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Abstract

Co-ordinated usage of resources in a Grid environment is a challenging task impeded by the nature of resource
usage and provision: Resources reside in different geographic locations, are managed by different organisations, and
are by no means accessible via standardised interfaces, protocols or commands. These prerequisites have to be taken
into account in order to provide solutions in the area of Gridscheduling and resource management.

In this document we propose the employment of a semantic model for Grid scheduling. The Grid Scheduling
Ontology describes the capabilities and state of a scheduler, providing a machine-processable and interoperable model
for the integration of local schedulers into Grid resource management. Along with the model we present a meta-
scheduling architecture based on the VIOLA Meta-Scheduling Service that use ontology modelling and reasoning
capabilities of OWL to provide semantic support for meta-scheduling in Grids.

1 Introduction

The resources needed to execute workflows in a Grid environment are commonly highly distributed, heterogeneous,
and managed by different organisations. One of the main challenges in the development of Grid infrastructure services
is the effective management of those resources in such a way that much of the heterogeneity is hidden from the end-
user. This requires the ability to orchestrate the use of various resources of different types. In this work we focus
on the co-allocation of resources to assemble a virtual machine that enables the execution of distributed workflows
consisting of many parallel tasks.

1.1 Related Work

Recent research [1] has shown how a meta-scheduler can be employed to schedule workflows by co-allocating re-
sources on multiple Grid nodes. A meta-scheduler is a Grid service that interfaces with multiple local schedulers
which control the use of individual nodes by negotiating with them advance reservation of resources based on user

This research work is carried out under the FP6 Network of Excellence CoreGRID funded by the European Commission (Contract IST-2002-
004265).
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requirements such as time or QoS constraints. The goal of this negotiation is to determine feasible time slots in which
all required resources are available for the requested start time to execute the distributed workflow.

In order to be able to participate in negotiation, local schedulers should be capable and willing to accommodate
specific meta-scheduler requests (see Section 2 for details):

• Advance reservation of resources by offering job executionstart and stop times.

• At least partial access to local schedules, e.g. by providing information about available time slots.

• Some control over existing reservations, e.g. to cancel or extend a reservation.

Currently only a few local scheduling systems such as CCS [2], PBS Professional [3], or LSF [4] offer these
capabilities; however, more are expected to appear as thereis interest of resource owners who intend to advertise their
resources with guarantees for QoS to the Grid.

The main functions of a meta-scheduler include (i) allocation of a single resource for a single application for a
fixed period of time, (ii) co-allocation of multiple resources for the same fixed period of time for single or multiple
applications, (iii) allocation of multiple resources for multiple applications for different fixed periods of time, and (iv)
allocation of dedicated resources for either of the cases above.

The prototypeMeta-Scheduling Servicedescribed in [1] currently realizes functions (i) and (ii).The scheduling
algorithm is based on a multi-step negotiation process, involving the pre-selection of suitable local schedulers, the
acquisition of feasible start times from them, selecting resources, and a confirmation of the available start times from
each of the schedulers involved.

The Meta-Scheduling Service interfaces with local schedulers through dedicated adapters (as depicted in Fig. 1)
that hide the heterogeneity of the schedulers’ native interfaces. These adapters offer a uniform set of abstract operations
to the meta-scheduler which include requesting available start time slots for jobs, submitting scheduling requests for a
specific time slot, and requesting the state of the current reservation. Meta-scheduling requests are communicated by
client applications using WS-Agreement [5] while the adapters forward local requests using proprietary commands.
This architecture allows an easy integration of meta-scheduling capabilities into existing Grid environments.
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Figure 1: High-level meta-scheduling architecture

1.2 Motivation to Employ Semantic Models

One shortcoming of the current architecture is that, while the adapters provide uniform operations, no shared data
model is available to describe a scheduler’s set of capabilities and current schedule state. For example, there is no
explicit and shared definition of scheduling concepts liketime slotor schedule queue, or of capabilities liketime slot

CoreGRID TR-0030 2



reservation change. Instead, these concepts are left implicit in the implementation of the adapters, which only expose
a simple set of scheduling operations.

This makes the adapters not only heavy-weight, but also rather inflexible: all possible interactions with a local
scheduler have to be defined at the time of implementation. Assumed that a modified version of the scheduling
algorithm needed to query the schedulers’ ability to modifythe time slot allocation after the initial reservation (a
feature that was previously not needed). At present, the only option available would be to accommodate the new
feature to upgrade the adapters (all of them) in order to support the new query.

