LARGE – großflächige Atmosphärendruck-Plasmabehandlung

Dipl.-Ing. Liliana Kotte,

Dr. Gerrit Mäder, Dipl.-Ing. Julius Roch, Dipl.-Chem. Beate Leupolt, Prof. Dr. Stefan Kaskel

IWS

Inhalt

- 1 **Motivation**
- LARGE-Plasmaquelle, Funktionsprinzip, Charakteristik 2.
- Einsatzbeispiele der LARGE-Plasmaquelle 3.
 - Vorbehandlung von CFK
 - Ölentfernung auf Aluminium
 - SiO₂-Beschichtung von Metallen
- Mobiler LARGE 4
- 5. Zusammenfassung

Motivation

Ansprüche an die LARGE-Plasmaquelle:

- Behandlung großer Flächen
- Betrieb bei Atmosphärendruck \rightarrow keine Schleusensysteme
- Variabler Arbeitsabstand f
 ür die Bearbeitung von 3-D-Bauteilen
- Integrierbarkeit in die Prozesskette (z. B. durch Roboterhandling)
- Große Vielfalt an Plasmagasgemischen: Druckluft, N₂ und Mischungen aus Ar + O₂, H₂, CO₂, NH₃
- Adaption eines Remotegassystems \rightarrow Schichtabscheidung ohne Kontamination der Plasmaquelle

LARGE-Plasmaquelle

- Gleichspannungsbogenentladung (thermisches Plasma)
- Magnetfeldstabilisierter Lichtbogen
- Kaskadierte Zündung
- ⇒ Skalierbare lineare Plasmaquelle, bisher realisierte Maximallänge: 350 mm

IWS Dresden

Strömungssimulation

FLUENT-Berechnungen zur Strömungssimulation \rightarrow Zugeschnitten auf den zu untersuchenden Prozess werden Simulationsmodelle zum einfachen und sicheren rechentechnischen Bestimmen der Strömungsvorgänge entwickelt.

- Gasströmungen
- Wechselwirkung von Partikeln innerhalb einer Gasströmung
- Simulation von Gasströmungen und Schichtabscheidungen (inkl. Modellbildung) innerhalb von Reaktoren
- Wärmeübertragung
- Gasströmungen in Volumenplasmaquellen

Oben: Simulation der Flugbahn und des Aufschmelzverhaltens von 25 µm Partikeln <u>Unten:</u> Foto mit ca. 25 µm Partikeln

5

LARGE – Remotegassystem

- Zugabe von Precursoren und schichtbildenden Substanzen ohne direkten Kontakt mit der Plasmaquelle (Langzeitstabilität)
- Anwendung der Strömungssimulation für das Design der Flansches
- Design und Material beeinflussen maßgeblich Umsetzung, Auftrag und Verteilung der Substanzen

LARGE-150-Plasmaguelle mit anodisierten AlMgSi₁-Flansch

Fraunhofer

Dresden

IWS

LARGE-150-

Plasmaguelle

LARGE-Plasmaquellen Charakterisierung

- Temperaturbestimmung des Afterglow-Plasmas mittels Thermoelement
- Untersuchte Plasmagasmischungen: DL, N₂, Ar + N₂ / O₂ / CO₂ etc.
- → Temperatur des Afterglow-Plasma abhängig von der Natur und Zusammensetzung des Plasmagases:

Temperaturbestimmung mit S-Typ Thermoelemente (TE)

© Fraunhofer IWS

Plasmagas	Gasmenge [slm]	Temperatur [°C]			
$Ar + N_2$	140	580			
Druckluft	140	1010			
N ₂	140	1290			

Gemessen in der Plasmaflamme im Abstand von 8 cm

LARGE-Plasmaquellen Charakterisierung

Untersuchte Plasmagasmischungen: DL, N₂, Ar + N₂ / O₂ / CO₂ etc.

→ Temperatur des Afterglow-Plasma abhängig von der Natur und Zusammensetzung des Plasmagases:

LARGE-Plasmaquellen Charakterisierung

- Untersuchung mit optischer Emissionsspektroskopie (OES)
- \rightarrow freie Radikale, atomare und molekulare Spezies

Plasmabehandlung von CFK

- Entfernung von Trennmittelrückständen mit einem Ar+O₂-Plasma
- Plasmaaktivierung im Abstand von 20, 40 und 70 mm
- \rightarrow besten Ergebnisse beim Abstand von 40 mm

GROUP

CFK, U-Profil

IWS

Dresden

10

Liliana.Kotte@iws.fraunhofer.de, September 2014

Plasmabehandlung von CFK

- Versagen der Haftung im CFK selbst
- Haftung stark abhängig vom Behandlungsabstand
- Haftung unabhängig vom CFK-Trennmittel

Bruchbild: li. Stempel, re. CFK kohäsives Versagen des Klebstoffes

RRUS

Dresden

Plasmabehandlung von CFK

- XPS Analyse der CFK Oberfläche nach einer Ar+O₂ Plasmabehandlung
- Umwandlung des Silikons vom Trennmittel in Silikat → Verstärkung der Haftfestigkeit

