HYDROGEN IN AN INTEGRATED ENERGY SYSTEM

Germany's Research Interests on Hydrogen

Christopher Hebling, <u>Tom Smolinka</u>

Fraunhofer Institute for Solar Energy Systems ISE

19th PEFC & Electrolyzer Symposium at the 236th Meeting of the Electrochemical Society Atlanta, October 14, 2019 www.ise.fraunhofer.de

The Fraunhofer Institute for Solar Energy Systems ISE Part of the German Fraunhofer Association for Applied Research

- 72 instituts and research institutions
- 26,600 employees
- 2.2 Mrd €/a contract research

Directors: Prof. Dr. Hans-Martin Henning Dr. Andreas Bett

Staff: approx. 1,250

Budget 2018: 94.3 Mio. €


Established: 1981

Photovoltaics

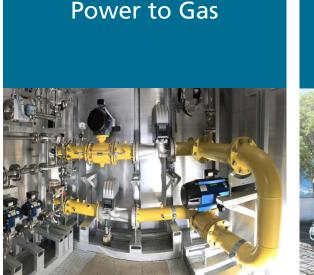
Energy Efficient Buildings

Hydrogen Technologies and Electrical Energy Storage

Power Electronics, Grids and Smart Systems

The Fraunhofer Institute for Solar Energy Systems ISE Research Topic: Electrolysis and Power to Gas

Characterisation of Materials and Components



- Elektrochemical
 Characterisation
- Investigation of life-time / Accelerated stress tests
- Ex-situ analysis

Development of PEM Water Electrolysis Systems

- New Cell concepts
- Laboratory PEM stacks
- Energy-optimised balance of plant
- Control strategies

- Dynamic system modelling of PtG systems
- Development of system and plant concepts
- H₂ yield assessment

Hydrogen Infrastructure

- Technology consulting
- Techno economical analysis /market survey
- Roll out H₂ technologies
- Life cycle assessment

OUTLINE OF THE TALK

- Introduction to Fraunhofer ISE
- Challenges in the German energy transition
- Current state and future trends on Power to X applications in Germany
- Main Drivers for hydrogen production costs
- Evaluation of business opportunities for PtX installations
- Summary and conclusions

The goal: Extensive greenhouse gas neutrality until 2050

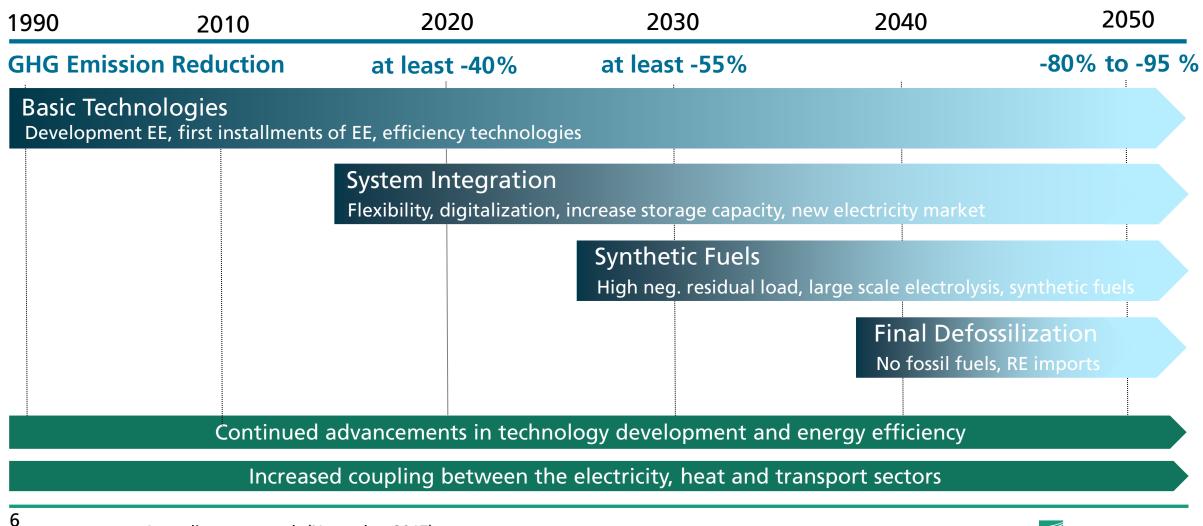
Main driver

- high level of security of supply based on RES
- effective climate and environm. protection
- economically viable energy supply
- Ambitious goals by the German government (Energy Concept from 2010)

	2020	2030	2040	2050
GHG reduc- tion by	- 40 %	-55 %	-70 %	- 80 to - 95%
Total RES share	18 %	30 %	45 %	60 %
RES share in electricity	35 %	50 %	65 %	80 %

The Federal Government: "Energy concept for an environmentally friendly, reliable and affordable energy supply" Merseberg, 28 September 2010

