GMD -
Forschungszentrum

Informationstechnik
GmbH

GMD Research Series

Yi Xu

An Incremental Approach
to Document Structure
Recognition

N° 16/1998

© GMD 1998

GMD - Forschungszentrum Informationstechnik GmbH
SchloR Birlinghoven

D-53754 Sankt Augustin

Germany

Telefon +49 -2241 -14 -0

Telefax +49 -2241 -14 -2618

http://www.gmd.de

In der Reihe GMD Research Series werden Forschungs- und
Entwicklungsergebnisse aus der GMD zum wissenschaftlichen, nicht-
kommerziellen Gebrauch veroffentlicht. Jegliche Inhaltsénderung des
Dokuments sowie die entgeltliche Weitergabe sind verboten.

The purpose of the GMD Research Series is the dissemination

of research work for scientific non-commercial use.

The commercial distribution of this document is prohibited,

as is any modification of its content.

Anschrift der Verfasserin/Address of the author:
Yi Xu

debis Systemhaus

Gobelstralle 1-3

D-64293 Darmstadt

E-mail: yxu@debis.com

Die vorliegende Verdéffentlichung entstand im/

The present publication was prepared within:

Institut fur Integrierte Publikations- und Informationssysteme (IPSI)
Integrated Publication and Information Systems Institute

http://www.darmstadt.gmd.de/ipsi

Die Deutsche Bibliothek - CIP-Kurztitelaufnahme:

Xu, Yi:

An incremental approach to document structure recognition /

Yi Xu. GMD - Forschungszentrum Informationstechnik GmbH. -

Sankt Augustin : GMD — Forschungszentrum Informationstechnik, 1998
(GMD Research Series ; 1998, No. 16)
Zugl.: Darmstadt, Techn. Univ., Diss., 1998
ISBN 3-88457-340-3

ISSN 1435-2699
ISBN 3-88457-340-3

iii

Abstract

Keywords: document structure recognization and machine learning

Most of the electronic documents available from todays huge number of electronic informa-
tion sources have on implicit structure. In order to manipulate, exchange, and archive these
documents, it is important to extract their logical structure and to make it explicitly available.

Many researches have noted the importance of document logical structure recognition,
yet we still lack an easy method for recognizing the implicit structure of electronic documents.
The two most widely used methods are: recognizing structure by hand, or through structure
recognition programs. Due to the large number of documents, the manual approach is tedious
and error-prone although in principle it is very simple. Writing a complete recognition pro-
gram is much more effective, but it requires significant intellectual effort. To combine the ad-
vantages of both methods, this thesis presents an approach to automate the learning of recog-
nition grammars from manually structured examples.

The approach uses two techniques from the field of machine learning: Version space — to
abstract from the concrete contents of the structured examples in order to recognize examples
with different content, and grammatical inference — to generalize the syntactic structure of the
structured examples in order to recognize examples with slightly deviating structure. These
two techniques are embedded into an incremental structure learning syMarRltp! —
which allows for a convenient refinement of a recognition grammar towards new examples
with unanticipated structure.

This dissertation presents the design, analysis, and implementatMarkitUp!. The
characteristics dflarkltUp! are as follows. (1) it supports a simple way for the user to obtain
a suitable recognition grammar; (2) it uses incremental learning so that the recognition gram-
mar can be efficiently modified using additional structured examples. Experimental results on
combining the version-space method with a grammatical inference approach in the learning
cycle are also presented.

v

Kurzfassung

Schlusselworte:Dokumentstruckturerkennung und maschinellen Lernen

Verschiedene elektronische Informationsquellen bieten ihre Dokumente in unterschiedlicher

Form an. Insbesondere ihre Struktur ist oft nur in anbieterspezifischem Format verfigbar. Fur die
weitere Bearbeitung, den Austausch und die Archivierung muf3 diese Struktur extrahiert werden.
Diese Dissertation entwickelt einen Ansatz zur automatischen Erkennung der Struktur von elek-
tronischen Dokumenten auf Basis von nur wenigen, manuell strukturierten Beispielsdokumen-

ten. Dazu wird eine regel-orientierte Sprache zur Spezifikation von Erkennungsprogrammen

eingefuhrt. Auf dieser Basis werden Techniken des maschinellen Lernens — Versionsraum und
Grammatik-Inferenz — entwickelt, die Erkennungsprogramme aus Beispielen generieren.

Acknowledgements

| am most grateful to my advisor, Prof. Dr. Erich J. Neuhold, for providing me the research
opportunity in GMD-IPSI. His insightful comments on this work have been a principal reason
for its success. Further more, his feedback has been the major force behind my development as
aresearcher. | also appreciate my second advisor, Prof. Dr.-Ing. Dr. h.c. José L. Encarnacéo, for
reviewing this dissertation and helpful discussions.

A number of other people deserve special acknowledgements. Peter Fankhauser, my group lead-
er, guided me into a new research area. Discussions with him helped me understand what it was
that | was doing. Discussions with Helena Ahonen, Ralph Busse, Bertin Klein, and especially
Weimin Chen helped me make my thesis clear, even when | thought it was already clear.

| would like to thank Lothar Rostek who supports a good environment of SMALLTALK which
helped to code my implementation successfully. | also appreciate the kind help of Ute Sotnik,
Andreas Stenger, Ute Kischel, Elisabeth Trautrims, Peter Schoendorf, and Ernst Mink during our
years at GMD-IPSI.

This work was done with the financial and technical support of GMD-IPSI. The support by the
Computer Science Department, Darmstadt University of Technology is greatly appreciated.

I must thank Prof. Longxiang Zhou who recommended GMD-IPSI to me, whose encouragement
over the years made the completion of this work possible. Final thanks go to my parents, whose
understanding and support over 10 thousand kilometers away made this work possible.

Table of Contents vii

Table of Contents

Chapter 1 Introduction et eereeteie e 1
1.1 Problem Domain and OverallGoals 1
1.2 Overall Approach e 3

1.2.1 Low-Level Recognitionot ninennann. 4
1.2.2 High-Level Recognition coiiiiiiiiiiinnnn... 4
1.2.3 Learningby Markingup i i 5
1.3 Contribution ... i e 6
1.4 A Guide to this Dissertationcoiiiiiiiniiinnennen.. 7

Chapter 2 Preliminariescciiiiiiiiiiiiiiiiinennnnns 9

2.1 Formal Languagesceuuiiunne et 9
2.1.1 Stringsand Languages ...t 9
2.1.2 Regular Expressions and Finite Automata 10
2.1.3 Binary Relation of Regular Expressions 12

22 Graphs 12
2.2.1 Directed Graphs and Undirected Graphs 13
2.2.2 Directed Acyclic Graphsc.oviiuiniiiiniiiniinnan. 13
2.2.3 Permutation Graphs 14

2.3 Document StIUCLUTES . . . o\ v vt ettt ettt et i e e 15
2.3.1 Syntactic STTUCTUTES ..o v vttt ettt et i e e e eiae e e 15
232 LayoutStructurecouiiniinninnen i 15
23.3 Logical Structure 16
2.3.4 Relations Between Layout and Logical Structure 16

24 MaTKUD ..ottt e 17

2.5 Document Description Language — SGML 18
251 SGMLMarkup . ..ottt e e 19
252 SGMLDTD ... 19
253 SGMLPaArseroiiuiii i i e 20
2.5.4 The Marking Up (Tagging) Processcocoiiiiiina... 21

Chapter 3 An Approach to Document-Structure Recognition 23

31 DREAM . 23
3.1.1 Structure DescriptionofaDSD L. 24
3.1.2 Recognition Stylesof DSDs i, 26

3.1.2.1 Regular Expressionsin DSDs 26
3.1.22 Functionsin DSDs 27
3.1.3 A Complete Exampleof aDSD, 28

3.2 System Overview of MarkItUp! o it 29
3.2.1 Starting the MarkItUp! System 31
322 Structure Eitor ... 31
323 SCANMET ..ttt ettt e e e e 37

324 Learningottt e 37

Table of Contents
3.3 Demonstration of MarkItUp! i i 38
3.4 SUMMATY ..ottt ettt ettt e e e et e e 43
Chapter4Learningccoiiiiiiiiiiieinenrneencncennnns 45
4.1 Learning Problems and Learning Levels 45
42 Learningat ContentLevel i ... 46
4.2.1 Goals, Problems and Overall Approach 46
4.2.2 Concepts and Binary Relation 47
423 Determining ConcCeptsovviiiimiin i 48
424 Ordering CONCEPLS . . o v v v ettt ettt it 49
4241 ConceptBase ... 49
4.2.4.2 Linear Ordering List of Concepts 50
425 Learning from Stringsottt 51
4.2.5.1 Learning from Copy-Stringsc.coviiiiiiineen... 52
4.2.5.2 Learning from Cut-Strings, 55
4.2.5.3 Examples for String Abstraction 55
4.3 Learning at Structure Level i 56
4.3.1 Goals, Problems and Overall Approach 56
4.3.2 Representation of Document Logical Structure 57
4.3.3 Learning Logical Structure by Rewrite Rules 58
4.3.3.1 Unification and Simplification Rules 59
4.3.3.2 AbstractionRules i 62
4.3.4 Applying the LearningRules 64
4.3.4.1 Control Strategies for Applying the Learning Rules 64
4.3.4.2 Some Examples for the Learning Rules 65
44 SUMMATY . .ttt ettt e e e e e e e e e e et e e et e 68
Chapter S Sequence of Arbitrary Orderingcovvunn. 69
5.1 Problemand Goal i 69
5.2 Basic Concepts and Notationsooeuniiiunnnenneennn.nn 70
5.3 Inferring a General Expression, 71
5.3.1 Constructing a Permutation Graph 71
532 Union Graph of PGs i 72
5.3.3 Deriving a General Expression froman AG 75
54 SUMMATY ..ottt e e e e e e e e e et 79
Chapter 6 Implementationciiiiiiiiiirnecencnnss 81
6.1 System Architecture of MarkItUp!, 81
6.2 UserInterfaceoouiiiiiii i i 81
6.2.1 Structure Editor i 82
6.2.2 Concept EAItor . ..o 88
6.3 From Marked-up Exampletoa Grammar 93
6.4 Implementation of Learning Component 93
6.4.1 Grouping Cut-Strings with Nonterminals 94
6.5 DREAM Grammar Generatorcouurteunneennneennneennn. 97
6.6 Learning Strategiesouiiiiiiiiiiiiiiii i 99
6.6.1 FallbackRule i, 99
6.6.2 Exhaustive vs. Partial Learning 100

6.6.2.1 Learning from an Entire Example 101

viii

Table of Contents

6.6.2.2 Learning from a Partial Example

6.7 Experimental Evaluation of the System

6.8 Summary

Chapter 7 Related Work

7.1 Editing-By-Example
7.1.1 Function Approaches
7.1.2 Procedural Approaches

7.2 Inductive Learning and Learning Methods

7.2.1 Grammatical Inference
7.2.2 Version Spaces

7.3 Application to Wrapping Semi-Structured Data

Chapter 8 Conclusioncciiiiiiiiiiiinrnrnncnsennnns

Bibliography ettt Ceeerereetaeaea

Appendix: List of Figures and Tables

103
106
109

111

111
111
112

113
113
115

116

119

123
129

Chapter 1 Introduction 1

Introduction

Todays many electronic information sources offer masses of electronic documents. These doc-
uments usually have onlynplicit structures. For further manipulation, exchange and archiv-

ing, it is important taextracttheir implicit structure. This dissertation presents an approach to
automatically recognize the structure of electronic documents on the basis of a few manually
structured example documents. For this purpose this thesis introduces a dedicated language
for specifying recognition programs, and shows how machine learning technigues can be used
to generate such recognition programs from examples. The developed concepts have been im-
plemented in the framework of the systbtarkitUp!.

1.1 Problem Domain and Overall Goals

With widely available computers, documents are not only thought as a medium to be printed
and read, but also as a structure to be communicated, retrieved, archived in data bases, etc. To
take advantage of the already existing tools for the above purposes, two issues have become
important: (a) standardized representation of documents, and (b) document structure recogni-
tion, with which arbitrary documents can be turned into a standardized form. The first issue is

a general goal, and the second issue is a means to accomplish that goal.

Document structure recognitidhus aims at extracting information from documents and
at converting the extracted information into a representation language which models the origi-
nal document as accurately and concisely as possible. A document can be generally viewed as
having two kinds of structures: a logical structure and a layout structure. The logical structure
separates a document indgical elements, such as the title and author of a document, while
the layout structure consists fofmatting elements, such as pages, columns, and paragraphs.
Document structure recognition refers to both aspects: document logical structure recognition
and layout structure recognition. Furthermore, a document can have different representations,
for example, it can be represented by paper sheets from a laser printer, or can exist as an elec-
tronic source sitting in computer memory or on magnetic devices. The documents existing as
electronic sources are machine readable to smaller or larger extend, e.g. pixel representation,

2 Chapter 1 Introduction

versus explicitly structured and described. With the increasing popularity of the Internet, the
number of electronic sources is growing quickly. How to translate a paper form document into

a machine-readable document is beyond the scope of this thesis. This thesis focuses on the
documents that are already machine readable.

Comprehending a consistently structured document is easier than comprehending an un-
structured document since the reader can concentrate on the contents and organization of the
document without worrying about its layout. More generally, in a publication cycle, which
comprises writing and reading documents, in addition to copying, distributing and archiving
of the documents, a structured document has further advantages which are not concerned with
creation and editing alone: Because of the high level of abstraction of the document model
used, many different kinds of processes can be applied to structured documents. For example,
information necessary for a document retrieval system, database systems, hyper-document
systems or individualized printed document systems can work efficiently on such documents.

However, document producers usually use different and inconsistent formatting conven-
tions to express the layout structure, even within one source or document. For example, in a
bibliographic document, a line starting with either the character “!” or the capital characters
“AU” expresses that the content in the line denotes an author name. Furthermore, the first
name and the last name of the author could have different ordering, that is, the first name is
followed by a blank and by the last name, or the last name is followed by a comma, by a
blank, and by the first name. Similar inconsistent structuring conventions can be found in doc-
uments retrieved from public databases or received via electronic mails.

Documents can be classified into sevetasseson the basis of their formatting forms,
for instance, the bibliography documents can be divided into several different classes since
each person has his own habit to format his bibliography document. Howenlkrctionof a
document class consists of many subdocumentssimitiar structures.

To arrive at a consistent standard structure which can be processed by a wide range of
applications, it is necessary to recognize such formatting conventions, and to map them into a
standardized form. Towards this end the following three problems have to be tackled.

(@) What kind of document structure should be captured?

The aim of this thesis is to convert documents from their original format, that isayloeit
structure, to a standatolical structure. Thus the focus is on docuniegtcal structure
recognition.

Chapter 1 Introduction 3

(b) Which formal description method is to be used for representing the recognized structure?

(€)

Apart from the many proprietary description languages used by commercial document pro-
duction systems, there exist two main standard languages. Offiée(Document Archi-

tecturg and SGML [5] Gtandard Generalized Markup Languagl. Brown [10] dis-

cusses similarities and differences between the two description languages. Choosing which
one depends on the concrete applications. In this thesis SGML is chosen, because it speci-
fies document structures with well-defined grammars, which can be used as a good basis
for implementing machine learning techniques to generate such grammars semi-automati-
cally, as well as appropriate parsers to use these grammars for document structure recogni-
tion.

How can the structure of a document be captured?

The structure of documents can either be captured manually, or automatically by means of
recognition programs. Manually structuring a huge number of documents is highly
repetitive, cumbersome, time-consuming, error-prone, and expensive. In addition, the doc-
uments have different contents and similar structures, and their logical structures are nested
structures rather than flat structures. All of these factors increase the complexity of the log-
ical structure recognition for the human. Of course, writing complete recognition programs
to recognize the logical structure requires significant intellectual effort. Thus the main goal
of this dissertation is to find a semi-automatic approach to bridge the gap between structur-
ing manually and writing a recognition program.

1.2 Overall Approach

Capturing information from documents is the goal of document structure recognition. This

ranges from the identification of the layout structure, the recognition of the (logical) structure

of documents, and to the (largely domain dependent) extraction of semantic content.

Document structure recognition can be classified along two view pdmtsment pro-

cessingandrecognitionlevel

From the viewpoint of document processing, the document structure recognition can be

divided into two activities:

Document analysit extract the geometric (layout) structure from a document;

Document understanding map the geometric (layout) structure into a logical structure
of document.

From the viewpoint of recognition level, two main levels can be distinguished:

4 Chapter 1 Introduction

* Thelow-level recognitioror the document layout structure recognition;

* Thehigh-level recognitioror the document logical structure recognition.

This thesis discusses both recognition levels, but especially concentrates on high level
recognition.

1.2.1 Low-Level Recognition

Low-level recognition aims at obtaining a symbolic representation of the document regarded
initially as an image in document pages, e.g. scanned images. This includes decomposing the
image into regions of text and non-text by breaking the text regions on the page into text
blocks and image blocks, and text blocks into text lines, recognizing characters and words,
and identifying the format characteristics such as font type and size.

Most efforts on analyses and transformations of documents have concentrated on the doc-
ument layout structure recognition, such as separating text and graphics in the documents and
recognizing characters in the text [45, 53, 24, 12].

1.2.2 High-Level Recognition

Over the past few years it has become apparent that low-level recognition does not suffice, but
also higher levels of recognition are required [33, 43]. For this purpod@etiaechical struc-

ture andsequence relatiom a document are extracted and described by means of a standard
high level language. Recognizing this level of structure also can be regarded as the final aim
and the last stage of document structure recognition.

In actual production level documents the logical structure is usually expressed by means
of layout and format. This information has now to be extracted and transformed, in order to
arrive at a coherent logical structure for a particular document. Since there is no one-to-one
mapping between layout structure and logical structure, such an extraction is difficult. In addi-
tion, for different types of documents and even different description languages of documents’
structures, the formatting rules are different.

Practically all approaches aiming at logical structure recognition utilize some form of
rule knowledge to specify the relationship between layout and logical structure. For example,
Ingold [28] proposes a method for deducing the logical structure from the layout structure of a
document, using precise rules that interpret the layout structure in terms of font-information

Chapter 1 Introduction 5

and geometrical information. Toyoda, Noguchi and Nishimura [48] develop a method for the
extraction of articles in Japanese newspapers. For this purpose, they identify six general for-
matting rules for the layout of Japanese newspapers, and on this basis develop an algorithm
for extracting newspaper articles. Another, more flexible approach to recognize the logical
structure of documents is implemented by the CAROL system which is an automatic catalog-
ing system to be used in libraries [43]. A printed document (usually the header page of some
scientific article) is input into the system by OCR (optical character recognition) in order to
derive a well-defined output format with additional layout information. This information is
used for recognizing the logical structure of the documents by means of recognition rules. To
allow the user to treat different document types, there is a learning mechanism which can gen-
erate a set of new rules for a specific document type from examples.

All these approaches focus on the layout information to determine the logical structure.
In most cases, however, this does not suffice. Thus these approaches are extended by utilizing
content information. In addition, the extended approach in this thesis is not restricted itself to
flat structures, but uses the full power of SGML to treat also documents with a nested struc-
ture.

1.2.3 Learning by Marking up

SGML represents the structure of documents by so-caléallups which are dedicated labels
splitting the content of a document into its logical elements. The transformation of an elec-
tronic document into an SGML-compliant form comprises the following three steps: (1) speci-
fying the document’s logical structure, (2) determining the processing rules which will pro-
duce the structure desired for the document, and (3) inserting the markups into the document
according to these rules.

As stated above, there are two alternatives to carry out these steps. One is to manually
structure the documents with a normal editor, on the basis of an initially specified goal struc-
ture. The other is to use programs to transform a partially inconsistently formatted document
into a consistently structured document.

To a non-programmer structuring documents manually with an editor may seem easier
than to program a translator. However, it is highly burdensome to manually structure a large
amount of documents. Of course it is productive in the sense that every step makes tangible
progress towards the solution of the problem, but it is tedious and repetitive all the same.

6 Chapter 1 Introduction

Writing recognition programs is not as easy as manually structuring documents. These
recognition programs can be implemented by editing macro commands, suclerascmn
macro [46], or recognition rules, such as FastTag, IMSYS [52], and DREBbt§ment
Structure REcognition And Marku20]. Although using macros or recognition rules (a rec-
ognition grammar) based on a complete definition of the structure can overcome the above
problems, it involves a fair amount of work that requires significant intellectual effort due to
structural differences and formatting inconsistencies among the subdocuments. In addition to
writing such a grammar, the user has to debug it, parse it, check to see whether it does the right
thing, and then debug it again if necessary. Once this development process is completed, the
program can be used to convert an arbitrary number of subdocuments of a collection. But
writing such a program is not a simple task, and adjusting it directly to new document classes
is nearly impossible.

This thesis aims at recognizing the structure of electronic documents (e.g. collections)
that have similaimplicit structures (e.g. BibTeX, electronic mail, folders). For this kind of
electronic document collections the manual determination of the structure of a few example
subdocuments can be used as a basis to generate recognition programs for structuring the oth-
er subdocuments. The systéharkltUp! developed in the framework of this dissertation fol-
lows exactly this approach, using techniques from machine learning. It provides a structure
editor, with which an initial example for a particular collection is manually structured (marked
up) by the user. The system accepts the marked-up example and generates a recognition gram-
mar, which can recognize similar examples. On the basis of this grammar the system tries to
mark up another example selected from the same collection. The tentatively marked-up exam-
ple can be accepted or rejected by the user. If it is rejected, because the example deviates from
the previous examples and the result of the tentatively marking leads to an undesired conse-
guence, the user corrects this example and asks the system to learn the corrected example.
After learning the example, the system synthesizes a new recognition grammar which includes
the structural deviations occurring in the new example. After a few such learning steps, the
generated grammar usually comprises most of the logical structure of all remaining subdocu-
ments. Thus they can be automatically structured with very few further user corrections.

1.3 Contribution

The main contribution of this thesis lies in the effective combination of two approaches to
machine learning version-spacdsee Section 7.2.2) agglammatical inferencésee Section
7.2.1), and their adaptation to the field of document structure recognition. The algorithms de-

Chapter 1 Introduction 7

veloped on this basis are used to abstract the concrete strings in the documents (see Section
4.2) and to learn the logical structure of the documents (see Section 4.3). The grammatical
inference approach is further refined to allow for inferring general expressions involving arbi-
trary ordering (see Chapter 5).

The developed learning algorithms are embedded into a flexible and friendly user inter-
face, implemented in the programming language Smalltalk (see Section 6.2). The user inter-
face supports utilities for a variety of tasks, such as organizing predefined recognition pat-
terns, manual mark up of examples, etc., in a uniform framework.

The approach described in this thesis thus fills the gap between structuring manually and
structuring by a programming approach. It supports an easy way for the user who wants to
structure similar on-line electronic documents and it can be applied in many areas where such
“repetitive” documents occur.

The MarklItUp! system is fully implemented and forms an operational front-end to the
DREAM parser (see Section 3.1).

1.4 A Guide to this Dissertation

The remainder of this thesis is organized as follows. Chapter 2 introduces some basic concepts
which are used in the following chapters. In Chapter 3 the overall approatdridtUp! is
presented. The parserMarkitUp! — the DREAM parser generator is discussed first, and then

the overall learning cycle dflarkitUp! is described. Finally, some examples demonstrate the
learning process that has been discussed in the above learning cycle. Chapter 4 concentrates
on the learning strategies MarkltUp! and discusses how to derive grammars from marked-

up examples by abstraction at the content level and how to unify and abstract these grammars
at the structure level. Chapter 5 discusses the sequences with arbitrary ordering in a document
collection, that is, these sequences describe how the structures of subdocuments in the docu-
ment collection may have different ordering. Chapter 6 depicts the system architecture of
MarkltUp! and detail functions, learning strategies, or major implementation algorithms of
each component in the architecture with/without examples. Chapter 7 surveys related work in
the areas of editing-by-example techniques and machine learning approaches. Finally, Chapter
8 illustrates some results, gives limitations of the learning approach and discusses the future
work.

Chapter 1 Introduction

Chapter 2 Preliminaries 9

Preliminaries

To derive a general recognition grammar from document examples, two areas are built: Ma-
chine learning and document structure recognition. To discuss the problem of these areas, the
following definitions and theorems should be taken into account. They can be separated into
two parts corresponding to the above two areas.

The learning methods refer to inductive learning. The concepts of formal languages and
graphs form the representational basis for the learning approaches.

Besides the machine learning approach to recognition, this thesis concentrates on the re-
sult of document structure recognition, that is, how to represent the structured document, rath-
er than the processing of document structure recognition, that is, how to really abstract the
logical structure from the document. Therefore, this chapter also introduces SGML — a stan-
dard document description language and its related concepts and notions, such as document
structures, markup, etc.

To associate the definitions and theorems with their use in this thesis, a short explanation
is given, at the beginning or end of some sections, on why the definitions or theorems are
introduced in a section and where they will be applied in the thesis.

2.1 Formal Languages

Since regular grammars are used to represent and manipulate the structure of document exam-
ples and regular expressions are used to abstract a set of concrete strings, it is necessary to
introduce some definitions about formal languages and discuss some of their characteristics.

2.1.1 Strings and Languages

A finite nonempty seX of arbitrarysymbos (such as the ASCII character set) is callédite
alphabet.

A string overY'is afinite sequence of symbols frath All strings ove form aninfinite
set, denoted h¥*. The symbok stands for thempty stringvhich contains no symbols and is

10 Chapter 2 Preliminaries

considered to be iB* for everyX. Thelengthof a strings, denoted by s|, is the number of
symbols ins.

If uandv are strings oveE, uv is theconcatenatiorof them. Two strings! andv are
equalif u andv have thesame length and contain the same symbols in the same order.

The stringu is aprefix of the stringv if and only if there exists a string (w = ¢) such
thatuw = v, e.g., “ban” is a prefix of “banana”. Respectively, the stung asuffix of the
stringv if and only if there exists a string(w # ¢) such thatvu=1v, e.g., “nana” is a suffix of
“banana’.

The concept of the strings is used widely in Chapter 4 and 6.
Any finite or infinite subset at* is called danguagel.

A positive examplef language Lis a string accepted ky conversely, aegative exam-
ple of L is a string not accepted hy TheMarklItUp! learning system, currently, only adopts
positive examples during the learning process.