Elements		С	N	Ο	Si	S	Silicate	Silicon
SRB 4cm	[At%]	48.7	4.3	38.1	6.7	1.6	96.0	4.0
SRB 6cm	[At%]	61.5	3.3	27.3	6.9	0.9	13.5	86.5
Tyg 4cm	[At%]	50.6	5.3	36.3	3.8	2.4	86.5	13.5
Tyg 6cm	[At%]	64.7	26.3	-	3.8	0.8	9.5	89.5
Marbocoat 4cm	[At%]	55.6	5.7	32.9	1.4	1.6	100	-
Marbocoat 6cm	[At%]	66.9	2.7	26.2	2.7	0.4	52	48

XPS-Analyse von Ar+O₂ plasmabehandelten CFK, mit 10 m/min im Abstand von 4 und 6 cm

© Fraunhofer IWS Liliana.Kotte@iws.fraunhofer.de, September 2014

12

IWS Dresden

BUS 🛛 Fraunhofer

LARGE-Plasmaquelle zur Ölentfernung auf Aluminium

- Entfernung eines 0,05 0,1 mg/cm² Ölfilmes im Plasmafächer
- Bestimmung des Masseverlustes sowie C-H Bande mittels FTIR
 - Berechnung der Bandenfläche zwischen 2700 cm⁻¹ 3000 cm⁻¹

13

IWS Dresden

LARGE-Plasmaquelle zur Ölentfernung auf Aluminium

Effektivität des Abbaus abhängig vom verwendeten Plasmagas:

 $Ar+N_2 > Ar+O_2 > Ar+N_2+O_2 > Ar+CO_2$ -Plasma

Bei 0,05 – 0,1 mg/cm² Öl reicht 1 Zyklus zur vollständigen Ölentfernung aus

Plasma	∑Gas [slm]	Ar/xx	v [m/min]	Zyklen	Massendifferenz ∆m [g]	nach Plasmabehdl. [µg/cm²]	FTIR (Bandenfläche)	Ölentfernung
Referenz Aluminium mit Ölfilm							-3,59	
Ölbeseitung im Ofen bei 200°C, 30 min					0,007	0,11	0,20	
Ar/N2	100	1,5	20	1	0,0033	0,05	0,03	
Ar/N2	100	1,5	30	1	0,0055	0,09	0,05	Öl entfernt
				2	0,0079	0,13	0,09	
				3	0,0086	0,14	0,16	
Ar/N2	100	1,5	50	1	0,0014	0,02	0,17	
				2	0,0026	0,04	-0,12	
				3	0,0064	0,10	0,10	
Ar/O2	90	3,5	30	1	0,0017	0,03	0,16	
				2	0,0020	0,03	0,13	
				3	0,0030	0,05	0,15	
Ar/N2/O2	100	1,5	30	1	0,0038	0,06	-0,32	Öl-Spuren
				2	0,004	0,07	-0,46	Öl vorhanden
				3	0,0055	0,09	-0,04	
Ar/CO2	80	1,7	30	1	0,0011	0,02	0,21	
				2	0,0026	0,04	-0,09	
				3	0,0035	0,06	0,13	

© Fraunhofer IWS Liliana.Kotte@iws.fraunhofer.de, September 2014

SiO₂-Beschichtung von Metallen

Plasmagas: 90 – 180 slm Ar+N₂ / N₂ / DL

Precursor:

- HMDSO ⇒ SiO_xC_y Schicht
- **TEOS** \Rightarrow SiO₂
- Abscheidegeschwindigkeit bis 15 m/min; lineares Bewegungssystem
- Abstand Quelle Substrat bis 40 mm
- Substratgröße beschränkt durch die Lichtbogenlänge (hier 150 mm)

 $\begin{array}{cccc} CH_3 & CH_3 \\ H_3C-Si-O-Si-CH_3 & CH_3 \\ CH_3 & CH_3 & H_3C \\ HMDSO & & O \\ H_3C & TFOS \end{array}$

 Filmmorphologie ist abhängig vom gewählten Precursor, Substratmaterial, Arbeitsabstand, Plasmagasmix und Prozessgeschwindigkeit

15

SiO₂-Beschichtung von Metallen

Precursor bestimmt:

- Schichtzusammensetzung
 - HMDSO \Rightarrow SiO_{2-x}C_y Schicht, ca. 3-5 at.% C
 - TEOS ⇒ SiO₂

 SiO_2 (HMDSO) auf Ti_6Al_4V , d = 0,5 mm

© Fraunhofer IWS Liliana.Kotte@iws.fraunhofer.de, September 2014

IWS Dresden

Fraunhofer

SiO₂-Beschichtung von Metallen

Precursor bestimmt:

- Benetzbarkeit
 - HMDSO \Rightarrow hydrophobe Schicht
 - TEOS ⇒ hydrophile Schicht

