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Executive Summary

The value of graphical modeling within the analysis and design activities of
object-oriented development is predicated on the assumption that the resulting
models can be mapped correctly, optimally and efficiently into executable (nor-
mally textual) code. In practice, however, because of the large potential mis-
match in abstraction levels, the mapping of graphical models into code is often
one of the weakest and most error prone links in the chain of development
steps. This paper describes a practical approach for addressing this problem
based upon the definition of a restricted extension of the UML known as the
Normal Object Form (NOF). The basic purpose of the NOF is to provide a set of
UML modeling concepts which are "semantically close" to those found in
object-oriented programming languages. Highly abstract UML models can then
be mapped into corresponding executable code by means of a series of semanti-
cally small refinement (intra-UML) and translation (extra-UML) translation steps,
rather than in one large (often ad hoc) step. This not only increases the chances
of a correct and optimal mapping, but also significantly improves the traceability
of UML constructs to and from code constructs, with all the associated advan-
tages for maintenance and reuse.
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Introduction

1 Introduction

The success of the Unified Modelling Language reflects a growing consensus in
the wider software industry that “modeling is a good thing.” However, models
created in the earlier phases of development (e.g. analysis and design) are of lit-
tle value unless they can be readily mapped into correct and efficient executable
forms, which in today’s technology means code in high-level object-oriented
programming languages. Any problems in the transformation path from models
to code not only have a negative impact on the quality of the delivered software
system, but also hinder its future maintenance and/or reuse. Furthermore, they
reinforce the widely held suspicion that modeling is “just paperwork” without
any serious connection to the “real” business of code generation.

Ironically, the very richness and generality of the UML is something of an “achil-
les heel” in this regard. This is because power without control is dangerous.
Developers attempting to use the UML have such a wide selection of modelling
concepts at their disposal, ranging from low-level implementation oriented con-
cepts to very high-level abstract concepts, that they can easily lose their way and
end up facing a daunting gap to span in order to translate their models into
code. Not surprisingly, the wider the semantic gap to be bridged, the greater the
chance of mappings which are inadequate or incorrect.

It is not the UML per se which is really responsible for addressing this problem,
but rather the methods which are intended to support it. However, few if any, of
the current UML-oriented methods pay much attention to this issue. The books
which define the leading methods at best include a chapter discussing “imple-
mentation issues”, usually in a general and ad hoc way. Similarly, books on com-
puter languages rarely spend more than a chapter discussing how features of
the language relate to modeling concepts such as those in the UML. As a result,
the mapping of graphical models into code is one of the most neglected links in
modern software development processes.

Perhaps one reason for this is the widely held view that case tools have already
solved this problem. Widely advertised capabilities such as “round-trip engineer-
ing” give the impression that at the press of a button a case tool can translate a
rich UML model into a complete, optimal, executable program. However,
although the code creation capabilities of modern case tools can be helpful
when used appropriately, no tool is yet capable of handling all the nuances and
trade-offs involved in creating an optimal and efficient implementation of UML
models. The “one-size-fits-all” mapping schemes found in most case tool inevi-
tably end up being incomplete or suboptimal for most situations.
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Introduction

Metamodelling approaches such as ‘Design by Translation’ [7] or metamodelling
tools such as Platinum Technology’s ‘Paradigm Plus’ represent a step forward
over simple case tools since they enable the mapping scheme for each meta-
model concept to be defined independently by the user. However, this technol-
ogy still assumes that the user “knows"” what mapping scheme to use. Without
an underlying theory or methodology for mapping UML models into code, a
user can just as easily define an inappropriate mapping in such a tool as they can
apply the mapping by hand.