2.1.2 Regular Expressions and Finite Automata

A regular expressiofi27] over a finite alphabéef is defined recursively as follows:
e gis aregular expression;
. For each &= X, a is a regular expression;

. If r ands are regular expressions denoting the langubrg¢sandL(s), respectively, then
(N1](s),)(s), (r)* and () are regular expressions that denote the E@tEJL(S),
L(r)L(s), L*(r) andL(r), respectively.

In the above notations, the parenthesgsufd €) may be substituted by regular expres-
sions if desired.

A language denoted by a regular expressie@called as aegular sef written asL(r).
For instancel (a|b) = {a, b}.

If two regular expressionsands denote the same languag@nds are callecequivalent
and denoted as= s, for example,|b) = (b|a).

A regular expression can be compiled intee@ognizerwhich is a program. It takes a
stringx as input and answers “yes’fis a sentence of the language and “no” otherwise. The

Chapter 2 Preliminaries 11

recognizer represents a generalized transition diagram cdild@teaautomaton(also called a
Deterministic Finite AutomatqrDFA for short). A DFA is formally denoted by a 5-tupf@, (
2,0, M, F), where

* Qis a finite nonempty set states

« Yis afinite alphabet ahputsymbols;

e 0is atransition functionmappingQ X 2 — Q;
. 0 € Qis astart state;

« F C Qis aset ofinal states.

A DFA allows only a single transition from a state on a specific input symbol. When a
finite automaton allows zero, one or more transitions from a state on the same input symbol,
the finite automaton is calledNondeterministid=inite Automaton(NFA for short). Formally
a NFA is denoted by a 5-tupl®,2, o, m, F), whereQ, 2, ip, andF (states, inputs, start state,
and final states) have the same meaning as for a DFA, isw map fronQ x 2 — [0 (Q).

The transition on the empty inputs called are-transition, denoted as(q, ¢).

To implement the manipulations on regular sets, the following theorems provide a
theoretical basis.

Theorem 2.1 ([27, Theorem 2.3]) Let be a regular expression. Then there exists a NFA
with e-transitions that acceptgr). [

In [3], the authors give an algorithm to construct a DFA from an NFA ([3, Algorithm
3.2)).

Theorem 2.2 ([27, Theorem 3.8]) There is an algorithm to determine if two finite automata
are equivalent. O

The following result is a direct corollary of the above theorems.
Corollary 2.3 There is an algorithm to determine if two regular expressions are equivalent.

Based on these results, a regular expression can be represented as a DFA. Thus, whether two
regular expressions are equal can be determined by comparing their corresponding DFAs
(Chapter 6).

12 Chapter 2 Preliminaries

2.1.3 Binary Relation of Regular Expressions

To abstract from concrete strings in documents and grammar rules, the more-specific-than
binary relation of regular sets plays an important role. It is a basis of organizing regular ex-
pressions and using rewrite rules. Mitchell [37] and Vanlehn & Ball [49] give two kinds of
definitions of this binary relation in their applications.

Let [0 be a set of regular expressions. For a given regular expressian, letL(r) be a
set of strings matched oy The following definitions are introduced.

Definition 2.1 (Relation <) Givenr, s € [, if L(r) C L(s), then we say is more specific
thans, denoted by < s, shorthanded as more-specific-than. [

Definition 2.2 (Relation <) Givenr, s € [, if L(r) € L(s), then we say is more specific
than or equal tes, denoted by < s, shorthanded as more-specific-than-or-equal-to. [

Definition 2.3 (Relation=) Givenr,s & [, if L(r) =L(s), then we say is equivalentto s,
denoted by = s. [

Clearly, “=" identifies an equivalence relation over

Definition 2.4 (ComparableandIncomparablé Givenr, s € [, if at least one of the rela-
tionsr < sands < r holds, then we say thatands arecomparable denoted as = r; other-
wise, they arencomparabledenoted as * r. [

The following result is derived from the above definitions.
Theorem 2.4 The relation< (and <) over[] is transitive.

Proof. Letr, s, andt € [0 such that < s < t. Thatis, L(r) C L(s) C L(t), so that_(r) C
L(t). By Definition 2.1, we have < t. Similarly, ifr < s < t, we can infer < t. O

These definitions and theorems in the above sections are widely used in chapters 3, 4 and

2.2 Graphs

This section introduces some related concepts with respect to graphs. These concepts will be
used in Chapters 4 and 5 to organize a set of regular expressions and to discuss sequences of
elements with arbitrary ordering.

Chapter 2 Preliminaries 13

2.2.1 Directed Graphs and Undirected Graphs

A directed graphG, consists of a finite s&t and anrreflexive binary relation o/ [19]. The
members iV are callechodegor vertices. The binary relation may be represented either as a
collectionE of orderedpairs or as a function frovi to itspower set

Adj: V — 0 (V),

where Adj{) is called theadjacency sebf nodev. The ordered paw(w) € E is called an
edge

A sequence of nodegy X1, ...,X,), N = 1, is apath of length rirom nodexg to nodex, if
there is an edge which leaves nadeg and enters node for 1 < i < n.

For a node, the number of edges enterxgs called then-degreeof x, theout-degreeof
x is the number of edges leavirg

Two graphss = (V, E) andG’ = (V', E’) are calledsomorphi¢ denotedc = G', if there
is a bijectionf: V — V' satisfying for allx, y € V,

(x,y) € E= (f(x), f(y) € E'

Let G = (V, E) be a graph with node sé¢tand edge sdé. The graplG1= (V, E™}) is said
to be thereversalof G, if

E1={(xy) | %X €E}
A symmetric closuref G is the graplG = (V, E), where
E=EUE1
A graphG = (V, E) is calledundirectedf its adjacency relation is symmetric, i.e., if
E=E"L

or equivalently,

2.2.2 Directed Acyclic Graphs

A directed acyclic grapltor DAG for short) is a directed graph that has no cycles. Figure 2.1
shows an example of a DAG.

14 Chapter 2 Preliminaries
o O,
() (4)
N
®/ O @

Fig. 2.1 Example of a DAG

A node having in-degree 0 will be calleth@senode. One having out-degree 0 is called a
leaf. In Figure 2.1, nodes 1, 2, and 4 are base nodes and nodes 2, 5, 6 and 7 are leaves.

If (%, y) is an edge in a DACGx is called adirect ancestorof y, andy is called adirect
descendanof x. For example, in Figure 2.1, node 4 is a direct ancestor of node 7; node 7 is a
direct descendant of node 4.

If there is a path from nodeto nodey, thenx is said to be aancestorof y andy is said to
be adescendanof x. In Figure 2.1, node 6 is a descendant of node 1; node 1 is an ancestor of
node 6.

DAGs are used in Section 4.2.4 to construct concept bases and to infer linear ordering
lists of the nodes in the concept bases.

2.2.3 Permutation Graphs

Letzr be a permutation of numbers 1, 2,n.and denoted as the sequeneg fro, ...,7tn]. For

example, the permutation= [2, 3, 4, 1] hag1 = 2,10 = 3,13 =4,14=1. The notatiomi‘1

denotes#~Y); which indicates the position in the sequence where the nunsharbe found,
that is, &~ 1), =1i; for the above exampler ~* = [4, 1, 2, 3], wherer; 1 = 4, 75,1 = 1,
nyl=2,7;1=3.

Given a permutation of numbers 1, 2, ..n, apermutation graplfor PG for short) forz
is an undirected graph &[[= (V, E) where

V={L,2,...n} andE={(i.j) | i,j € Vand {(~j)(z 1~ 7} < O}.

Informally, each edge in a PG indicates an inversion between two nodes. An undirected
graphG is called gpermutation graphf there exists a permutationsuch thaG is a graph
isomorphic toG[x].

Chapter 2 Preliminaries 15

Theorem 2.5 For a permutation of numbers {1, 2, ..} there is a sole PG corresponding
to it, i.e., a permutation of numbers {1, 2, ...n} and a permutation graph & expressing a
one-to-one mapping.

Proof. The definition of the permutation graph and the construction of it ([19], Golumbic, pp.
157).

The application of the PG is described in Chapter 5.

2.3 Document Structures

Since the problem domain of this thesis refers to documents structure recognition (Section
1.1), starting from this section some concepts are introduced which provide background
knowledge related to the problem domain and overall goals.

Document structures are meant to describe the various parts of a document and the con-
nections between them. Generally, two distinct structures are associated with a dotiement:
layout structureandthe logical structurewvhich are independent of each other and are deter-
mined by different processes — formatting process (layout structure) and editing process (log-
ical structure).

However in the problem domain of this thesis, the source documents have unusual struc-
tures — implicit structures, they are callahtactic structuresf the documents. In the follow-
ing sections, the syntactic structure of the documents is introduced first, and then the usual
structures of documents are discussed.

2.3.1 Syntactic Structures

Syntactic structures of documents describe a kind of implicit structures, such as the field
names in bibliography documents; the delimiters, such as the points in an expression of date;
invariant strings at the beginning of e-mail documents (e.g., the string “From”, “Subject”,
etc.); and section numbering etc.. With the help of such structures, the human reader can easily
recognize the contents of documents and understand what is meaning of the contents.

Note that not every document is associated with a syntactic structure.

2.3.2 Layout Structure

The geometric or layout structure is the result of dividing and subdividing the content of a
document into increasingly smaller parts, on the basis girdsentatior{47].

16 Chapter 2 Preliminaries

The document layout structure is usually determined by a formatting process, for
instance, a book has 100 pages, on page 3 there are 28 lines. The formatting process may be
controlled by attributes callegeometric directivesissociated with the logical structure. For
example, the geometric directive requires that a chapter starts on a new page, or the title of a
section and the first two lines of its first paragraph are presented on the same page. Geometric
directives may be collected into layout styles each of which may be referred to by one or more
logical objects.

2.3.3 Logical Structure

The logical structure is the result of dividing and subdividing the content of a document into
increasingly smaller parts, on the basis of lthenan perceptible meaningf the document
content [47].

The document logical structure is determined by the author and embedded in the docu-
ment during the editing process, e.g. title of the document, author(s), summary, chapter, etc. It
specifies a kind of logical relationship among the logical objects.

The relationships among logical objects in the logical structure are typically in the form
of sequencesind hierarchical nestsThe logical structure breaks a document, for example,
into chapters, sections, and paragraphs, defines headings, and determines links and references
among various objects. The structure in question is abstract and totally independent of the way
the document is presented.

The document logical structure is often represented by a tree structure [16, 14]. This
model is particularly useful since it allows both sequences and hierarchical nests of objects to
be expressed.

In order to parameterize recognition algorithms and, in particular, to interpret the layout
structure to build up the logical structure, or to transform one logical structure into another
logical structure, a formal description is necessary. A formalism based on grammars seems
appropriate to describe a generic logical structure [29, 33]. The nonterminals of this grammar
represent the various hierarchical objects in the logical structure, while terminals correspond
to document elements. Grammar rules allow optional objects to be described, as well as se-
guences, alternatives and iterations.

2.3.4 Relations Between Layout and Logical Structure

The layout (or geometric) structure and the logical structure provide alternative views on the
same document. For instance, a block can be regarded as consisting of chapters containing

Chapter 2 Preliminaries 17

figures and paragraphs, or alternatively, as consisting of pages that contain text blocks and/or
graphic blocks. There is an obvious relationship between these two structures because the task
of an editor is to make the logical structure defined by the author reveal itself in the presenta-
tion of the document.

There is no one-to-one mapping between logical structure and geometric structure since
the same logical document can be presented in different ways, in other words, a logical struc-
ture corresponds to a variety of geometric structures, while a geometric structure can be ab-
stracted into different logical structures. However, certain links can be established between the
two structures.

A transformation of a geometric structure into a logical structure can usually be found,
that is, a logical structure can be regarded as an abstraction of a geometric structure. But the
reverse transformation does not always exist because some typesetting elements are needed
that have no corresponding description in the logical structure. For instance, layout notions
such as a page or a line do not have logical equivalents, nor do page numbers and hyphens in
divided words. These must be considered as artificial elements introduced during typesetting.

Within this framework, the goal of document structure recognition can be regarded as
determining a logical abstraction from a geometric structure.

2.4 Markup

Document processing systems typically require to incorporate additional information into the
document being processed. When a document is to be printed, a formatter has to process the
document. The input to such a formatter consists of the text of the document interspersed with
formatting commands. These formatting commands or added information in the natural text of
the document being processed and structured are oadligaips With the advent of text-pro-
cessing systems, new types of markup and new types of processing came. Until now there are
three major types of markup [13] to work with the unstructured documirgsentational

markup procedural markupanddescriptive markup

Presentational markup expresses the most basic organization of a document, such as hori-
zontal and vertical spacing etc. The goal of presentation markup is to make the document suit-
able for reading.

Procedural markup consists of formatting commands, such as “insert a blank line” and
“start a new page”, in a document. The problem of procedural markup is that the markups are

18 Chapter 2 Preliminaries

mapped to actions of a specific device, that means, certain markups correspond to a special
formatter. When the document is manipulated by different formatters or is used in some other
applications, the markup in the document must be changed.

Descriptive markup is the highest level of markup. It overcomes the problem of proce-
dural markup, e.qg. it is independent from device and software. In addition, descriptive markup
can guarantee a one-to-one mapping between logical elements and markup. This markup is
adopted in the standard document description language — SGML (see following sections) and
becomes a part of SGML-documents.

An SGML-document is a string of characters which consists of the text of the document
interspersed with markup tags to identify the start and end of each logical item. In other
words, it consists of two different types of data: one type formeah&ntof a document, the
other type constitutes threarkupof a document which explains the content’s structure. The
rigorous structure description of an SGML-document is machine readable but also easily un-
derstood by humans.

Recently, to specify the formatting and transformation of SGML-documents, the Interna-
tional Standards Organization (ISO) defined the Document Style Semantics and Specification
Language (DSSSL). It is also a kind of markup but associates processing with SGML-docu-
ments rather than unstructured documents.

2.5 Document Description Language — SGML

SGML (Standard Generalized Markup Languageas standardized by ISO in an effort to
standardize electronic manuscript encoding techniques [5]. It specifies how descriptive mark-
up can be incorporated into a document which can help to organize a well-defined logical
structure of documents.

SGML is a generic markup language. It can be used to describe any document structure
and the description is independent from hardware and software.

The main idea of SGML is to addgsto the document that identify the different structur-
al components independent of the layout information. For example, a tag for a chapter could
be <chapter> (this thesis uses the font likehapter> to describe examples) instead of a
chapter-head description (e.g. 16pt Times, Bold, Centered). The tagged doc8@Mis (
documentsare independent of devices (computer systems or other text entry/processing de-
vices), character sets, types of processing, and file organizations.

Chapter 2 Preliminaries 19

SGML is not a text formatting system. It is designed as a standard for text interchange
format. For example, an SGML-document is easily converted to text formattergXK&4],
troff [41], or some other similar type of formatter. It can be used to produce a typeset docu-
ment on paper [50] also.

The following subsections detail the main features of SGML: SGML markup, SGML
DTD (Document Type Definitignand SGML parser.

2.5.1 SGML Markup

Marking up in SGML means to insert tags into the documents. Every element that requires
markup is enclosed between <tag name> and </tag name>. <tag name> is stalieth@ of

the “tag name” and </tag name> calledeant-tagof the “tag hame”. The contents among
start-tag and end-tag is callejged For instance, a chapter would therefore be marked up as
follows:

<chapter>
MarkltUp! is a system to recognize...

... one major issue for further developments.
</chapter>

Total tagging is cumbersome for a user, thus the SGML syntax allows the omission of
end-tagwhere they are redundant. For example, to define a list, the end marker can be left out
for each element, only the start marker is identified.

<list>
<item> this is the first item. No end marker.
<item> this is second item.

Only the end of list marker is required.
</list>

These examples show that an SGML-document does not contain formatting instructions
for word processors or printers. To obtain a formatted output from an SGML source docu-
ment, such as the above examples, the markup has to be translated into specific formatting
commands for the text formatter to enable formatting and printing.

2.5.2 SGML DTD

Every SGML-document refers to a program DTD which specifies the document class, defines
the logical structure of a document in terms of the elements that comprise it (title, author, ad-

20 Chapter 2 Preliminaries

dress etc.) and the rules for marking up the document instance. A document markup is formal-
ized by associating it with a DTD, which includes a specification describing the order in
which document elements can occur.

The DTD contains a set of ELEMENT definitions giving the nagenéric identifiey of
the element and eontent modethat defines which sub-elements and character strings can
occur in the content.

The content model consists of elements or terminals witgrthg connectors-and &),
or(/) andsed,), where the group elements are evaluated from left to right, amd¢herence
indicators—rep(*), opt(?) andplug(+) to describe the relationship among the elements or the
characteristic of the elements in a structural description. The occurrence indicators in a DTD
indicate how often the preceding element or group of elements may occur. The indicators are
directly corresponding to the operators defined in elements. If no occurrence indicators are
used, the preceding element must occur exactly once. The indicator * allows an element oc-
curring zero or more times. The indicator + requires the element occurring at least once, and
the indicator ? denotes an optional element.

As an example, consider a scientpmper described by a DTD grammar:
<IELEMENT paper - - (title, abstract?, te-para+)>
<IELEMENT title - - CDATA>
<IELEMENT abstract - - (ab-para+, ind-term*)>
<IELEMENT ab-para - - CDATA>
<IELEMENT ind-term - - CDATA>

<IELEMENT te-para - - CDATA>

where tepara, ab-para, and ind-term express-teatagraph, abstragtaragraph, and index-
term, respectively.

The DTD means that the first logical element in a paper conforming to this grammar must
be itstitle . The paper can optionally have an elenastract |, that is, the following ele-
ment of title may be an elemeatistract if there is, or may be a text paragraph if there is no
element of type abstract in a document.

2.5.3 SGML Parser

An SGML-document is read and interpreted by an SGidiserwhich analyses and checks
whether the markup in the document conforms to the rules defined in the associated DTD, and

Chapter 2 Preliminaries 21

inserts tags whose presence is implied. The end product is a fully SGML-document conform-
ing to the DTD, or an error message. An SGML parser is a program or a suite of programs.

After an SGML parser parsed the logical structure of an SGML-document, it will report
any error messages it finds. But it does not correct the error messages and does not mark up a
non-SGML document. Once an SGML-document has been verified by a parser, it can be pro-
cessed in many different ways, for instance, it can be inserted into databases.

2.5.4 The Marking Up (Tagging) Process

Independent from whether procedural markup or descriptive markup is used, there always ex-
ists the problem of correctly inserting the markup into the text of the document. Since SGML
defines only thesyntaxof a standard generalized markup language, it does not support an ap-
proach to insert tags into the large number of untagged documents.

The early and normal marking up approach is that the user inserts markup into the text by
hand. For example, for powerful formatters such @& @r troff the user usually inserts the
formatting commands provided byX or troff into a document.

For SGML markup, there are several ways [25] of working:

. In a normal editor, tagging is done by hand

. In certain editors, frequently occurring tags in the text are bound to program keys on the
keyboard, otemplatesfor a given DTD are supported, i.e. a skeleton SGML file with
the major tags already in the file

 The tags are added by a program, such as the tools IMSYS, FastTAG, and DREAM.

22

Chapter 2 Preliminaries

Chapter 3 An Approach to Document-Structure Recognition 23

An Approach to Document-
Structure Recognition

This chapter gives an overview of the learning sys#arkitUp!. At first the DREAM parser
generator is introduced which is used\bgrkitUp! to actually mark up source documents. In
particular, the DREAM DSDOocument Structure Descriptipis discussed which is used to
describe the necessary structuring knowledge. After that, Section 3.2 gives an overview of
MarklItUp! which learns DSDs from examples. Section 3.3 provides an example to demon-
strate the learning processMarkitUp!. Details of the learning approaches are discussed in
chapter 4 and the system implementation is given in chapter 6.

3.1 DREAM

DREAM [20, 21] is a parser generator (see Figure 3.1) specifically designed for extracting
the logical structure of documents, based on formatting and content information. For this pur-
pose it uses DSD®pcument Structure Descriptionghich consist of rules to relate the lay-

out information found in unstructured documents with a desired logical structure.

Source Int ter D p SGML-
Document nterpreter: Dreami=ar Document
Generator: DreamGen

Fig. 3.1 The system architecture of DREAM

The input of the DREAM system aresaurce documerdnd a DSD. The source docu-
ments are untagged documents which come from electronic sources or which are the result of
documents layout structure analysis. The output of the system are an SGML-document and its
DTD if the user requires the DTD.

24 Chapter 3 An Approach to Document-Structure Recognition

The two main components of DREAM are a generBi@amGenand a parseDream-
Par. DreamGenis used to compile DSDs and generate corresponding parser tables DSTs
(Document Structure TableDreamParuses the DSTs in order to introduce markups into the
source documents, that express their logical structure.

For various source documents DREAM requires different DSDs to define their logical
structure. And with different DSDs man can get diverse SGML-documents. Therefore, to get
the desired SGML-documents by DREAM, it is required to support correct DSDs for source
documents.

A DSD consists of two parts, tretructure descriptiorand therecognition style The
structure description is very similar to SGML DTDs. The recognition description is a charac-
teristic part of DSD which is composed of regular expressions and functions. Section 3.1.1
and 3.1.2 will describe these two parts in more detail.

3.1.1 Structure Description of a DSD

The structural part of a DSD describes the document structure in terms of hierarchically
structured elements.

Each DSD starts with a statement “<IDOCTYBjfge-namqg” which gives a document
type name and ends with a statement “|>", where the part with italic font means a variable part
in the DSD.

The square brackets in the statements enclose the entire definition part of a DSD which
consists of a set @lement definitionsgEach element definition has the form:

“<IELEMENT element-name —(structure descriptior recognition stylg>"

Where the italic font has the same meaning as above; the element-names are used as tag
names in the markup process. If an element-ramgpears in a structure description, it leads

to another element definition, that is, there is an element definition to describe the element-
namekE in the DSD.

The first element definition in any DSD is called ttecument structure rodbr root for
short). Except the document structure root, all element definitions may appear in arbitrary or-
derings. For instance, a piece of a sample document could look like this:

Chapter 3 An Approach to Document-Structure Recognition 25

Document-Sample 3.1

I LISuad LIAlagic\n

" LIObject—Oriented Database Programming LI™n

where the symboll and the symbadih denote &lank character and eeturn character (an

empty string at the end of a line) respectively (in the following examples the symbols express
the same meaning). These symbols express the syntactic structure of this document. In Docu-
ment-Sample 3.1 the symbals! indicate the document author, the author is followed by the
document title indicated by the symbols. Before the element author and after the element
title there are other elements which are omitted here (denoted liy the example). A com-

plete example will be given in Document-Sample 3.2 in Section 3.1.3. The document hierar-
chy structure is easily written down in terms of a DSD:

DSD-Sample 3.1

<IDOCTYPE bibdoc [

<IELEMENT bibentry — — (author, title)>

<IELEMENT title —--— recognition style >

<IELEMENT author —— (fname, “ ", Iname)>

<I[ELEMENT fname -- recognition style >

<I[ELEMENT Iname —-— recognition style >
1>

where the document type namebibdoc . The document structure roothibentry . The
elementsbibentry and author are described by the structure descripticenghor,

tite andfname, “ U”, Iname , respectively. The structure descriptenhor, title

has two meanings: (1) the elemeaitientry contains two elements: the elemeanthor

and the elemenitle ; (2) the elemerduthor is followed by the elemetitle . A similar
explanation can be applied for the elemanhbor . The elementstle , fname, andiname

are described byecognition style which will be replaced by DSDs’ expressions and
functions in Section 3.1.3.

26

Chapter 3 An Approach to Document-Structure Recognition

DSD-Sample 3.1 shows the structure of the document definition that explains those parts

of DSD’s which are similar to SGML DTD's. The following section will discuss the extension

of DSD’s with respect to DTD — recognition styles.

3.1.2 Recognition Styles of DSDs

Recognition styles in DSDs provide detailed information by regular expressions and functions

to actually analyze and mark up the document. To describe recognition styles, it is necessary

to define the allowed form of regular expressions and functions in DSDs.

3.1.2.1 Regular Expressions in DSDs

Regular expressions in DSDs identify delimiting text portions and element contents.

Delimiters, such as the symbalsi and” LI in Document-Sample 3.1, are filtered out and the

remainder of the texts are mapped into corresponding elements in the output document.

DREAM supports a form of regular expression notations defined in [20]. But this section

only gives the partial notations which will be used in the following examples.

(@)
(b)
(€)

(d)

(e)

The regular expressio’ matches exactly one charactar °
The regular expression matches any character.

A set of characters enclosed by square brackets [and | matches any single character in
that set. For example, the regular expresgid23456789] matches any single digit.

A range of ASCII characters may be specified by giving the first and last characters,
separated by a hyphen —. For example, the above regular exp{@4£8456789]

can be shortened §3-9]

A regular expression matching a single character may be followed by one of several
repetition operators:
? The preceding regular expression is optional and matched at most once;
+ The preceding regular expression will be matched one or more times;
* The preceding regular expression will be matched zero or more times;
It has a similar meaning as the operator *. But it forces minimal parsing (see
below).

Two regular expressions may be concatenated; the resulting regular expression matches
any string formed by concatenating two substrings that respectively match the
concatenated subexpressions. For example, two regular expregéiafls and

Chapter 3 An Approach to Document-Structure Recognition 27

[a—z]+ can be concatenated[@s-Z][a—z]+ which matches the strings starting with
a capital letter and followed by an arbitrary number of small letters.

() Two regular expressions may be combined by the alternation operator |; the resulting
regular expression matches any string matching either subexpression. For example, two
regular expressioq&\—Z] and[a—z] joined adA-Z]|[a—z] match a capital letter
or a small letter.

(g) Repetition takes precedence over concatenation, which in turn takes precedence over
alternation. A whole subexpression may be enclosed in parentheses (and) to override
these precedence rules.

(h) The caret » matches the empty string at the beginning of a line and the $ matches the
empty string at the end of a line.

() In the above regular expressions the special characters such as, ?, +, *, |, —, and \, etc.,
lose their special meaning when used in backslashed versions \?, \+, *, \|, \—, and \\

The operato# is a new and an important operator in the DREAM DSD. It parses ele-
ments only if none of the subsequent element definitions is matched. With the regular expres-
sion.#, the DREAM parser tries to parse subsequent regular expressions before accepting the
next character as belonging.tb The regular expressiaft means that the parser can accept
arbitrary strings

3.1.2.2 Functions in DSDs

DREAM offers three functiongopy(), cut() andpastd€) which can be described by a general
form: functionnamed<regexp>). The names and functions of copy() and cut() in DSDs corre-
spond to the current editing operations in text processing programs. The content included by
copy() is mapped into the output document, whereas the content in cut() is filtered out. The
extra function paste() makes it possible to add extra sequences into the output document. Reg-
ular expressions in DSDs are used only as an argument of these functions.