Tab. 2: Probentabelle mit ausgewählten Prozessparametern und Schichteigenschaften abgeschieden mit 150 mm LARGE Plasmaquelle im offenem System; $d_{_{Quelle}}$ – Abstand Plasmaquelle – Substrat, $T_{_{s}}$ – Starttemperatur des Substrates, $d_{_{SiOx}}$ - Dicke der Beschichtung, $KW_{_{H2O}}$ – Wasserkontaktwinkel, $E_{_{OF}}$ – Oberflächenenergie bestimmt nach Owens und Wendt, $E_{_{polar}}$ – polarer Anteil der Oberflächenenergie

Probe	Precusor	FTIR	$d_{Quelle}(mm)$	$T_{s}(^{\circ}C)$	$d SiO_x(nm)$	$KW_{_{H_2O}}(^\circ)$	$E_{OF} [mN/m]$	E_{polar} (mN/m)
P332	HMDSO	SiO _x C _y	10	RT	302	88 ± 3	26	6
P331	HMDSO	SiO _x C _y	20	RT	203	87 ± 2	28	5
P333	HMDSO	SiO _x C _y	20	RT	257	86 ± 2	28	6
P334	TEOS	SiO _x	10	200	172	24 ± 3	70	35
P336	TEOS	SiO _x	10	200	139	32 ± 2	65	31
P337	TEOS	SiO _x	20	200	117	37 ± 2	62	29

Quelle: L. Kotte, Jahrbuch der Oberflächentechnik Bd.68, Leuze Verlag, 2012

📕 Fraunhofer 🔬

17

IWS Dresden

Beispiel: Verkleben von Ti₆Al₄V mit SiO₂-Schichten

Keiltest (DIN 65448) für strukturelle Klebstoffe in der Luft- und Raumfahrt

durchgeführt vom Projektpartner Airbus

- Verklebung von Ti₆Al₄V-Blechen mit 100 nm SiO₂(TEOS)- bzw. SiO_xC_y(HMDSO)-Schicht
- Kleber: FM73 (Epoxid basiert)
- Referenz: NaTESi (Anodisierung), Turco 5578 (NaOH basiertes Ätzbad)

Fraunhofer

Dresden

© Fraunhofer IWS Liliana.Kotte@iws.fraunhofer.de, September 2014

Haftfestigkeit von SiO₂-Schichten auf Ti₆Al₄V

19

Keiltest (DIN 65448) für strukturelle Klebstoffe in der Luft- und Raumfahrt

Vergleich der Haftfestigkeit zwischen:

- NaTESi anodisiert
- Turco 5578 alkalisches Ätzen
- IWS Plasma-CVD TEOS-Schicht (SiO₂)
- IWS Plasma-CVD HMDSO-Schicht (SiO_xC_y)

Fraunhofer

IWS

- Haftfestigkeit von "IWS-HMDSO-Schichten" vergleichbar mit NaTESi Referenz (diese muss ersetzt werden)
- SiO₂-Schicht weist notwendige Makro- und Mikrostruktur f
 ür eine gute Haftvermittlung auf

"Aircraft demonstrator" für Hybridstrukturen

- Kleben von U-förmigen Komponenten Ti (Innenseite) mit CFK (Außenseite)
- Demonstrator f
 ür realit
 ätsnahe Verbundkomponenten mit Titan im Inneren und CFK als Ummantelung

Mobiler LARGE

Komponenten:

- 150-mm-LARGE Plasmaquelle
- Gleichstromnetzgerät TopCon Quadro (Firma Regatron)
- SPS-Steuerschrank
- User Interface über Touchscreen
- Wärmetauscher bei Bedarf

Mobile 150-mm-LARGE-Plasmaquelle

Mobiler LARGE

Einsatzmöglichkeiten:

- Plasmaaktivierung und Reinigung von Metallen, CFK und Polymeren vor Ort beim Kunden
- Installation am Roboterarm möglich
- Einfache Integration in Bandanlagen
- Arbeiten an offener Atmosphäre

Vom Kunden zu stellen:

- Prozessgas Druckluft u./o. O₂, CO₂, N₂, H₂...
- Kühlwasser
- Absaugung abhängig vom Prozess

150-mm-LARGE-Plasmaquelle

22

Zusammenfassung

LARGE = skalierbare und linienförmige Plasmaquelle

- Charakterisierung des thermischen Plasmas:
 - Temp. abhängig von Plasmagasmix und Aufbau
 - Im Plasma: freie Radikale, atomare und molekulare Spezies
- Plasmamodifikation von:
 - <u>CFK</u> Reseived by Beseiving von diversen Trennmitteln

 - <u>Metallen</u> (Bsp.Ti₆Al₄V) ⇒ Abscheidung von SiO₂ und SiO_xC_y-Haftvermittlerschichten; Schichtmorphologie, -aufbau und optische wie mechanische Eigenschaften gezielt einstellbar
- Mobiler LARGE jetzt verfügbar

Teile der präsentierten Ergebnisse entstanden im Rahmen des EU-Förderprojektes Process Line Implementation for Applied Surface Nanotechnologies (PLIANT), www.pliant.eu

