug. 2015, pp. 193–206. url: https://www.usenix.org/
conference/usenixsecurity15/technical- sessions/presentation/de-

ruiter.

[Sal+20] C. Salls et al. “Exploring Abstraction Functions in Fuzzing.” In: 2020 IEEE Confer-

ence on Communications and Network Security (CNS). 2020, pp. 1–9.

[Sch+21] Sergej Schumilo et al. “Nyx: Greybox Hypervisor Fuzzing using Fast Snapshots
and Affine Types.” In: 30th USENIX Security Symposium (USENIX Security 21).
Vancouver, B.C.: USENIX Association, Aug. 2021. url: https://www.usenix.
org/conference/usenixsecurity21/presentation/schumilo.

[Sel14] Larry Seltzer. Shellshock makes Heartbleed look insignificant. Sept. 29, 2014. url:
https://www.zdnet.com/article/shellshock-makes-heartbleed-look-

insignificant/ (visited on 12/20/2020).

[Sho+16] Yan Shoshitaishvili et al. “SoK: (State of) The Art of War: Offensive Techniques in
Binary Analysis.” In: IEEE Symposium on Security and Privacy. 2016.

[Sho20] Yan Shoshitaishvili. Preeny. 2020. url: https://github.com/zardus/preeny
(visited on 12/18/2020).

https://arxiv.org/abs/2008.06537
https://github.com/aflnet/aflnet
https://boofuzz.readthedocs.io/en/stable/
https://boofuzz.readthedocs.io/en/stable/
https://github.com/hfiref0x/LightFTP
https://github.com/hfiref0x/LightFTP
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/de-ruiter
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/de-ruiter
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/de-ruiter
https://www.usenix.org/conference/usenixsecurity21/presentation/schumilo
https://www.usenix.org/conference/usenixsecurity21/presentation/schumilo
https://www.zdnet.com/article/shellshock-makes-heartbleed-look-insignificant/
https://www.zdnet.com/article/shellshock-makes-heartbleed-look-insignificant/
https://github.com/zardus/preeny

102 Bibliography

[Ste+16] Nick Stephens et al. “Driller: Augmenting Fuzzing Through Selective Symbolic
Execution.” In: NDSS. Vol. 16. 2016. 2016, pp. 1–16.

[Tak+18] A. Takanen et al. 2018.

[TC07] Linda Torczon and Keith Cooper. Engineering A Compiler. 2nd. San Francisco, CA,
USA: Morgan Kaufmann Publishers Inc., 2007.

[Tec20] Peach Tech. Peach Fuzzer Community Edition. Dec. 16, 2020. url: https://www.
peach.tech/resources/peachcommunity/.

[Wan+20] Haijun Wang et al. “Typestate-Guided Fuzzer for Discovering Use-after-Free
Vulnerabilities.” In: Proceedings of the ACM/IEEE 42nd International Conference on

Software Engineering. ICSE ’20. Seoul, South Korea: Association for Computing
Machinery, 2020, pp. 999–1010. url: https://doi.org/10.1145/3377811.
3380386.

[Whe17] David A. Wheeler. How to Prevent the next Heartbleed. Jan. 2017. url: https:
//www.dwheeler.com/essays/heartbleed.html (visited on 12/20/2020).

[WLR20] Zi Wang, Ben Liblit, and Thomas Reps. “TOFU: Target-Orienter FUzzer.” In: arXiv
preprint arXiv:2004.14375 (2020).

[Yun+18] Insu Yun et al. “QSYM: A Practical Concolic Execution Engine Tailored for Hybrid
Fuzzing.” In: Proceedings of the 27th USENIX Conference on Security Symposium.
SEC’18. Baltimore, MD, USA: USENIX Association, 2018, pp. 745–761.

[Zal+20] Michal Zalewski et al. American Fuzzy Lop. July 2020. url: https://github.
com/google/AFL (visited on 08/18/2020).

https://www.peach.tech/resources/peachcommunity/
https://www.peach.tech/resources/peachcommunity/
https://doi.org/10.1145/3377811.3380386
https://doi.org/10.1145/3377811.3380386
https://www.dwheeler.com/essays/heartbleed.html
https://www.dwheeler.com/essays/heartbleed.html
https://github.com/google/AFL
https://github.com/google/AFL

103

List of Tables

2.2 Service sets of the OPC UA standard [Fou17a]. 4

3.1 Mean coverage increase (%Increase), effect size (𝐴12), and statistical significance
(𝑝-value) when comparing AFLNet to boofuzz and AFLNwe, respectively. A
Vargha-Delaney 𝐴12 measure above 0.71 indicates a large effect size in favor of
AFLNet. Statistical significance is computed using the Mann-Whitney𝑈 test
(adapted from [PBR20b]). 22