These problems all point to the need for a well-defined and flexible methodol-
ogy for supporting the translation of UML models into executable code in a way
that takes into account prevailing non-functional requirements. This paper
describes an attempt to provide such methodological support. After first outlin-
ing the principles underling the approach in section 2, the bulk of the paper in
section 3, describes the Normal Object Form, a restricted extension of the UML
which aims to encapsulate and enhance the implementation-oriented elements
of the notation. This is followed in section 4 by a description of an accompany-
ing methodology to support the flexible and optimal implementation of NOF
elements based on a modified form of design pattern.
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Refinement versus Translation

2 Refinement versus Translation

There are a large number of different object-oriented methods to choose from
when considering the use of the UML in a software development project, with
an equally large number of different processes and modelling approaches.
Despite their prima-facie differences, however, they all share the same underly-
ing assumption that high-level “analysis” models will be developed during the
early phases of development, and lower level executable code (i.e. the imple-
mentation) will result from the later phases. The terms “earlier” and “later” may
no longer apply in a strict waterfall sense due to the prevalence of incremental
processes, but the basic idea of progress depending on abstract models being
transformed to concrete code is more or less universal.

Two basic transformations take place in turning high-level abstract models into
concrete executable code - refinement and translation. Refinement is a relation
between two descriptions of the same thing, with one, the abstraction, contain-
ing less information than the other, the realization. In the context of software
development, refinement can be viewed as a relation between two descriptions
of a software entity, the abstraction or high-level description, and the realization
or low-level description closer to implementation. Translation, in contrast, is the
description of a given phenomenon in two different ways, but at the same level
of abstraction. A classic example from every day life is the translation of a piece
of text from one natural language (say English) to another (say German). If done
correctly, the information content (i.e. the meaning) of both versions should be
identical. In the context of software development, translation results in the
description of a given software entity in two different ways (e.g. graphical and
textual), but with the same information content.

2.1 Separation of Concerns

Although from a conceptual point of view these two ideas are clearly distinct,
they are rarely distinguished in practical software development methods. On the
contrary, most methods bundle them together into a series of “shopping list”
style implementation guidelines which attempt to describe an “implementa-
tion” for each distinct modelling feature on a case-by-case basis. However, this
approach leads to various problems -

1. large semantic gap - for high level modelling constructs with no direct pro-
gramming language counterpart, trying to bridge the semantic gap to code
in one large jump significantly increases the chances of errors or poor map-
pings,
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Refinement versus Translation

Figure 1:

2. undocumented decisions - even if a reasonable mapping is obtained when
performing the mapping in one step, the decisions that it embodies are
undocumented and thus unavailable for future maintainers of the system,

3. loss of reuse opportunities - although the refinement concepts applied within
such a “single step” mapping are often applicable to various languages, bun-
dling them up with language specific translations makes them unavailable for
reuse in mappings to other languages,

4. replication of information - the previous problem (3) implies that implemen-
tation guidelines targeted to different languages often replicate language
independent refinement concepts.

A concrete example of the problem in a UML context is shown in Figure 1,
which depicts a UML association being mapped into C++. Such an association in
the UML conveys a limited amount of information. It indicates only that
instances of the two classes may be linked in some way at run-time, and says
nothing about the precise nature of the links, nor how they should be imple-
mented in a programming language such as C++. As a result there are usually
many ways to implement them, depending on the exact properties required. In
the case of a high-level association such as this, some of the major implementa-
tion considerations are which class should be the client and which the server,
whether the server should be a data member of the client or just a local method
variable, whether the server should be embedded with the client or just refer-
enced by it and so on. By making all these decisions in one fell swoop, and bun-
dling them altogether within the resulting code, they remain implicit and undoc-
umented. This not only makes the code hard to check for correctness (i.e., is this
the correct implementation of the association giving the prevailing non-func-
tional requirements), but also difficult to understand. This, in turn, causes prob-
lems during maintenance when one cannot easily identify why the association
was implemented in a particular way and thus what changes are acceptable.

s
[fem |-
Refinement &
Translation

class Group

public:
void addltem{ Item* p, int id}
{memberd[id] = p; return;}

private:
Item* members[ ];

