
GMD –
Forschungszentrum
Informationstechnik
GmbH

N° 16/1998

GMD Research Series

Yi Xu

An Incremental Approach
to Document Structure
Recognition

© GMD 1998

GMD – Forschungszentrum Informationstechnik GmbH

Schloß Birlinghoven

D-53754 Sankt Augustin

Germany

Telefon +49 -2241 -14 -0

Telefax +49 -2241 -14 -2618

http://www.gmd.de

In der Reihe GMD Research Series werden Forschungs- und

Entwicklungsergebnisse aus der GMD zum wissenschaftlichen, nicht-

kommerziellen Gebrauch veröffentlicht. Jegliche Inhaltsänderung des

Dokuments sowie die entgeltliche Weitergabe sind verboten.

The purpose of the GMD Research Series is the dissemination

of research work for scientific non-commercial use.

The commercial distribution of this document is prohibited,

as is any modification of its content.

Anschrift der Verfasserin/Address of the author:

Yi Xu

debis Systemhaus

Göbelstraße 1-3

D-64293 Darmstadt

E-mail: yxu@debis.com

Die vorliegende Veröffentlichung entstand im/

The present publication was prepared within:

Institut für Integrierte Publikations- und Informationssysteme (IPSI)

Integrated Publication and Information Systems Institute

http://www.darmstadt.gmd.de/ipsi

Die Deutsche Bibliothek - CIP-Kurztitelaufnahme:

Xu, Yi:

An incremental approach to document structure recognition /

Yi Xu. GMD – Forschungszentrum Informationstechnik GmbH. -

Sankt Augustin : GMD – Forschungszentrum Informationstechnik, 1998

(GMD Research Series ; 1998, No. 16)

Zugl.: Darmstadt, Techn. Univ., Diss., 1998

ISBN 3-88457-340-3

ISSN 1435-2699

ISBN 3-88457-340-3

���

Abstract

Keywords: document structure recognization and machine learning

Most of the electronic documents available from todays huge number of electronic informa-

tion sources have on implicit structure. In order to manipulate, exchange, and archive these

documents, it is important to extract their logical structure and to make it explicitly available.

Many researches have noted the importance of document logical structure recognition,

yet we still lack an easy method for recognizing the implicit structure of electronic documents.

The two most widely used methods are: recognizing structure by hand, or through structure

recognition programs. Due to the large number of documents, the manual approach is tedious

and error-prone although in principle it is very simple. Writing a complete recognition pro-

gram is much more effective, but it requires significant intellectual effort. To combine the ad-

vantages of both methods, this thesis presents an approach to automate the learning of recog-

nition grammars from manually structured examples.

The approach uses two techniques from the field of machine learning: Version space – to

abstract from the concrete contents of the structured examples in order to recognize examples

with different content, and grammatical inference – to generalize the syntactic structure of the

structured examples in order to recognize examples with slightly deviating structure. These

two techniques are embedded into an incremental structure learning system – MarkItUp! –

which allows for a convenient refinement of a recognition grammar towards new examples

with unanticipated structure.

This dissertation presents the design, analysis, and implementation of MarkItUp!. The

characteristics of MarkItUp! are as follows. (1) it supports a simple way for the user to obtain

a suitable recognition grammar; (2) it uses incremental learning so that the recognition gram-

mar can be efficiently modified using additional structured examples. Experimental results on

combining the version-space method with a grammatical inference approach in the learning

cycle are also presented.

��

Kurzfassung

Schlüsselworte: Dokumentstruckturerkennung und maschinellen Lernen

Verschiedene elektronische Informationsquellen bieten ihre Dokumente in unterschiedlicher

Form an. Insbesondere ihre Struktur ist oft nur in anbieterspezifischem Format verfügbar. Für die

weitere Bearbeitung, den Austausch und die Archivierung muß diese Struktur extrahiert werden.