In this paper we introduce a novel approach to extensible meta-scheduling, based on the definition of a shared,
explicit and extensible vocabulary to describe a schedulerstate as well as its capabilities. We show how such a shared
information model for scheduling concepts supports the negotiation process in a more flexible and adaptable way than
it is currently possible.

Our approach is inspired by a number of recent initiatives towards the design ofsemantic modelsfor describing
Grid resources [6], mainly for interoperability purposes [7, 8, 9]. Common to all these efforts is the explicit represen-
tation of knowledge regarding available resources, encoded in such a way as to make it machine-processable.

Following the same principles, but on a more limited scope, we have developed a lightweight semantic model,
called the Grid Scheduling Ontology (GSO), to describe the capabilities and state of Grid schedulers. The ontology
definition process has recently been described in [10] and isbased partially on the Grid Scheduling Dictionary of
Terms and Keywords [11].

Along with the model we also present an enhanced meta-scheduling architecture and show how it can improve
support for meta-scheduling algorithms and negotiation processes. The ontology modelling and reasoning framework
offered by the OWL semantic modelling language [12] provides the necessary functions. Specifically the GSO includes
a collection of scheduler classes, where each class is defined in terms of a set of underlying capabilities, for instance
the ability to expose the current schedule, to accommodate changes in a reservation, and so forth.

Using aOWL DL reasoner[13], individual schedulers whose capabilities can be expressed using the terms in the
ontology can then be automatically classified as belonging to one or more of the scheduler classes. This classification
is then exploited by the meta-scheduler, as described in detail in Section 3.

1.3 Reminder of the Paper

The reminder of the paper is organised as follows. In Section2 we present the requirements and use cases that provide
basis for the knowledge modelling activity. The semantic model itself is described in Section 3, followed by the
proposed implementation in Section 4. An overview of further developments for this work concludes the paper.

2 Requirements for the Scheduling Domain Knowledge Model

The introductory section already listed three general requirements that define the meta-scheduling environment our
work is based on. The fulfilment of these requirements is currently realised through adapters which provide an ab-
straction level between local schedulers and the Meta-Scheduling Service. This approach has obvious restrictions (as
reported in Section 1.2) and we therefore suggest the definition of a scheduling domain vocabulary. Since this approach
makes a thorough knowledge acquisition process necessary,we re-visit and examine the original meta-scheduling use
cases in this section.

2.1 Resource Pre-selection Use Case

Many Grid resource management and scheduling scenarios include a resource pre-selection phase where resources are
selected as candidates for the actual scheduling process based on static properties [14]. “Static” in this case refers
to properties which do not change from the time the resource request is submitted until the work is finished. Such
properties are e.g. the operating system of a compute resource or the maximum bandwidth of a network connection,
but also the capability of a resource management system to support meta-scheduling.

According to [1] a local scheduler/resource manager has to provide the following two functions to support meta-
scheduling:

1. To schedule a reservation at a fixed date and time for a well-defined period of time (Advance reservation).
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2. To provide an aggregated overview of the usage of the managed resource between now and a well defined date
and time in future (Usage preview).

The first requirement is a binary one: If the local scheduler fulfils it the managed resource will be able to participate
in a meta-scheduling process, if not, the resource will not be pre-selected. The fulfilment of the second requirement has
implications on the scheduling algorithm: ideally the meta-scheduler receives all information from the local schedulers
it needs to execute a co-ordinated schedule for all resources involved. But even if a local scheduler does not provide
any information about the future usage of the managed resource, the meta-scheduler (or the entity that pre-selects
resources) may decide to include it into the scheduling process given that requirement 1 is fulfilled.

The vocabulary should therefore provide answers to the following questions:

• Does the local scheduler provide a reservation function (tobe answered yes or no according to requirement 1
above)?

• Does the information provided by the local scheduler with respect to the future usage of the resource fulfil the
requirement of the meta-scheduler (according to the requirement 2 above)?