Energiekonzept

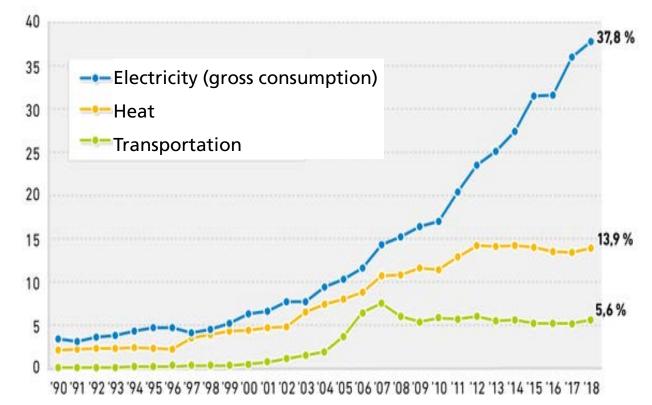

für eine umweltschonende, zuverlässige und bezahlbare Energieversorgung

28. September 2010

Source: https://www.bmwi.de/Redaktion/DE/Downloads/E/energiekonzept-2010.html

Targets and phases for a cost and climate compatible transformation.

© Fraunhofer ISE According to acatech (November 2017): Sektorenkopplung - Optionen für die nächste Phase der Energiewende«.



The goal: Extensive greenhouse gas neutrality until 2050

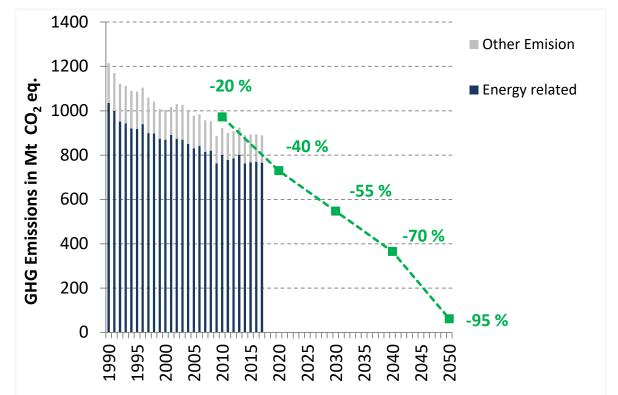
Main driver

- high level of security of supply based on RES
- effective climate and environm. protection
- economically viable energy supply
- Ambitious goals by the German government (Energy Concept from 2010)

	2020	2030	2040	2050
GHG reduc- tion by Total RES share	- 40 %	-55 %	-70 %	- 80 to - 95%
	18 %	30 %	45 %	60 %
RES share in electricity	35 %	50 %	65 %	80 %

Share of renewable energies in the electricity, heat and transport sectors in the years 1990 to 2018 (Source: AGEE Statistic 03/2019)

Source: Renewable Energy Agency:https://www.unendlich-viel-energie.de/mediathek/grafiken?page=2



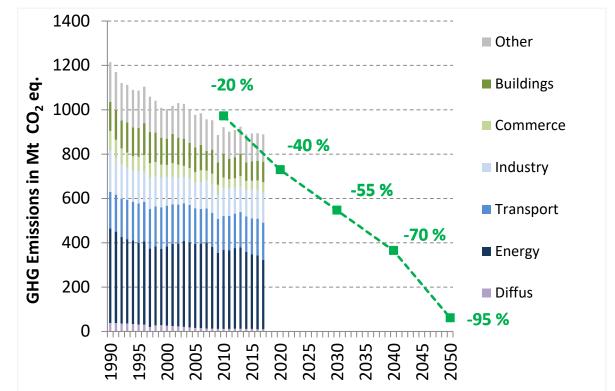
The goal: Extensive greenhouse gas neutrality until 2050

Main driver

- high level of security of supply based on RES
- effective climate and environm. protection
- economically viable energy supply
- Ambitious goals by the German government (Energy Concept from 2010)

	2020	2030	2040	2050
GHG reduc- tion by	- 40 %	-55 %	-70 %	- 80 to - 95%
Total RES share	18 %	30 %	45 %	60 %
RES share in electricity	35 %	50 %	65 %	80 %

Development of German GHG emissions 1990 - 2017 and target values until 2050 (The Energy Concept of Germany)


Source: https://www.umweltbundesamt.de/daten/klima/treibhausgas-emissionen-in-deutschland

Germany is very likely to miss its GHG emission targets 2020!