Example 1: Refinement & Translation

Copyright [J Fraunhofer IESE 1999



Refinement versus Translation

Following the time honored principle of “separation of concerns” we believe
the only way to seriously address this problem is to cleanly decouple refinement
and translation within the software development process. Instead of bundling
both transformations together into a single step they should be performed inde-
pendently. According to this scheme analysis and design models would be devel-
oped in the usual way as before, but before translation they would first be
refined within the UML to a lower level of detail. Only when models have been
obtained at the appropriate level would they be translated directly and straight-
forwardly into code. Applying this approach to the previous example, as illus-
trated in Figure 2, we obtain an additional description of the association, still in
the UML but at a lower level of detail. The two most important benefits of this
approach are that the refinement relationships are clearly visible as explicit UML
constructs, and the size of the individual mappings steps (and thus the likeli-
hood of error) is significantly decreased.

members m
;
Refinement
class Group
Translation public:
members void addltem{ Item* p, int id}
member -
private:
Item* member[ ];
Figure 2: Example 2: Refinement then Translation

2.2 When to Refine and When to Translate?

The idea of separating refinement from translation in the implementation of
high-level modelling concepts would seem to offer numerous advantages, but
its practical realization begs one major question - to what level should “high-
level” models be refined before they are ready for translation, and how can this
level be identified. In other words, what exactly is “high -level”. The goal of the
Normal Object Form (or NOF) is to provide an answer to this question.

As illustrated in Figure 3 (which is a generalization of Figure 2) the purpose of
the NOF is to define a set of UML modelling constructs which are “semantically
close” to object-oriented programming features, and which can therefore be
mapped into elements of a program in a manner that approximates translation
(i.e without a significant change in abstraction level). We call this set the Normal
Object Form, or NOF, because in a sense it represents a “normal” form, akin to
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Figure 3:

that used in relational databases, to which UML models must be ‘reduced’
before translation can begin. On might think of a UML model as being “normal-
ized" by the application of refinement rules to prepare it for translation into
code.

Unrestricted UML

Refinement

Translation

T D> > e D

Role of the NOF

Notice that the definition given above does not mention a particular program-
ming language, but instead refers to the “constructs of object-oriented pro-
gramming”. This reveals a second goal of the NOF which is to capture the con-
cepts which are common to the majority of mainstream object-oriented
languages, not those specific to a particular language. Only then will the true
benefits of separating refinement from translation be available. As experienced
programmer are aware, the underlying concepts of object-oriented program-
ming are basically the same whatever language or implementation vehicle is
actually used to apply them. For example, the various implementations options
discussed above in the implementation of an association apply to most main-
stream object-oriented programming languages. In fact, this core set of con-
cepts lies at the heart of the universal applicability and success of object-ori-
ented design patterns [4], [5]. In a sense, the NOF can be thought of as
providing a UML embodiment of the common, core features of object-oriented
programming.

This generality has a price, however. By positioning the NOF at a level to capture
the common concepts of the main object-oriented programming languages
(e.g. Java, C++, Eiffel, Smalltalk, Ada..), the mapping of NOF elements to any
one particular languages is often no longer strictly translation in the sense
defined above. However it is close enough for practical purposes. Hence, the
use of the wording “..that approximates translation..” in the definition above.
The positioning of the NOF in the abstraction hierarchy represents a trade-off
between the need for generality across programming languages, and the need
to approximate translation in the mapping to a particular programming lan-
guage. In the followings section we provide an overview of the main concepts in
the NOF.
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3 The Normal Object Form

At first sight it might appear that a subset of the existing UML modeling con-
cepts would be sufficient to satisfy the goal identified above. Certainly the UML
already contains many low-level features which have a very close correspon-
dence to object-oriented language concepts, such as classes, methods, pack-
ages etc. However, it turns out that there are also numerous other fundamental
object-oriented programming features which are not represented directly within
the UML. For example, the various implementation choices identified above in
the implementation of an association are not supported very well using the cur-
rent UML modelling constructs. Therefore, in defining the NOF we also found it
necessary to add some additional concepts using the UML's in-built extension
mechanisms (i.e. stereotypes, tagged values and constraints). More precisely, the
definition of the NOF consists of three distinct elements:

— asubset of the predefined UML modeling features,

— additional modeling features, defined through the UML extension mecha-
nism,

— constraints on the use of (1) and (2).

In a sense therefore, the NOF can be viewed as a restricted extension of the
UML.