2.2 Schedule Query Use Case

This use case extends the second requirement of the previoususe case.
Once the resource pre-selection is finished the local schedulers involved in the meta-scheduling process are queried

for a resource usage preview (provided that they deliver this kind of information). With the current adapter in place
it is no problem for the meta-scheduler to retrieve the usagepreview in the required format since the adapter converts
the preview information into the format needed by the meta-scheduler. Assuming that we want to design the adapter
as generic as possible, which ideally means independent of the local scheduler, it is necessary to provide meta-data to
convert the local scheduler’s parameters to the format consumed by the meta-scheduler. One of the local schedulers in-
tegrated in the previously described meta-scheduling environment is the EASY scheduler [15]. It provides commands
to, inter alia, return the current queue (pq), reserve e.g. 10 nodes for 5 minutes for an interactive job (psubmit -n
10 -i -t 5), show an estimation when the jobs in the current queue will be executed (pwhen), or give a preview
of the free nodes (prevlist).

The vocabulary representing the scheduling domain should therefore help to answer questions like:

• What is the total estimated run time of all jobs under the control of the local scheduler?

• What is the status of a certain queue?

• What is the first possible date and time a certain job can be scheduled on the managed resource?

2.3 Alter Reservation Use Case

Although the current implementation of the adapter allows the cancellation of a workflow we did not examine the
different states of a reservation (and their potential alteration). Nevertheless we added a capability to the semantic
model which captures the notion of reservation state change. Before we closely examine and model this capability in
detail in a next version of the vocabulary we want to implement an environment as described in Section 4 to validate
the model based on the first two use cases. This will provide uswith the foundation to meet the requirements of this
use case.

3 A Semantic Model for Grid Scheduling

As outlined in the introduction, a meta-scheduler is able tonegotiate resource allocation with local schedulers that are
capable of providing advance reservation of resources (requirement 1), and that optionally allow at least partial access
to the local schedules (requirement 2), and allow some control over existing reservations (requirement 3). In this
section we describe the semantic model called Grid Scheduling Ontology which we use in our new meta-scheduling
architecture to support these functionalities.
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The negotiation process relies on a registry of available local schedulers, in which each scheduler is described
according to the common semantic model. The meta-scheduleruses the registry to pre-select schedulers, as well as to
inquire their state throughout the reservation and resource allocation process.

The model is defined using the OWL-DL ontology language [12],the standard semantic web language. OWL-
DL allows the definition of classes, relationships among theclasses (calledobject properties) as well as individuals.1

Classes can be organised into hierarchies (using theis-a built-in relationship), and a class can have any number of
parents. Individuals may be instances of multiple classes.We writex ∈ C to indicate that individualx is a member of
classC.
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Figure 2: Fragment of the capability hierarchy (some nodes are not expanded)

At first we introduce a hierarchy of classes to modelresource management capabilities, as shown in Fig. 2. The
capabilityofferReservation corresponds to the first of our requirements: a scheduler notproviding it cannot take
part in the advance reservation negotiation. Additionally, we model the ability to query the current scheduler as a tree
with multiple levels of precision, and the ability to alter reservations that have already been made (this node is not
expanded in Fig. 2). Other branches of the hierarchy, which deal for instance with the access control mechanisms
enforced by schedulers, are not shown. Note that some of the classes are defined in terms of other classes using OWL
class construction operators. For example,limited-disclosure is defined by composition, as the capability to
request the job names, the job types and the submission timesfrom a schedule.

As a next step we introduce a classification for local schedulers, rooted at the top-levelscheduler class. The
propertyscheduler-has-capability allows us to define various subclasses of schedulers in termsof capability
sets.

Consider the schedulers classification hierarchy shown in Fig. 3. Each of the classes in this hierarchy is defined
in terms of other classes and properties in the ontology, using OWL-DL’s class definition operators. For instance,
schedule-disclosing-scheduler is the class of all schedulers whose set of capabilities includes at least the
ability to query the current schedule. Note that the type of query that is allowed (i.e., queryJob, queryTime) is not
specified. Therefore, any scheduler whose capability includes at least the genericquery-current-scheduler class,
is aschedule-disclosing-scheduler. Using these operators, it is easy to define classes that correspond exactly
to the set of schedulers which are eligible for negotiation in the context of meta-scheduling.

In general, OWL-DL allows classes to be defined as a set of necessary and sufficient conditions, as in the example
above.2 An AR-capable-scheduler, for example, is any scheduler that, among other capabilities, offers advance
reservation, and for this reason satisfies our requirement 1property.