Diese Dissertation entwickelt einen Ansatz zur automatischen Erkennung der Struktur von elek-

tronischen Dokumenten auf Basis von nur wenigen, manuell strukturierten Beispielsdokumen-

ten. Dazu wird eine regel-orientierte Sprache zur Spezifikation von Erkennungsprogrammen

eingeführt. Auf dieser Basis werden Techniken des maschinellen Lernens – Versionsraum und

Grammatik-Inferenz – entwickelt, die Erkennungsprogramme aus Beispielen generieren.

 �

Acknowledgements

I am most grateful to my advisor, Prof. Dr. Erich J. Neuhold, for providing me the research

opportunity in GMD-IPSI. His insightful comments on this work have been a principal reason

for its success. Further more, his feedback has been the major force behind my development as

a researcher. I also appreciate my second advisor, Prof. Dr.-Ing. Dr. h.c. José L. Encarnação, for

reviewing this dissertation and helpful discussions.

A number of other people deserve special acknowledgements. Peter Fankhauser, my group lead-

er, guided me into a new research area. Discussions with him helped me understand what it was

that I was doing. Discussions with Helena Ahonen, Ralph Busse, Bertin Klein, and especially

Weimin Chen helped me make my thesis clear, even when I thought it was already clear.

I would like to thank Lothar Rostek who supports a good environment of SMALLTALK which

helped to code my implementation successfully. I also appreciate the kind help of Ute Sotnik,

Andreas Stenger, Ute Kischel, Elisabeth Trautrims, Peter Schoendorf, and Ernst Mink during our

years at GMD-IPSI.

This work was done with the financial and technical support of GMD-IPSI. The support by the

Computer Science Department, Darmstadt University of Technology is greatly appreciated.

I must thank Prof. Longxiang Zhou who recommended GMD-IPSI to me, whose encouragement

over the years made the completion of this work possible. Final thanks go to my parents, whose

understanding and support over 10 thousand kilometers away made this work possible.

 "#,& /' �/.3&.32 5**

Table of Contents

������� �
����������� �� �

�������1/#,&- �/-"*. ".% �5&1",, �/",2 �� �

��	����5&1",, �001/"$)
� �

��	������/6:�&5&, �&$/(.*3*/. �� �

��	�	����*():�&5&, �&$/(.*3*/. �� �

��	�
����&"1.*.(#8 �"1+*.(40 �� �

��
����/.31*#43*/. �

������� �4*%& 3/ 3)*2 �*22&13"3*/. �� �

������� � ������������� �� �

	������/1-", �".(4"(&2 �� �

	��������31*.(2 ".% �".(4"(&2 �� �

	���	����&(4,"1 �701&22*/.2 ".% �*.*3& �43/-"3" ��� �

	���
����*."18 �&,"3*/. /' �&(4,"1 �701&22*/.2 �	� �

	�	����1"0)2 �	� �

	�	������*1&$3&% �1"0)2 ".% !.%*1&$3&% �1"0)2 �
� �

	�	�	����*1&$3&% �$8$,*$ �1"0)2 �
� �

	�	�
����&1-43"3*/. �1"0)2 ��� �

	�
����/$4-&.3 �314$341&2 ��� �

	�
������8.3"$3*$ �314$341&2 ��� �

	�
�	����"8/43 �314$341& ��� �

	�
�
����/(*$", �314$341& �� �

	�
������&,"3*/.2 �&36&&. �"8/43 ".% �/(*$", �314$341& �� � � � � � � � � � � � � � � �

	������"1+40 ��� �

	������/$4-&.3 �&2$1*03*/. �".(4"(& � ���� ��� �

	������������"1+40 ��� �

	���	�������� � ��� �

	���
������� �"12&1 	�� �

	�������)& �"1+*.(!0 � "((*.(� �1/$&22 	�� �

������� � �� �������� �� 	���������������� ����������� ��� � � � � �

���������� 	
� �

��������314$341& �&2$1*03*/. /' " ��� 	�� �

���	����&$/(.*3*/. �38,&2 /' ���2 	� �

���	�����&(4,"1 �701&22*/.2 *. ���2 	� �

���	�	���4.$3*/.2 *. ���2 	�� �

���
���� �/-0,&3& �7"-0,& /' " ��� 	�� �

�	9�823&- �5&15*&6 /' �"1+�3!0� 	�� �

�	������3"13*.(3)& �"1+�3!0� �823&-
�� �

�	�	����314$341& �%*3/1
�� �

�	�
����$"..&1
�� �

�	������&"1.*.(
�� �

� !*$ -% �-,1$,10 3(((

���7�$+-,01/ 1(-, -% � /)�1�.� �� �

��	7�2++ /6 	�� �

������ � �������� ��� �

	������$ /,(,& �/-!*$+0 ,# �$ /,(,& �3*0 	
� �

	������$ /,(,& 1 �-,1$,1 �$3$* 	�� �

	��������- *0� �/-!*$+0 ,# �3$/ ** �../- "' 	�� �

	��������-,"$.10 ,# �(, /6 �$* 1(-, 	�� �

	��������1/+(,(,& �-,"$.10 	� �

	���	����/#$/(,& �-,"$.10 	�� �

	���	�����-,"$.1 � 0$ 	�� �

	���	�����(,$ / �/#$/(,& �(01 -% �-,"$.10
�� �

	���
����$ /,(,& %/-+ �1/(,&0
�� �

	���
�����$ /,(,& %/-+ �-.68�1/(,&0
�� �

	���
�����$ /,(,& %/-+ �218�1/(,&0

� �

	���
�����5 +.*$0 %-/ �1/(,& �!01/ "1(-,

� �

	������$ /,(,& 1 �1/2"12/$ �3*
�� �

	��������- *0� �/-!*$+0 ,# �3$/ ** �../- "'
�� �

	��������$./$0$,1 1(-, -% �-"2+$,1 �-&(" * �1/2"12/$
�� � � � � � � � � � � � � � � � � �

	��������$ /,(,& �-&(" * �1/2"12/$!6 �$4/(1$ �2*$0
� � � � � � � � � � � � � � � � � � � �

	���������,(%(" 1(-, ,# �(+.*(%(" 1(-, �2*$0
�� �

	���������!01/ "1(-, �2*$0 ��� �

	���	����..*6(,& 1'$ �$ /,(,& �2*$0 �	� �

	���	�����-,1/-* �1/ 1$&($0 %-/ �..*6(,& 1'$ �$ /,(,& �2*$0 �	� � � � � � � � � �

	���	�����-+$ �5 +.*$0 %-/ 1'$ �$ /,(,& �2*$0 �
� � � � � � � � � � � � � � � � � � � �

	�	����2++ /6 �� �

������ � ��� ���� �� 	�������! ������� ��� �

������/-!*$+ ,# �- * ��� �

������ 0(" �-,"$.10 ,# �-1 1(-,0 ��� �

������,%$//(,& �$,$/ * �5./$00(-, ��� �

��������-,01/2"1(,& �$/+21 1(-, �/ .' ��� �

��������,(-, �/ .' -% ��0 ��� �

��������$/(3(,& �$,$/ * �5./$00(-, %/-+ , �� �
� �

�	����2++ /6 ��� �

������ � �������������� ��� �

�������601$+�/"'(1$"12/$ -% � /)�1�.� �� �

�������0$/ �,1$/% "$ �� �

���������1/2"12/$ �#(1-/ �� �

���������-,"$.1 �#(1-/ �

�������/-+ � /)$#82. �5 +.*$ 1- �/ ++ / ��� �

��	����+.*$+$,1 1(-, -% �$ /,(,& �-+.-,$,1 ��� �

��	������/-2.(,& �218�1/(,&0 4(1' �-,1$/+(, *0 �	� �

��
���������/ ++ / �$,$/ 1-/ ��� �

�������$ /,(,& �1/ 1$&($0 ��� �

��������� **! ") �2*$ ��� �

���������5' 201(3$ 30� � /1(* �$ /,(,& ���� �

�����������$ /,(,& %/-+ , �,1(/$ �5 +.*$ ���� �

���$� ' �'&+�&+* #.