Another major consideration in the definition of the NOF was how many of the
UML's eight distinct diagram types are actually affected? In principle, all of them
could be, because they all have a bearing on the properties of the software sys-
tem, and thus ultimately on the way it should be implemented. In practice, how-
ever, it turns out that information in many of the diagrams types is usually
“folded into"” other types as part of the refinement process. For example, the
information provided by use case diagrams, and the sequences diagrams that
usually accompany them, ends up in the methods of the classes from which the
system will be constructed.

The same is also true for the UMLs’ statechart diagrams. These describe charac-
teristics of a system which although important are not usually directly visible in
object-oriented programs. The constraints they define are instead indirectly
manifest within the instance variables and methods of the class concerned. In
general, the information from the UML's dynamic models is essentially “folded”
into the static structure models through refinement steps, and cannot be directly
“translated” into a programming language.
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In practice, we find that only two of the main diagram types have a significant
role in describing the “as is” implementation of an object-oriented program -

— Static Structure Diagrams (i.e., Class Diagrams and Object Diagrams)

— Implementation Diagrams (i.e., Component Diagrams and Deployment Dia-
grams)

Information from the other UML diagrams is generally folded into these as part
of the refinement process. Since static structure diagrams alone account for well
over half the UML modeling concepts, the NOF still embraces a large fraction of
the predefined UML modeling elements.

3.1 Class Diagrams

In this section we describe how the NOF impacts the two major kinds of static
structure diagrams - class diagrams and objects diagrams.

Class Diagram Subset

At its core, the NOF contains those elements of UML class diagrams which
embody the fundamental elements of object-oriented programs such as classes,
attributes, associations and inheritance. Since this list is rather extensive in a
paper of this size it is more illuminating to look at the major concepts which are
not deemed appropriate for the NOF since they have no directly counterpart in
object-oriented programming languages. These include:

— Specialized Compartments. These compartments are used to show special-
ized abstract properties of a class (e.g., responsibilities, business rules, etc.) By
definition therefore, such compartments play their major role in the analysis
phase to help developers understand the domain, but do not play an impor-
tant role in implementation. Consequently they are not included in the NOF.
The only compartments which are acceptable in the NOF are those for
attributes, operations and exceptions.

— Association Class. Association classes describe an association that is also a
class. Although it is stated [6] that an association class is not the same as a
class connecting two other classes, no existing object-oriented language sup-
ports any other implementation [5] (i.e., a dictionary class is used). Conse-
quently association classes are not part of the NOF.

— (Class-in-state. Classes with a state machine may have many states. The class-
in-state modeling element describes a state that objects of that class can
hold. Due to its close relation to activity diagrams, it is another way to accom-
plish the same goal as dynamic classification. Therefore it not necessary as a
part of the NOF.
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— Dependency. All dependencies which describe historical connections
between elements (e.g., <<trace>>) do not influence the implementation of
a system and are therefore not part of the NOF.

— Derived Elements. These are not part of the NOF because they are used for
the purpose of clarity and do not provide additional semantic information.

— Metaclass/object and Powertype. Metaclasses are classes whose instances are
also classes, whereas powertypes are metaclasses whose instances are sub-
classes of a given class. They are typically used to construct metamodels and
thus, can be removed from the NOF.

— N-Ary Associations. N-ary associations are associations between three or
more classes. However, just as for association classes no currently existing
object-oriented language provides direct support for such associations; they
have to be “simulated” using multiple binary associations.

— Qualifiers. These are used to partition a set of objects connected with an
object via an association. Qualifiers are not part of the NOF for two reasons.
First, due to their definition as attributes of an association (see also associa-
tion class). Second, they are clearly analysis elements, which model an impor-
tant semantic situation, but do not influence the general strategy for imple-
menting an association.