These regular expressions and functions can replacedbgnition style of the
elementitle in DSD-Sample 3.1 as follows:

<IELEMENT title — — (cut(™\” L"), copy([a—zA-Z LI\-]+), cut(* LI\"'$))>

The string beginningut(*\" u") and endingut(* U\"$) is called aecognition style
of the elementitte . The meaning of the recognition style is that the strings matched by the

28 Chapter 3 An Approach to Document-Structure Recognition

regular expressiort” U” with the empty string at the line beginning &nd\™ with the

empty string at the line end are filtered out. The string matched by the regular expression
[a-zA-Z u]+ (arbitrary letters and blanks) is mapped onto the eletitient in the output
document.

3.1.3 A Complete Example of a DSD

A complete description of Document-Sample 3.1 and the corresponding DSD are shown as
follows.

Document-Sample 3.2

\ LIbk\n

I LISuad LIAlagic\n

" LIObject—Oriented Database Programming LI™n
/ USpringer LI* L11989\n

>|IDBDobject\n

where the symbolsyu at the beginning of the example indicate the document code, the code
followed by the document author starting with the symbals the document title starting
with the symbols$ U, the document source starting withi, and the document category start-
ing with the symbols Li. The DSD of the example is written down as:

DSD-Sample 3.2

<IDOCTYPE bibdoc][
<IELEMENT bibentry —— (code, author, title, source, category)>

<IELEMENT code —— (cut(™\ L"), copy([a—z]+), cut($))>

<IELEMENT tite - — (cut(™\ u", copy(fa—zA-Z LI\-]+),
cut(* L\"$))>

<IELEMENT author — — (cut(™! L"), fname, cut(* LI™), Iname, cut($))>

<IELEMENT fname - - (copy([A-Za—2z\-.]+))>

<IELEMENT Iname - — (copy([A—Za-z]+))>

<IELEMENT source — — (cut(™/ LI™), publication, cut(" LI* L"), date,
cut($))>

<IELEMENT publication —— (copy([a—zA-Z]+)) >

<IELEMENT date —— (copy([0-9]+)) >

<IELEMENT category —— (cut(\> LI™), copy([A-Za—z]+), cut($))>

1>

Chapter 3 An Approach to Document-Structure Recognition 29

With this DSD the DREAM parser identifies the documanhor by the following se-
quence: the symbolsLI at the beginning of the line, the element of the first nfmaree , the
symbol LI, the element of the last nanmame at the end of the line. The symbols are filtered
out, the elements are identified further on the basis of their element definitions somewhere in
the DSD. Thus, the elemeatthor is described as follows: filtering out the symbbols at
the beginning of the line, mapping arbitrary letters, hyphens, or periods (denoted by the regu-
lar expressiofA-Za-z\-.]+) into the elemenihame in the output document, filtering out
the symbolLl, mapping arbitrary letters (denoted by the regular exprepsi@a—z]+) into
the elemeniname in the output document, and then filtering out the empty string at the end
of line. A similar explanation holds for the other elements.

DREAM has already been successfully applied to diverse sourddseagt Articles,
Publishing Abstractsand downloads from online databases {l@mpusciencand Confer-
ence The resulting documents can be further processed with any SGML-based tool.

3.2 System Overview oMarkltUp!

The goal of theMarkltUp! system is to learn DREAM DSDs from examples instead of the
user writing the DSDs. The system is designed on the basis of the scheme proposed by B.
Knobe and K. Knobe [31], a kind of refinement method for grammatical inferences. Figure
3.2 shows the overall structure of tdarkItUp! system.

The input document of thiglarkltUp! system is a document collection (see Section 1.1)
which consists of (nested) sequences of subdocuments with similar format. The document
collections as source documents can be provided either by electronic sources, such as elec-
tronic mail, on-line public databases etc., or as results of document layout structure analysis,
like ASCII information from OCR.

The output document of the system sraictured documer{SGML-document).
The tagging part of the system is DBREAM parsef20, 21].

Three components structure editoy scanner and learning which includesontent ab-
straction andstructure unification & abstractior- form the kernel of the system. It of
conceptontains partial ordered abstract strings (they are catledeptsand represented by
regular expressions Section 4.2) which describe the general characteristic of strings appear-
ing in a class of documents and are used by the learning component. Diverse sets of abstract
strings correspond to different concept sequences, that is, the list of concepts is changeable.

30 Chapter 3 An Approach to Document-Structure Recognition

markup cycle

document
collection example selectign

example

learning feedback loop

DREAM parser

tentatively markup

structurea structure editor
document$™

corrected markup

scanner

Y

example grammar
list of tent abstracti
concepts = contentabstraction learned grammar

abstracted grammar

structure unificatiope—2d grammar

& abstraction grammar

learned gramma

Fig. 3.2 System overview oMarkltUp!

When the user starts tivarkItUp! system, the system enters a learning cyclemitue-
up cycle In the learning cycle, the user can:

. control the system when it is called and when it will be stopped,;

» select examples from a document collection through a computer terminal;
. input or modify the abstract strings of the document’s collection;

* manually mark up the initial example in the structure editor;

e judge the tentatively marked up examples on whether they are correct and correct them if
they are not satisfactory.

To accomplish the other functions in the cycle, the user calls the system to generate the
list of concepts on the basis of the given abstract strings of the documents’ collection and to
start thdearning feedback loojm which the system can

Chapter 3 An Approach to Document-Structure Recognition 31
* scan the structured document;

» abstract from the concrete strings;

* learn a new logical structure of documents on the basis of the old grammar;

e translate the learned grammar into a DREAM DSD;

« finally call the DREAM parser to mark up new examples.

The following subsections describe tarkltUp! system under four aspects: starting the
system, structure editor, scanner and learning strategies.

3.2.1 Starting theMarkltUp! System

The system is started when tiigeractivates it. The user selects an examgkaifiple selec-

tion), which is sent to the parser. Since initially there is no grammar for the document, the
parser cannot further structure the example. In this case, the user has to manually mark it up
by means of a simple yet comfortalteucture editorin subsequent cycles, when a grammar

Is available, the parser tries to mark up the example with as much structure as possible. If the
user is not satisfied with the marked up structure, the user can change the markups or add new
markups with the help of the structure editor.

3.2.2 Structure Editor

The structure editor is a window to allow the user accessing documents, execulitagkhe
tUp! system commands, marking up documents, correcting the marked-up documents, and
displaying the results using a graphic representation, etc.

For giving a complete explanation of the functions of the structure editor, let us consider
a process to manually mark up an example in the structure editor at the initial state of the
started system. The initial state of structure editor looks like the description in Figure 3.3.

Chapter 3 An Approach to Document-Structure Recognition

Mark—-It—Up

1
il
>

W

11 ho details

| >

Fig. 3.3 The initial state of the structure editor

In this case the user has to first access the example (e.g. Document-Sample 3.2 in Section
3.1.3) from a file or type it from the keyboard into the structure editor directly. When the ex-
ample is loaded, the structure editor shows the example as described in Figure 3.4.

Chapter 3 An Approach to Document-Structure Recognition 33

T Mark—It—-Up

| >

———————————— T bk

____________ | Suad Alagic

" Ohject-Oriented Database Programming
{ Springer * 1389

= DBDobject,

<]

| >

Fig. 3.4 An example loaded into the structure editor

In the structure editor man can manually mark up a string with the following three steps:
(1) highlight a tagging string by a mouse;
(2) call the tagging function from the editor menu;
(3) type a string as the highlighted string’s tag name when the function requires it.

Figure 3.5 shows the steps (1) and (3): the highlighted string “Object—Oriented Database
Programming” and a dialog view, in which the tag name “title” of the highlighted string is

typed.

34 Chapter 3 An Approach to Document-Structure Recognition

T Mark—It—-Up

| >

———————————— T bk

____________ | Suad Alagic

" Ohject-Oriented Database Programming
{ Springer * 1389

= DBCohject

<]

the name of tag?

| >

title,

Fig. 3.5 Manually marking up a string in the structure editor

The dialog view is displayed after the second step is done. After the function is executed,
the highlighted string is enclosed by the tag name with a bold font shown in the structure edi-
tor. The result of tagging a string is shown in Figure 3.6.

Chapter 3 An Approach to Document-Structure Recognition 35

e Mark—It-Up

| >

———————————— T bk

| Suad Alagic

" <title=0hject—Criented Database
Programming<ftitle= "

{ Springer * 1389

= DBCohject

<]

| >

Fig. 3.6 The result of manually marking up a string in the structure editor

By repeating the three steps, the user can mark up the whole example in the structure
editor. The marked-up result of Document-Sample 3.2 in the structure editor is shown in Fig-
ure 3.7:

36 Chapter 3 An Approach to Document-Structure Recognition

T Mark-1t-Up -
———————————— T <bibentry=' <code=>bk<icode> -
E;ﬁgﬁ{w | <author=<fhame=>uad<ffname=
category <|lname=Alagic<flname=<fauthor=
code " <title=0hject—Criented Database
date Programming<ftitle= "
mgmz { «<source=<publication=5pringer
publication <fpublication= * <date=>1359</date></source>
SOUrCE = <category=DEDobject<fcategory=
fitle <fbibentry=,

<]

| >

Fig. 3.7 The manually marking up result of the example in Figure 3.4

where tag names are included by angled brackatgl> and displayed in bold font. The bold
font is not necessary in SGML-documents. It is used here to aid the user.

Either start-tag <tag name> or end-tag </tag hame> expresagsTde contents sepa-
rated by tags argtrings There are two kinds of stringsut-stringandcopy-string

Cut-strings are filtered out explicitly. They are identified by the following rule: if a string
is not directly surrounded kg pair of tagswhich consists of a start-tag and an end-tag with
thesametag name, the string is a cut-string. For instance, in Figure 3.7, the“stririgin the

Chapter 3 An Approach to Document-Structure Recognition 37

first line is a cut-string because it is directly surrounded by the<talgsntry> and<code>
which are not a pair of tags.

Copy-stringsare formed by the rest in the document and are mapped with the surround-
ing tag in the output document. For instance, the sthkg in the first line is a copy-string
and is shown in the output documenkasde>bk</code> . In the same way, man can judge
the other cut- and copy-strings in the example.

The marked-up example is then passeddcamner

3.2.3 Scanner

The scanner scans a marked-up example and extracts the format and the structure information
from the example. The extracted information is represented by a grammar (a hypothesis gram-
mar) which can be easily translated into a DREAM DSD. Regardless of their representation, a
grammar and its DREAM DSD are the same.

Each nonterminal of the grammar corresponds to a tag. Its definition in the form of a rule
Is generated on the basis of the example structure.

Each concrete string in the grammar is a terminal. Since there are two kinds of concrete
strings: cut-strings and copy-strings which play different roles in the learning process, it is
necessary to distinguish them in a grammar rule, obviously. If the right-hand side (RHS) of a
rule contains other nonterminals, the terminals (if they exist) in the rule are cut-strings; if the
RHS of a rule contains only one terminal without nonterminals, the terminal is a copy-string.

3.2.4 Learning

With the initial grammar DREAM is obviously able to parse and to mark up exactly the origi-

nal example. In order to mark up subsequent examples, the grammar has to be abstracted such
that DREAM can parse different contents and slightly different structures. For this purpose the
version space technique is applied to the current domain knowledge (a set of predefined ab-
stract strings) for abstracting the terminatsritent abstraction Original strings from the
document are matched by the abstract strings with a heuristic search procedure. The abstract
strings will cover more strings than the original one.

In order to reflect structural deviations, such as missing or multiply occurring elements, a
generalization subroutine is called which unifies a new grammar with the grammar acquired

38 Chapter 3 An Approach to Document-Structure Recognition

from previous examples (initially empty) and generalizes th&nagture unification & ab-
straction) with rewrite rules. The new grammar is stored and can be used to parse a new ex-
ample, whereby a new markup cycle could be started.

The acquired structure of a concrete document can be regarded as a prototype of a class
of document structures. Although one cannot determine all features of a class after analyzing
only a few examples, the structures derived from them give important clues for the description
of the class.

3.3 Demonstration ofMarklitUp!

To demonstrate thiglarkltUp! approachsuppose that the user wants to structure a portion of
a document. The portion contains two examples. One example is Document-S&giniple
Section 3.1.3, the other is as follows:

Document-Sample 3.3

\ Upr\n

I LIRobert LIAbarbanel\n

@l Intellicorp\n

" LIConnections, Perspective and Reformation LI™\n
/ LUACM SIGMOD 87L1* LIMay.1987\n

>|1DBDkb\n

where the symbolsu at the beginning of the example indicate the document code, the code
followed by the document author starting with the symbalsthe document location starting
with the symbolsa J, the document title starting with the symbbls, the document source
starting with the symbolsL!, and the document category starting with the symbials

The user selects the first example, and marks it up manually according to SGML syntax
in the structure editor (see Section 3.2.2, Figure 3.7).

The MarkltUp! system accepts the marked-up example and generates a grammar to de-
scribe the structure of the example. Each rule of the grammar has thenéorierminal—>
right-hand side of the nonterminéibr the syntax of the grammar rule see Section 4.3.2). The
initial grammar looks like the following:

Grammar-Sample 3.1

bibentry —> “M\ LI" code “\n™M LI author “\n"\” LI title © L\ ”
source “\n"> LI” category “\n”

Chapter 3 An Approach to Document-Structure Recognition 39

code —> “bk”

author —> fname “ L” Iname

fname —> “Suad”

Iname —> “Alagic”

title —> “Object—Oriented Database Programming”
source —> publication “ LI* L” date
publication —> “Springer”

date —> “1989”

category —> “DBDobject”

where the terminals are enclosed in the quotationg he nonterminals in the RHS of a rule
will be further defined somewhere in the grammar.

There are two kinds of rules in the grammar: (1) the RHS of the rule contains cut-strings
(terminals) and element names (nonterminals), such as thieibeery andauthor , this
rule type represents a kind of structure; (2) the RHS of the rule contains only a copy-string
(terminal), such as the rulesde andcategory . Since the two kinds of rules play totally
different roles in the thesis, it is necessary to formally and separately define them.

Definition 3.1 (Structure-rul@ If the right-hand side of a grammar rule consists of nontermi-
nal(s) or nonterminal(s) and terminal(s), the rule is callstdugture-rule O

Definition 3.2 (String-rulg If the right-hand side of a grammar rule consists of terminal(s),
the rule is called atring-rule O

The applications of the structure-rules and the string-rules will be further discussed in the
following paragraphs and latter chapters.

With the initial grammar — Grammar-Sample 3.1, DREAM can exactly parse the same
example but cannot properly parse another example. In order to mark up other examples, the
initial grammar is abstracted further with a set of abstract strings (the details of the string ab-
straction see Section 4.2). The concepts used here are a subset of the example concepts in Fig-
ure 4.2, that is, the concepts applied here do not include small letter and capital letter:

Grammar-Sample 3.2

bibentry —> “M\ LI" code “\n™M LI author “\n"\” LI title © L\ ”
source “\n"> LI” category “\n”

40 Chapter 3 An Approach to Document-Structure Recognition

code —> “bk” | [a—zA-Z]+
author —> fname “ U” lname
fname —> “Suad” | [a—zA-Z]+
Iname —> “Alagic” | [a—zA-Z]+

title —> “Object—Oriented Database Programming”

| [a—zA-Z]+"\-"([a—zA-Z]+" U")+a—zA-Z]+
source —> publication “ Li* 11" date
publication —> “Springer” | [a—zA-Z]+
date —> “1989” | [0-9]+
category —> “DBDobject” | [a—zA-Z]+

where the changed parts are denoted by the bold fonts, note that in the following examples, the
part with bold font in the examples always identifies some kind of difference between old and
new examples (except tags); the strings consist of one of the following contents: (1) a concrete
string such a¥k; or (2) an abstract string such[aszA-Z]+ . Each content matches a kind

of string(s).

Comparing Grammar-Samples 3.1 and 3.2, man may find that the structure-rules in
Grammar-Sample 3.1 are not changed after being abstracted by abstract strings, but the string-
rules are changed, that is, besides their original strings they have an alternative on the RHS in
Grammar-Sample 3.2. For example, on the RHS of thecodle there are two alternatives:
an original string’bk” and an abstract strifg—zA-Z]+ . The abstract strinfp—zA-Z]+
means that the RHS of the rulede can be arbitrary letters. The similar explanation is ap-
plied to the other string-rules. The original strings are kept here for two reasons: (1) showing
the original strings to the user; and (2) ensuring the grammar can exactly mark up the old ex-
ample. When more than one different examples have been learned, there are no concrete
strings in the old string-rules (see Grammar-Sample 3.3 at below).

Now a new example (Document-Sample 3.3) is sent to the parser that uses the existing
grammar — Grammar-Sample 3.2 to tag the new example, the result will be:

DSD-Sample 3.3

<IDOCTYPE bibdoc>
<bibentry><code>pr</code>
<author><fname>Robert</fname>

Chapter 3 An Approach to Document-Structure Recognition 41

<lname>Abarbanel</Iname>

</author>

<titte> <anything>@ U Intellicorp</anything>
<ftitle>

<source> <anything>Connections, Perspective and Reforma-
tion</anything>
<publication>ACM</publication>

<date> <anything> SIGMOD 87</anything>
</date>

</source>

<category> <anything>May.1987</anything>
DBDkb</category>

</bibentry>

DREAM cannot tag the element starting with the symlgalssince there is no such ele-
ment in Document-Sample 3.2 and cannot correctly tag the eletitients, publication
anddate since they have different contents which are not covered by the string abstractions
in Grammar-Sample 3.2. It marks the unknown elements up using a special tagngtnng
which tells the user that the tagged is an unrecognizable element in the example. The italic
fonds used in the example and the following DSD-Sample 3.4 show a learning or a learned
portion in the examples.

For the recognizable elements, DREAM automatically throws away cut-strings and
marks up copy-strings appropriately. For the unrecognizable strings or incorrect elements, the
user uses the structure editor for correcting the markups of the example.

DSD-Sample 3.4

<IDOCTYPE bibdoc>
<bibentry><code>pr</code>

<author><fname>Robert</fname> LiI<lname>Abarbanel</lname></author>
@l <location >Intellicorp</ location >
<titte> Connections, Perspective and Reformation <[title>

<source><publication>ACM SIGMOD 87</[publication>
<date> May.1987 </date></source>
<category>DBDkb</category>

</bibentry>

The corrected example is not a correct SGML-document because it contains cut-strings
@ to provide some learning information for a new learning cycle. When the system learns

42 Chapter 3 An Approach to Document-Structure Recognition

the corrected example, the cut-strings can be automatically identified and added into a new
grammar, that is, a complete description of the new elelmesattion can be captured from the
example. However, a simple SGML-document cannot give such information to the learning
cycle. Therefore, at the beginning, the cut-string cannot be filtered out. After the corrected
example has been learned, the user deletes the cut-string to aim at a SGML-document.

The corrected example is sent into a new learning cycle. There are two alternative strate-
gies to learn the corrected example: one is an exhaustive learning strategy — learning from an
entire example; the other is a partial learning strategy — learning from those elements in the
example which are deviations from the existing elements in the grammar. For the details of
these strategies see Section 6.6.2.

The new grammar of DSD-Sample 3.4 is abstracted and combined with the Grammar-
Sample 3.2 to generate a unified grammar — Grammar-Sample 3.3:

Grammar-Sample 3.3

bibentry —> “M\ LI" code “\n" LI" author (“\n*@ LI" location)?
“nA\T LT title ¢ LI\"\n®/ 1" source “\n> LI" category “\n”

code —> [a—zA-Z]+

author —> fname “ LI” Iname
fname —> [a—zA-Z]+

Iname —> [a—zA-Z]+

location —> “Intellicorp” | [a—zA-Z]+

title —> [a—zA—Z]+"'\-"([a—zA-Z]+" U")+[a—zA-Z]+ |
[a—zA-Z]+[.,.)+([a—zA-Z]+" U"+[a—zA-Z]+

source —> publication * U* 11" date

publication —> [a—zA-Z]+ | ([a—zA-Z]+* uU")+[0-9]+

date —> [0-9]+ | [a—zA-Z]+][.,][0-9]+

category —> [a—zA-Z]+

Grammar-Sample 3.3 is more general than Grammar-Sample 3.2. The differences between
Grammar-Samples 3.2 and 3.3 are: (1) there is a newocatl®n in Grammar-Sample 3.3

and the elemerbcation is an optional element, denoted W@ LI" location)? in

the rulebibentry , because the elemdntation occur only in Document-Sample 3.3 but
not in Document-Sample 3.2; (2) except the new Indation , there are no other concrete

Chapter 3 An Approach to Document-Structure Recognition 43

strings in Grammar-Sample 3.3, since the old rules have learned two different examples; (3)
the right-hand side of the ruléile , publication , anddate have new alternative ab-
stractions since their old abstractions cannot recognize the new strings in Document-Sample
3.3.

After finishing the above processes, a new markup cycle could start when the user selects
another new example.

3.4 Summary

The main characteristic of thdarkltUp! learning cycle is an incremental learning which
combines manual markup and automated markup methods. The motivation of the learning ap-
proach is to make the task easier for the user who wants to structure documeniserThe
needs only to provide an idea of how s/he expects a formatted document to be structured and
the systenmsynthesizes a recognition program from this information. The details of the system
learning and synthesizing methods are discussed in Chapter 4.

44

Chapter 3 An Approach to Document-Structure Recognition

Chapter 4 Learning 45

Learning

This chapter formalizes the learning approaches and explains their basic properties. It details
the problems associated with abstracting the concrete strings in documents and with learning
deviating structures in documents.

4.1 Learning Problems and Learning Levels

Learning inMarkltUp! is isolating the differences and extracting the common features from
source documents.

The most obvious difference between individual documents is their contents. To be able
to cover similar contents (strings) in the subdocuments, an approach is needed to match differ-
ent contents in documents. In order to also accept and structure similar documents which devi-
ate from the learned documents structure, an approach is needed to learn the new logical struc-
tures.

In MarkltUp! a grammar is used to describe the structure of documentgeritaalsof
the grammar specify eontent levethat expresses the concrete strings in the document; and
the nonterminalsof the grammar specify structurelevel that describes the documents’ log-
ical structure. Thus, learning MarkltUp! is carried out at the two levels. That is, the termi-
nals in the grammar are abstracted at the content level and the nonterminals in the grammar
are generalized at the structure level.

Figure 4.1 presents a high-level description of the learnings at the two lelédskiz
tUp!. When the grammar contains concrete strings, content abstraction will be carried out.
The concrete strings are replaced by a sstrofg patternsWhen the system cannot correctly
mark up a new example with the existing grammar, the user has to provide proper information
to structure the example, then the existing grammar is merged with the grammar generated
from the updated example. After the merging, a new grammar is inferred.

46 Chapter 4 Learning

learning in
MarklItUp!

atthe learning. at the
structure level

Structure abstract
& unification

content abstractio

Fig. 4.1 MarkltUp! learning

4.2 Learning at Content Level

4.2.1 Goals, Problems and Overall Approach

Learning at the content level means abstracting sequences of terminals to form string patterns.
The aim of abstracting a string is to arrive at rules which also accept similar strings; that is, the
strings which are matched by the same string patterns. To reach such a goal, the version-space
method [35, 26] (see Section 7.2.2) is adopted. With aid of such method the concrete strings
are generalized on the basis of partial ordering domain knowledge components, which are
calledconceptqsee Definition 4.1 in Section 4.2.2).

The learning problem at the content level can be summarized as follows.

Input

A set of example strings.

Output:

A list of abstractions within the provided concepts that are matched with the presented
example strings.

Techniques
(1) A representation of a concept.
(2) A set of concepts to abstract example strings.

(3) An ordering strategy for concepts.

Chapter 4 Learning 47
(4) Algorithms to learn strings on the basis of the concepts.

The string concepts are required to identify the common characteristics of concrete
strings, such as all strings of the digits, all strings of small letters, etc. For this reason, the
concepts should satisfy the following two requirements:

(1) Expressiveness: Being able to denote a set of strings showing some characteristics,
for example, the strings starting with a capital letter.

(2) Tuneability: Being able to capture the main characteristics of the document strings;
that is, the concepts should be able to distinguish between strings of different kinds.
For instance, an e-mail address is always required to contain the symbol @, where-
as a normal post address has not such a requirement. Therefore, for e-mail docu-
ments the symbol @ must be one of the concept in its domain knowledge, but for
the normal post documents there may be no such concept contained in its domain
knowledge.

Expressiveness refers to the problem of how to represent a concept (Section 4.2.2). Tune-
ability refers to the problem of what kind of concepts are suitable for individual documents
(Section 4.2.3). Besides representing and defining concepts, the problems are how to organize
the concepts in th®larkitUp! system (Section 4.2.4) and how to use the concepts to abstract
strings (Section 4.2.5).

4.2.2 Concepts and Binary Relation

Since this thesis is not interested in analyzing the semantics of the document but only the syn-
tactic structure, syntactic concepts lidigit> or<letter> (Figure 4.2) suffice for these
purposes. These syntactic concepts can be easily described by regular expressions. Regular
expressions can express what strings can appear in documents and search for the strings in the
documents. Especially, regular expressions have an important property based on the more-
specific-than binary relation (Definition 2.1). It means that two regular expressiamss

fulfill the binary relationr <s, if and only if r matches a subset of all the strings which
matches.

Note that the more-specific-than relation is defined in terms of the denotations of expres-
sions in the representation language, and not the expressions themselves. To practically com-
pute a more-specific-than relation by a computer program, it must be possible to determine
whetherr is more specific than or equal $dy examining the expressionsroands, rather

48 Chapter 4 Learning

than computing the (possible infinite) sets of examples which they match. For regular expres-
sions, the relation is practically computed by means of DFAsS/NFAs, trait@nata theory
[27] is the theoretical foundation for applying regular expressionankitUp!.

The more-specific-than relation however has the property that given any two regular ex-
pressions man cannot always find the one that is more specific than the other although they
may have some common strings that can be matched. For instance, two regular expressions
[Fflrom (it can match strings “From” and “from”) arfefom* (it can match the strings
starting with “Fro” and followed by arbitrarily many characters ‘m’) can be both applied to
one specific string “From” without the requirement that one of them applies to every string the
other applies to.