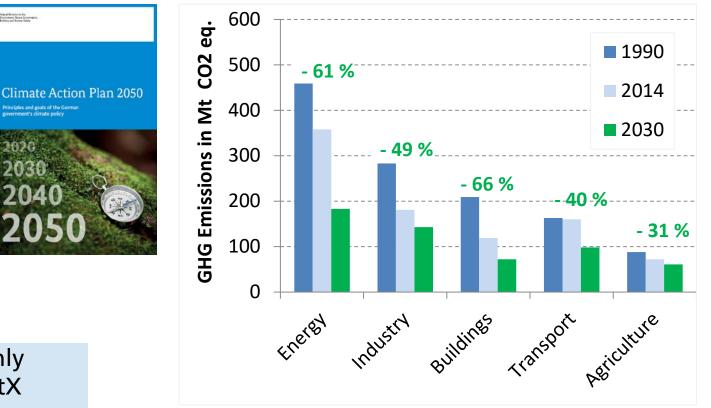
Main driver

- high level of security of supply based on RES
- effective climate and environm. protection
- economically viable energy supply
- Ambitious goals by the German government (Energy Concept from 2010)
- Nearly no GHG reduction in the last 10 years!
- Detailed look at different sectors:
 - No reduction in transport sector
 - Struggle with process related GHG emissions in industry
 - Slow progress in buildings

Development of German GHG emissions 1990 - 2017 and target values until 2050 (The Energy Concept of Germany)

Climate Action Plan 2050: Specific targets for each sector until 2030

Helend Mranty to the Decisioners, Acces Conternation Pullifies and Nation Suffery

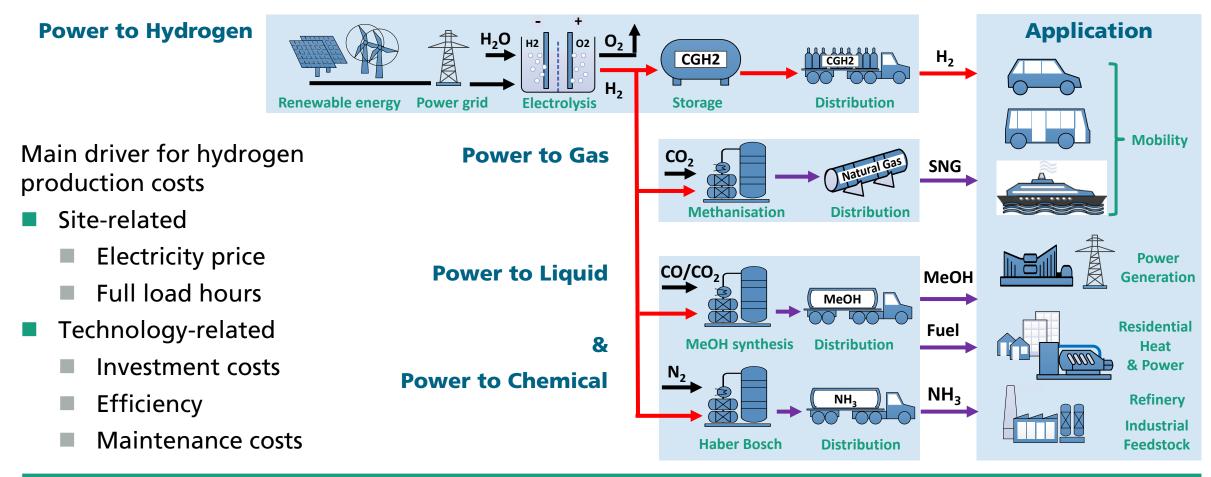

2020

2030

- Additional pressure from the Paris Agreement to limit global warming to 1.5 °C
 - Signed at 2015 UN Climate **Change Conference in Paris** (COP21)¹
 - Reduce global GHG emissions to zero by 2045 - 2060
 - CO₂ removal from atmosphere by CCS and/or CCU

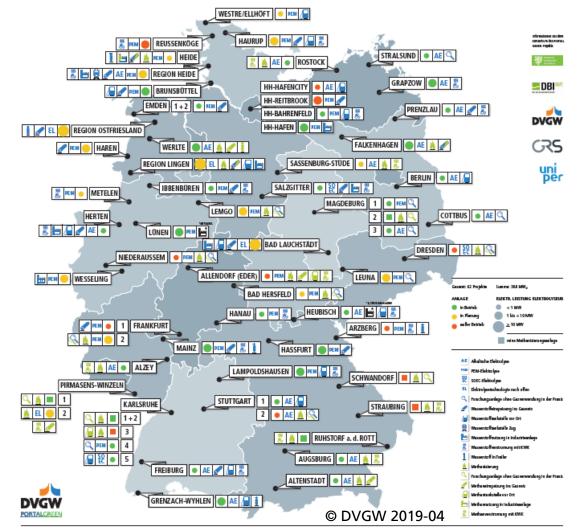
10

Next phase of energy transformation only possible with intersectoral coupling & PtX technologies


Specific reduction targets on GHG emissions Climate Action Plan 2050 (passed the German Government in Nov. 2016)

Source: https://www.bmu.de/themen/klima-energie/klimaschutz/nationale-klimapolitik/klimaschutzplan-2050/

© Fraunhofer ISE 1 COP 21: United Nations Framework Convention on Climate Change, 21st Conference of the Parties


Current State on Power-to-X Applications in Germany Water electrolysis is a key element in all PtX applications.*

Current State on Power-to-X Applications in Germany Industrial-scale plants are still the exception.