�������������)&#&!)'% � ��)+#�$ �.�%($� ���� �

��	����.(�)#%�&+�$ �-�$,�+#'& ' +"� �/*+�% ���� �

��
����,%%�)/ ���� �

����"� � ����"�� �� � ���� �

	�������#+#&!0/0�.�%($� ���� �

	��������,&�+#'& �(()'��"�* ���� �

	��������)'���,)�$ �(()'��"�* ���� �

	������&�,�+#-� ���)&#&! �&� ���)&#&! ��+"'�* ���� �

	��������)�%%�+#��$ �& �)�&�� ���� �

	���������)*#'& �(���* ���� �

	������(($#��+#'& +' �)�((#&! ��%#0�+),�+,)�� ��+� ���� �

����"� � �����#!��� ���� �

������� ���% ���� �

������$	 ��!" �� ��# �! ��� �����! ���� �

�	���� � ���������
�� ��

(1 1 1 1 1. 11

Introduction

Todays many electronic information sources offer masses of electronic documents. These doc-

uments usually have only implicit structures. For further manipulation, exchange and archiv-

ing, it is important to extract their implicit structure. This dissertation presents an approach to

automatically recognize the structure of electronic documents on the basis of a few manually

structured example documents. For this purpose this thesis introduces a dedicated language

for specifying recognition programs, and shows how machine learning techniques can be used

to generate such recognition programs from examples. The developed concepts have been im-

plemented in the framework of the system MarkItUp!.

1.1 Problem Domain and Overall Goals

With widely available computers, documents are not only thought as a medium to be printed

and read, but also as a structure to be communicated, retrieved, archived in data bases, etc. To

take advantage of the already existing tools for the above purposes, two issues have become

important: (a) standardized representation of documents, and (b) document structure recogni-

tion, with which arbitrary documents can be turned into a standardized form. The first issue is

a general goal, and the second issue is a means to accomplish that goal.

Document structure recognition thus aims at extracting information from documents and

at converting the extracted information into a representation language which models the origi-

nal document as accurately and concisely as possible. A document can be generally viewed as

having two kinds of structures: a logical structure and a layout structure. The logical structure

separates a document into logical elements, such as the title and author of a document, while

the layout structure consists of formatting elements, such as pages, columns, and paragraphs.

Document structure recognition refers to both aspects: document logical structure recognition

and layout structure recognition. Furthermore, a document can have different representations,

for example, it can be represented by paper sheets from a laser printer, or can exist as an elec-

tronic source sitting in computer memory or on magnetic devices. The documents existing as

electronic sources are machine readable to smaller or larger extend, e.g. pixel representation,

 2 �	���� � ���������
��

versus explicitly structured and described. With the increasing popularity of the Internet, the

number of electronic sources is growing quickly. How to translate a paper form document into

a machine-readable document is beyond the scope of this thesis. This thesis focuses on the

documents that are already machine readable.

Comprehending a consistently structured document is easier than comprehending an un-

structured document since the reader can concentrate on the contents and organization of the

document without worrying about its layout. More generally, in a publication cycle, which

comprises writing and reading documents, in addition to copying, distributing and archiving

of the documents, a structured document has further advantages which are not concerned with

creation and editing alone: Because of the high level of abstraction of the document model

used, many different kinds of processes can be applied to structured documents. For example,

information necessary for a document retrieval system, database systems, hyper-document

systems or individualized printed document systems can work efficiently on such documents.

However, document producers usually use different and inconsistent formatting conven-

tions to express the layout structure, even within one source or document. For example, in a

bibliographic document, a line starting with either the character “!” or the capital characters

“AU” expresses that the content in the line denotes an author name. Furthermore, the first

name and the last name of the author could have different ordering, that is, the first name is

followed by a blank and by the last name, or the last name is followed by a comma, by a

blank, and by the first name. Similar inconsistent structuring conventions can be found in doc-

uments retrieved from public databases or received via electronic mails.

Documents can be classified into several classes on the basis of their formatting forms,

for instance, the bibliography documents can be divided into several different classes since

each person has his own habit to format his bibliography document. However a collection of a

document class consists of many subdocuments with similar structures.