However, the relation has thensitivity property over a regular expressions(s€iSec-
tion 2.1.3, Theorem 2.4). This property is important. With such a property the relation pro-
vides a powerful basis for determining concepts, ordering concepts and deciding string match-
ing strategies in the domain knowledgeMarkitUp!.

On the basis of the above discussions, it is able to give a definition for concepts in this
thesis.

Definition 4.1 (Concep} A conceptis a domain knowledge component that denotes a set of
strings. It is defined and supplied by the user and represented by a regular expressidn.

4.2.3 Determining Concepts

The requirement diuneabilitydiscussed in Section 4.2.1 is a condition which must be consid-
ered when the concepts for a class of documents are defined.

At first sight, a natural and an attractive idea is that from example strings one directly
induces a concept matching the example strings. In other words, the idea is temétleat
finite automaton of a concept which is compatible with a given finite sample consisting of a
finite set of strings marked as “accepted” and another finite set of strings marnegected
But it can be shown that this idea is an NP-hard problem [18, 6].

However, it is possible to fincdkasonableconcepts, that match the given example strings,
from a set ofgivenconcepts defined by the user. The restriction is to seplecificconcept
from the reasonable concepts. The specific concept means that it matches not only the exam-
ple strings, but also a small amount of other strings which are not elements in the set of the

Chapter 4 Learning 49

example strings. The reason of the restriction is that if the user defines a general concept, for
example the concepa—zA-Z0-9]+ , it may match a large amount of strings but hardly dis-
tinguish some strings, such as “1994” and “abc”. Therefore, the concept is not of any help for
the string recognition. For this reason, determirspgcific concepts is very important al-
though it is not easy.

The following sections will discuss how to find the reasonable concepts from a set of
concepts defined by the user and how to select a specific concept from the reasonable con-
cepts.

4.2.4 Ordering Concepts

Since there exist two kinds of concepts: comparable and incomparable, it is not easy to direct-
ly order a set of given concepts. For this reason, the concepts are organizedde base

in the form of adirected acyclic grapla DAG). A DAG gives a picture of what kind of rela-
tionships (comparable or incomparable) exists among the concepts. On the basis of the DAG,
using theTopological Sortingalgorithm [2], it is easy to get a linear ordered list of the given
concepts. With the help of this list a specific concept can be derived.

4.2.4.1 Concept Base

An efficient organization of the concept base lies in observing how the more-specific-than
relation is defined on the concept base. Suppose that the input conceptsare,c,. Then

on the basis of the given concepts and the more-specific-than relation among them, a concept
base is built in the form DAG as follows.

Let a concept base be a DA% G = (C, E), where

C=@CunC..uG),G=qg @ =j),1=<ij=n,
E={(6.q)|a,g € C,g < g andg is a direct ancestor gf}.

This construction shows that if two concep#nds, r < s, then there is an edge frato
r, s—r in the concept base. In other words, comparable concepts are connected with edges in
the concept base.

Figure 4.2 gives an example of the concept base. To explain the meaning of the node
(concept), in this concept base each node has two parts: the name of the node and the syntacti-
cal expression of the node. Actually, the node’s name does not appear in the concept base. The

50 Chapter 4 Learning

name of each node is enclosed by angled braskatgl>, and the syntactical expression of
each node is enclosed by parenthésesd) . For instance, the nodany character>

) expresses that the concept has a namyecharacter in the concept base and its
syntactical expression is a regular expression.

<any character> (*.")

<blank>(" LI") <delimiter> J \

(.D <letter>([a—zA-Z])

<digit>([0-9]) / \

<small letter> <capital letter>

([a—2]) ([A-2])

Fig. 4.2 An example of the concept base

From Figure 4.2, we can see thdilank> , <delimiter> | <digit> , <small
letter> , and<capital letter> (as well as<blank> , <delimiter> |, <digit>
and<letter>) are incomparable concepts. Howewamall letter> and<letter>
(as well as<capital letter> and<letter>) are comparable concepts. Furthermore,
the conceptsmall letter> is more-specific-than the concegletter> (as well as the
concepkcapital letter> is more-specific-than the concepéetter>) . The concept
<any character> is comparable with every other concept in the figure and each concept
is more-specific-tharany character> ; that is, the conceptany character> is an
ancestor of every other concept in the concept base.

For various documents their concepts can be different. But the method to create the con-
cept base is the same.

4.2.4.2 Linear Ordering List of Concepts

On the basis of the concept base, the concepts can be ordered by the topological sort algo-
rithm. A topological sort of a DAG is any ordering, np, ..., m¢ of the nodes of the graph

such that edges go from nodes earlier in the ordering to later nodes; that isnif is an

edge fromm to m, thenm appears before) in the ordering. Since incomparable concepts
cannot be ordered as comparable concepts, the ordering of the concepts is not uniqgue. Howev-
er, in every ordering, iin—m, then the sequence always holdsappears befong).

Chapter 4 Learning 51

Aho, Hopcroft, and Ullman (reference [2], page 222) give an algorithm to do the topolog-
ical sort with adepthfirst search procedure.

After the topological sort of the concept base, we arrive at a linear ordering list of the
concepts which is in reverse topological order, but meets our needs. For instance, the ordered
list C of the concept base shown in Figure 4.2 is:

C =<blank> , <delimiter> , <digit> , <small letter> , <capital letter> ,
<letter> , <any character>

Since the topological sort algorithm does not order incomparable concepts, such as the con-
cepts<blank> , <delimiter> , <digit> , <small letter> , and<capital let-

ter> . The positions of the incomparable concepts in the ordered list are changeable. In other
words, it is able to get various ordered lists for the incomparable concepts. However, because

the concepksmall letter> iIs more-specific-than the concegetter> and the con-
cept <capital letter> is more-specific-than the concegpletter> , the concepts
<small letter> and<capital letter> must appear before the concsl#tter>

in any ordered list of the above concepts as well as in the above orde@d list

Using the ordered list, string abstracting can now be carried out.

4.2.5 Learning from Strings

A string is a list of characters. Two kinds of strings have been introduced in Section 3.2.2:
copy-strings and cut-strings. Because they play different roles in the learning process, the two
kinds of strings are abstracted by different strategies.

Copy-strings record the contents in the document which will be mapped into the output
document. However, for different documents copy-strings are very different. Therefore, they
need to be abstracted so that the abstracted copy-strings are able to mark up documents with
the same structure, but different contents.

Cut-strings will be filtered out during the process of mark up. They usually serve as indi-
cators for the beginning or the end of an element. Abstracting these delimiters too much
would result in an ambiguous grammar. Therefore, cut-strings are abstracted much less than
copy-strings.

The following two subsections will discuss the problems of learning from copy-strings
and cut-strings, respectively.

52 Chapter 4 Learning

4.2.5.1 Learning from Copy-Strings

Copy-strings represent concrete strings which will be transported from one document to
another. Therefore, a copy-string is assumed that it consists of a variable number of characters
which play the same roles in the document, that is, there is no special character which has a
special meaning in the document and is required to be identified especially. In other words, the
following two hypotheses are reasonable:

(1) the characters in a copy-string are at the same level,

(2) the number of characters in the copy-strings does not influence the abstracted result.

These two hypotheses imply that a string pattern can be inferred which matches the copy-
string. Under these two hypotheses, abstracting a copy-string includes two steps:

(1) to abstract each character in the copy-string on the basis of the ordered list of concepts;

(2) to infer a string pattern based on the abstractions of the characters in the string.

The following algorithm 4.1 will discuss how to abstract a copy-stairguppose theb
consists of a set of charactysl < | < m, that is,S={s1, S, ..., Sn}. On the basis of an
ordered list of the concep&=cy, Cy, ..., Gy, the algorithm tries to abstract each character in
the stringS and stores the abstracted result at first seguencevhich consists of abstract
concepts and/or concrete characters (unmatched characters). The algorithm starts with the first
character in the strin§ If one character is accepted by a concgpt < i < n, g is added
into the sequence; If there is no concept matching with the character, the algorithm directly
adds the character in the sequence as a default most specific concept for the string. When all
characters in the strifghave been parsed, the sequence is further abstracted to stinga
pattern For instance, subsequent occurrences of a concept (e.g. [a—z][a—z][a—z]) and subse-
quent occurrences of concepts (e.g. [A-Z][a—z]¥A-Z][a—z]+' LI’) in the sequence are
transformed into an arbitrarily long sequence ([a—z]+) and an arbitrarily long sequence
(([A-Z][a—z]+' LU")+) in the string pattern, respectively. The aim of the algorithm is to find a
specificstring pattern for the string

Algorithm 4.1 Abstracting a copy-string based on an ordered list of the concepts
Input A copy-stringS=s1, S, ...,Sn and an ordered list of the conce@ts cy, Co, ...,Gy.
Output A string pattermp which accepts the strirtgy

Method ParseS from left to right. For each character$scan the lisC from left to right,
choose thdirst element (if any exists) inC which accepts the character. Tleers a specific

Chapter 4 Learning 53

concept of the character. ¢f does not exist, the algorithm keeps the character in the string
patternp as the default most specific concept. When the whole string is parsed, the parsed
result is abstracted and the algorithm outputs the abstracted string pafféen formal de-
scription of the algorithm is given as follows. Note that the italic fonts in the body of the algo-
rithms expressariables parametersor functions while the bold fonts expreggy words

1 begin
2 p := null;
3 b := false;
/Ib is a global variable. If there exist unmatched characters in the string, it is true.
/Nt is tested in Algorithm 4.2.
4 for (I = 1;1 = the length ofS; |++) do Il parse string from left to right.
5 begin
6 for (i=1;i = n;i++)do i 5 used to count the length of the st
7 if g acceptsy then
8 begin
9 addg intop;
10 break;
11 end;
12 if i =n+ 1)thenb:=true; /i=n+ 1 means that there is no concept which aceepts
13 end,
14 scanp from left to right to abstract the concept sequence;
15 transform subsequent occurrences of a concept (e.g. [a—z][a—z][a—Zz]) into

an arbitrarily long sequence ([a—z]+) or subsequent occurrences of concepts
(e.g. [A—Z][a—z]+'LU’'[A-Z][a—z]+' LI") into an arbitrarily long sequence
(([A-Z]la—z]+ LI")+);

16 return (string pattermp);

17 end O

Algorithm 4.1 gives an approach to abstract a concrete copy-string on the basis of a set of
concepts. Note that each copy-string is a RHS of a string-rule in the grammar. When learning
different examples, for the same string-rule (B)gthe concrete strings may be different. Af-
ter the different copy-strings are abstracted by Algorithm 4.1, it is able to get several string
patterns of the copy-strings for the riReA list is chosen to contain these string patterns and
the list of the ruleR is denoted adr. Of course, each string-rule in the grammar has its own
string patternlist. These lists are the final output of the string learning.

To get the output, the focus is on the string-mlen the grammar which has various
string patterns of copy-string after learning several examples. The goal is to getAheHat
maintains the whole learned string patterns of the Rulnd has no redundant abstracted

54 Chapter 4 Learning

form. The following algorithms discuss how to arrive at the goal. Before that, two definitions
are given:

Definition 4.2 (Abstracted-list A) A list Ar is called arabstracted-listfor the string-ruler,
if the list contains all learned string patterns of the RHR. of [

Definition 4.3 (Reduced A) An abstracted-lisfr is calledreduced if for any two string
patterns inAR, none is more-specific-than the other. [

In Algorithm 4.2 (see below)fg either is an empty list or a reduced list. When learning a
new copy-stringe (got from another example) of the riethe listAr is used to test whether
the new string can be acceptedApy If so, there is no change for the Wgt. Ar will be used
for the following examples of copy-strings again. Otherwise, the drinidj be abstracted by
Algorithm 4.1. and return a value to Algorithm 4.2. On the basis of the return value, the algo-
rithm constructs a new reduced list or an error message to the user.

Algorithm 4.2 Learning from a new copy-string

Input. A new copy-strindge of the ruleR, an ordered list of the concefls=c;, ¢, ...,G,, and
the reduced lisg = p1, P2, «--) k-

Output A “new” reduced lisiAr which accepts all strings accepted by the ifpytas well as
the stringE; or an error message to the user.

Method If the reduced liség is not an empty list, scan the &% from left to right, to choose

thefirst elementy in Ar such thap accepts the string, 1 < j < k. The algorithm outputs

the originalAr to the caller. Otherwise, the algorithm calls Algorithm 4.1 to abstract the string

E. If the abstracted result contains concrete characters, the algorithm gives an error message to
the user and the user is required to redefine the concepts. If the abstracted result is a new string
patterng, it will be added into the lishr, while Ar is required to still be a reduced list. The
formal description of the algorithm is given as follows.

1 begin

2 if Ar is not an empty lighen

3 for j:=1tokdo

4 begin

5 take the string patteny from Ag;

6 use the string pattern to match the stiig

7 if (the string pattern can match the stritigdn return (the listAR);
8 end;

Chapter 4 Learning 55

9 call Algorithm 4.1 to abstract the strifijon the basis dE, andgeta return value,
10 if b then return (an error message to the user)
/Il there is at least one character which has not been abstracted by the concepts.
11 else
12 begin
13 delete ally in Ag, suchthapy < p, 1<t <k
14 add a new string patteminto the listAg;
15 return (the listA);
16 end;
17 end tl

Algorithms 4.1 and 4.2 are used to abstract concrete copy-strings and to learn new copy-
strings from different examples. Note that the order that examples are presented to the algo-
rithms does not affect the result given.

4.2.5.2 Learning from Cut-Strings

For a cut-string, it may consist of key characters and/or no-key characters. The number of key
characters influences the recognition of the cut-string. Therefore, the key characters in the cut-
string are not allowed to be further abstracted. However, characters in sequences of trailing
blanks, tabs, and returns (all shorte®gare regarded as no-key characters. They are allowed

to be abstracted into the forr8){. If there are different key words for a cut-string, they are
simply kept in a list as alternatives of the cut-string.

4.2.5.3 Examples for String Abstraction

Section 3.3 has shown an example of string abstraction (Grammar-Sample 3.2) by applying
Algorithms 4.1 and 4.2 with a subset of the example concepts in Figure 4.2. The following
grammar shows an abstracted result by using the example concepts in Figure 4.2.

Grammar-Sample 4.1

bibentry —> “M\ LI” code “\n™ LI” author “\n™\” LI title “ LI\\n U7
source “\n"> LI" category “\n”

code —> “bk” | [a—z]+

author —> fname *“ LI” Iname
fname —> “Suad” | [A—Z][a—z]+
Iname —> “Alagic” | [A-Z][a—z]+

title —> “Object—Oriented Database Programming”
I [A-Z][a—z]+"\-"([A-Z][a—z]+" U")+HA-Z][a-z]+

56 Chapter 4 Learning

source —> publication * L* 11" date
publication —> “Springer” | [A-Z][a—z]+
date —> “1989” | [0-9]+

category —> “DBDobject” | [A-Z]+[a—z]+

Comparing Grammar-Sample 3.2 (see Section 3.3) and Grammar-Sample 4.1, it is not
difficult to find that the same string may have different abstracted result when it is abstracted
by different concept set. And when there are more comparable concepts in the domain knowl-
edge, the abstracted form of copy-strings will be more complex. The reason is that in this case
it is easier for each character to find its own specific concept, but it is not easy to find a com-
mon concept for most characters in the string. However, since it is not so important in English
to distinguish capital letter and small letter, the abstracted result of Grammar-Sample 3.2 is
also acceptable.

Let's see another example for dates. Support there are four forms to express a date:
01.03.1994
01. 03. 1994
Jan. 03. 1994
Jan. 3rd. 1994

If we use the example concepts in Figure 4.2. and apply Algorithms 4.1 and 4.2 to ab-
stract them separately, we my get the following forms:

date —> “01.03.1994" | ([0-9]+[..])+[0-9]+
date —> “01. 03. 1994” | ([0-9]+[.] “u”)+[0-9]+
date —> “Jan. 03. 1994” | [A-Z][a—z]+[..] “U7[0-9]+[.] “L”[0-9]+

date —> “Jan. 3rd. 1994 |
[A-Z][a—z]+[..] “ U [0-9][a—z]+[.)] “ U [0-9]+

The later example indicates another fact. That is, different representations of a string lead
to different string patterns.

4.3 Learning at Structure Level

4.3.1 Goals, Problems and Overall Approach

The goal of learning at the structure level is to incrementally construct a grammar from a finite
number of structured examples, in such a way that similar but not necessarily identical struc-

Chapter 4 Learning 57

tures of different examples can be recognized and unified automatically. To arrive at the goal
the grammar is generalized by a set of generalization rules. The learning problem at the struc-
ture level can be summarized as:

Input
(1) A logical structure description of a new example.

(2) A logical structure description of previous examples (initially empty).

Output:

A generallogical structure description that is consistent with all the presented sample
structures.

Techniques
(1) A representation of logical structure description.

(2) A method to abstract and unify the old and new logical structure description.

Similar to the content level, the first problem is how to describe the logical structure of
documents. Then it is necessary to decide the generalizing strategies of the structures learned
from examples. These two problems are dependent, that is, different descriptions of document
logical structure correspond to different generalizing strategies. They will be discussed in the
following subsections. Section 4.3.2 gives a formal description of the document logical struc-
ture. Section 4.3.3 discusses the strategies to generalize the structures learned from examples.
Section 4.3.4 gives control strategies to use the learning rules and shows some examples using
the rules.

4.3.2 Representation of Document Logical Structure

MarkltUp! uses a subset of the SGML grammar [5] — also caltediment type definitions
(DTDs) — for representing the logical structure of input documents. The simplified SGML
grammar is a regular grammar and consists of several rules (productions) which break down
logical elements into more simple elements. The syntactical form of each rule is as follows:

element_name -—>rexpr (eq, €2, ...,Ek)

where,

* element_name (nonterminal) is a non-empty string;

58 Chapter 4 Learning

* rexpr is aregular expression on elements (parametersp, ..., ex ande; = ¢ for all
I,1<i <k;

. each ofeq, e, ..., ek is either a regular expression or a redement_name that must
be defined by a new rule somewhere in the grammar. This ensures that the rules are non-

recursive.

The element®,, €2, ..., ex use a number of operators B@quence elementy, repeti-
tion elements), iteration element%), optional elemen{®), and alternative elemengp.
Where the plus sign +, the asterisk or star *, and the question mark ? arectugence
indicators

+ Required and repeatabléhe element occurs one or more times

* Arbitrarily repeatable the element appears zero or more times

? Optionat the element appears zero or one times

Parentheses (‘and) are used to group expressions, and items within groups occur accord-
ing to theconnectoraused as follows:

, Sequencethe elements must occur in the specified order

| Alternative exactly one of the connected elements may occur
For saving some parentheses the binding precedencg|(7) # assumed.

Currently a restriction beyond the regularity of the simplified SGML grammar is the lack
of support ofsequences of elements with arbitrary order{tige connector operator is the
symbol ampersand &, it means that all elements in a group must occur but can be in any or-
der). Although this feature can be useful as a goal for structural abstraction (see below), gener-
al purpose rules for unifying and abstracting permutation sequences tend to perform too badly
to be incorporated into the highly interactive mark up process. The sequences of arbitrary or-
dering will be discussed in Chapter 5.

4.3.3 Learning Logical Structure by Rewrite Rules

When incrementally generalizing a grammar from a limited number of structured examples,
four situations can occur (see below). To deal with them the corresponding rewrite rules are
defined.

(1) The same logical structure can appear in more than one example or slightly deviat-
ing logical structures can share many common elements. Keeping the structures as

Chapter 4 Learning 59

alternatives is not necessary and is redundant. To get a simple expression of the log-
ical structures, unification rules are applied.

(2) The nested elements of a grammar rule, such as

Arl | Aml Bil - [Bn) [Caf .. [G,

should be simplified, otherwise, these will lead to a complex or unclear structure in
the subsequent learning process. Simplification rules are used to deal with such
cases.

(3) Some elements in one grammar occur more than once. In this case, man can assume
that the elements can occur repeatedly in the documents and adopt an abstract ex-
pression to represent it. This is done by abstraction rules. For instance, an element
A is repeated two times, it may be abstracted*ag\fter that the element may oc-
cur arbitrarily often as opposed to the actual number of occurrences in the example.
Of course, the abstracted expression will lose the precision.

(4) The last and also the most complex circumstance is that the unification rules cannot
be directly applied, and the structures cannot be simplified and abstracted by using
the simplification and abstract rules above. For further simplifying these structures,
the abstract-merge rules are introduced.

The following sections discuss unification rules (with the namidy), simplification
rules (with the namsimplify), and abstraction rules (including two kinds of rules with the
namesabstractandabstract-mergerespectively) in detail. Each rewrite learning rule has one
of the general patternsiule-namé¢paramete) or rule-naméparameter; parametes), where
aparameterexpresses a right-hand side of a grammar rule.

These learning rules lead to two distinguishing steps in the learning process: In section
4.3.3.1,unifying new example structures with an already existing grammasinglifyingan
existing grammar is discussed such that the resulting grammar can re@@uitgthe struc-
ture of the additional example and all the old ones. In section 4.3.3.2 the strict unification rules
are extended to a more toleramérgingmechanism — abstraction rules, whereby the resulting
grammar can anticipate small structural deviations.

4.3.3.1 Unification and Simplification Rules

The purpose of the unification and simplification rules are to simplify the grammar derived
from structured examples. The unified or simplified grammax&ctlyequal to the original

60 Chapter 4 Learning

one, that is, the unified or simplified grammar recognizes and describes the same structure of
documents as the non-simplified grammar does.

Rules for Unification

The most straightforward way of unifying several grammars for structured examples would be
to simply form a top level disjunction. However, such a grammar would soon get highly re-
dundant and, more gravely, would give no clue for further abstraction. The simple disjunction
(enumeration) of all different example substructures of each element does not carry us much
further. Each element would be defined as an alternative of highly overlapping sequences. The
unificationrules described in the followingergenew structures with existing element rules
such that theommonalitiesare represented only once, andgtraectural deviationsare made
explicit.

The general pattern of all unification rulesusify(old; new). The rules express the mini-
mal language that contains the languages definealdgndnew The parameteold is the
already acquired definition of some elements, and the paranexes the sequence of ele-
ments derived from the new example (possibly empty).

Let [0 be a set of regular expressions. The formal description of the funciigrover]
is as followsunify(old; new) = (old | new), whereold, new & .

Definition 4.4 (Trivial unification) If unify(old; new) = (old | new), the unification is called a
trivial unification. [

Rule 1 Unification of elements or sequences with an empty element
unify(e; A) = unify(A; €) = A?
A is an arbitrary expression except

€ denotes an empty element, that is, when an expre8sexists in old (or new) exam-
ples, but does not exist in the new (or old) examples, then the non-existing expfession
in the new (or old) examples is defined as an empty elean&uich empty elements may

be introduced by applying rule 4.

Rule 2 Unification of an expression with a more specific expression:
unify(B; A) = unify(A; B) = A if B<A
A, B are arbitrary expressions.

Chapter 4 Learning 61

Rule 3 Unification of optional elements:

A if B=A*orB=A"
unify(B; A?) =unify(A?; B) = { A? ifB=A
(unify(A; B))? otherwise

A, B are arbitrary expressions excépt «.

Rule 4 Unification of sequences with a common prefix or suffix:

(@) unify((A, B): (A, C)) = A, unify(B; C)
(b) unify((B, A); (C, A)) = unify(B; C), A

A, B, C are arbitrary expressions excépt «.

Rule5 Unification of alternatives:

Ar|l...|A| B ifunify(A; B) istrivial for alli

unify(Ay | ... | An; B) = unify(4A; B) for alli, unify(4A; B) is
Ci|..|C|B G= non-trivial
A otherwise

A B are arbitrary expressions exc@&t € andA = ¢, foralli (1 < i < n).

If for all i there exist onlyrivial unifications betweeB andA;, thenB is simply added as
an additional alternative. Otherwidgjs merged with all thos& for which there exists a
non-trivial unification of A andB.

Rule 6 Trivial unification:
unify(A; B) =A|B
A, B are arbitrary expressions.

Definition 4.5 (Non-overlapping element&Vhen two elementé& and B are unified, and
only thetrivial unification (Rule 6) can be applied, the elemeéntndB are callechon-over-
lapping. O

By applying the rulegxhaustivelyin order of their specification, man arrives at gram-
mars in which the elements are non-overlapping. Otherwise, they can be further simplified by

one of unification rules (except Rule 6).

Rules for Simplification

62 Chapter 4 Learning

The application of Rules 2-6, as will be discussed in Section 4.3.4, or an intellectual modifica-
tion of the generated grammar may lead to nested expressions. A number of simplification
rules are applied using the associativity of sequence and alternative for flattening.

There is only one parameter in the simplification rules. The general pattern of the simpli-
fication rules issimplify(x) which gives a simplified representation of elemen®Dver(, a
formal description of the functiasimplifyis: simplify(x) = x, x € 0.

Rule 7 Simplification of operators:
(@) simplify((A*)?) = A*
(b) simplify((A*)*) = A*
(c) simplify((A+)?) =A*
(d) simplify((A*)+) = A*
(e) simplify((A+)*) = A*
(f) simplify((A?)?) =A?
(9) simplif((A?)*) = A*
Ais an arbitrary expression except €.

Rule 8 Simplification of optional elements:

simplif((Az | ... | An)?) =A1?| ... |An?

Rule9 Simplification of sequences:

simplify(Al, ...,A;n, (Bl, ...,Bq), C1, ,Ck) :A]_, ...,A.ﬂ, Bl, ...,Bq, Cl, ,Ck

A, B, G, are arbitrary nonempty elements foriajl andh
QA=<si=ml<j<nandl< h=<Kk).

Rule 10 Simplification of alternative elements:
simplify(Aq| ... [Am| (B1| ... [Bn) [C1] ... |G =Ad| ... |Am[B1| ... [Bn[Cy] ... | G

A, B, G, are arbitrary nonempty elements foriajl andh
l<i=ml<j<nandl< h<=K).

Since the unification (also simplification) rules are disjoint and the input and output of
the rules are equivalent, the sequence in which the examples are used does not influence the
final result.