- Several PtX installations in Germany since 2010
 - kW and single-digit MW range
 - First two-digit MW plants under construction
 - Total capacity of 55 MW in operation/planing
- Different applications:
 - Direct H₂ injection in NG pipeline
 - Methanisation and SNG injection
 - Secondary control reserve
 - Power balancing
 - Hydrogen for FCEV mobility
 - Industrial use and PtX
- Demonstration stage with public support

12

Current State on Power-to-X Applications in Germany Selected projects

Carbon2Chem®

- AEL system by thyssenkrupp UCE
 - Atmospheric operation
 - 2 MW / 440 Nm³/h H₂
 - "short stack" for 5 MW module
- CO₂ from steel mill gas and H₂ for chemical feedstock (as MeOH)

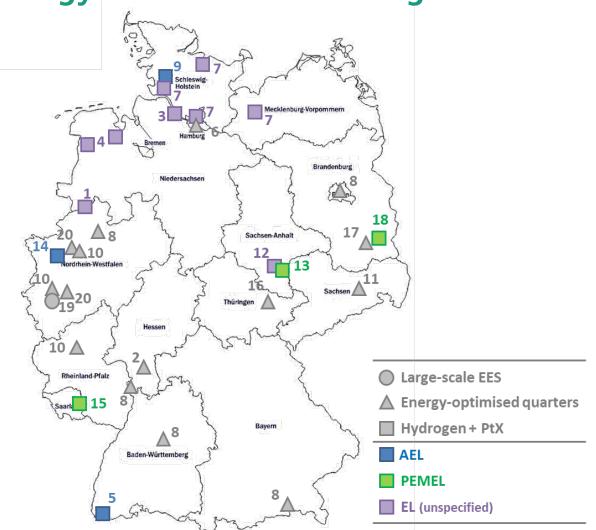
REFHYNE

- PEMEL system by ITM Power
 - Shell Rhineland Refinery
 - 10 MW / 1,800 Nm³/h H₂
 - 15 stacks à 670 kW
- Load balancing and replacement of steam reformed hydrogen

Standardised 10 MW stack skid

GrInHy

- SOEL system by Sunfire
 - 150/30 kW RSOC system
 - 40 Nm³/h in EL mode
 - 30 kW in FC mode
- Green H₂ for downstream process and onsite power generation



HyLink Gen. 0 in Salzgitter

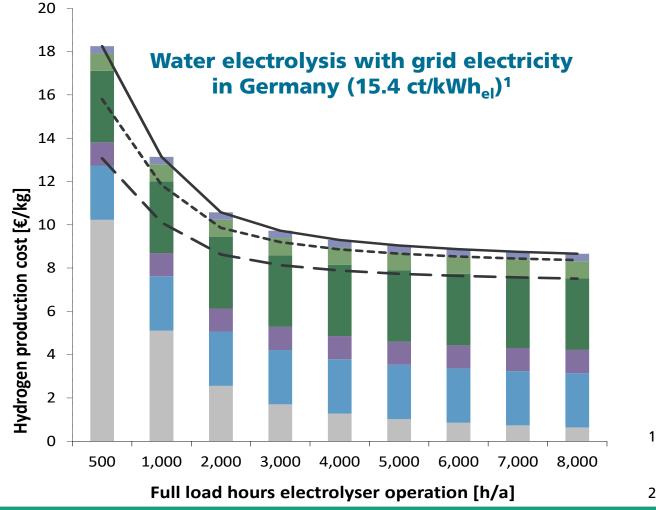
Future Trends in Power-to-X Applications in Germany Next phase: "Real laboratories" of the energy transition are coming.

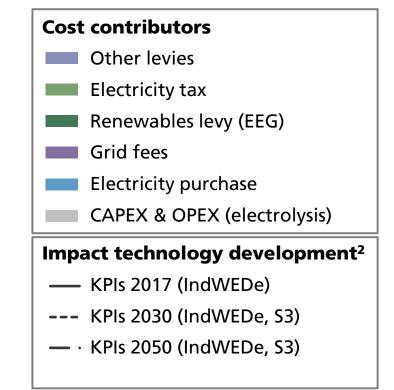
- Assessment of new technologies for the energy transition
 - under real conditions and on an industrial scale in a limited area
 - with own legal and regulatory framework for new business models
- Call of the Federal Ministry of Economics "Reallabore der Energiewende"
 - Hydrogen with low CO₂ footprint
 - Energy-optimised quarters
- Funding: 100 Mio €/a for 4 years
 - Additional 200 Mio € for region of structural change (coal phase-out)

14

Future Trends in Power-to-X Applications in Germany Next phase: Real laboratories of the energy transition are coming.