To arrive at a consistent standard structure which can be processed by a wide range of

applications, it is necessary to recognize such formatting conventions, and to map them into a

standardized form. Towards this end the following three problems have to be tackled.

(a) What kind of document structure should be captured?

The aim of this thesis is to convert documents from their original format, that is, their layout

structure, to a standard logical structure. Thus the focus is on document logical structure

recognition.

�
���	� � ���������� ��

(b) Which formal description method is to be used for representing the recognized structure?

Apart from the many proprietary description languages used by commercial document pro-

duction systems, there exist two main standard languages. ODA (Office Document Archi-

tecture) and SGML [5] (Standard Generalized Markup Language). H. Brown [10] dis-

cusses similarities and differences between the two description languages. Choosing which

one depends on the concrete applications. In this thesis SGML is chosen, because it speci-

fies document structures with well-defined grammars, which can be used as a good basis

for implementing machine learning techniques to generate such grammars semi-automati-

cally, as well as appropriate parsers to use these grammars for document structure recogni-

tion.

(c) How can the structure of a document be captured?

The structure of documents can either be captured manually, or automatically by means of

recognition programs. Manually structuring a huge number of documents is highly

repetitive, cumbersome, time-consuming, error-prone, and expensive. In addition, the doc-

uments have different contents and similar structures, and their logical structures are nested

structures rather than flat structures. All of these factors increase the complexity of the log-

ical structure recognition for the human. Of course, writing complete recognition programs

to recognize the logical structure requires significant intellectual effort. Thus the main goal

of this dissertation is to find a semi-automatic approach to bridge the gap between structur-

ing manually and writing a recognition program.

1.2 Overall Approach

Capturing information from documents is the goal of document structure recognition. This

ranges from the identification of the layout structure, the recognition of the (logical) structure

of documents, and to the (largely domain dependent) extraction of semantic content.

Document structure recognition can be classified along two view points, document pro-

cessing and recognition level.

From the viewpoint of document processing, the document structure recognition can be

divided into two activities:

• Document analysis to extract the geometric (layout) structure from a document;

• Document understanding to map the geometric (layout) structure into a logical structure

of document.

From the viewpoint of recognition level, two main levels can be distinguished:

 4 �	���� � ���������
��

• The low-level recognition or the document layout structure recognition;

• The high-level recognition or the document logical structure recognition.

This thesis discusses both recognition levels, but especially concentrates on high level

recognition.

1.2.1 Low-Level Recognition

Low-level recognition aims at obtaining a symbolic representation of the document regarded

initially as an image in document pages, e.g. scanned images. This includes decomposing the

image into regions of text and non-text by breaking the text regions on the page into text

blocks and image blocks, and text blocks into text lines, recognizing characters and words,

and identifying the format characteristics such as font type and size.

Most efforts on analyses and transformations of documents have concentrated on the doc-

ument layout structure recognition, such as separating text and graphics in the documents and

recognizing characters in the text [45, 53, 24, 12].

1.2.2 High-Level Recognition

Over the past few years it has become apparent that low-level recognition does not suffice, but

also higher levels of recognition are required [33, 43]. For this purpose, the hierarchical struc-

ture and sequence relation in a document are extracted and described by means of a standard

high level language. Recognizing this level of structure also can be regarded as the final aim

and the last stage of document structure recognition.

In actual production level documents the logical structure is usually expressed by means

of layout and format. This information has now to be extracted and transformed, in order to

arrive at a coherent logical structure for a particular document. Since there is no one-to-one

mapping between layout structure and logical structure, such an extraction is difficult. In addi-

tion, for different types of documents and even different description languages of documents’

structures, the formatting rules are different.