Additional Class Diagram Elements

Although the UML is a powerful tool for describing object-oriented software
systems it is not possible to describe all properties of programs entirely in the
UML subset within the NOF. Certain extensions (i.e., new elements) are needed.
The NOF includes legal extensions to the UML defined using the in-built exten-
sion mechanism. Most of the UML extensions in the NOF occur in connection
with associations. This is because the fundamental implementation variations for
associations are not fully supported in the present version of the UML. Although
associations can vary in many ways at the analysis and design level, such as in
their arity (e.g. binary, ternary, etc.) and their multiplicity (e.g. one-to-one, one-
to-many, many-to-many), at the implementation level there are far fewer varia-
tions. All inter-object relationships are essentially implemented by the same basic
mechanism: one object holding a pointer to, or the value of, another object.
Even the implementation of associations by ‘Relation Tables’ makes use of these
mechanisms, by implementing the table as a class in its own rights which routes
the communication.

Following ION [1], we call this basic relationship between classes “clientship”.
Clientship is an asymmetric relationship; the client needs to be aware of the

identity of the server class, but the server requires no knowledge of the client
class. All clientship relationships are therefore represented with a UML naviga-
tion arrow indicating the direction of the client/server relationship. As with all
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10

program-level relationships, clientship implies a compilation (and thus static)
dependency. In total there are four different, orthogonal properties of clientship
relationships, each with two possible values. Each possible value for each prop-
erty has a corresponding UML association stereotype:

1

Attached vs. Detached: One of the most important characteristics of a client-
ship relationship is whether the client holds a reference to the server or
whether it holds the actual state (i.e., the value) of the server. When the cli-
ent holds a reference to the server the clientship is said to be detached,
whereas when the client actually holds the state of the server the clientship is
said to be attached.

. Permanent vs. Transient: Another important characteristic of a clientship rela-

tionship is how long the class has visibility of a particular instance of the
server class. If the client holds a reference to, or the value of, the server in its
main data structure, the clientship is said to be permanent. If, on the other
hand, the client has visibility of a server object only for the duration of a sin-
gle method, the clientship is said to be transient.

. Proper vs. Intimate: Normally, a client class only has access to the “official”,

publicly visible methods of the server. This is termed proper clientship. Most
object-oriented languages also allow client classes to be given privileged
access to the server. This is termed intimate clientship.

. Direct vs. Indirect: The final property of a clientship relationship is whether

the client holds visibility of the server, or whether the client relies on a second
server for visibility of the first. The first situation is known as direct clientship,
and the second indlirect clientship.

Individual clientship relationship between two objects, or their corresponding
classes, must make a choice between all four binary attributes. However, show-
ing all four stereotypes, in full, on a clientship arrow would unduly clutter a NOF
class diagram. Therefore, as well as defining default properties (detached, per-
manent, proper, direct) the NOF defines stereotypes corresponding to meaning-
ful permutations of the four orthogonal characteristics (see Table 1).

In general there are 16 different possible combinations of the four binary client-
ship properties, but some of them may not necessarily fit well together from a
programming point of view. A typical example is a clientship relationship charac-
terized by 'Attached, Permanent, Proper, Indirect’. Such a combination defines a
relationship where the client contains the server and all intervening objects
which, in the worst case, may lead to really large objects.

As mentioned previously, the fundamental elements of object-orientation are
naturally present in the NOF, such as classes, objects, attributes, links, associa-
tions and inheritance. However, the NOF has to supports these concepts at the
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The Normal Object Form

level of detail in which they appear in an object-oriented program. Thus, for
example, when a class appears in a NOF diagram, its precise NOF implementa-
tion stereotype must be defined - that is, whether it is an abstract class
(<<abstract>>), a persistent class (<<persistent>>), a template class (<<tem-
plate>>), or a utility class (<<utility>>). If a class is not marked as belonging to
any of these categories in a NOF diagram, this indicates that a decision has been
made to implement it as a normal class.

Combination of Characteristics

stereotype

Description

Attached, Permanent, Proper, Direct

<<embedded>>

Client holds value of public parts of the
server in main data-structure directly.

Attached, Permanent, Intimitate, Direct

<<private>>

Client holds value of public/private parts of
the server in main data-structure directly.

Attached, Transient, Proper, Direct

<<public local>>

Client holds value of public parts of the
server for method execution directly.

Attached, Transient, Intimitate, Direct <<local>> Client holds value of public/private parts of
the server for method execution directly.
Detached, Permanent, Proper, Direct <<standard>> | Client holds direct reference to public parts

of the server in main data-structure.