	Acronym	PtX	CO2 source	Main applications	Electrolysis
1	CCU P2C Salzbergen	PtCH ₄	CCU waste incineration	SNG injection	??
3	DOW Stade-Green MeOH	PtL	CCU GT power plant	MeOH	??
4	Element Eins	PtH		H2 injection	100 MW (wind)
5	H2 Wyhlen	PtH		H2 for trade + heat	10 MW AEL (hydro)
7	Norddt. Reallabor	$PtH + PtCH_4$	CCU refinery	SNG injection + H2 for mobility	77 MW
9	ReWest100	PtH + PtC	CCU cement plant	H2 (cavern/grid) for chemicals	30 MW AEL (wind)
12	EnergieparkBL	PtH		H2 (cavern/grid): mobility + chemicals	35 MW (wind)
13	GreenHydroChem	PtH		H2 for refinery	50 MW PEMEL
14	H2Stahl	PtH		H2 for steel	50 MW AEL
15	HydroHub Fenne	PtH		H2 for steel + injection + mobility + heat	17.5 MW PEMEL
18	RefLau	PtH		H2 for mobility + injection + trade	10 MW PEMEL

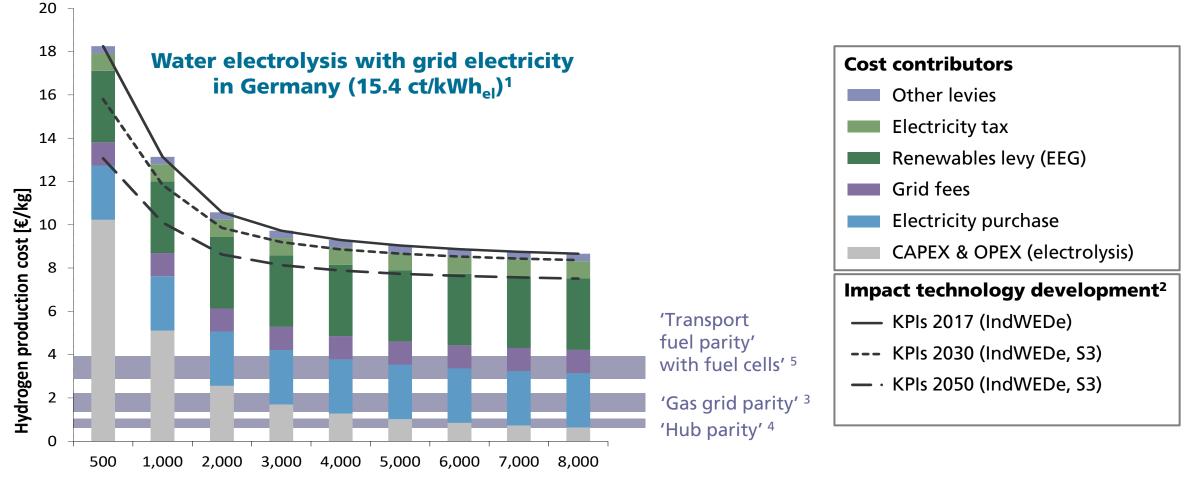

Source: https://www.bmwi-energiewende.de/EWD/Redaktion/Newsletter/2019/07/Meldung/topthema.html



15

Main Drivers for Hydrogen Production Costs

Currently levies & taxes for electricity make hydrogen expensive in Germany.



1: 15.4ct/kWh average electricity price for industrial users in 2016 for annual consumption of 0.16 to 20 million kWh (mid-voltage level connection 100kW/1600h to 4000kW/5000h). Source: "BDEW Strompreisanalyse 2018"
 2: Data from survey in IndWEDe study, see https://www.now-gmbh.de