1Additional features of the language will be introduced whenneeded as part of this description.
2Formal OWL terminology is avoided in this paper for the sake of readability.
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Figure 3: A classification of schedulers
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Figure 4: A scheduler profile
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Figure 5: A scheduler with a profile

The next example of a scheduler class highlights an important feature offered by the OWL-DL language. The
capable-and-disclosing-schedulerclass represents all schedulers whose capabilities includebothofferReservation
andquery-current-schedule. In Fig. 3 this class appears as a subclass of bothAR-capable-scheduler and
schedule-disclosing-scheduler, although theseis-a relationships are not part of the definition. The OWL-DL
operators are defined in such a way that it is possible to perform some specific type of reasoning on the definitions of
classes and individuals. In particular, an OWL-DL reasoner[13] computes the set of most specificis-a relationships
for a collection of classes defined using necessary and sufficient conditions as shown above. Thus, the hierarchy shown
in Fig. 3 is an example ofinferredclassification that has been computed from the class definitions just given.

Let us now return to the definition of scheduler classes for meta-scheduling. Ascheduler profileis any indi-
vidual p1, which is an instance of one or more capability classes, for instanceofferReservation, queryJob,
or queryName (see Fig. 4). If we introduce an instancels1 of scheduler, and assert thatls1 has capability
profile p1 (Fig. 5), we can leverage the OWL-DL reasoning capabilitiesagain, this time to infer themost spe-
cific classesof which the individuals of the ontology are instances. In other words, can we say thatls1 must be
a member of some specific subclass ofscheduler, given that it has capabilitiesp1, and thatscheduler’s sub-
classes are indeed defined in terms of sets of capabilities? In this case, the reasoner is indeed able to infer that
ls1 ∈ capable-and-disclosing-scheduler, becausep1 includes bothofferReservation (necessary for any
AR-capable-scheduler) as well as two schedule querying capabilities that are morespecific than the required
generic resource management capabilityquery-current-scheduler (Fig. 6).

CoreGRID TR-0030 6



� � � � � � � � � � � � � � �
	 � 
 � � �  � � �

� � � � � � � � � � � � � �
� � � � � � � �

� � � � � �
� � � � � � � �  � �

� � � � � � � � ! �� � � � � � " � #

� � � � � � � � �

$ %

� � � � � � � �

� � � � � � � �

� � � � � � 	 � � & ' � � � � � � 	 � � & '

� � � � � � 	 � � & '

( ) %

� 	 * � + ,  � � �
* � � �

	 � 
 � � �  � � �

� 	 * � + ,  � � � * � � � 	 � 
 � � �  � � �

� � � � � � 	 � � & '

	 � 
 � �  � � � � + �
+ � � 	  & � � � � � � 	 * � + ,  � �

� � � �

� � � � � � 	 � � & '

Figure 6: Classified scheduler

In practice, using this model and the associated reasoning features, we are able to obtain a classification of sched-
ulers on the grounds of capability profiles. This automatic classification enables a meta-scheduler to retrieve all the
schedulers of interest with minimal effort, simply by querying the model for all instances of one or more specific
classes. As a more complete example, consider the followingassertions for a set of capabilities and schedulers:

• p1 ∈ offerReservation∩ queryJob ∩ queryName

• p2 ∈ queryTime ∩ alter-from-booked ⊆ alterReservation

• p3 ∈ offerReservation

• ls1 has capabilitiesp1;

• ls2 has capabilitiesp2;

• ls3 has capabilitiesp3;

• ls4 has capabilitiesp2 andp3.

With these definitions, the reasoner computes the schedulers’ classification shown in Fig. 7. A query for all AR-
capable schedulers would now return{ls3, ls1, ls4}, while the alterable-reservation schedulers are{ls2, ls4}.
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Figure 7: An automatic classification of schedulers
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4 Environment for Semantic Exploitation

The idea of providing Web and Grid services with a semantic description in order to facilitate their semantic discovery
is not new. In this section, we outline an architecture to realise our model, based on the recently proposed S-OGSA
architecture [16]. S-OGSA identifies key Grid services thatenable the collection and exploitation of semantics within
a Grid architecture, and prescribes patterns of interaction among these services.

4.1 Architecture

An instantiation of an S-OGSA architecture for the meta-scheduling usage scenario is presented, at a high level, in
Fig. 8.

Two types of knowledge characterise local schedulers:

• Their capabilities with respect to reservation management, as discussed earlier. This knowledge is expected to
be fairly stable in time, and independent of the current scheduling activity.

• A representation of the current scheduling activity which includes the current advance reservations that have
been accepted and their states. The meta-scheduler must consider that such dynamic information may not be
available, as not all schedulers will be configured to provide it. If available, however, it allows a meta-scheduler
to pre-select resources based for example on the current scheduler workload.