Detached, Permanent, Proper, Intimi-
tate

<<Dictionary>>

Client holds indirect reference to public parts
of the server in main data-structure.

Detached, Permanent, Intimitate, Direct

<<Friendship>>

Client holds direct reference to public/private
parts of the server in main data-structure.

Detached, Transient, Proper, Direct

<<Parametric>>

Client holds direct reference to public parts
of the server for method execution.

Detached, Transient, Intimitate, Indirect

<<Parametric
Dictionary>>

Client holds indirect reference to public parts
of the server for method execution.

Detached, Transient, Intimitate, Direct

<<Parametric
Friend>>

Client holds direct reference to public/private
parts of the server for method execution.

Possible Clientship Relationships

A good example of how NOF features are tailored towards implementation con-
cepts is provided by the new stereotypes for packages. The package concept in
the UML is a highly general concept intended to model any kind of grouping of
elements whether logical or physical. Packages can of course be used to model
modules in a program (in the case of Ada and Java these are even called pack-
ages).

However, in contrast with the logical packages of UML, the implementation

packages of languages like Ada and others are typically divided into two parts to
support the principles of information hiding. The specification part usually con-
tains the elements of the packages which are intended to be exported to other
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Figure 4:

Table 2:

12

parts of the program, while the body contains those parts which should be hid-
den. This concept is supported directly in the NOF in the form of <<Specifica-
tion>> and <<Body>> stereotypes as illustrated in Figure 4. The same stereo-
types can also be applied to classes, where the specification relates to the
interface and the body to the inner details (e.g., method implementations).

1 1

<<Specification>> <<Body>>

Package-Specifcation Stereotype Package-Body Stereotype

Package Stereotypes in UML

Class Diagram Constraints

Most of the UML modeling elements can be used at different levels of abstrac-
tion. For example in the analysis phase an operation can be specified by a simple
name whereas during detailed design it can be specified in more detail (e.g.,
types, parameters, etc.). In general, the UML allows the modeler to decide when
and where certain pieces of information are used. While this flexibility is valuable
during high-level modeling phases, it becomes a problem in the implementation
phases when the “as is” implementation needs to be described.

Class Diagram Constraints

1. All attributes of a class must have visibility markings. In other words, it must be clear
whether they are to be implemented as public, private or protected members (in the case
of C++).

2. A method must have a visibility marking, a list of parameters (if existing), and a return type

3. A parameter is specified in the following form: name:type=default-value

4. Each class must have at least a constructor and destructor method.

5. The methods of a class have to be grouped by using one of the following stereotypes
<<constructor>>, <<destructor>>, <<update>>, etc.

6. The parameter of a template class must be bound to an actual value to be meaningful.

7. A clientship relationship has to be augmented with multiplicity markings.

8. A clientship relationship has to be augmented with roles.

Selection of Constraints

From an individual diagram it not possible to determine whether the absence of
specific markings is due to the fact that they have simply been omitted or
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because the corresponding decisions remain to be made. A general goal of the
NOF is to rule out such ambiguities by providing constraints which clearly specify
the level of detail to be represented. Due to the size of the UML and the limited
space within this paper we cannot present the full set of constraints. However,

Table 2 presents a short selection to give an overview of their nature.

3.2  Object Diagrams

The basic purpose of an object-oriented program is to create a set of objects
which, at run-time will interact in such a way as to satisfy the needs of the users.
The UML provides the basic mechanisms needed to describe this aspect of a sys-
tem’s implementation in the form of an object diagram, but not entirely in an
appropriate form. This is because the way in which object diagrams are used in
analysis is not appropriate for describing the “as is” implementation of a pro-
gram. In analysis, object diagrams are generally used to depict a typical set of
named instances and a typical set of links in order to provide an illustration of
the kind of object structures that are meaningful for the application under
development. There is no real sense of precisely when the object structure exists,
and from whose perspective it is defined.