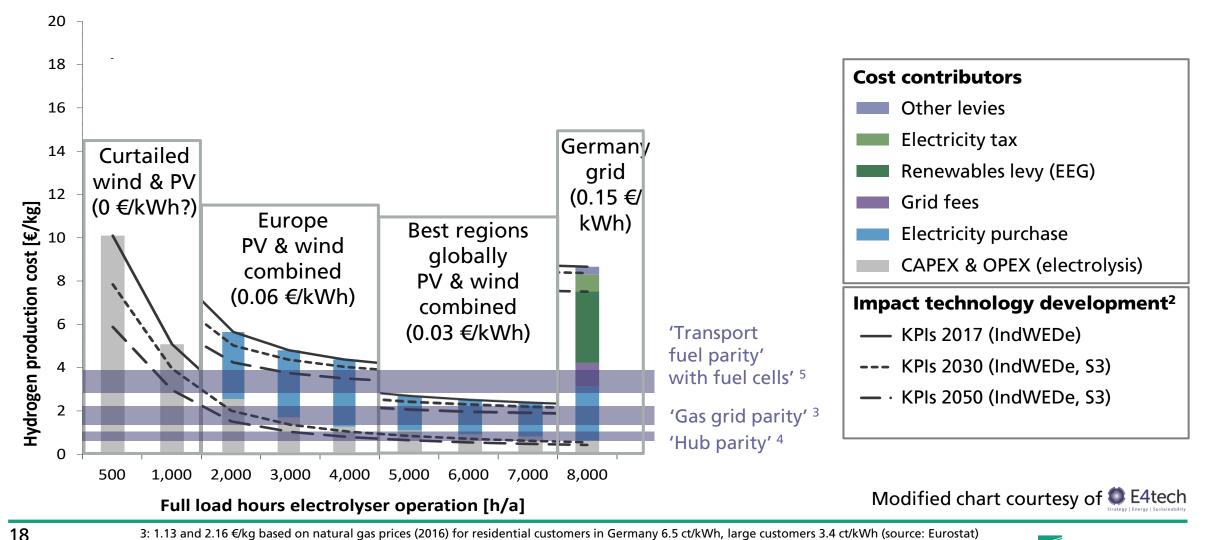
E4tech Fraunhofer Fraunhofer ISE

Main Drivers for Hydrogen Production Costs

Can 'green' hydrogen from RES achieve cost parity with fossil technologies?

Full load hours electrolyser operation [h/a]

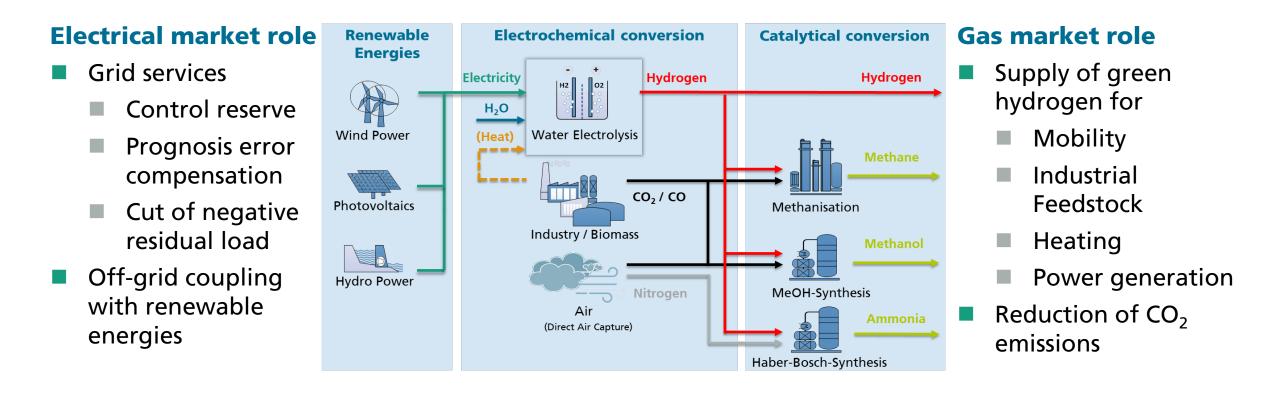
17


3: 1.13 and 2.16 €/kg based on natural gas prices (2016) for residential customers in Germany 6.5 ct/kWh, large customers 3.4 ct/kWh (source: Eurostat) 4: 0.30 - 0.80 €/kg based on natural gas (Henry Hub 2017): 3 USD/MMBtu and Japan LNG cif: 8 USD/MMBtu (Source: BP) © Fraunhofer ISE

5: Assumption: Competitive hydrogen prices at the nozzle 6 €/kg (diesel car 5 l/100km at 1,20 €/l, fuel cell car 1 kg H2/100km), 2-3 €/kg deducted for distribution and HRS costs. Prerequisite: Introduction of fuel cell vehicles and filling stations and continuation of the tax exemption for hydrogen as fuel.

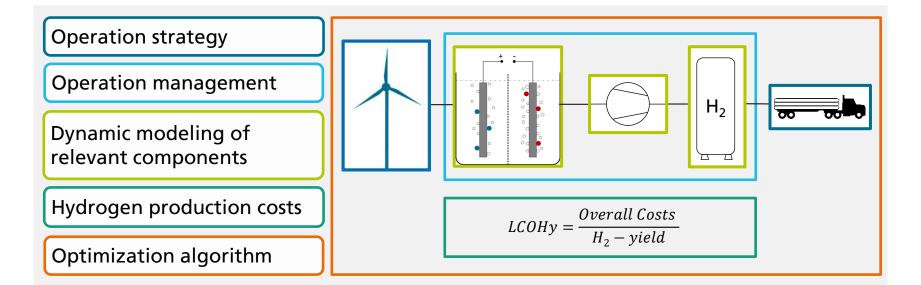
Main Drivers for Hydrogen Production Costs

Can 'green' hydrogen from RES achieve cost parity with fossil technologies?