� � � � �
� � � � � 	 
 � � 

� � � � � � �

� �
� � � � � � � �

� � � � � � �

� � � � 

� � � � � 	 
 � �

� � � � � � � � � � � � � �
� � � � �  � ! " � " � " � �

# $ % & ' ( ) � �
" � � � � * � � �

� � + � � � �
� � � � � + � � " , �

� �  � ! " � " � " � �

- � � � 
 �  . � � � �  � � � � �
� � � � � � �

/ 0 1

� � � � � � � � � � � � � � � �

2 3 4
5 6 7 8 9 : ; 8 5 <

= & >
� �  � � � � � � � � " , �

, * � � � � � � � �
� �  � ! " � " � " � �

? � � � � � � �
@ � � � A

" � � � � * � � �

? � � � � � � �
�  � , � �

" � � � � * � � �

B � � C � � � � 
� � � � � � �

� � � � , � � �
" � � � � * � � �

� � � � � � � � �
� � � � " * " � � � " , �

� � @ � � � � �

Figure 8: Architecture for exploitation of semantics by theMeta-Scheduling Service

All this knowledge is encoded using the RDF format [17], a W3Cstandard for describing semantic annotations,
and stored in aMetadata Service. The meta-scheduler may query the metadata service using anS-OGSA-compliant
Web Service interface, in order to obtain the capability profiles and current state of registered schedulers. AnOntology
Management Servicecan be used to obtain the latest version of the Grid Scheduling Ontology in a location-transparent
way. At this point, the meta-scheduler holds both the individuals (in RDF format) and the class definitions (in OWL)
required to carry out the inferencing process described in Section 3, using a separateReasoning Serviceas shown in
Fig. 8.
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4.2 Implementation

The transition from the current VIOLA meta-scheduling architecture, presented in section 1.1 (shown in Fig. 1), to an
architecture which integrates the semantic model (as shownin Fig. 8) can be done smoothly in several steps without
breaking the overall architecture. The following steps have to be performed:

1. Define and implement the Metadata Service (MS) with a queryinterface for the Meta-Scheduling Service and a
metadata upload interface for the Semantic Adapter of the Local Scheduler (SALS). The MS also implements the
RDF repository that contains the RDF representation of state and capabilities of the different local schedulers.

2. Define and implement the SALS which converts the schedulerstate and capabilities, transforms them into an
RDF representation and uploads then to the RDF repository. The SALS is needed for those local schedulers -
currently all - which are not able to provide the metadata. Future schedulers may have this capability and will
then be able to upload their metadata directly to the RDF repository.

3. Implement the Ontology Management Service (OMS) based onWS-DAIOnt [18] as defined by the OntoGrid
project [19].

4. Add new interfaces to the Meta-Scheduling Service in order to query the metadata interface to obtain scheduler
metadata of the local schedulers and to access the Grid Scheduling Ontology via the OMS. In addition interfaces
are needed to submit scheduler classification requests to and receive the classifications needed for the pre-
selection from the Reasoning Service.

5. Add logic to the meta-scheduler that allows to pre-selectappropriate local schedulers based on their capabil-
ities and actual state, and to use the metadata to negotiate the advance reservation with the pre-selected local
schedulers.

6. Remove the adapters as they became redundant with the previous step.

5 Future Perspectives

Once implemented we will evaluate the GSO-based architecture and compare it to the solution presented in Sec-
tion 1.1. Since the current implementation of the VIOLA Meta-Scheduling Service is already used to co-allocate MPI
workflows it seems feasible to set up a testbed combining “semantically-enriched” and “classical” adapters. It will
then be possible to compare the functional range of both solutions. It is envisaged that this evaluation will lead to
another iteration of the ontology building process.

In this context it will also be necessary to review the model by means of usage scenarios that include arbitrary
resource types. Although the use cases described in Section2 reflect mostly general Grid scheduling requirements,
thequery-current-schedule capability is modelled according to the requirements of queue-based local resource
managers. The integration of network resource managers into the VIOLA meta-scheduling environment will allow us
to do this review.

In addition we will examine thealter-reservation resource management capability and negotiation-related
issues linked to the negotiation protocol activities of theGRAAP Working Group at GGF [20].

sectionAcknowledgements This paper reports work carried out jointly within the CoreGRID Network of Excel-
lence funded by the European Commission’s IST programme under grant #004265. Some of the work reported in this
paper is funded by the German Federal Ministry of Education and Research through the VIOLA project under grant
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