4.1 Sequences and the coverage they produce on the program in Listing 4.1. 34

6.1 Evaluation SUTs and their protocols, lines of code (LOC), number of basic
blocks (BBS) and the git commit hash of the version used for the evaluation.
All protocols are based on TCP. 54

6.2 SUT-corpus-fuzzer configurations used to produce the evaluation results . . . 55
6.3 Message types contained in the small fuzzing corpus. 56
6.4 Message types contained in the large fuzzing corpus 57
6.5 Evaluation system specification. 59
6.6 Final statistics (hangs, crashes, executions, stability, basic blocks, and basic

blocks in percent of the total basic blocks) for each SUT-corpus-fuzzer evalua-
tion configuration averaged over all 20 runs. 61

6.7 Mean coverage increase and statistical significance (𝑝-value) when comparing
SNAPP and FSNAPP to AFLNet. 62

7.1 Mean coverage increase and statistical significance (𝑝-value) when comparing
SNAPP and FSNAPP to AFLNet. 78

7.2 Mean coverage increase (%Increase), effect size (𝐴12), and statistical significance
(𝑝-value) when comparing AFLNet to boofuzz and AFLNwe, respectively. A
Vargha-Delaney 𝐴12 measure above 0.71 indicates a large effect size in favor of
AFLNet. Statistical significance is computed using the Mann-Whitney 𝑈 test.
Adapted from [PBR20b] . 80

104 LIST OF TABLES

7.3 Mean coverage increase and statistical significance (𝑝-value) when comparing
small and large corpus runs of AFLNet and SNAPP respectively. 81

105

List of Figures

2.1 The protocol state machine of the simplified OPC UA protocol. 7
2.2 Blackbox fuzzing using the generic fuzzing algorithm. 9
2.3 Whitebox fuzzing using the generic fuzzing algorithm. 11
2.4 The CFG representing Listing 2.2. Node labels represent the first line number

of the corresponding basic block. 14
2.5 A “classic” SUT lifecycle (left) compared to a “stateful” SUT lifecycle (right). . 17

3.1 AFLNet architecture overview [PBR20b]. 24

4.1 AFLNet architecture overview with changes highlighted in cyan and additions
highlighted in green. 32

4.2 Initial state of the state machine. 36
4.3 State of the state machine after observing MSG and OPN messages. 36
4.4 State of the state machine after observing the sequence ⟨OPN⟩ with message

OPN. 37
4.5 State of the state machine after observing the sequence ⟨OPN⟩ with message

MSG. 38
4.6 State of the state machine after observing the sequence ⟨OPN⟩ with message

MSG. 39
4.7 Sequence diagram of the interaction between fuzzer and target when sending

a single message. 46

6.1 Coverage comparison in basic blocks over time of AFLNet (blue) with SNAPP
(orange) on open62541. 65

6.2 Coverage comparison in basic blocks over time of AFLNet (blue) with SNAPP
(orange) on lightftp. 66

6.3 Coverage comparison in basic blocks over time of AFLNet (blue) with SNAPP
(orange) on live555. 67

106 LIST OF FIGURES

6.4 Coverage comparison in basic blocks over time of AFLNet (blue) with FSNAPP
(orange) on open62541 with the state forkserver enabled. 68

6.5 Coverage comparison in basic blocks over time of SNAPP (green) with FSNAPP
(orange) on open62541. 69

6.6 Coverage comparison in basic blocks over time of AFLNet (blue) with SNAPP
(orange) on open62541 with a bigger corpus. 70

6.7 Coverage comparison in basic blocks over time of AFLNet (blue) with SNAPP
(orange) on open62541 with a bigger corpus over a duration of 7 days. 71

6.8 Final coverage in percent of BB across all runs by file for AFLNet (blue) and
SNAPP (orange) on open62541 for the 7 day run. Files with the same basic
blocks hit are omitted. Percentages relative to the total basic blocks per file. . 72

6.8 Final coverage in percent of BB across all runs by file for AFLNet (blue) and
SNAPP (orange) on open62541 for the 7 day run. Files with the same basic
blocks hit are omitted. Percentages relative to the total basic blocks per file.
(cont.) . 73

7.1 Coverage comparison in basic blocks over time of AFLNet (blue) with SNAPP
(orange) . 79

7.2 Coverage comparison in basic blocks over time. 82
7.3 Final coverage in percent of BB across all runs by file for AFLNet (blue) and

SNAPP (orange) on open62541 for the 7 day run. Percentages relative to the
total basic blocks per file. 84

107

Definitions and Theorems

2.1 Basic Block . 12
2.2 Control Flow Graph . 12
2.3 Path Basic Block Coverage . 14
2.4 Path Edge Coverage . 15
2.5 cfgpath . 15
2.6 Basic Block Coverage . 15
2.7 Edge Coverage . 15
4.1 Message Sequence . 34
4.2 Message Behavior . 35
4.3 State . 39