3: 1.13 and 2.16 €/kg based on natural gas prices (2016) for residential customers in Germany 6.5 ct/kWh, large customers 3.4 ct/kWh (source: Eurostat) 4: 0.30 - 0.80 €/kg based on natural gas (Henry Hub 2017): 3 USD/MMBtu and Japan LNG cif: 8 USD/MMBtu (Source: BP)

© Fraunhofer ISE 5: Assumption: Competitive hydrogen prices at the nozzle 6 €/kg (diesel car 5 l/100km at 1.20 €/l, fuel cell car 1 kg H2/100km), 2-3 €/kg deducted for distribution and HRS costs. Prerequisite: Introduction of fuel cell vehicles and filling stations and continuation of the tax exemption for hydrogen as fuel.

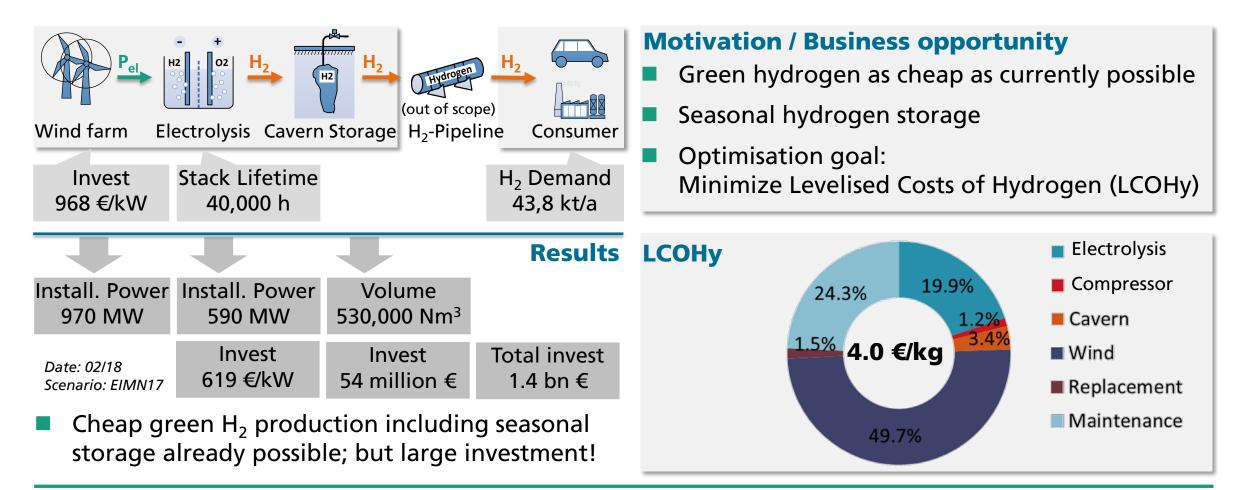
ISE


Evaluation of Business Opportunities for PtX Installations Electrolysers have opportunities and market roles on both sides

Evaluation of Business Opportunities for PtX Plants Tool box H₂ProSim developed @ Fraunhofer ISE

- Analysis and assessment of PtX business models
- Optimization of plant setup and design of components
- Prognosis of H₂ yield and LCOHy

- Model needs input time series (e.g. for available renewable energies)
- Uses predefined physical correlations (can be adjusted for each project)
- Works by solving numerical equations of physical effects (mass and energy balances)
- Gives optimal setup und dimensions of the plant and its components


Evaluation of Business Opportunities for PtX Plants Case Study 1: Grid connected onsite water electrolyser for HRS (2014)

Motivation / Business opportunity Grid-assistive electrolysis operation for a CGH2 refueling station (out of scope) Renewables Grid Electrolysis Pressure Storage HRS Continuous hydrogen supply for mobility Input Optimization goal: Stack lifetime H₂ demand 40,000 h 690 kg/d Minimise Levelised Costs of Hydrogen (LCOHy) **LCOHy** Results Electrolysis 15.0% **Electricity Costs** Install. Power Size 0.9% Storage EC < 88 €/MWh 3.1 MW 52 Nm³ 3.4% Electricity \rightarrow Electrolyser 7,94 €/kq 49.2% Invest Maintenance on full load 1,061 €/kW 27.0% Stack Replacement Additional costs for refueling station: 1.5 €/k Taxes To date not cost competitive to grey hydrogen!