4.3.3.2 Abstraction Rules

The aim of the abstraction rules is to induce a new grammar from structured examples so that
the resulting grammar rules can recognize more of the document-structures than what the

Chapter 4 Learning 63

original grammar rules have been able to recognize. Two kinds of abstractions are distin-
guished:

* The first one is an extension of the unification rules. It will be applied during merging
when onlytrivial unification (Rule 6) is possible. It has two parameters with the general
pattern:abstract-mergéld | new). The abstract-merge function ovércan be formally
depicted as:dld | new) < abstract-mergéld | new), whereold, new & 0.

» The second one is an extension of the simplification rules. It is afj@fedecan exam-
ple grammar unifies with another example grammagafter the example has been
merged into the old grammar to further simplify the inferred grammar. It has only one
parameter with the general pattetpstrac{x). The formal description of the abstraction
function over] is:
X < abstrac{x), x € 0.

Rules for Abstraction

For merging new examples with the existing grammar in a more tolerant way than in the cases
where only the trivial unification exists, five abstraction rules are introduced: Whereas the
unification Rules 4(a) and 4(b) merge only sequences with a common prefix or suffix, the ab-
straction Rules 11(a)-(b) merge sequences with a comparable prefix or suffix Mhem),

the abstraction Rules 12(a)-(c) merge sequences with a number of common subsequences in-
terleaved with distinct subsequences.

Rule 11 Abstraction merge of comparable prefix or suffix:

(a) abstract-merg@, B; A’, C) = max@’, A), unify(B; C) if A" < A
(b) abstract-merggB, A; C, A’) = unify(B; C), max@’, A) if A" =< A

whereA, A’, B, C are arbitrary expressions, excépt € andA’ =¢;
/ A ifA < A’
maxy’, A) = {A ifA” < A

This rule is an extension of Rule 4. It considers the Base A. For example, for the two
elementsac* andbc+, a suitable unification rule cannot be found to simplify them (except
Rule 6). But they can be abstracted by Rule 11. The abstraction r¢sjblfc’'s ~ which is not

equal to the original expressiat*|bc+ , since (alb)c* includes the elemertt, but
ac*|bc+ does not.

64 Chapter 4 Learning

When there exists no rule to be used in merging new examples with existing grammar
rules (except Rule 6), Rule 12 adopts the methods of defining new optional elements or of
dividing sequences into two parts to get non-trivial unification subsequences.

Rule 12 Abstraction merge of sequences:

(a) abstract-mergéA, By, ...,Bm; C1, ...,C,) = A?,unify(By, ...,Bm; Cq, ...,C)
whenunify(By, ...,Bm; Cq, ...,Gy) IS non-trivial.

Likewise, there are two rules (b) and (c).

(b) abstract-merg€By, ...,Bn, A; Cq, ...,Cy) = unify(By, ...,Bm; Cq, ...,Gy), A?
whenunify(By, ...,Bn; Cq, ...,G,) is non-trivial.

(c) abstract-mergé, ...,An, By, ...,Bm; D1, ...,Dk, Cq, ...,Cn)
= unify(Ay, ...,An; D1, ...,Dk), unify(By, ...,Bm; Cq, ...,Gn)
when at least one amify(Ay, ..., An; D1, ..., Dk) andunify(By, ...,Bmn; Cq, ...,Gy) is
non-trivial.

To further simplify the grammar in the second abstraction case, Rule 13 performs a
grouping on finite sequences of consecutive equal subsequences in a similar way as for ab-
straction at the content level.

Rule 13 Abstraction of repeated elements
abstractA, By, ...,Bm), B1, ---.Bm), ..., B1, -..,Bm), C) = A, By, ...,.Bm)+,C

A, Bj, C are any expressions, exc&t ¢, foralli (1 <i < m).

Although the abstraction rules are disjoint, the input and output of the rules are not equiv-
alent. Therefore, the final result is dependant on the sequence of examples.

4.3.4 Applying the Learning Rules

The four types of learning rules have been discussed in Section 4.3.3. They will be used for
dealing with the different cases in the learning process. Now the problehersand how

they are applied during learning cycles. The following sections give some control strategies
for applying the learning rules and show some examples to explain how the rules are
executed.

4.3.4.1 Control Strategies for Applying the Learning Rules

One reason for applying the learning rules is to make the form of the learned grammar simple
and exact. Of course, the two aspects of simplification and exactness are mostly contradictory

Chapter 4 Learning 65

in the learning problem. In this thesis, simplification is considered as the major aim. For this
reason, when two grammar rules are unified, the simplification rules and the abstraction rules
will be applied at first. After that the unification rules, and then the abstract-merge rules are
chosen. By this requirement, an ordering is described as follows:

Strategy: The control strategy for applying the learning rules
1 apply thesimplifyrules and/or thabstractrule to the grammar rules;
2 unify the old and new grammar rules with theify rules;If only thetrivial unification is
possiblego to 3, otherwise unify them and thstop;
3 abstract the old and new grammar rules \aftktract-mergeules (callRule 6gyy).

For applying the abstraction rules, an extension rule of Rule 6 is added:
Rule 6¢xt: The control strategy for applyirabstract-mergeules

When two rules are unified and only thievial unification (Rule 6) is possible, one of the ab-

stract-merge rules is tentatively applied as follows:

1 if Rule 11 can be applig¢tien abstract the rules with Rule dlse

2 begin

3 find incomparable subsequené@such that

the remaining subsequences of the input rules are non-trivial;

if Cis a subsequence at the beginning of one of the inputthdespply Rule 12(a)

else ifC is a subsequence at the end of one of the inputthdesapply Rule 12(b)

elseapply Rule 12(c);

apply the unification rules to the abstracted rules further andstbpn

end

0 N O O A

4.3.4.2 Some Examples for the Learning Rules

The following examples illustrate the usage of the above learning rules. Note that the element
name in SGML is limited to 8 characters. To more easily read the following examples, any
number of characters describing an element are allowed in the following examples.

Example 4.1 Abstraction of repetition elements

Let apaper element of SGML DTD be:

SGML-DTD 4.1 paper —> title ,author , address, author , address,

author , address, abstract , text-para *

When the abstraction Rule 13 is applied to the RHBapér , the following result is
produced:

66 Chapter 4 Learning

abstract (title, author, address, author, address, author,
address, abstract, text-para*)

13 title, (author , address)+, abstract, text-para*
Example 4.2 Unification of sequences with the maximum common prefix or suffix

Let two elements of SGML DTpaper be
SGML-DTD 4.2 paper —> title, author, address, abstract, text-para

SGML-DTD 4.3 paper —> title, author, address, abstract

Unify the RHSs of the two elements as follows:

unify (title, author, address, abstract , text-para;

title, author, address, abstract)
@title, author, address, abstract, unify (text-para; €)

_i,, title, author, address, abstract, text-para?

The unified RHS of the elemepaper is:

paper —> title, author, address, abstract, text-para?
Example 4.3 Unification of alternative elements

Let an elemendate be defined as:

SGML-DTD 4.4 date —>day |month |year

To discuss the two cases of the unification Rule 5, another two elemetzite otinify
with SGML-DTD 4.4 :

SGML-DTD 4.5 date —> time

SGML-DTD 4.6 date —> month

(@) unifyingSGML-DTD4.4 andSGML-DTD 4.5
unify (day|month|year; time)

2 day|month|year|time

Now a new SGML-DTD is generated:

Chapter 4 Learning 67

SGML-DTD 4.7 date —> day|month|year|time

(b) unifying SGML-DTD4.4 andSGML-DTD 4.6

unify (day|month|year; month)

522 day|month|year

The result of the unification is the following SGML-DTD:
SGML-DTD 4.8 date —> day|month|year

Of course SGML-DTB 4.7 and4.8 can be further unified using other unification rules,
but in this example the focus is on the unification Rule 5.

Example 4.4 Unification of optional elements

From the result of Example 4.2, the element of SGML [p&per is:

SGML-DTD 4.9 paper —> title, author, address, abstract,

text-para?

Let a new element of SGML DTpaper be:

SGML-DTD 4.10 paper —> title, (author, address)+, abstract,
text-para *

When the RHS o8GML-DTD 4.9 is unified with the RHSs o6GML-DTD 4.10 , the
following result is obtained:

unify (title, author, address, abstract, text-para?;
title, (author, address)+, abstract, text-para*)
41‘§‘Ztitle, (author, address)+, abstract,
unify (text-para?; text-para *)
2 title, (author, address)+, abstract, text-para *

Example 4.5 Abstraction merge of sequences

Let elements of SGML DTDiography be:

SGML-DTD 4.11 biography —> ID, head, body, reference

68 Chapter 4 Learning

SGML-DTD 4.12 biography —> head, body
SGML-DTD 4.13 biography —> name, biogdata, body, signature

They are used to show the application of abstraction Rule 12:

(@) unifyingSGML-DTD 4.11 andSGML-DTD 4.12 :

unify (ID, head, body, reference; head, body)

6=§X‘ abstract-merge (ID, head, body, reference; head, body)
12a ID?, unify (head, body, reference; head, body)

4 ID?,head, body, unify (reference; £)

3 ID?,head, body, reference ?

(b) unifying SGML-DTD 4.11 andSGML-DTD 4.13 :

unify (ID, head, body, reference; name, biogdata, body,

signature)
6ex .
=X abstract-merge (ID, head, body, reference; name, biogdata,
body, signature)
1=§C unify (ID, head; name, biogdata), unify (body, reference;
body, signature)
4a&6

= (ID, head | name, biogdata), body,

unify (reference; signature)

g(ID, head | name, biogdata), body, (reference | signature)

4.4 Summary

The learning approach discussed in this chapter covers the following characteristics: (1) Incre-
mental learning so that the grammar can be efficiently modified using additional examples;
(2) Embedding version-space methods in the grammatical inference learning cycle, with the
aid of version-space methods man can generalize concepts on the basis of a set of training data
and a language; (3) Isolated learning of each production; (4) Judging the positive and negative
examples by the user. The learning result is a grammar which can be used to mark up an elec-
tronic document into an SGML-document with the DREAM parser.

Chapter 5 Sequence of Arbitrary Ordering 69

Sequence of Arbitrary Ordering

The kind of structure-rule whose RHS consisterderedelements has been discussed, that is,

for this kind of rule the positions of the elements in its RHS are fixed. After learning several
examples, some structure-rules may have alternative RHSs in which the positions of elements
are exchanged. This chapter will discuss these RHSs that consist of the sequences whose ele-
ments have arbitrary ordering.

5.1 Problem and Goal

For a document collection (see Section 1.2) the logical elements may occur in different order-
ing in the subdocuments. When such subdocuments are met, man can derive a set of RHSs for
a structure-rule in which the logical elements have different orderings, that is, the positions of
the elements in the RHSs are not fixed. The set of RHSs of such a structure-rule ial-called
ternative RHS®r alternative sequences the structure-rule (or shaatternative sequences

A simple and typical example is the name of an author that consists of first name(s) and
last name(s). The first name will be written before the last name or after the last name. When
man uses a grammar rule to describe such cases, man getawharle whose RHS has two
alternativesfirst-name followed bylast-name (denoted afirst-name |, last-name)

or last-name followed byfirst-name (denoted atast-name |, first-name).

When a RHS of a structure-rule consists@lements and the positions of all elements
are exchangeable, man may denv@ermutation sequences of the elements, that is, the num-
ber of the alternative sequences of the elements can be ah'mAkhough the number of
alternative sequences, normally, is smaller thiaenumerating all alternatives is too clumsy.
Further more, it may lead to complex or unclear descriptions in the subsequent learning pro-
cess or during the translation from an abstracted grammar to a DSD. For these reasons, an
expression is needed to represent such alternative sequences. Fortunately, SGML provides a
connector ampersarg, with which such alternative sequences can be describeddiyeaal
expressionFor instance, the alternative sequences of the above example can be represented
by the general expressidirst-name & last-name

70 Chapter 5 Sequence of Arbitrary Ordering

It is now easy to connect all elements in the alternative sequences by the connector am-
persand& which definitely includes all actually existing alternative sequences. However,
these completely unordered sequences are normally too ambiguous.

Thus the goal of this chapter is to infer a general expression to represent the alternative
sequences derived from the learned examples and introduce a mechanism which identifies the
minimal subsequences that can be unordered but keeps the rest of it ordered in the general
expression. The way from a set of concrete alternative sequences to a general expression is
therefore an abstraction learning process. The learning process will be discussed in the follow-
ing sections.

The remainder of this chapter is organized as follows. Section 5.2 introduces some basic
concepts and notations which will be used in the following sections. Section 5.3 discusses
how to infer a general expression from the alternative sequences.

5.2 Basic Concepts and Notations

Since the focus is on the RHSs of the structure-rules, the following definitions and discussions
serve for these RHSs.

Definition 5.1 (Unordered elementandOrdered elemenjsThe elementgy, e, ..., &, of a
RHS of a structure-rule arsmordered elementd their positions can be changed in the alter-
native sequences of the rule. Otherwise, theyatered elements [

Suppose there are unordered elemeney, ...,e,. If the position of the element (1 < i
< n)inasequence is denoted by a nunjljr< j < n), the list of the numbers, denoted by
{1, 2, ...,n}, expresses a sequence of the elements. Each permutation sequence of the elements
corresponds to a list of the numbers, denotert bythe sequence of numbgrSor simplicity,
when man discusses permutation sequences, the numbers can be used to describe the se-
guences instead of the concrete elements of the sequences. For imstafiged, 2, 1] ex-
presses the permutation sequeas; ey, €, €. Among the permutation sequences, there exists
a special sequence, which is callestandard sequence

Definition 5.2 (Standard sequencandnormal sequencgdf a permutation sequence con-
sists of elementsy, e, ...,6, and the position of elemeatin the sequence is the numiéor
alli (1 =i = n), the sequence of the elements is callataadard sequencelenoted by
=[1, 2, ...,n]. The other permutation sequences of the elements are wailed! sequences

Chapter 5 Sequence of Arbitrary Ordering 71

For the alternative sequences derived from the learned examples, the sequence that ap-
peared in the first example is appointed as the standard sequence.

In theTt of the standard sequence, the numbers are ordered according to the ordering de-
fined on natural numbers. If two numbers imaccur out of this ordering, that is, the larger
number is to the left of the smaller one in a sequence, they fomvension For example, in
the permutation sequente= [2, 1, 3, 4], numbers 2 and 1 form an inversion.

Definition 5.3 (General expressigrA general expressio(GE) of numbers {1, 2, ..n}, de-

noted by a symbat), is an abstracted expression of the alternative sequences in which the
numbers are written from 1 to and connected by parentheses ‘(" and ‘), commas ‘,’, and
ampersands ‘&', where the ampersand has a higher associated precedence than thel[domma.

Note that a general expression always implies a standard sequence.

If T=[4, 2, 3, 1], a GE of thais inferred as) := 1 & (2, 3) & 4 which means that num-
ber 2 must appear before number 3 in any sequence and they can exchange the position with
number 1; number 4 can exchange with number 1 to number 3, but it is not adjacent to number
3 (except in the standard sequence of the numbers). From this GE, man can derive the follow-
ing normal sequencer; =[4, 2, 3, 1] =[4, 1, 2, 3],3=[2, 3, 1, 4],)u = [2, 3, 4, 1], and
5 =[1, 4, 2, 3], wherap, to T are extra normal sequences which do not occur before the GE
Is inferred. It means that a GE may include other permutation sequences which have not oc-
curred before the GE is inferred.

5.3 Inferring a General Expression

It is not easy to infer a general expression directly from a set of alternative sequences. Howev-
er, a PG (see Section 2.2.3) represents a good way to describe the positions of unordered ele-
ments in a sequence. Therefore, with the help of their PGs a general expression can be inferred
from alternative sequences. The major steps to reach such the goal are:

(2) Creating permutation graphs (PGs) of permutation sequences (Section 5.3.1);

(2) Getting the union graph of the PGs (Section 5.3.2);

3) Inferring a general expression on the basis of the union graph (Section 5.3.3).
5.3.1 Constructing a Permutation Graph

The definition of permutation graphs (PGs) and the relationship between a permutation graph
G[m] and a permutatiom of numbers {1, 2, ...n} have been described in Section 2.2.3. On

72 Chapter 5 Sequence of Arbitrary Ordering

the basis of these knowledge, a permutation g@pth can be constructed from a permuta-
tion Ttof numbers {1, 2, ..n} in the following way:

(2) The nodes of[n] are numbered from 1 g

(2) Two nodes are joined by an edge if they form an inversion.

For instancert:=[3, 4, 2, 1] contains five inversions, since in the standard sequence both
number 3 and number 4 should follow number 1 and number 2, and number 2 should follow
number 1. Therefore, th@[] in Figure 5.1 shows: both number 3 and number 4 connected to
number 1 and number 2 (four edges), and number 2 connected to number 1 (one edge).

Fig. 5.1 The permutation graph af=[3, 4, 2, 1]

Where, a continuos line“—" is used to express an inversion (normal edge) in a permutation
graph.

The permutation graph of the standard sequence consists of isolated nodes, that is, there
is no edge among the nodes in the PG. The PG is cadieshdardPG. In the following sec-
tions, when a graph is called a permutation graph, it means that it is not a standard permutation
graph.

If the numbers in a sequence are ordered differently from their ordering in the standard
sequence, then this is a normal sequence. In other words, a normal sequence is always defined
relative to a standard sequence. Since there is a one-to-one mapping between the permutation
graph and the normal sequence, if a permutation graph is not a standard permutation graph,
the graph also implies a standard permutation graph. Therefore, for a non-standard permuta-
tion graph there always exists two sequences: a standard sequence and a normal sequence.

5.3.2 Union Graph of PGs
A union graph of PGs is called abstraction grapi{AG) and defined as follows:

Definition 5.4 (Abstraction graphlf PG = (V,), 1 < i < n, anabstraction grapi{AG) of

permutation graphs is a union graph of them soAfl&t (V, LnJ E). O
i=1

Chapter 5 Sequence of Arbitrary Ordering 73

/N

1 2——3 4 @4

Fig. 5.2a G[m], T = [1, 3, 4, 2] Fig. 5.2b G[m], To=[2, 3, 4, 1]

Q combine Gfy] and G

D
N

Fig. 5.2c A new AG

Fig. 5.2 A union graph is a PG

Note that an AG may either be a permutation graph (callR@-&AG or a non-permutation

graph (called a noRG-AG), because of two possible cases occurring when PGs are com-

bined:
(1)

(2)

The union graph is still a PG, that is, there exists a permutatfomumbers {1, 2, ..n}

for the union graph (see Theorem 2.5 in Section 2.2.3);

For example, in Figure 5.2 = [1, 3, 4, 2],To = [2, 3, 4, 1]. Their corresponding per-
mutation graphs G§] and Gj] are shown in Figure 5.2a and Figure 5.2b, respectively.
Combining Gf] and GJ] produces a new AG (Figure 5.2c). The new AG is a PG, the
corresponding permutation sequemasf AG isTt= [3, 4, 2, 1]. Therefore, this AG is a
PG-AG.

The union graphis not a PG, that is, for the union graph there does not exist a correspond-
ing permutatiormt of numbers {1, 2, ..n}.

For example in Figure 5.3y =[1, 3, 4, 2],To =[2, 1, 3, 4]. Their corresponding per-
mutation graphs G§] and Gj] are shown in Figure 5.3a and Figure 5.3b, their union
graph (Figure 5.3c) is a new AG butitis not a PG, that s, there does notresistan-

bers {1, 2, 3, 4} whose permutation graph is the result of the combination. This AG thus

is a non-PG-AG.

Similarly combining a PG and an AG (with the same nodes), the consequence may be a
PG-AG or a non-PG-AG. Every AG, no matter whether it is either a PG-AG or a non-PG-AG,
has the property described below.

74 Chapter 5 Sequence of Arbitrary Ordering

i1 2——3 4 1——2 3 4

Fig. 5.3a G[m], m=[1, 3, 4, 2] Fig. 5.3b G[m)], ™o = [2, 1, 3, 4]

@ combine Gfy] and Gf]

N

1—2—3 4
Fig. 5.3c A new AG

Fig. 5.3 A union graph is not a PG

In a PG (or an AG) there are two kinds of nodes:ig@latednode which has no edge
connected with other nodes in the PG; ¢@hnectechode which has at least one edge con-
nected with another node in the PG. The connected nodes constonctegted grapfthat is,
there exist paths from one node to another node in the graph. A PG may consist of several
connected sub-graphs and isolated nodes. The following lemma and corollary describe the
property of the nodes in the connected sub-graphs.

Recall that each node in a permutation graph is always identified by a corresponding inte-
ger. Thus, for convenience, a set of nodes is calléut@nval if the set of integers correspond-
ing the nodes forms an interval (of integers).

Lemmab5.1 Given a permutation grapPG, the set of nodes in each connected sub-graph of
PG forms an interval

Proof. LetPG' = (V’, E") be a connected sub-graphRi. At first we show if (,j) € E',i <
j, thenk € V' for anyi < k < j.

Observe thati(j) € E' impliesz, "t > nj‘l. If 771 > 7t then (K € B if 77t <

m *tthenwt > w7t and hencek(j) € E'. Thusk € V'.

Now letm andn be respectively the minimal and maximal node¥'int follows that there is
a path frommto n. In this path, each edge, sayj), implies thatkk € V' for anyi < k < |.
Consequenthk € V' for anym < k < n. This completes the proof. O

Corollary 5.2 Given an abstraction grag{G, the set of nodes in each connected sub-graph
of AG forms aninterval.

Chapter 5 Sequence of Arbitrary Ordering 75

Proof. Since each connected sub-graph of AG is a union of several connected sub-graphs of
permutation graphs, the result immediately follows from Lemma 5.1. [

5.3.3 Deriving a General Expression from an AG

An AG may be a PG-AG or a non-PG-AG. Whatever it is, Lemma 5.1 and Corollary 5.2 en-
sure that the nodes in the sub-graph of the AG form an interval.

For a PG-AG, if the nodasandj form an inversion, where< j, based on the definition
of PG (see Section 2.2.3) the property can be infefretth each node in the intervahl,
j—1] forms an inversion also. On the basis of this property and Lemma 5.1 a GE of a PG-AG
can be derived.

For a non-PG-AG this property doesn’t hold. Since every AG originally comes from PGs,
to derive a GE of a non-PG-AG, the AG can be abstracted by using this PG’s property, that is,
if the above condition holds:<j andi andj form an inversion, it is assumed thatonnects
with each node ini+1,j—1] although some edges may not exist in the AG.

On the basis of the above discussion, the following algorithm is used to derive a GE (see
Definition 5.3) of the AG.

Since edges in an AG express that the positions of nodes connected by them are ex-
changeable, isolated nodes denote that the positions of the nodes in a sequence are non-ex-
changeable, the nodes in the AG are first classified into isolated nodes and connected nodes.
Each set of connected nodes consists of a connected sub-graph. From Corollary 5.2, man
knows that the nodes in the connected graph form an interval. Therefore, the nodes in the con-
nected graph can be sequentially scanned and can be connected with commas, ampersands and
parentheses. Finally all sub-graphs are connected by commas according to increasing nodes’
numbers.

Algorithm 5.1 Deriving a general expression from an AG
Input An AG.
Output A general expression of the AG.

Method Suppose the nodes are ordered from number 1 to numnthext is, the node number
stands for the position of the node in the standard sequence. Here when two nodes are ex-

76

Chapter 5 Sequence of Arbitrary Ordering

changeable, it means their positions are exchangeable. On the basis of such an assumption,

man can sort and group the nodes by the following steps:

1)

(2)

3)

W N R

© 0O N O O A

~

O AN N

Partition the AG to several sub-grap@d6) which are either connected graphs or iso-
lated nodes, that s, each sub-grp{@H;) is either a connected graph or anisolated node.
The sub-general expressionG@ifi is denoted byighg). Thengng) of an isolated node is
the number of the node and i) of a connected graph is inferred by the following
step;

For each connected graph € [j, k], 1 < j < k < n), scan the nodes frojto k and

connect them using commas, ampersands and parentheses to get a sub-general expres-
sionngng)- Since ampersand has a higher associated precedence than comma, when a set
of ordered elements will be connected with an unordered element, they are put in paren-
theses as an entire unit to connect with other unordered elements. For this reason the or-
dered elements are tried to figure out first (see the first part of FuschiGi; from line 5

to line 13) and are kept in a pair of parentheses when they are connected with another
unordered elements (see FunctanGE.

If there existn(m > 1) sub-graphs, use the commas to connect each sub-graph according
to increasing nodes’ number (Lemma 5.1 and Corollary 5.2 ensure that it can be done in

such ordering), that ig, :=1n, Ngng) (1 < j < m).

Routine Deriving_GE
Suppose there am sub-graphs.
begin
V := {the nodes oAG};
E := {the edges oAG};
/IE is a global variable such that the following functions can call it
if AGis not a connected grapien partition theAG to several sub-graph&Hs);
for each connected sub-gra@i (V; = {j, j+1, ...,k-1,K}) do ngng) :=SubGHj, k);
N = Ngh)
for j := 2to mdon :=n, Ngn();
return (n); n /i a general expression of tA&
end

Function subGHEstartNode endNodg
begin //to make readers easily match the corresporiagin andend in this function,
// the number at the end of edwdgin andend identifies pairs obegin andend.
Ngh := startNode i :=startNode /hgn is used to express a GE of a sub-graph
while i <endNodealo
if i connected witli+1 then
begin,
scan the nodes from left to right;

Chapter 5 Sequence of Arbitrary Ordering 77

7

8

9

10
11
12
13
14
15
16
17

18
19
20
21
22
23
24
25
26

2

Nodd;

N

~

find the biggest node& [i+1, endNodgsuch that the nodes inHL, I]
are ordered elements and each of them is connected with
if Oa node= [i+1,I] which is connected with at least one node (exdeptngn
then ngn = parGEngp, i+1,1);
if I =i+1thenngn:=nNgh& i+1 // to avoid unnecessary parentheses around
elser]gh =Ngh & (i+1,i+2, ...,I-1,1);
i=I;
end,
else
beging //'i doesn’t connect witht1
if i+1 doesn’t connected with any nodenig
thenngp :=Ngh, i+1
/li1+1 as an ordered element connected with the nodes in [starilNode,
else //i+1 as an unordered element connected with one of the nodes in [starfNode,
beging
Ngh = parGE(ngh, i+1,1);
Ngh = Ngh & i+1;
endy;
i =i+l;
ends;
return (Ngh);
end;

Function parGEngh, startNode endNodg
begin
scanngh from left to right;
find the first noden in ngy which is connected with one of the nodesstaftNode end-

/I supposestartNodeis connected with, man can infer thattartNodeis connected
{// with the nodes inH+1, startNode-1] also.
if theh is not in a pair of parentheses ()

then Wis not yet classified into an entire unit
add the left parenthesis (to thg, before the nodb and the right parenthesis) to
the end ofgh Il 'to create an entire unit
else h Has been included in an entire unit

add the left parenthesis (to thg, in front of the existed the leftest parenthesis which
includesh and the right parenthesis) to the endi@f;
/l to form a new entire unit that contains the old one

return (Ngn)
end

The algorithm is also applicable for permutation graphs. With the above algorithm, man

can infe

r a general expression on the basis of a PG or an AG. Now let us consider some exam-

ples to apply the above algorithm.