In a running object-oriented programming, however, the set of objects in exist-
ence at any one point in time is constantly changing. Moreover, the absolute
names of objects, if they have any meaning, are known only to the run-time sys-
tem. Individual objects only know about (and are able to communicate with)
other object through the names of their instance variables. The predefined UML
object diagram features also neglect another important aspect of a running sys-
tem known as the creation tree. Apart from the outermost object (or main pro-
gram) all other objects in a running program have to be created by some other
object, and failing to ensure this takes places properly is one of the major
sources of errors in object-oriented programs.

To rectify these problem, the NOF makes two main enhancements to the basic
object diagram concepts in the UML -

— the first is to identify two distinct kinds of object diagrams - snapshot object
diagrams which describe a group of objects and their links at a particular
instance in time, and history object diagrams, which describe the same infor-
mation accumulated over a period of time.

— the second is to make every object diagram relative to one specific object in
the diagram known as the root.

These two enhancements are closely related, because the information contained
in each kind of object diagram is defined relative to the root object. In the case
of a snapshot diagram, the instance of time represented by the diagram corre-
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Figure 5:

14

sponds to a particular state of the root object, and in the case of a history dia-
gram, the presented information is accumulated with respect to the root object.
More specifically, a history object diagram shows an accumulation of all objects
which the root object is linked to during its lifetime.

The NOF defines various stereotypes and constraints to support and enforce this
usage of object diagrams as illustrated in Figure 5. This examples illustrates the
set of links which are meaningful for a user of a library who is currently borrow-
ing a book. A user who has a no books on loan would have a different set of
links.

L25:Loan

Borowed

<<Creates>>|

Borrower

<<root>>
:Borrower

B18799'Book Borrowedltem

[borrowing]

Snapshot Object Diagram

Figure 5 illustrates most of the important object diagram stereotypes and exten-
sions defined in the NOF. First, it shows the use of the <<root>> stereotype to
show that the anonymous object :Borrower is the root of this particular object
diagram. Second, it illustrates the use of the stereotype <<creates>> to indicate
that this object is responsible for generating the Loan object L25. Although this
object has a name, the Borrower does not know this name. It is only able to
access the Loan object through the role name Borrowed, which corresponds to
the name of the instance variable in the class defining borrowers. Thirdly, the
presence of the state definition [borrowing] in the body of the object indicates
that this diagram is a snapshot diagram depicting the links which Borrower has
when it is in the borrowing state. Although the UML does not intend state to be
represented within object diagrams, the approach in the NOF is consistent with
the notation for object state defined for activity diagrams.
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4 SORT

In order to be of practical value the NOF needs appropriate methodological sup-
port. This is the goal of SORT (Systematic Object-Oriented Refinement and
Translation). SORT provides a practical technique for leveraging the NOF, and the
concept of refinement/translation separation, by packaging useful refinements
and translations [2].

In view of the success of the pattern cataloguing approaches pioneered by
Gamma [4] and Buschmann [3], SORT refinement and translation guidelines are
packaged in a similar style. However, there is a subtle differences between the
patterns defined in SORT and those of Gamma and Buschmann. Whereas the
latter essentially capture good (i.e. useful) object-oriented structures/behaviors,
SORT patterns capture good (i.e. useful) mappings between object-oriented
structures/behaviors.

Two forms of patterns are recognized in SORT. refinement patterns, which
describe “good” refinements within the UML for reaching structures at the
implementation level specified by the NOF, and translation patterns, which
describe the “good” mapping of UML-NOF models to a specific object-oriented
programming language (e.g., C++). The latter are similar to “idioms” [5] in that
they are language specific, however, as mentioned above they represent more of
a mapping guideline than a useful programming practice. An example of each
of the two pattern forms can be found in Figure 6.