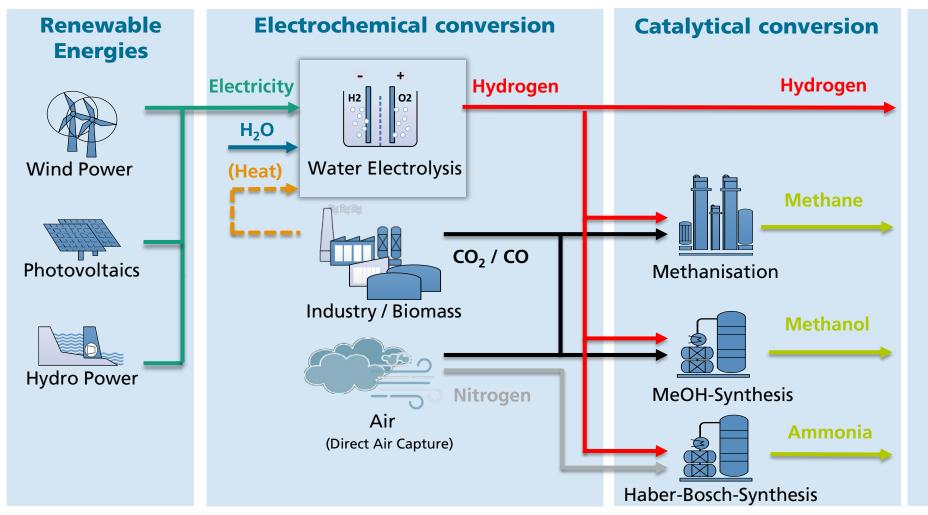
Evaluation of Business Opportunities for PtX Plants

Case Study 2: Large-scale offgrid electrolysis plant supplying a H₂ grid (2017)

Summary and Conclusion

- Reduction in GHG emissions and reliable energy supply are main drivers for the German Energy Transition
- Most likely Germany will miss its own set GHG emission targets in 2020
 - most concern about transportation, industry and buildings
 - increased pressure to push intersectoral coupling to reach 2030 targets
- Water electrolysis and power to X technologies are key elements for intersectoral coupling
 - More than 35 PtX projects (in total 55 MW) are in operation or under construction in Germany
 - "Laboratories for the Energy Transition" will result in new installation with approx. 300 MW in the next years
 - Using of green hydrogen in industry (steel and feedstock) gains importance
- Levies & taxes for electricity make hydrogen expensive not only in Germany
 - but 'green' hydrogen from RES can achieve cost parity with fossil technologies
- Water electrolysis for PtX have business opportunities either in the electricity or in the gas market
 - electrical market role is mostly chosen to fulfill requirements given by gas market role
 - no globally feasible business opportunities known yet business cases always site/project specific

Thanks a lot for your kind attention!


Fraunhofer-Institut für Solare Energiesysteme ISE

Dr. Tom Smolinka

www.ise.fraunhofer.de www.pem-electrolysis.de tom.smolinka@ise.fraunhofer.de

Current State on Power-to-X Applications in Germany Intersectoral coupling is essential to reach CO₂ reduction goals

Sustainable products

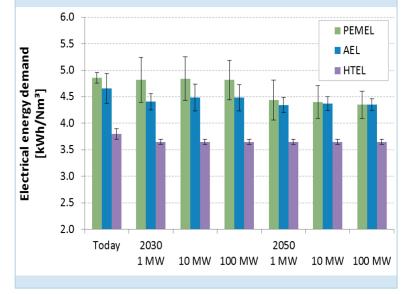
<u>Fuel for mobility</u> Cars, Trucks, Busses, Trains, Fork Lifts, etc.

Fuel for Power Generation Fuel cells, gas turbines etc.

<u>Green Fuels</u> OME, DME, MtG, FT, Kerosene, etc.

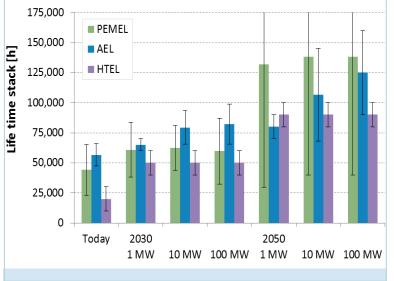
<u>Climate-friendly</u> <u>basic chemicals</u> OME, DME, Formic Acid, Polymers, etc.

<u>CO₂ free fertilizer</u>

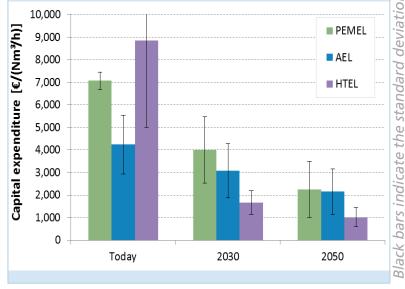

Future Trends in Power-to-X Applications in Germany

The technology is ready for use - but still has great potential for improvement.

Development status and potential of water electrolysis according to stakeholder survey (IndWEDe study¹)


Electrical energy demand

On the long term (2030/50) efficiency will increase only slightly.


Life-time stack (technical)

There is still a large potencial of improvement for all three technologies.

Investment costs

Strong CAPEX reduction is feasible already today by economy of scale.

26 © Fraunhofer ISE

1: https://www.now-gmbh.de/content/1-aktuelles/1-presse/20180917-aktuelle-studiezeigt-wege-zur-industrialisierung-der-wasserelektrolyse/indwede-studie_v04.1.pdf