78 Chapter 5 Sequence of Arbitrary Ordering

Example5.1 A PG in Figure 5.4

Fig. 5.4 APG

(1) no sub-graph

(2) Ngh = (1&2, 3)&4

(3) n:=ngn

The general expression denotes the permutation sequeneeft, 2, 3, 4], =2, 1, 3, 4],

e=[4, 1, 2, 3l,;lu=[4, 2, 1, 3]. Wheran, andtg are new normal sequences which do not
appear in the existing sequences represented by Figure 5.4.

Example5.2 A PG in Figure 5.3a

(2) two sub-graphs, GH= {1}, ngnh1) = 1; GH = {2, 3, 4}
(2) nghe) = 2&(3, 4)
) n:=1, 2&(3, 4)

The general expression denotes the permutation sequencefl, 2, 3, 4],/ =[1, 3, 4, 2]
which are equal to the alternative sequences represented by Figure 5.3a.
Example5.3 A PG in Figure 5.3b

(1) three sub-graphs, GH: {1, 2}; GH2 = {3}, Ngn(2) = 3; GH = {4}, nNgn(z) = 4

(2) ngn) = (1&2)

(©)) n:=(1&2), 3, 4

The general expression denotes the permutation sequenceft, 2, 3, 4], =[2, 1, 3, 4]
which are equal to the alternative sequences represented by Figure 5.3b.
Example5.4 An AG in Figure 5.3c

(2) no sub-graph

(2) Ngh = 1&2&(3, 4)

3 n:=ngn

The general expression denotes the permutation sequeneeft, 2, 3, 4], =2, 1, 3, 4],
mw=[1, 3,4, 2,1u=1[2, 3,4, 1],15=[3, 4, 1, 2],1% = [3, 4, 2, 1]. Wheray to T are new

Chapter 5 Sequence of Arbitrary Ordering 79

normal sequences which do not appear in the existing sequences represented by Figures 5.3a
and 5.3Db, in other words, the abstracted expression can denote more permutation sequences
than exist in the original AG.

The four examples show that the general expression inferred on the basis of a PG, on the
one hand, may denote more sequences than the existing sequences represented by the PG (Ex-
ample 5.1), on the other hand, it can denote exactly the same sequences represented by the PG
(Example 5.2 and Example 5.3). However, for an AG (Example 5.4), the general expression
always implies more sequences than the existing sequences represented by the AG.

5.4 Summary

This chapter describes a learning approach to infer a general expression of sequences of ele-
ments with arbitrary ordering. The overall idea of the learning approach is to use permutation
graphs describing the alternative sequences, where the edges of the permutation graphs de-
scribe the deviation among the sequences. After combining the permutation graphs, man can
get a union graph that contains all edges in the permutation graphs. On the basis of the union
graph man can infer a general expression of the alternative sequences.

80

Chapter 5 Sequence of Arbitrary Ordering

Chapter 6 Implementation 81

Implementation

The first section of the chapter gives an overview of the system architectMialdtUp!.
According to the architecture, the subsequent sections describe the major implemented algo-
rithms of each component in the system. Section 6.6 discusses several examples in detail to
illustrate the different strategies for incrementally learning a grammar. Section 6.7 evaluates
the effectiveness dflarkitUp! on a bibliographic document source. Finally, Section 6.8 sum-
marizes implementation and evaluation.

6.1 System Architecture oMarklItUp!

Figure 6.1 gives the system architectur&lafkitUp!. It shows the main componentshdér-

KItUp!: the user interfacecomponent which accepts the users’ operations and feeds back the
system results; thecannerwhich scans the marked-up examples; l#@ning component
which abstracts contents at the content level and structures at the structure |évRE #id
grammar generatowhich translates the abstracted grammar into DREAM DSD (document-
structure description); and tllREAM parsemwhich parses examples with the DREAM DSD.

Thelist of conceptss used to contents abstraction. nemmaris applied for both con-
tents abstract and structures unification and abstractionddtiement collectiortontains
many subdocuments with similar structures.

All components except the parser are implemented in Smalltalk, the DREAM parser is
implemented in C++.

6.2 User Interface

MarkItUp! supports two views to keep contact with the users: Stheture editorand the

concept editarThe structure editor is available for text-editing and structure-editing. It can
support untagged or tagged documents, and the tagging process. The concept editor accepts a
set of concepts, creates and displays a corresponding concept base as a DAG. Both editors
support several functions (see Sections 6.2.1 and 6.2.2) via pull-down menus.

82 Chapter 6 Implementation

User Interface

example selection / subdgcuments access

user

manual markup / ¢
correctior] example concepts

documen
structure editor concept editor collection

marked-up example

\

, .
error messag — partial jordered concepts

Y

initial grammar list of
' / concepts

content abstractior]

Learning

LI Uy,
-

T
abstracted grammar or
mm
dgrd
, %v'

structure abstraction—ow gra™
& unification

new grammar

|

DREAM grammar
generator

DREAM DSD
tentatively marked-up

example subdocuments
DREAM parser |=

Fig. 6.1 System architecture ddarkitUp!

6.2.1 Structure Editor

Section 3.2.2 has briefly introduced the structure editor. This section will describe the individ-
ual components of the structure editor and their functions of the components.

The structure editor supports a graphical interface consisting of three views for distinct
functions used to capture a grammar description from the user. The vieBsraceure View
Editor View andGraphic View They are identified in Figure 6.2 and will be discussed in their
respective subsections, in no particular order. Figure 6.3 shows the structure editor in use.

Chapter 6 Implementation 83

Mark-It-Up

Editor View

Structure View

Graphic View

Fig. 6.2 Organization of the structure editor

Structure View

The Structure View is shown on the left side of the structure editor. It displays athst of
names which appear in the Editor View as markups. The tag list can be changed when the user
manually tags an example in the Editor View or uses the menu in the Structure View. More
details of the former case are described in the Editor View in the peoifl-editing-opera-

tions Here the latter case is discussed which uses the menu in the Structure View to modify
the tag list. When the cursor is moved into the Structure View, and the right button of the
mouse is clicked, the user is offered the following options via the menu in the Structure View:

 Optionadd It allows the user to add a new tag name into the Structure View. After the
new tag is accepted by the system, the system automatically sorts the tags names accord-
ing to alphabetic ordering.

* Optiondelete It permits the user to delete a tag name from the Structure View.

. Optionrename It allows the user to change a tag name in the Structure View. But the
user should note that the corresponding markup’s name in the Editor View cannot be
changed automatically. Therefore, it has to be changed manually. Otherwise, an inconsis-
tency will raise an error message when the changed tag name is highlighted in the Struc-
ture View or when the content of the old tag name in the Editor View is manipulated.

* Optionsave It permits the user to save the tags names to a file that can be loaded at a
later time. During the execution of this option, the system will ask the user for the output
file name.

84 Chapter 6 Implementation

T Mark—It-Up L
———————————— T <bibentry=' <code=pp<fcode= o
E;ﬁgﬁ{w | cauthor=<fname=Alfs<ffname=
category <Ilname=Eerztiss<fIname=<fauthor=
code @ <location=Un.Pittshurgh<flocation=
date " <title=A Taxonomy of Binary Tree
mgmz Traversals<ftitle> "
location { «<source=<publication=BIT<fpublication= *
publication <date=1387 <fdate><fsource=
Source = «category=DEDops<fcategory=
e <fbibentry>

hibentry 1
uthor @ location |, , (title uitin SOUrce H
[b .

Fig. 6.3 An example of structure editing

. Optionload: It allows the user to load the previously created tags names into the Struc-
ture View. Similarly to the option save, there is a dialog between the system and the user
for an input file name.

When the user wants to modify one of the tags in the Structure View, the cursor must be
positioned in the Structure View at first. Then the user selects the desired function from the
menu with the right button of the mouse. For example, if the user wants to delete the tag name
author in Figure 6.3, the user will do the following two steps:

» Highlightauthor in the Structure View with the mouse;

Chapter 6 Implementation 85
* Select the optiodeletein the menu.

After the two steps have been done, the system will execute the corresponding function and
deletethe tag name. When the function is performed, the reanher will disappear from
the tag list.

Besides modifying the tags, one can also see the RHS of a tag in the Graphic View, when
the tag is highlighted with the cursor in the Structure View (the detailed explanation and an
example of the such a function will be depicted in the description of the Graphic View below).

Editor View

The Editor View is a text view for inputting and editing documents. The cursor can be posi-
tioned anywhere within the Editor View by using the mouse. Once a text or part of it has been
highlighted with the cursor, options suchcas/copyandpastecan be performed on the high-
lighted text. These options can be called from an editing-menu. Besides them, the editing-
menu represents other options that can be groupeahasile-operationsspecial-editing-op-
erations normal-editing-operationsandl/O-operations The four groups contain a set of im-
portant options, therefore, they need to be further explained in the following.

The compile-operations includeur options that can be performed for compiling a par-
ticular marked-up example. These options operate on three different marked-up examples:

. OptionCompiling the first marked-up example
When the system starts, there is no marked-up example and no grammar. Usually
the user marks up an example and then uses the compiling option to utilize the
marked-up example in the markup cycle (Figure 3.2) without grammar unification.

¢ OptionCompiling non-marked-up examples
After the first example is compiled, the system is able to mark up another example
based on the existing grammar. This option is selected when the system gets a new
example and there is an old grammar in the system.

* OptionCompiling the user updated element
When a tentatively marked-up example does not satisfy the user, it has to be cor-
rected. When the option is selected, the corrected results (new structures or new
strings) will be learned by the system.

* OptionCompiling the user updated example
The option is similar with the above option. The difference between them is that

86 Chapter 6 Implementation

this option is used to implement the exhaustive learning strategy, whereas, the
above option is used to implement the partial learning strategy. For details on the
two learning strategies see Section 6.6.2.

The special-editing-operation contamrseoptionmarkUpAString When a string is high-
lighted in the Editor View and this option is selected, the system will:

e insert start- and end-tags into the highlighted string.
This changes the focus of attention to the definitions of tags. When tagging a string
with such a option, two cases will occur: the given tag name does not exist or it
exists already.
If a tag does not exist, a new tag name is created. The new tag is added into the
Structure View and the marked string is surrounded by the new start- and end-tags
in the Editor View. For example, if there is an untagged stppy in the Editor
View and the user wants to tag it with the natnge which does not exist in the
Structure View, the result of executimgarkUpAStringis (1) the new tag name
code is created in the Structure View and (2) the stfimg is marked up by
<code>pp</code>
If the tag already exists, such as thedadg in Figure 6.3, after the above option is
executed, the system will ask the user whether to insert the tag into the marked
string to validate the regularity of the grammar. If there is no conflict, the start- and
end-tags are inserted into the marked string. Otherwise, the user will define a new
tag name for the marked string or cancel the call.
When a string occurs between two start- (or end-) tags or between different start-
and end-tags, it is recognized as a cut-string.

The normal-editing-operations includevenSmalltalk system optiong@ain, undqg cut,
copy paste acceptandcance) in the menu, where the optiacceptmeans that, when a block
of data is accepted by Smalltalk, the data has been stored in the Smalltalk system environ-
ment.

The last group in the editing-menu is I/O-operations. It inclide®ptions that work on
document files. One is to load a document from a gkt {extFromFilg Another one is to
save the marked-up document as a fl@véTextinFilg The file can be read or stored into a
directory which the user has identified.

Therefore, the input to the Editor View can come from two sources: either an entire file as
discussed above, or by keystrokes from the keyboard when a user is entering text. If one part

Chapter 6 Implementation 87

of the text is loaded from a file, the user can expand the text with the keyboard. When the
input of the expanded text is finished the user can seleacteptoption to store it in the
Smalltalk environment. Normally, the user doesn’t know where the data is stored. It is man-
aged by the Smalltalk system.

Graphic View

The area of the Graphic View is located on the right-bottom of the structure editor (Figure 6.2)
and is used to display the structure of a grammar rule. When the user highlights a tag in the
Structure View, the corresponding rule is displayed on the Graphic View. For instance in Fig-
ure 6.3, the tag nangbentry is highlighted in the Structure View, the RHS of it shows in

the Graphic View, where the bold strindpentry expresses a nonterminal of the grammar.

The graph describes the RHS of the dgntry which contains cut-strings, such Q'

and nonterminals, such asjthor , location , etc., in the grammar. If the structure of a
highlighted tag does not exist, the area of the Graphic View is empty.

The Graphic View has its own menu with which one can get more information about the
rule. The menu contairie/o options that can be performed on a selected terminal or nontermi-
nal string. A string is selected (highlighted) by using the mouse. Once a string is selected, one
of the following options in the menu on the Graphic View can be chosen and the correspond-
ing function will be executed.

. Optionselect The corresponding function of the option is a movement command.
It changes the focus of attention to the definition of the selected string. If the se-
lected string is a terminal, there is no highlighted tag in the Structure View, and the
content in the Graphic View does not change. If the selected string is a nonterminal,
the highlighted tag in the Structure View is changed into the selected string, and the
corresponding RHS of the selected string is shown on the Graphic View instead of

the old one. For instance, in the Graphic View of Figure 6.3, if st @ysis se-

I

lected, no tag name is highlighted in the Structure View, while the content in the
Graphic View is not changed; whereas, if the stranthor is selected, in the
Structure View the tag nanmthor is highlighted and in the Graphic View, the
RHS ofauthor is displayed.

* Optioninspect It shows the class type of the selected string. Every string in the
MarklItUp! grammar belongs to one of class types which are defined by the system.

88 Chapter 6 Implementation

6.2.2 Concept Editor

In the concept editor the screen is divided into two areas by a verticdltineept Set Vievg
on the left of the vertical line ar@oncept Base Vieis on the right of the vertical line. Figure
6.4 shows views and options in the menus of the concept editor.

Concepts and Concept Base

......... o=
' execute 1 getFromFile |

1
" again X saveOnFile
1 undo

' copy

1

 cut

' paste
' accept
' cancel

" getFroomFF_IiIe COHCG pt
Javeme Base View
Concept
Set View

Fig. 6.4 Views and menus of concept editor

The Concept Set View is responsible for accepting a set of concepts from an external file
or direct type-in from the keyboard. Once the concepts are entered, the user can select an
executeoption in the menu on the Concept Set View to construct a corresponding concept
base. The graphic display of the concept base is shown in the Concept Base View immediate-
ly. The concepts or concept base can be stored as a file using the saveOnFile option in the
menu.

Figure 6.5 shows the prototype of the concept editor in use. There are six concepts:
[a—zA-Z]+ ,[a-z]+ ,[A-Z]+ ,[b—z]+ ,[f-n]+ , and[a—p]+ in the Concept Set View. The
Concept Base View shows the corresponding concept base of the six concepts (in Smalltalk a
string is enclosed by single right quotations ’). The symbol star * means any string which is
not described in the input concepts and added automatically by the system as a default value.
Among the concepts in the Concept Base View, there exists a kiddsoéndantelation
which is a very important factor to directly identify whether concepts are comparable or in-
comparable according to the DAG in the Concept Base View. For each concept there is one or
more symbol points . in front of it. The number of points identifies the descendant relation
described by the following definition in visible as indentations.

Chapter 6 Implementation 89

FILI Concepts and Concept BEase g
[a—zA-Z]+ i =
[a—z]+ [a—zA-L]+
[4-Z]+ L [A-Z]

[b-z]+ . [a-z]+

[f-n]+ [a—-p]+ N |l B

. N T
L [ap]
T | 0 P

|

i

Fig. 6.5 Prototype of a concept editor

Definition 6.0 (Descendant conceph conceptA is adescendandf another concef in the
Concept Base View, if the number of points in fronfa$ larger than the number of points in
front of B and fromA to B there is no other conce@t where the number of points in front of
B andC are equal. O

For instance, in Figure 6.5, the concggpz]+ is a descendant of the concipiz]+ , but it
Is not a descendant of the concpptz]+ since from[b-z]+ to[A-Z]+ there is another
concepfa-z]+ , andla-z]+ and[A-Z]+ have the same number of points in front of them.

Using the number of the symbol points and the descendant relation one can decide about
the comparability of the concepts in the Concept Base View by the following rules. Suppose
conceptA, concepB, and concept be different (not equivalent) concepts in a Concept Base
View, then the rules are:

. If the concep® and the concef® have the same number of points in front of them
in the Concept Base View or they have different numbers of points in front of them
but there is no descendant relation between them, theyne@weparable For

90

Chapter 6 Implementation

instance, in Figure 6.5, the concégptz]+ and[A-Z]+ are incomparable since
they have the same number of points in front of them; the copsept and

[b—z]+ are also incomparable since there is no descendant relation between
[A-Z]+ and[b-z]+

If A'is a descendant &, thenA andB arecomparableandA< B, for instance the
concepff-n]+ and[a—zA-Z]+ in Figure 6.5.

If the concepty, Ay, ..., A, are incomparable ar@d < A, C < Ay, ...,C < A,, the
conceptC will appeam times in the Concept Base View. For example, in Figure 6.5
the concepib-z]+ and[a—p]+ are incomparable, but they are comparable with
the concepff-n]+ , therefore, the concefftn]+ appearswice Note that this
rule applies only for displaying the concépin the Concept Base View. In the sys-
tem DAG, the concept (e.g.[f-n]+) shows as in Figure 6.6 and appears only
once .

[a—zA-Z]+

[A-Z]+ [a—z]+

[b-z]+ [a—p]+

\~[f—n]+ /

Fig. 6.6 A graphic description of the concept base in Fig. 6.5

Until now the discussion and description concentrate on how the concept base is shown at
the user interface. Algorithm 6.1 will discuss how the concept base is created in the system.

Algorithm 6.1 Creating a concept base

Input: A set of concepts which the user defines

Output: A concept base as a DAG (described in Section 2.2.2) in which the concepts are
ordered according to the binary relation (described in Section 2.1.3), g js;) € DAG,
G <G

Method:

Routine create_Concept-base

Chapter 6 Implementation 91

© O NO O AN WNR

14
15
16
17

18
19
20
21
22
23
24
25
26

begin
N := {input concepts}; /la set of concepts defined by the user.
dag:=0; sub-dag-set [J;
While N=0 do
begin
select amodefrom N;
insert_nodédag node;
N :=N - {nodd;
end,
end

Function insert_nodédag node
begin
norelate:= true;
if (dag=0) then// there is no DAG. The case occurs at the beginning of the algorithm.
let any string **" be a base node adég
elsefor all directdescendantsf the base in the curredagdo
/ffind a suitable position forrthdein dag

begin
casecomparédescendannode of:
> /l node < descendanthat is,nodeis a descendant descendant

if (descendanis a DAG)then insert_nodédescendaninode
elseaddnodeinto dag as a direct descendantd#scendant
norelate:= false
break;
< /I descendank node that is,nodeis an ancestor afescendant.
adddescendaninto sub-dag-set /hodemay have more than one descendants.
norelate:= false
break;
end;
if norelatethen mbdeanddescendastare incomparable.
addnodeinto dagas a direct descendant of the current base;
else ifsub-dag-set [then
begin odeis an ancestor of the node(sksub-dag-set
create asub-dagin whichnodeis its base node;
insert the whole elements snib-dag-se#as direct descendants of theh-dads base;
add thesub-daginto dagas a direct descendant of titegs base;
sub-dag-set=0;
end;
return (dag);
end //ltis of no significance if two equivalent concepts are in the concept base, therefore,
/I if two concepts are equivalent, only one concept is kept idahe

Function comparéa, b)

/Il a,b are regular expressions.

92 Chapter 6 Implementation

1 begin

2 if a=bthen return (‘=" a ig equivalent tdo.
3 else ifa<bthen return ('<’) alis more-specific-thah.
4 else ifb<athen return (*>') k/ls more-specific-thaa.
5 else return (‘n’);

6 end

With this algorithm, the concepts example in Figure 4.2 is depicted in the concept editor as
Figure 6.7, where the striny]+ is a system representation of an arbitrary number of
blanks.

FILI Concepts and Concept BEase g
[4—Z]+ al s Al
[a—zA-L]+ [a—zA-L]+
[0-3]+ L [A=L]

[]+ . [a-z]+
[a—z]+ [0-9]+
- LTI
! v v

Fig. 6.7 A prototype of concept editor for the concepts in Fig. 4.2

For different type classes, the user can easily create the corresponding concept base. For
simplicity, MarkltUp! does not choose a strategy that allows to add new concepts dynamically
without changing the whole existing concept base. For example, if one wants to add a new
conceptfFrlom in the concept base shown in Figure 6.7, the system will rebuild the concept
base and generate a new concept base rather than searching the concept base and finding a
suitable place for the new concept.

Chapter 6 Implementation 93

6.3 From Marked-up Example to a Grammar

MarklItUp! translates a marked-up example into a grammar by ussegraner The scanner
attempts to scan the marked-up example and to generate a corresponding grammar describing
the document structure. If the scanned portion is incorrect, that is, the tags are not matched,
then the user is asked to supply additional information. For instance, in a marked-up example
there is only a start-tagauthor> but no end-tag/author> , in such case, the user has to
correct the marked-up example. Otherwise, the scanner identifies start-end tags to create a
marked-up tree since a tree is an appropriate data structure for storing both the structure and
the text of the document. The document structure can be viewed as the docoateradg

which is subdivided into componenistérior node$, and which can be further subdivided

until the indivisible componentse@f nodey are reached. Such a representation is convenient

for verifying that a document obeys the syntax rules of the language.

When the scanner processes a marked-up document, at first, a tree called MUTree is
created in thdarkltUp! system. At the end, the tree is converged into a set of grammar rules
which have the syntactical form described in Section 4.3.2, that is, the RHSs of the grammar
rules are regular sets. For each grammar there is a root rule which is cfiedralein the
implementation system.

An example transformation from a marked-up example to a MUGrammar is shown by
Figure 3.7 in Section 3.2.2 and Grammar-Sample 3.1 in Sections 3.3.

6.4 Implementation of Learning Component

The learning component consists of two parts: content abstraction and structure abstraction &
unification. The content abstraction learns abstracted concepts from the concept sequence.
The structure abstraction & unification solves the problem of generalization grammars by
making the grammars more general using more positive examples.

In Section 3.3, the two types of grammar rules have been distinguished on the basis of the
RHS of the rules: structure-rule (Definition 3.1) and string-rule (Definition 3.2). When discus-
sing the content abstraction, the focus is on the RHS of the string-rules, whereas, when using
learning rules, the focus is only on the RHS of the structure-rules. Therefore, when a grammar
is used as input into the learning component, the string-rules and structure-rules are separated.
The string-rules are abstracted by algorithms 4.1 and 4.2 in Section 4.2.5.1; the structure-rules
are unified and abstracted by the rules in Section 4.3.3.

94 Chapter 6 Implementation

The implementations of the rules have two features: (1) the parameters of them are
formed by the expressions in the RHS of a grammar rule; (2) the implementatiswdades
for each rule, that is, if the left hand side of riles not equal to the left hand side of rBlén
a grammar, the procedure to unify and abstract the RHSs of th& dales not influence the
learning process of the ruiB2

When the RHS of a structure-rule consists of nonterminals and terminals (cut-stings), the
nonterminals and terminals can be separated into several groups. The different grouping strat-
egies for the nonterminals and terminals will lead to different results. To get a correct conse-
guence, what remains to be done for the structure-rules is to determine the grouping of cut-
strings and nonterminals. This detail strategy is discussed in the following subsection.

6.4.1 Grouping Cut-Strings with Nonterminals

Cut-strings play a role as delimiters in the structure-rules. Usually, certain cut-strings accom-
pany certain nonterminals, in other words, if one nonterminal does not occur in the rule, the
cut-string(s) caused by it will also not occur. The relation among nonterminal and cut-strings
are called @ause-effect relatiarHowever, the problem is that the relation is not obvious in a
structure-rule. For example, tviaibentry rules look like:

Rule-Sample 6.1

bibentry —> “M\ LI” code “\n”! LI author “\n"*@ LI"” location “\n™\" (s

title * LI\\n®/ LI” source “\n™> LI” category “\n”

Rule-Sample 6.2

bibentry —> “M\ LI" code “\nM! LI" author “\n"\” LI title “ L\

source “\n*> LI” category “\n”

where cut-strings and nonterminals are sequentially organized. From the rule, it is not easy to
see the causeffect relation among them. However, if the relations in structure-rules are not
correctly identified, when unifying and/or abstracting the rules, a wrong result will be created.
For instance, if the RHSs of Rule-Samples 6.1 and 6.2 are unified without being based on the
relations, one of the results will be:

Rule-Sample 6.3

bibentry — —> “M\ LI" code “\n"! LI" author “n*@ U\ L7 location?

“nA L"? title LI\"\n® LI” source “\n™> LI" category “\n”

Chapter 6 Implementation 95

This is not a correct rule dfbentry since the elememdcation cannot start with the
string“\n™\” 11" in documents. Therefore, the proper identification of which cut-strings are
caused by which nonterminals becomes an important problem.

One simple solution is to compare additional different examples to detect the relations.
For instance, in Rule-Sample 6.2 the nontermiowtion is missing, at the same time, the
cut-string“\n"@ LI has not occurred in the rubdbentry . Therefore, one knows that the
cut-string\n"@ U" is caused by the nonterminatation . However, this is not a practical
way since one cannot determine the ceeffect relations in a structure-rule until one finds
proper examples.