Of course, there is rarely a single pattern which provides the best mapping
(refinement or translation) of a given structure under all circumstances. Gener-
ally, there are several potential mappings, and the one which is most appropriate
in a particular context depends on the associated non-functional requirements
(e.g. performance needs, space limitations, reliability etc.). Therefore patterns
have to provide a context description which allows a developer to choose the
one most suitable for his/her particular needs. Providing such information allows
SORT to offer a level of context sensitivity which is impossible in automated
mapping tools, while at the same time still being reasonably systematic. Devel-
opers are told precisely what to refine or translate, how to perform these refine-
ments/translations, and when to perform the relevant activity. At the same time,
however, they can tailor the particular refinements and translations in different
ways that depend on the relevant context factors. More detailed information on
SORT and its patterns can be found in [2].
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# 23 Re inement Pattern * One-wa association (1)” # 34 Translation Pattern << tandard=> Target: C++

Famil : Interaction - <«Standard>> *
-Role

——{s ]

v <<Refinement>>
classB

{
-Role private:
- A* Role[];
Context: void add{ A* a, int id}
In uence(--, -, 0, +, ++)
Maintainabilit +
Context:
Per ormance o
— In uence(--, -, o, +, ++
Reliabilit + { )
— Maintainabilit +
Reusabilit o
- Per ormance o
ecurit +
Reliabilit +
ace +
Reusabilit o
ecurit +
Descri_tion: ace +
- Class B accesses dass A (unidirectional: man -to-
one). This relation is characterized b a rde and
dllows the rules or << tandard>> dientshi . Descri tion:

HowTo:

1. De ine usage direction

2. De ine rde and its visibilit
3. De ine dientshi

- Class B accesses Class A (unidirectional)

- Rde->Attributeo t eAinClassB

- Class Bhas access to man dasses A ->
Attribute is an arra

- Code Constructs: Pointer, Arra, "B Re erence”
Trace:

- Corres onding re inement  atterns: #23

- Target Com iler: gcc

Figure 6: Pattern Examples
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5 Conclusion

The phenomenal interest in the Unified Modelling Language provides a real
chance for the software engineering profession to increase the amount of mod-
elling work which is performed in the competitive software development indus-
try, and through this to increase quality standards. However, this chance will be
lost if developers are given no effective and practical link between UMLs dia-
grams and the executable implementations of their systems.

This paper has described a strategy for addressing this need which is based on
three time-honored and fundamental engineering principles. The first is the
principle of “separation of concerns”. The basic tenet of the approach is to
cleanly distinguish and separate two independent issues in transforming high
level modes into executable code - namely, refinement and translation. The sec-
ond is the principle of “exploiting commonality”. The approach is explicitly
aimed at exploiting the common, core concepts of object-oriented languages,
and through this to define a set of general refinement patterns which are inde-
pendent of language idiosyncrasies. The third is the principle of “divide and con-
quer”. By clearly separating and capturing individual refinement and translation
steps, the approach divides a single, “semantically large” mapping step into
series of intellectually smaller steps. This not only serves to document the steps,
but significantly improves the likelihood that the overall mapping will be correct.

These ideas are embodied within a restricted extension of the UML known as
the Normal Object Form, and are supported by a methodology for their practical
application known as SORT. One of the main advantages of the SORT approach
is that it “doesn’t care” where the original UML diagrams come from. In other
words, the SORT approach is independent of, and usable with, any of the main-
stream UML development methodologies. The ultimate goal of this work is to
define sufficient refinement patterns to enable any UML compliant diagram to
be normalized into NOF form ready for translation into code.

Another important property of this approach is its “tool friendliness”. As dis-
cussed in the introduction, by trying to support the single-step implementation
of all UML modelling concepts, no matter what their level of abstraction, case
tools may actually be doing developers a disservice. This is because they typically
have to apply a “one-size-fits-all” mapping strategy which fails to document the
rationale for the mapping, and often fails to provide the best mapping for the
circumstances in hand. The SORT approach, based on the NOF, promises to
improve this situation by enabling tools to concentrate what they do best,
namely context independent translation between different representations of
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the same concept. The subtle, context sensitive aspects of the implementation
process can then be left to humans.

In the long term, formally defined languages and notations may become avail-
able which will enable the translation of graphical models to executable code to
be performed with formal rigor and 100% accuracy. Until that time however,
we believe the approach outlined in this paper, which is currently under develop-
ment at the Fraunhofer Institute for Experimental Software Engineering, pro-
vides one of the most practical ways of introducing some rigor into the imple-
mentation phase of object-oriented development, and in providing a reasonable
degree of traceability and verifiability between graphical models and the object-
oriented programs which implement them.
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