109

List of Algorithms

1 A generic fuzzing algorithm. (adapted from [Man+19]) 8

2 Modified AFL fuzz function to incorporate Sequence mutations and the splitting
of the sequence into𝑀1,𝑀2, and𝑀3. 23

3 AFLNets weighted state selection strategy. 25
4 AFLNet main loop . 26

5 Statemachine initialization. 40
6 Statemachine update. 41
7 Statemachine update case: new sequence and new message. 41
8 Statemachine update case: observed sequence and new message. 42
9 Statemachine update case: new sequence and observed message. 42
10 Statemachine update case: observed sequence and observed message. 43

111

Listings

2.1 Example Program based on OPC UA, modelling a simple server. 6
2.2 Example Program based on OPC UA, modelling a simple server. 13

4.1 Example Program based on OPC UA, modelling a simple server. 33
4.2 Injected synchronisation code. 45
4.3 Fuzzer side of the synchronisation mechanism for a single message. 47

113

Glossary

CFG control flow graph. 12, 14, 15, 89, 93, 105

FTP File Transfer Protocol. 19, 22

Fuzzer A Fuzzer is a tool that more or less randomly mutates inputs in order to trigger bugs in
a target executable.

OPC UA OPC Unified Architecture (OPC UA) is a machine to machine communication protocol
for industrial automation developed by the OPC Foundation. 4–7, 13, 20, 33, 51–54, 58,
103, 105, 111

RTSP Real Time Streaming Protocol. 19, 22, 85

SMT satisfiability modulo theories. 10

SUT system under test. 1–3, 5, 7–11, 16–22, 25, 27–29, 31, 33–38, 40, 45, 46, 48, 50, 51, 53–62, 74,
77, 78, 80, 81, 85–91, 93, 95, 103, 105

TCP Transmission Control Protocol. 6, 56, 75

	Contents
	1 Introduction
	1.1 Objective
	1.2 Outline

	2 Background
	2.1 State Concepts
	2.2 OPC UA
	2.3 Code Example
	2.4 Fuzzers
	2.4.1 Blackbox Fuzzing
	2.4.2 Whitebox Fuzzing
	2.4.3 Greybox Fuzzing

	2.5 Coverage Guided Fuzzing
	2.5.1 Control Flow Graphs and Basic Blocks
	2.5.2 Coverage Feedback

	2.6 Systems under Test
	2.6.1 Hardware
	2.6.2 Software

	3 Analysis
	3.1 Challenges of Stateful Fuzzing
	3.2 AFLNet
	3.2.1 Results
	3.2.2 Architecture
	3.2.3 Flaky Coverage
	3.2.4 Limitations and Possible Improvements

	3.3 Research Questions

	4 Methods
	4.1 Overview
	4.2 Message Behavior
	4.3 State Identification Algorithm
	4.4 Fuzzer-Target-synchronisation
	4.5 Mutation Strategy
	4.6 State Forkserver

	5 Implementation
	5.1 AFLPlusPlus vs. AFLNet
	5.2 AFLPlusPlus modifications
	5.3 AFLNet modifications

	6 Evaluation
	6.1 Method
	6.1.1 SUT Adjustments
	6.1.2 Evaluation Environment

	6.2 Results
	6.2.1 Average Results per Run
	6.2.2 Fuzzer Comparison

	6.3 Crashes and Hangs
	6.3.1 False Positives
	6.3.2 live555 Crash
	6.3.3 Found Bugs

	7 Discussion
	7.1 Answering the Research Questions
	7.1.1 RQ1
	7.1.2 RQ2
	7.1.3 RQ3
	7.1.4 RQ4

	7.2 Additional Insights
	7.3 Limitations
	7.3.1 Stability
	7.3.2 Speed
	7.3.3 State Forkserver

	7.4 Related Work
	7.4.1 Blackbox State Identification
	7.4.2 Stateful Greybox Fuzzing
	7.4.3 State Snapshots
	7.4.4 Symbolic/Concolic Execution
	7.4.5 Target Oriented Fuzzing

	7.5 Future Work
	7.5.1 Benchmarking
	7.5.2 Snapshots
	7.5.3 Automatic Derandomisation
	7.5.4 Directed fuzzing
	7.5.5 Seed Selection and Mutation Strategies
	7.5.6 State Machine Minimizing
	7.5.7 Message Behavior Sensitivity
	7.5.8 Response Feedback
	7.5.9 Automatic Injection
	7.5.10 Memory Feedback

	7.6 Overall Findings

	8 Conclusion
	Bibliography
	List of Tables
	List of Figures
	Definitions and Theorems
	List of Algorithms
	Listings
	Glossary