The other solution is using an algorithm to group cut-strings and nonterminals in a struc-
ture-rule (Algorithm 6.2). The basic strategy of the algorithm is that the first element of the
rule determines the combining form of cut-strings and nonterminals. If the first element of the
rule is a cut-string, the form is oneut-string followed by nonterminal (denoted asut-
string + nontermina) or “cut-string followed by nonterminalfollowed by cut-string’ (de-
noted asut-string+ nonterminal+ cut-string; otherwise, the form isrfonterminalfollowed
by cut-string’ (denoted asionterminal+ cut-string or a single honterminal. Each form ex-
presses a syntactic causigect relation and is calledcat-copy group

Algorithm 6.2 Grouping cut-strings with nonterminals in a structure-rule
Input: A structure-ruleR containing cut-strings and a global variaé{&roup
Output: A set of groups to record the combination of cut-strings and nonterminals

Method:

Function groupingR, aGroup
1 begin

2 if the first element on tHeHSis a cut-stringhen idx, := 0

3 elseidxy 1= 1;

4 while idxo < the size of the ruldo

5 begin

6 pos:=idxy:

7 idx; := the position of the first cut-string searching frpog

8 idxo := the position of the first cut-string searching friaix ;

9 if idxo = Othen idx, := the size of the rule;

10 if idxo = the size of the rulthenidx, :=idxo — 1;

11 get a group which contains the elements from the positibns$o idxo;

96 Chapter 6 Implementation

12 add the group to the tail @Group with the same name of the nonterminal in the
group;

13 end;

14 return (aGroup);

15 end

Applying the above algorithm, the groups of Rule-Samples 6.1 and 6.2 are:

Cut-Group-Sample 6.1

(“\ " code); (“\n"! LI" author); (“\n"*@ LI" location);
("\n™N\" L7 title); (f LI\"\n”/ 1" source); (“\n™> LI" category “\n”);

Cut-Group-Sample 6.2

*\\ LU” code); ("\n"! LI” author);
(“\n™N\" " title); (LI\"\n®/ 1" source); (“\n™> LI" category “\n”);

On the basis of Cut-Group-Samples 6.1 and 6.2, when the RHSs of Rule-Samples 6.1 and
6.2 are unified, a single correct result shown as Rule-Sample 6.4 is easily inferred:

Rule-Sample 6.4

bibentry —> “M\ LI” code “\n"! L author ("\n*@ LI” location)?

“nAT LT title LI\"\n®/ LI” source “\n> LI" category “\n”
where cut-string\n*@ LI" is regarded as a part of the hontermioedtion

This strategy is simple and general. But for some special case, the grouping is not exactly
correct. For instance, consider the subsequéthee’ U\"\n®/ " source of Rule-
Sample 6.1, if using the above strategy, the string\n®/ U" is grouped withsource .
However, the substringLi\™ is caused byitle rather tharsource . Normally, the group-
ing will not lead to an error. Only for the case ttigd or source is missing in another
example, the grouping will result at an incorrect solution. Of course, this is not serious. To
overcome the worst case, an alternative strategy to group cut-strings and nonterminals is con-
sidered. Each line of documents is supposed to have complete semantics such that one can
regard the characteeturn as a specific delimiter. Under the hypothesis, it is assumed that a
group is ended by the return character. According to this strategy, the groups of Rule-Sample
6.1 are:

Cut-Group-Sample 6.3

Chapter 6 Implementation 97

*\\ LU” code “\n"); ("M LI” author “\n”);
(“~@ U" location “\n™); (“AV L™ title “ LI\"\n");
(“ " source “\n”); (“*> LI” category “\n”);

The semantic meaning of the groups are clearer than in Cut-Group-Sample 6.1. However this
strategy lacks generality as it assumes special semantics. The system therefore still adopts the
first strategy to group cut-strings and nonterminals.

6.5 DREAM Grammar Generator

The process of the document-structure recognition and tagging is realized by the DREAM
parser. Therefore, the inferred grammar from the learning component has to be translated into
a DREAM DSD. If the DSD is correct, the DREAM parser will tag the document correctly.
Otherwise, DREAM cannot get a correct result. The task of translating the grammar rules into
DREAM DSD is done by the DREAM grammar generator.

From the abstracted grammar, a DREAM DSD is generated in two steps: First, the SGML
structure is built (without cut-strings); Second, the cut-copy groups at the content-level are
used to form the expressions at that level.

To parse subsequent examples with slightly deviating structures and contents, every ELE-
MENT name in the DSD has been associated with a fallbaclkmyleing , which parses all
those parts which cannot be parsed by one of the available ELEMENT definitions and is
stopped when the next element can be correctly recognized. Such portions, which are sur-
rounded byanything> and</anything> , then can be easily identified and further disam-
biguated by the user.

Figure 6.8 shows a complete DREAM DSD generated from the abstracted grammar of
the manually marked-up example in Figure 6.3. The concepts for the examples are:
[a—zA-Zz] ,“” and“ U”. The original document of the marked-up example is:

Document-Sample 6.1The original document of the marked-up example in Figure 6.3

\ Lipp
I UAIfs LIBerztiss\n

@ Un.Pittsburgh\n

" LIA Taxonomy of Binary Tree Traversals LI"\n
[/ UBIT LU* L11987\n

>LIDBDops\n

98 Chapter 6 Implementation

<IDOCTYPE bibdoc [

<IELEMENT bibentry — — code,

author,

location,

title,

source,

category >
<IELEMENT code — - (anything#, cut(™\\ LI™), copy([a—zA-Z]+))?>
<IELEMENT author — — (anything#, cut($"“! L"), fname, Iname)?>
<I[ELEMENT fname — — (anything#, copy([a—zA-Z]+))?>
<IELEMENT Iname — — (anything#, cut(* LI™), copy([a—zA-Z]+))?>
<IELEMENT location — — (anything#, cut($"@ L™,

copy([a—zA—Z]+"."[a—zA-Z]+))?>
<I[ELEMENT title — — (anything#, cut($™\ M,
copy(([a—zA-Z]+* U")+[a—zA-Z]+))?>

<IELEMENT source — — (anything#, cut(* U\™$N u”),

publication, date)? >
<IELEMENT publication — — (anything#, copy([a—zA-Z]+))? >
<IELEMENT date — — (anything#, cut(* LI* L"), copy([0-9]+))? >
<IELEMENT category — — (anything#, cut($"*> L™,

copy([a—zA-Z]+), cut($"))?>

<IELEMENT anything — — copy(.#)>
1>

Fig. 6.8 DREAM DSD of the example in Figure 6.3

Based on the DSD annotated with recognization patterns, the DREAM parser checks for

syntax errors in the DSD. If there is no error message, DREAM produces a tagged document

which conforms to a document type definition (DTD) in SGML and can be further processed

with any SGML-based tools. For instance, when Document-Sample 6.1 is tagged by the

DREAM parser with the DSD (shown in Figure 6.8), the tagged document is shown in Figure

6.9.

Chapter 6 Implementation 99

<IDOCTYPE bibdoc>
<bibentry><code>pp</code>
<author><fname>Alfs</fname>
<lname>Berztiss</Iname>

</author>
<location>Un.Pittsburgh</location>
<title>A Taxonomy of Binary Tree Traversals</title>
<source><publication>BIT</publication>
<date>1987</date>

</source>
<category>DBDops</category>
</bibentry>

Fig. 6.9 The tagged document of Document-Sample 6.1 is
created by the DREAM DSD in Figure 6.8

It is an SGML-document generated by a DSD not a learning example, therefore, it does not
look like its manually marked-up example (in Figure 6.3) which maintains cut-strings in the
document.

6.6 Learning Strategies

The implementation of each component in the system architecture (Figure 6.1) has been se-
guentially discussed. This section will give several examples to show how the system is used
and what kind of learning strategy can be chosen.

6.6.1 Fallback Rule

When the DSD in Figure 6.8 is applied to a new example (Document-Sample 6.2), the effect
of the fallback ruleanything is shown in Figure 6.10.

Document-Sample 6.2A new example

\ Lpr\n

I UP. LUBuneman\n

I LIM. LJAtkinson\n

" UlInheritance and Persistence in Database Programming Lan-
guages LI"\n

/ LUACM SIGMODJ* L11986\n

>LIDBDquery\n

In the new example there are twothor s (lines that start with the strirtg L1"), the
first namefname with the abbreviation character point which is a new character not oc-

100 Chapter 6 Implementation

curring in the earlier example, the elemienation (line that starts with the strirf@LI") is
missed, and the format of elemenblication IS new.

<IDOCTYPE bibdoc>
<bibentry><code>pr</code>
<author><fname>P</fname>
<lname> <anything>.</anything>
Buneman</Iname>

</author>

<location></location>

<title> <anything>

! LI M. L Atkinson</anything>

Inheritance and Persistence in Database Programming Lan-
guages</title>

<source><publication>ACM</publication>

<date> <anything> LISIGMOB/anything>
1986</date>

</source>
<category>DBDquery</category>
</bibentry>

Fig. 6.10 A tentatively marked-up example generated by the DREAM DSD
in Figure 6.8

Therefore, in Figure 6.10 the character point and the second author name are marked up with
anything , thelocation = matches nothing, the second part of ghblication is marked

up withanything . However, theode (the string‘pr”), the partiafname of the first au-

thor (the characteP’), thelname of the first author (the strif@@uneman”), thetitte (the

string “Inheritance and Persistence in Database Programming Lan-

guages”), thesource (the structureublication , date), the partialpublication (the
string“ACM”), thedate (the string'1986”), and thecategory (the string'DBDquery”) are
properly marked up.

The user corrects the result by means of thettiueture editowhere the corrected result
is then shown. The corrected example is passed to the above components step-by-step, finally
a new grammar is inferred. The corrected example and new grammar will be described in the
following subsections.

6.6.2 Exhaustive vs. Partial Learning

When an initial grammar is generated, there exist two alternative strategies to learn another
example: learning from an entire example and learning from a partial example. To explain
them, let us consider the above examples again.

Chapter 6 Implementation 101

In Figure 6.10 the content of the eleméntation is empty, the content of elements
author and publication are recognized only partial, and the unrecognized parts of the
content are included by the fallback raleything . Therefore, the user will correct them.

The form of the corrected example depends on the above two learning strategies. Figures 6.11
and 6.12 show the user-corrected example using the two strategies, respectively:

<IDOCTYPE bibdoc>
<bibentry><code>pr</code>

<author><fname>P.</fname> LI<lname>Buneman</Iname></author>

<author><fname>M.</fname> LI<lname>Atkinson</Iname></author>
<title>Inheritance and Persistence in Database Programming Lan-
guages</title>

<source><publication>ACM SIGMOD</publication>
<date>1986</date></source>

<category>DBDquery</category>

</bibentry>

Fig. 6.11 The user-corrected example using the exhaustive learning strategy

<IDOCTYPE bibdoc>
<bibentry><code>pr</code>

<author><fname>P.</fname> LI <lname>Buneman</Iname></author>

<author><fname>M.</fname> LI<lname>Atkinson</Iname></author>
<location></location>

<title>Inheritance and Persistence in Database Programming Lan-
guages<f/title>

<source><publication>ACM SIGMOD</publication>
<date>1986</date></source>

<category>DBDquery</category>

</bibentry>

Fig. 6.12 The user-corrected example using the partial learning strategy

The difference between the two modifications is that there is no eldéosetibon in
the corrected example using the first strategy (Figure 6.11), whereas it is kept in the corrected
example using the second strategy (Figure 6.12). The reason will be explained in the follow-
ing two sections.

6.6.2.1 Learning from an Entire Example

The basic idea of this strategy is to generate a new complete grammar and to learn the whole
grammar rules at the content-level and at the structure-level. Since the grammar does not al-
low the RHS of a rule to be empty (Section 4.3.2), the elefoeatton has to be deleted,
otherwise the system cannot work. For this reason, thdoastion is removed in Figure

6.11. With the exhaustive strategy, the unified grammar is shown in Figure 6.13, where the

102 Chapter 6 Implementation

<IDOCTYPE bibdoc [

<!IELEMENT bibentry — — code,

author+
location?
title,
source,
category>
<IELEMENT code — — (anything#, cut(™\ L™, copy([a—zA-Z]+))?>
<IELEMENT author — — (anything#, cut($"! LI™), fname, Iname)?>
<IELEMENT fname — — (anything#, copy([a—zA-Z]+ | [a—zA-Z]*."))?>
<IELEMENT Iname — — (anything#, cut(* L"), copy([a—zA-Z]+))?>
<I[ELEMENT location — — (anything#, cut($"@ L1,
copy([a—zA-Z]+"." [a—zA-Z]+))?>
<IELEMENT title — — (anything#, cut($"“\" L™,
copy(([a—zA-Z]+" U")+[a—zA-Z]+))?>
<IELEMENT source — — (anything#, cut(“ L\™$N),
publication, date)? >
<IELEMENT publication — — (anything#,
copy([a—zA-Z]+ | [a—zA-Z]+* U’la—zA-Z]+))?>
<I[ELEMENT date — — (anything#, cut(" LI* L"), copy([0-9]+))?>
<I[ELEMENT category — — (anything#, cut($"\“> L"),
copy([a—zA-Z]+), cut($"))?>
<IELEMENT anything — — copy(.#)>
1>

Fig. 6.13 Changed rules in DSD based on the exhaustive learning strategy

bold parts indicate the differences between the old rules which are in Figure 6.8 and the new
inferred rules.

With the algorithm 4.2, one gets an abstracted-Agtame Of the rule fname,
Aname = [a-zA-Z]+ , [a-zA-Z]*" . Here it is translated as an alternative operator in
DSD (a—zA-Z]+ | [a—zA-Z]"”), otherwise, DSD cannot manipulate it.

Chapter 6 Implementation 103

6.6.2.2 Learning from a Partial Example

Generating a new grammar for a new example and learning the whole rules are redundant for
the elements whose structure does not deviate from the old one and whose contents can be
recognized by the existing abstracted strings. To avoid unnecessary processing, an alternative
learning strategy has been implemented — learning from part of an example, that is, the system
can compile one of the elements which is corrected by the user in the tentatively marked-up
example.

To get a new complete grammar, the partial learning strategy will be repeated several
times. Each repetition is calledl@arning-unit How many learning-units are required in an
example depends on how many elements are not correctly recognized by the old grammar or
deviate from the old grammar, that is, a learning-unit corresponds to a changed element. For
this reason the empty elemémtation is kept in Figure 6.12. In Figure 6.10 there are mere-
ly three elementauthor , location , andpublication which are new with respect to the
old grammar, therefore, there are three learning-units. Note that if an element occurs more
than once in the example, they all are treated as one learning-unit, that means the repeated
elements are learned at the same time.

Applying the partial learning strategy for the example in Figure 6.12, the learning can be
done in three steps, where each of the learning processes is isolated, in other words, the se-
guence of executing the steps does not influence the final learning result. For instance, wheth-
erlocation , author or publication is learned first, the final result is the same. Let us
learnlocation first.

When the user highlights the empty elemelntation></location> , the changed
rule related to Figure 6.8 is shown in Figure 6.14:

Since new rules focode , author , fname, Iname , location |, title , source , publica-

tion , date , andcategory are not changed, they are not rewritten here.

The new DSD indicates the eleméstdation as an optional element described in the
elementbibentry . When the user selected the corrected eleraethior to learn, the
changed rule related to Figure 6.8 and 6.14 is shown in Figure 6.15:

104 Chapter 6 Implementation

<IDOCTYPE bibdoc [

<IELEMENT bibentry —— code,
author,
location?
title,
source,
category>

Fig. 6.14 Changed rule in DSD for learning an optional element
on the basis of the partial learning strategy

<IDOCTYPE bibdoc [

<IELEMENT bibentry — — code,
author+
location?,
title,
source,
category>

<I[ELEMENT fname — — (anything#, copy(([a—zA-Z]+ | ([a—zA-Z]".")))?>

1>

Fig. 6.15 Changed rules in DSD for learningegetition element
on the basis of the partial learning strategy

For the same reason as above, new rulesdoe , author , Iname, location , title
source , publication , date , andcategory are not reproduced here. In the same way the
user can sele@ublication to learn.

Chapter 6 Implementation 105

<IDOCTYPE bibdoc [

<IELEMENT publication — — (anything#,
copy([a—zA-Z]+ | [a—zA-Z]+* U"[a—zA-Z]+))?>

1>

Fig. 6.16 Changed rules in DSD for learning a new string
on the basis of the partial learning strategy

Combining the changed rules in Figures 6.15 and 6.16 with the unchanged rules in Figure
6.8, a new DSD is obtained which is equal to the DSD in Figure 6.13. Since there is no redun-
dancy, the partial learning strategy is more efficient than the exhaustive learning strategy, es-
pecially, if a grammar consists of many elements, where only a few of them need to be cor-
rected.

106 Chapter 6 Implementation

6.7 Experimental Evaluation of the System

This section describes some experiments with the system carried out to measure the effective-
ness oMarkltUp!’s approach to grammar learning. The experimental setting is as follows:

As an example document collection a portion of the bibliography on databases compiled
by Gio Wiederhold is taken (the most recent version is available from ftp://db.stanford.edu/
pub/siroker/biblio.txt). The randomly chosen portion consists of 260 entries. Examples from
this bibliography have been used throughout this thesis. Below one example is reproduced for
better clarity:

Document-Sample 6.Fxample of a bibliographic entry

\ Lrp\n

I LIM.L. UBrodie\n

I UD. URidjanovic\n

" LIFunctional Specification and Verification of Database Trans-
actions LU"\n

/ Ureport Oct.1984\n

>_I1DBDmodel.0\n

>|IDBDtrans.4\n

While at the top-level this is a fairly well behaved example, with elements like author,
title, etc. clearly separated by unambiguous delimiter characters, the structuring levels below
show quite a few irregularities which make the intellectual specification of a grammar non-
trivial. For example, the inner structure of authors can contain both, abbreviated first names,
as well as fully spelled out first names, and middle names may be missing. As another exam-
ple, the inner structure of bibliographic source information is very heterogeneous across the
individual bibliographic entries, with subelements like publishing date, editor information,
volume number, etc. occurring rather arbitrarily.

For this example collection, three grammars have been incrementally trained with 1, 5,
and 10example bibliographic entries. Each grammar has been translated into a DREAM
DSD, which has been applied to the entire document collection. The resulting SGML-marked-
up documents have been evaluated along the following dimensions:

(1) the number of (correctly or incorrectly) recognized elements vs. the number of all ele-
ments including the elements that had to be accepted by the fallbackanykhing>
(copy(.#)). This ratio indicates the overall performance of a learned grammar.

Chapter 6 Implementation 107

(2) the number oanythingelements vs. the number of correct elements. This ratio indi-
cates the recall of the learned grammar, and thereby gives a measure for the amount of addi-
tional human refinement needed in the mark up process.

(3) the number of incorrect elements vs. the number of correct elements. This ratio mea-
sures the precision of the learned grammar. Minimizing this ratio is the most important goal,
because incorrectly tagged elements need the biggest effordetdmedcand corrected.

To judge the influence of the predefined concept set used for copy-string abstraction on
the learning process, two different concept sets have beenSysefa—zA-Z]+, [0-9],
[\, [\« UL, DNV } and S = {[a—zA-Z.,\=]+, [0-9], [* L],
NV }. The sole difference betweeh andS; is that the character sets [a—zA-Z] and
[.,\—] are defined as separate concepf§ jnvhereas they are combined to a single, more gen-
eral concept ir5, (see also sections 3.3 and 4.2.5.3 for examples of grammars (Grammar-
Sample 3.2 and Grammar-Sample 4.1) that have been generated on the basis of different con-
cept sets). Both concept sets have been applied to the same sequence of examples.

Table 6.1 gives the results of the concepSget

analysis)
sumption the number of recognized

the results elements vs. the number anything elements incorrect elements
number of all elements includ- Vs. VS.
of manually ing fallbacks (%) correct elements (%) correct elements (%)

marked examples

1 9.7 55 66
5 82 7.3 2.4
10 97 2.6 1.8

Table 6.1 The experiment results generated by applying concef set

In all three columns we see a clear asymptotic improvement achieved by increasing the
number of provided examples. Marking up only one example leads to very bad results. These
are mainly due to a small bug in the version of DREAM used for the experiment, which for
the highly ambiguous grammars generatelaykltUp! accepted some document portions in
a fallback rule even if there was a more specific rule applicable in this context (this bug has
been corrected at the time of writing). Thus only about 10% of the entire document has been
encapsulated by a tag (column 1), more than half of the elements have only been accepted by a
fallback rule (column 2), and almost two thirds of the marked-up elements have been tagged

108 Chapter 6 Implementation

incorrectly (column 3). After five marked-up examples, however, the generated grammar is
much less ambiguous, and anticipates many more structural deviations. Consequently, over
80% of the document has been accepted by a specific element rule, less than 10% have re-
qguired manual refinement, and as little as 2.4% of the elements have been incorrectly marked
up. Finally, after 10 examples a quite satisfactory performance has been reached, needing rath-
er small amounts of human correction.

Table 6.2 shows the results achieved by applying the concept fittice

marked examples

analysis .
ssumption the number of recognized] _
the Tesults elements vs. the number anything elements incorrect elements
number of all elements includ- VS. VS.
of manually ing fallbacks (%) correct elements (%) correct elements (%)

1

39

45

40

86

6.9

2.3

10

97

2.8

19

Table 6.2 The experiment results generated by applying concefs set

Clearly, the initial performance with this more generic lattice is significantly better than
for the concept lattic&,. The generic patterfa—zA-z.,\-] accepts in particular abbre-
viated names, containing “.”, and titles, containing “~", before they have actually occurred as
names or titles in a marked-up example. However, the results after 10 examples are a little bit
worse than fof5; . In particular, the recall and the precision of applying the more generic lat-
tice have both decreased a little bit. Here the more generic ppttesnz.,\—] fails to
distinguish some subelements in the bibliographic source information, such as “Sep.” indicat-
ing a date from “ACM” indicating the conference of a bibliographic entry. This shows that as
soon as the content of elements, as opposed to delimiter characters, becomes important for
classifying elements, a more elaborate concept lattice leads to overall better results. On the
other hand, the rather small differences in performance also demonstrate that for syntactically
structured sourcedarkitUp! is fairly robust with respect to the concept lattice used, because
it can better rely on its powerful inductive capabilities on the structural parts. As a conse-
guence, concept-lattices can stay fairly generic and be applied to many application domains,
as long as the structure to be recognized can rely on the syntactic context.

Chapter 6 Implementation 109

This result is inline with the evaluations performed in the context of the CLIP-ing project
[42]. In this project, the system TATOE has been used to detect linguistic categories, such as
proper nouns or temporal expressions, in a corpus consisting of German news messages in
order to transform them to the SGML-based News Industry Text Format (NITF). Like
DREAM, the parser underlyinglarkltUp!, TATOE uses named regular expressions for struc-
ture specification, such as natural language phrases. TATOE extends these with access to lin-
guistic components, which comprise a morphological analysis, and a lexicon indicating the
semantic role of proper nouns. These components can be seen as an elaborate substitute for
the concept lattices used MarkitUp!. In the CLIP-ping domain, the detection of linguistic
categories needs to rely much more on the linguistic resources than on syntactic structure.
And indeed, the experiments of TATOE showed that the lexical resources required much more
intellectual refinement than the set of (manually specified) syntactic rules. The comparison of
these application domains also indicates an important line of further research in using machine
learning for document recognition: Where the content of structural elements needs to contrib-
ute to disambiguation, a resource corresponding to the concept lattice may not be fixed a prio-
ri, but needs to be trainable too.

6.8 Summary

The implementation of th#&arkltUp! learning system has been described. With a friendly
user interface, the system builds an easy to use environment to implement incremental learn-
ing. The different learning strategies provide a more flexible method for considering possible
revisions to the grammar rules. The evaluation shows that in particular for syntactic structur-
ing tasks, the learned grammars achieve an acceptable performance after rather few manually
marked-up examples.

110 Chapter 6 Implementation

Chapter 7 Related Work 111

Related Work

Conceptually, the learning approach adopted by this thesis draws mainly from two fields:
Editing-By-Example, and more generally, inductive learning.

7.1 Editing-By-Example

Editing-By-Example was first introduced by R. Nix [39, 40]. It derives generic string trans-
formation programs from a few editing operations on examples in a text editor. Two ap-
proaches can be distinguished: Function approaches, which regard only the input and the out-
put of editing operations, and procedural approaches, which reason about the editing opera-
tions themselves.

7.1.1 Function Approaches

The goal of function approaches is to synthesize a transformation program on the basis of a
pair of input/output examples in a text editor. An example of the function approach is the sys-
tem EBE (Editing-By-Example) developed by R. Nix. The aim of EBE is to solve repetitive
text editing problems.

In that system, the user specifies a set of input/output pairs exemplifying a text trans-
formation, and the EBE system attempts to infer common patterns to the pairs and synthesizes
a program to perform the transformation in general. The user may then execute this program
to perform further transformations, or may give further examples to the system.

The program synthesized by EBE is calleghp programwhich consists of gappattern
that matches a portion of the text and parses it into fields (constant or variable)gand a
replacementhat copies, rearranges, or deletes the fields (and may introduce a new constant
field). For instance, the user specifies the following two input/output pairs:

Braves Li4, LIBrewers L112.

=> Game[winner LI’ Braves ’, Llloser LI’ Brewers ', Llscores[4, LU12]];

112 Chapter 7 Related Work

Orioles U1, WCardinals LI5.

=> Game[winner LI’ Orioles ', Uloser L' Cardinals ', Liscores[1, L5];

The EBE system synthesizes the gap program of the above input/output pairs that has the
gap pattern:

-1- U-2—, U-3-1-4—. eol
and the gap replacement:
Game|winner LI'-1-', LUloser LI'-3-', Llscores[-2—, LI—4—]]; eol

whereeol is a speciatonstantwhich matches the end of the line. Numbers are used as
variables The other symbols are constants in the gap program.

This gap program matches any line that consists of a word (the first word) and a number
(the first number) separated by a blank, followed by a comma and a blank, followed by a word
(the second word) and a number (the second number) separated by a blank, followed by a
point, and replaces each such line with a new constant@eatte[winner LI’ , followed by
the first word, followed by a new constant figldL!loser LI’ , followed by the second word,
followed by a new constant field Liscores[, followed by the first number and the second
number separated by a comma and a blank, followed by a new constajt field

In [39] and [40] Nix has shown many results related to the inference of gap programs.
However, gap programs are less expressive than regular expressions. Thus with this approach
only fairly simple transformations (string to string) can be generated.

7.1.2 Procedural Approaches

The goal of procedural approaches is also to synthesize a transformation program from editing
examples in a text editor. Unlike the function approach, the procedural approach synthesizes
the program frontraceswhich recordediting operationsThe system developed by D. H. Mo

and . H. Witten [38] is an example of the procedural approach that is also used to solve repeti-
tive editing problems.

In this system, synthesizing the transformation program involves two steps: (1) Users edit
some text block by editing operations defined in a simple interactive point-and-click editor, at
the same time, the sequence of editing operations with their parameters (text strings) and their

Chapter 7 Related Work 113

positional information (context, distance and position) is recorded by the editor; (2) Then this
sequence is generalized by combining some operations into higher level operations using heu-
ristic rules, by abstracting their parameters and context. For abstracting concrete strings they
use a mechanism similar to ours (Section 4.2.4.1 and Figure 4.2). The synthesized program is
applied to a larger class of inputs. If the program does not behave appropriately on a new ex-
ample in the class of inputs, the user has to modify the program manually and the program is
extended automatically to accommodate the new example.

In [38] the authors describe detailed strategies to synthesize the transformation program
on the basis of editing operations and their trace. Currently, however, the synthesized trans-
formation programs appear to be limited to the treatment of flat structures, i.e., the sequence
of editing operations is not further nested.

MarklItUp! restricts itself to structuring operations rather than arbitrary editing opera-
tions. Thus by analyzing theutputof a number of structuring steps, it can determine more
expressive recognition programs than gap programs. On the other hand, the structuring opera-
tions can be easily deduced from the marked-up examples, thus there is a closer correspon-
dence between the editimgocedureas perceived by the user and the genergtathmar.

These nested grammars also are more expressive than the procedures described in [38].

7.2 Inductive Learning and Learning Methods

On of the most widely studied forms of machine learning is learning from exampledyuor

tive learning as it is more concisely called [34]. The task of learning is to induce general de-
scriptions (or concepts) that explain the given input examples provided by a teacher or the
environment and are useful for predicting new examples. He@aeptcan be regarded as

an abstract description of a class of objects.

In this thesis the learning approach refers to two kinds of inductive metjradsmati-
cal inferenceandversion spaces

7.2.1 Grammatical Inference

Grammatical inferenceises formal grammars to represent the learned concepts and learns a
grammar from a set of examples by drawinductive inferenceswhich attempt to derive a

complete and correct description of a given phenomenon from specific observations of that
phenomenon or of parts of it. In [8] the author provides a general form of inductive inference

114 Chapter 7 Related Work

problems. The task of grammatical inference is to determine a formal grammar that can gener-
ate a given set of symbol strings.

The most important criterion of success of the inference methodsigetitéication in
the limitwhich is defined by Gold [17]:

Definition 7.1 An inductive inference methdd identifiesa languagé. in the limitif, after a

finite number of example$] makes a correct guess and does not alter its guess thereafter. A
class of languages is identifiakbte the limitif there exists a method such that given any
language of the class and given any admissible example sequence for this lavigdagé;

fies the language in the limit.

To learn a correct grammar from a set of examples, Gold [17] proves that:

Theorem 7.1 Any class of languages containing all finite languages and at least one infinite
language can not be identifiedthelimit from positive examples.

The theorem means that the class of languages can not be learned from positive exam-
ples. However, Gold [17] also points out that if a learning system generalizes the representa-
tion with some restrictions on the allowed result of the generalization in the form of back-
ground knowledge, an adequate language could be learned. For example, if the system could
ask a teacher who always knows whether or not a given string is grammatical, the true lan-
guage could be learned. This strategy is applied iMimItUp! learning system to general-
ize grammar from positive examples. Angluin [7] gave a complete characterization of the
families learnable from positive examples.

In [11], the authors summariZeur methods for grammatical inference. One of them is
refinement methodshich formulate a hypothesis grammar and then refine it on the basis of
simplification heuristics and new training examples. B. Knobe and K. Knobe [31] address a
refinement-method schema which repeatedly accepts new grammatical strings from a teacher,
for each new string, the learning program generates a set of candidate productions which ac-
cept the new string and selects one of production as a hew production to add to the grammar or
merges old and new productions using heuristic rules.

TheMarkltUp! system architecture is designed on the basis of the refinement methods of
grammatical inference. The initial hypothesis grammadankitUp! is generated in the learn-
ing cycle: markup cycle, in which the grammar incrementally accepts new grammatical

Chapter 7 Related Work 115

strings and is further refined by a set of concepts (Section 4.2) and a set of learning rules (Sec-
tion 4.3).

A related approach to generate grammar in the field of document processing is presented
by Ahonenet al [4]. They collect a set of examples of structured documents, use a set of fi-
nite-state automata describing the examples, and choose generalization conditions to merge
and modify the example automata so that general automata are generated. The resulting au-
tomata are transformed into regular expressions to get a readable grammar. Although they de-
fine some interactive operations the approach is not intended to be used for incremental learn-

ing.
7.2.2 Version Spaces

Given a set of training data and a language in which the desired concept must be expressed,
Mitchell [35, 36] defines a version space to be “the set of all concept descriptions within the
given language which are consistent with those training instances” (Mitchell [36]). The word
consistenimeans that the concept description matches all the positive examples and none of
the negative examples.

Mitchell noted that the generality of concepts imposes a partial order that allows efficient
representation of the version space by the boundar setdG representing the most specif-
ic and most general concept definitions in the space.SThadG-sets delimit the set of all
concept descriptions consistent with the given data.c@hdidate-elimination algorithrma-
nipulates the boundary set representation of a version space to create new boundary sets that
represent a new version space consistent with all the previous instances plus the new one. For
a positive example of the unknown concept the algorithm generalizes the elemen&s#tthe
as little as possible so that they cover the new instance yet remain consistent with past data,
and removes those elements of @Gwset that do not cover the new instance. For a negative
instance the algorithm specializes elements ofa#set so that they no longer cover the new
instance yet remain consistent with past data, and removes fré@rs#teéhose elements that
mistakenly cover the new, negative instance. Wherstbet andG-set have the same single
element, the element is the desired concept.

The shortcoming of Mitchell’s algorithm was that the set of candidate concept definitions
must reflect strict consistence with data. Given some set of training data, only those concept
definitions that correctly classify all instances are considered. If no such definition exists, the
version space is empty.

116 Chapter 7 Related Work

Hirsh [26] developed a new algorithm, calledremental version-space mergjritpat
generalizes Mitchell’s notion of version space beyond strict consistency with data and pro-
poses an incremental learning method. Given old and new version spaces based on different
sets of information (about the same concept), the algorithm will find their intersect®n in
and G-sets. The resulting version space reflects all the information of the given spaces and
may contain many concept definitions in a concept description language representable by
boundary sets.

In this thesis, the version-space approach is applied to the problem of discovering string
patterns common to a set of strings (Section 4.2). Since string patterns are learned from posi-
tive examples, this version-space approach considers onfge For each terminal in the
grammar, there is a corresponding version space, called a reduced abstracted-list. Similarly
with Hirsh’s approach, there may be more than string patterns in the abstracted-list which are
no more-specific-than the other. Since the string patterns are represented by regular expres-
sions, the incremental version-space algorithm can simply compare a new string pattern with
the string patterns in the existing abstracted-list and modify the abstracted-list so that the mo-
dified abstracted-list is reduced. It does not require a complex algorithm, such as the Hirsh’'s
algorithm [26], to intersect the version spaces.

7.3 Application to Wrapping Semi-Structured Data

Recently, the extraction of structure from semi-structured electronic documents has
gained considerable attention for the realization of wrappers. The basic functionality of wrap-
pers is to translate queries and data from one data model into another [51].

There is no theoretical definition of semi-structured data [1]. BibTex is a kind of semi-
structured data, as well as Web-documents. All of them are sources with implicit structure, not
as rigid, static, or regular as standard database systems.

In order to query these semi-structured sources in a database-like fashion on the basis of
their underlying structure, it is required to wrap them. With the help of wrappers queries can
be converted into queries that can be processed by the underlying source and the native results
are transformed into a format understood by the application.

One of applications to wrapping semi-structured data is to query Web-documents directly
in a database-like fashion [9, 23].

In [22], Hammer et al. describe an approach to wrap Web-documents. It was be done in
two steps: First, they developed a configurable extraction program for extracting semi-struc-

Chapter 7 Related Work 117

tured data from a set of WWW pages into object model. The extraction process is based on a
specification file that consists of text patterns that characterize the data of interest on the
WWW pages and the desired conversion into an object model with explicit structure. No
learning takes place, thus all patterns need to be specified explicitly. The specification file is
written by the user. The outcome of the extraction process is an object exchange model that
contains the extracted data together with their structure and contents. To query the extracted
result with predicates that are not originally supported by the source, the second step is to use
the wrapper generation tools [22] to generate wrappers. On the basis of the wrapper, the con-
tents on the WWW pages can be queried with an SQL-like language and the result is shown
on the similar form. For a new source, the user has to write a new specification file.

In [9], Ashish et al. include machine learning techniques into their extraction program
and try to generate wrapper semi-automatically from a few examples. This is accomplished in
three steps: First, they give some general rules to identify tokens indicating different types
(heading or sections) on a web page. With the help of the identified types and the format in-
formation, the system outputs a grammar describing the nesting hierarchy of sections in a
page; Second, a parser for the learned pages for the source is generated. Such a parser can
extract any selected section(s) from the page. Finally, a communication functionality is added
to the wrapper, so that the wrapper is able to map function from quires to URLS, to fetch pages
over a network, and to communicate between the wrapper and a mediator. In contrast to the
approach described in this thesis, however, the learning heuristics are not generically applica-
ble but only to Web-documents.

Extracting information from multiple heterogeneous data and integrating them in order to
provide information is a challenging research topic in the database area, information retrieval,
and data exchange. Wrappers provide integrated software components for accessing heteroge-
neous data sources, in which extracting information from the multiple heterogeneous sources
Is a basic step. With the dramatically increasing of all kinds available electronically data, ex-
tracting information from the data will play more important role in various application areas
of data processing. For non-web documents, Smith et al. [44] and Klein et al. [30] separately
introduce a document abstract model and automation parsing to extract another kind of semi-
structured dataMarklItUp! approach described in this thesis and [15] use editing-by-example
strategy to extract logical structure information of non-web documents. The learning strategy,
however, could be also applied to Web-documents.

118 Chapter 7 Related Work

Chapter 8 Conclusion 119

Conclusion

This thesis presents tiarkltUp! system for the incremental generation of structure recogni-
tion grammar (rules) from example structures. Techniques for generating an initial recognition
grammar from marked-up examples, for abstracting concrete strings at the content level on the
basis of a set of concepts, and for merging the structure of multiple examples at the structural
level on the basis of a set of learning rules have been devised for this piipdseUp!
incorporates these techniques into the markup cycle in which, with the help of a simple struc-
ture editor, the user can control the learning process and inconsistent electronic documents
with repetitive but implicit format can be structurally enriched. The system is not only suitable
for non-programmers who have to perform mark up manually, but also useful for program-
mers who have to write recognition programs to mark up documents.

The main contribution of thielarkitUp! system is to demonstrate the feasibility of infer-
ring document-structure recognition grammar from structured examples in the domain of re-
petitive electronic documents. The primary contribution of this dissertation lies in a unified
approach to manually mark up and automatically mark up documents on the basis of machine
learning. TheMarkltUp! system is developed, analyzed, and implemented which turned out to
be an effective aid in automating the recognition of a large class of electronic documents.

Another contribution of this dissertation lies in combining the techniques of version
spaces and grammatical inference into the practical application of document logical structure
recognition.

To implement the techniques MarkltUp!, the following related procedures are realized

(1) An algorithm to order concepts predefined by the user according to the more-
specific-than relation.

(2) Algorithms for an incremental version-space approach to abstract concrete
contents.

120 Chapter 8 Conclusion

3) A set of rewrite rules whicsimplify existing grammars in a prescribed manner
— unification and simplification rules.

4) A set of rewrite rules whicgeneralizeexisting grammars in a prescribed man-
ner — abstraction rules.

These procedures are implemented in a grammatical inference learning cycle by an ob-
ject-oriented language: SMALLTALK. The details of the implementation are described in
Chapter 6. This implementation provides an example of how such procedures might be imple-

mented in the learning cycle.

The use of an incremental editing-by-example approach to propose optimal new exam-
ples to direct grammatical inference was demonstrated in chapter 4. The principle employed
there generalizes to other regular languages, but the implementation of the general method
requires language-specific routines.

The applicability of the grammar approach to grammatical inference has been demon-
strated both theoretically and empiricallyNMarkltUp!. The grammatical inference learning
cycle has been illustrated in two different problem domains: (1) learning contents features
from given concepts — the content level learning, (2) learning document-structure recognition
rules from the entire example (exhaustive learning strategy) or from the parts of an example
(partial learning strategy) — the structural level learning.

At the content level, the algorithm begins by organizing all concepts predefined by the
user in a concept base, ordering the concepts in the concept base in order to get a sorted list,
then learning concepts from the ordered concepts list with the version-space approach. Fea-
tures of the learning concepts algorithm includes:

(1) Each terminal has its own version-space: a reduced abstracted-list, which may
contain more than one string patterns.

(2) Learning a new concrete string does not require to consider previously ex-
amined example strings. As a result, the system does not need to store old ex-

ample strings.

(3) Learning results are independent of the order in which examples are presented.

At the structural level, the rewrite rules provide the basis for a learning procedure that
generalizes the document-structure recognition grammar. The features of the rewrite rules are:

Chapter 8 Conclusion 121

(1) The sequence of unification rules has no special meaning, i.e. it does not ex-
press a call-order.

(2) The unification rules are chosen by the type of the elements (parameters). Af-
ter applying these rules, the unified grammar is equivalent to the old gram-

mars.

(3) After applying abstraction rules, the new grammar slightly deviates from the
old one.

(4) Learning results of applying the rewrite rules are dependent on the ordering in

which examples are presented.

By the grammatical inference learning cycle, a recognition program acquires the ability
to describe what can and cannot be determined by the generalized grammar for new examples.

The discussion of sequences of arbitrary elements gives an approach to generate a general
expression of unordered elements. It is significant to completd#r<Up! system for
SGML applications.

MarkltUp! has been mainly used by the author of this thesis. The personal experiences
indicate that the chosen approach is very adequate for structuring large amounts of unstruc-
tured documents with reasonable effort. As discussed in Section 6.7, especially for documents
with some repetition factor, such as bibliographies or schedules, only a few manual markups
in the range of 5-10 examples suffice structure over 95% of the complete source correctly.

Future work will be devoted to the following refinements and extensions of the presented

approach:

(1) Implementation of the general expression algorithm for sequences of arbitrary
ordering in theMarkItUp! system;

(2) Further optimization of the algorithm for general expressions to make the im-

plementation simple;

(3) Integration with techniques of structure recognition for scanned documents as
opposed to ASCII documents. These techniques utilize specialized rules for
dealing with layout information such as font properties and two-dimensional
source structure. To generate such rules from intellectually structured exam-

122

(4)

Chapter 8 Conclusion

ples the unification & abstraction metarules have to be extended, for example
with taxonomies of font properties and a calculus for two-dimensional gram-

mars;

Development of concepts for detecting and handling ambiguity in the recogni-

tion rules. Currently, the degree of abstraction performed at string level and at
structural level is hardwired. This can lead to ambiguous recogntion rules that
do not uniquely characterize the structure of example documents. An approach
which automatically detects such ambiguities and accordingly performs less

abstraction would be more convenient.

Bibliography 123

10.

Bibliography

Abiteboul, S.,
“Querying SemiStructured Data”,
Proceedings ICDT’9,71997

Aho, A. V., Hopcroft, J. E., and Ullman, J. D.,
Data structures and algorithms
Addison-Wesely series in computer science and information processing, March, 1979.

Aho, A. V,, Sethi, R., and Ullman, J. D.,
Compilers — principlestechniquesand tools
AddisonWesely series in computer science, 1986.

Ahonen, H., and Mannila, H., and Niknnen, E.,

“Forming grammars for structured documents: an application of grammatical inference”,
Grammatical Inference and Applicatigrisecond International Colloquium, ICGI-94, pp.
153-167, September, 1994.

American National Standards Institute,

Information processing — text and office systems — standard generalized markup
language(SGML,)

ISO 8879-1986(E), ANSI, New York, 1986.

Angluin, D.,
“On the complexity of minimum inference of regular sets”,
Information and Control\ol. 39, pp. 337350, 1978.

Angluin, D.,
“Inductive inference of formal languages from positive data”,
Information and Control\ol. 48, pp. 117135, 1980.

Angluin, D. and Smith, C. H.,
“Inductive inference: Theory and methods”,
Computing Surveyd/ol. 15, No. 3, September 1983.

Ashish, N. and Knoblock, C.

“Wrapper Generation for Semi-Structured Internet Sources”,

Workshop on Management of Semistructured Dé@atana Canyon Resort, Tucson,
Arizona, May 16, 1997.

Brown, H.,
“Standards for structured document”,
The computer journaMol. 32, No.6, 1989.

124

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Bibliography

Cohen, P. R. and Feigenbaum, E. A.,
The handbook of artificial intelligenc®ol. IlI,
William Kaufmann, Inc. Los Altos, California, 1982.

Conway, A.,

“Page Grammars and Page Parsing — A Syntactic Approach to Document Layout
Recognition”

ICDAR 93 Second International Conference on Document Analysis and Recggnition
Tsukuba Science City, Japan, 1993.

Coombs, J. H., Renear, A. H., and Derose, S. J.,
“Markup systems and the future of scholarly text processing”,
Communications of the ACMol. 30, No. 11, Nov. 1987.

Dengel, A.,

“Initial learning of document structure”,

ICDAR 93 Second International Conference on Document Analysis and Recggnition
Tsukuba Science City, Japan, 1993.

Fankhauser, P. and Xu, Y.
MarklItUp! — An incremental approach to document structure recognition
Electronic Publishing\Vol. 6, No. 4, Dec. 1993, pp. 44166

Furuta, R.,

“Concepts and models for structured documents”,

Structured documentthe Cambridge Series on Electronic Publishing. Cambridge
University Press, pp 7-38, 1989.

Gold, E. M.,
“Language identification in the limit”,
Information and ContrglVol. 10, pp. 447-474, 1967.

Gold, E. M.,
“Complexity of automaton identification from given data”,
Information and ContrglVol. 37, pp. 302-320, 1978.

Golumbic, M. C.,
Algorithmic graph theory and perfect graphs
Academic Press, 1980.

Gottke, T. and Fankhauser, P.,
DREAM 2.0 User Manual
Arbeitspapiere der GMB60, July 1992.

Bibliography 125

21.

22.

23.

24,

25.

26.

27.

28.

29.

Gottke, T.,

“Strukturmarkierung von Dokumenten aus Informationsdatenbanken”,

Diplomarbeit, Thechnische Hochschule Darmstadt Fachbereich Informatik, Febuary,
1993.

Hammer, J., Carcia-Molina, H., Cho, J., Aranha, R., and Crespo, A.

“Extracting Semistructured Information from the Web”,

Workshop on Management of Semistructured Dé@atana Canyon Resort, Tucson,
Arizona, May 16, 1997.

Hammer, J., Brennig, M., Cardidolina, H., Nesterov, S., Vassalos, V., and Yerneni, R.,
“Template-based wrappers in the tsimmis system”,

In Proceedings of ACM SIGMOD International Conference on Management of Data
(Demonstration Track), Tucson, AZ, 1997

Handley, J. and Weibel, S.,

“ADAPT: Automated document analysis processing and tagging”,

Document Manipulation and Typograpfroceedings of the EP’90 Conference
Cambridge University Press, pp. 1832, 1990.

Herwijnen, Eric van,
Practical SGML.
Kluwer Academic Publishers, 1990.

Hirsh, H.,
Incremental version-space merging: A general framework for concept learning
PhD thesis, Standford University, 1989.

Hopcroft, J. E. and Ullman, J. D.,
Introduction to automata theory, language, and computation
Addison-Wesley, Reading, Mass., 1979.

Ingold, R., Bonvin, R., and Cory, G.,

“Structure recognition of printed documents”,

Document Manipulation and Typograpliye Cambridge Series on Electronic Publishing
Cambridge University Press, pp.-30, 1988.

Ingold, R. and Armangil, D.,

“A top-down document analysis method for logical structure recognition”,

ICDAR 91 First International Conference on Document Analysis and Recognition
Saint Malo, France, pp. 449, 1991.

126 Bibliography

30. Klein, B. and Fankhauser, P.
“Error tolerant document structure analysis”,
Digital Libraries, 1997, pp. 34857

31. Knobe, B. and Knoeb, K.,
“A method for inferring context-free grammars”,
Information and contrgl\Vol. 31, pp. 129146, 1976.

32. Knuth, D. E.,
The EXbook
Addison-Wesley, Reading, Massachusetts, 1984.

33. Marovac, N.,
“Document recognition — concepts and implementations”,
SIGOIS Bulletinvol. 13, No. 3, pp. 288, 1992.

34. Michalski, R. S., Carbonell, J. G., and Mitchell, T. M.,
Machine Learning: An Artificial Intelligence Approach
Morgan Kaufmann Publishers, Ing., 1983.

35. Mitchell, T. M.,
“Version spaces: a candidate elimination approach to rule learning”,
Proceedings of IJCAI'7,7pp 305-310, 1977.

36. Mitchell, T. M.,
Version spaces: an approach to concept learning
PhD thesis, Stanford University, 1978.

37. Mitchell, T. M.,
“Generalization as search”,
Artificial Intelligence Vol. 18, pp 203-225, 1982.

38. Mo, D. H. and Witten, I. H.,
“Learning text editing tasks from examples: a procedural approach”,
Behavior & Information Technologyol. 11, No. 1, pp. 325, 1992.

39. Nix, R.,
Editing by example
Ph.D. Dissertation, Computer Science Department, Yale University, 1983.

40. Nix, R.,
“Editing by example”,
Proceedings of the 11th ACM Symposium on Principles of Programming Languages
pp.186195, 1984.

Bibliography 127

41. Ossanna, J. F,,
NROFF/TROFF user’s manual
UNIX Programmers Manual, 1979.

42. Rostek, L. and Alexa M.,
“Marking up in TATOE and exporting to SGML — Rule development for identifying
NITFG categories”,
submitted for special issue on tA€H-ALLC '97 Conferenceo be published by
Computers and the Humanitjddarch 1998.

43. Schmidt, J. and Putz, W.,
“Knowledge acquisition and representation for documents structure recognition:
the CAROL project”,
Proceedings of the Ninth IEEE Conference on Artificial Intelligence in Applications
Orlando/Florida March-b, 1993, IEEE Computer Society Press 1993.

44. Smith, D. and Lopez, M.,
“Information extraction for senmstructured documents”,
Workshop on Management of Semistructured Dé&atana Canyon Resort, Tucson,
Arizona, May 16, 1997.

45. Srihari, S. N. and Zack, G. W.,
“Document image analysis”,
Proceedings of the 8th International Conference on Pattern Recogriteots, France,
pp. 434436, 1986.

46. Stallman, R.,
GNU emacs manual
Oct., 1986.

47. Tang, Y. Y., Suen, C. Y., Yan, C. D., and Cheriet, M.,
“Document analysis and understanding: A brief survey”,
ICDAR 91 First International Conference on Document Analysis and Recognition,
Saint Malo, France, 1991.

48. Toyoda, J., Nouguchi, Y., and Nishimura, Y.
“Study of extracting Japanese newspaper article”,
Proc. 6th Int. Conf. on Pattern Recognitjgop. 11141115, 1982.

49. Vanlehn, K. and Ball, W.,
“A version space approach to learning context-free grammars”,
Marching LearningVol. 2, No. 1, pp. 39-74, 1987.

128

50.

51.

52.

53.

Bibliography

Warmer, J. and Egmond, S. V.,
“The implementation of the Amsterdam SGML parser”,
Electric PublishingVol. 2, No. 2, pp. 65-90, July 1989.

Wells, D.,
“Wrappers Survey”,
URL: http://www.objs.com/survey/wrap.htm

Whiteside, M.,
IMSYSthe Intelligent Markup System
Avalanche Development Company, Boulder, Colorado, 1986.

Wilcox, L. D. and Spitz, A. L.,

“Automatic recognition and representation of documents”,

Document Manipulation and Typograp®roceedings of the EP’88 Conference,
Cambridge University Press, pp.-87, 1988.

Appendix: List of Figures and Tables 129

Appendix: List of Figures and Tables

Fig. 21 Exampleof aDAG i i 14
Fig. 3.1 The system architecture of DREAM 23
Fig. 3.2 System overview of MarkItUp!, 30
Fig. 3.3 The initial state of the structure editor 32
Fig. 3.4 An example loaded into the structure editor 33
Fig. 3.5 Manually marking up a string in the structure editor 34
Fig. 3.6 The result of manually marking up a string in the structure editor 35
Fig. 3.7 The manually marking up result of the example in Figure 3.4 36
Fig. 4.1 MarkItUp!learning it 46
Fig. 4.2 An example of the conceptbase, 50
Fig. 5.1 The permutation graphofp =1[3,4,2,1] ...t .. 72
Fig.5.2 AuniongraphisaPG i 73
Fig.5.3 AuniongraphisnotaPG 74
Fig. 5.4 A PG .. o 78
Fig. 6.1 System architecture of MarkItUp! 82
Fig. 6.2 Organization of the structure editor 83
Fig. 6.3 An example of structure editing, 84
Fig. 6.4 Views and menus of concepteditor ccouviin... 88
Fig. 6.5 Prototype of aconcepteditor 89
Fig. 6.6 A graphic description of the concept base in Fig. 6.5 90
Fig. 6.7 A prototype of concept editor for the conceptsin Fig. 42 92
Fig. 6.8 DREAM DSD of the example in Figure 6.3 98
Fig. 6.9 The tagged document of Document-Sample 6.1 is

created by the DREAM DSD in Figure 6.8 99
Fig. 6.10 A tentatively marked-up example generated by

the DREAM DSD in Figure 6.8 100
Fig. 6.11 The user-corrected example using the exhaustive learning strategy . . 101
Fig. 6.12 The user-corrected example using the partial learning strategy 101
Fig. 6.13 Changed rules in DSD based on the exhaustive learning strategy 102
Fig. 6.14 Changed rule in DSD for learning an optional element

on the basis of the partial learning strategy 104
Fig. 6.15 Changed rules in DSD for learning a repetition element

on the basis of the partial learning strategy 104
Fig. 6.16 Changed rules in DSD for learning a new string
on the basis of the partial learning strategy 105

Table 6.1 The experiment results generated by applying conceptset S1 107

Table 6.2 The experiment results generated by applying conceptset S2 108