Practically all approaches aiming at logical structure recognition utilize some form of

rule knowledge to specify the relationship between layout and logical structure. For example,

Ingold [28] proposes a method for deducing the logical structure from the layout structure of a

document, using precise rules that interpret the layout structure in terms of font-information

�
���	� � ���������� ��

and geometrical information. Toyoda, Noguchi and Nishimura [48] develop a method for the

extraction of articles in Japanese newspapers. For this purpose, they identify six general for-

matting rules for the layout of Japanese newspapers, and on this basis develop an algorithm

for extracting newspaper articles. Another, more flexible approach to recognize the logical

structure of documents is implemented by the CAROL system which is an automatic catalog-

ing system to be used in libraries [43]. A printed document (usually the header page of some

scientific article) is input into the system by OCR (optical character recognition) in order to

derive a well-defined output format with additional layout information. This information is

used for recognizing the logical structure of the documents by means of recognition rules. To

allow the user to treat different document types, there is a learning mechanism which can gen-

erate a set of new rules for a specific document type from examples.

All these approaches focus on the layout information to determine the logical structure.

In most cases, however, this does not suffice. Thus these approaches are extended by utilizing

content information. In addition, the extended approach in this thesis is not restricted itself to

flat structures, but uses the full power of SGML to treat also documents with a nested struc-

ture.

1.2.3 Learning by Marking up

SGML represents the structure of documents by so-called markups, which are dedicated labels

splitting the content of a document into its logical elements. The transformation of an elec-

tronic document into an SGML-compliant form comprises the following three steps: (1) speci-

fying the document’s logical structure, (2) determining the processing rules which will pro-

duce the structure desired for the document, and (3) inserting the markups into the document

according to these rules.

As stated above, there are two alternatives to carry out these steps. One is to manually

structure the documents with a normal editor, on the basis of an initially specified goal struc-

ture. The other is to use programs to transform a partially inconsistently formatted document

into a consistently structured document.

To a non-programmer structuring documents manually with an editor may seem easier

than to program a translator. However, it is highly burdensome to manually structure a large

amount of documents. Of course it is productive in the sense that every step makes tangible

progress towards the solution of the problem, but it is tedious and repetitive all the same.

 6 �	���� � ���������
��

Writing recognition programs is not as easy as manually structuring documents. These

recognition programs can be implemented by editing macro commands, such as an emacs

macro [46], or recognition rules, such as FastTag, IMSYS [52], and DREAM (Document

Structure REcognition And Markup) [20]. Although using macros or recognition rules (a rec-

ognition grammar) based on a complete definition of the structure can overcome the above

problems, it involves a fair amount of work that requires significant intellectual effort due to

structural differences and formatting inconsistencies among the subdocuments. In addition to

writing such a grammar, the user has to debug it, parse it, check to see whether it does the right

thing, and then debug it again if necessary. Once this development process is completed, the

program can be used to convert an arbitrary number of subdocuments of a collection. But

writing such a program is not a simple task, and adjusting it directly to new document classes

is nearly impossible.

This thesis aims at recognizing the structure of electronic documents (e.g. collections)

that have similar implicit structures (e.g. BibTeX, electronic mail, folders). For this kind of

electronic document collections the manual determination of the structure of a few example

subdocuments can be used as a basis to generate recognition programs for structuring the oth-

er subdocuments. The system MarkItUp! developed in the framework of this dissertation fol-

lows exactly this approach, using techniques from machine learning. It provides a structure

editor, with which an initial example for a particular collection is manually structured (marked

up) by the user. The system accepts the marked-up example and generates a recognition gram-

mar, which can recognize similar examples. On the basis of this grammar the system tries to

mark up another example selected from the same collection. The tentatively marked-up exam-

ple can be accepted or rejected by the user. If it is rejected, because the example deviates from

the previous examples and the result of the tentatively marking leads to an undesired conse-

quence, the user corrects this example and asks the system to learn the corrected example.

After learning the example, the system synthesizes a new recognition grammar which includes

the structural deviations occurring in the new example. After a few such learning steps, the

generated grammar usually comprises most of the logical structure of all remaining subdocu-

ments. Thus they can be automatically structured with very few further user corrections.

1.3 Contribution

The main contribution of this thesis lies in the effective combination of two approaches to

machine learning – version-space (see Section 7.2.2) and grammatical inference (see Section

7.2.1), and their adaptation to the field of document structure recognition. The algorithms de-

�
���	� � ���������� ��

veloped on this basis are used to abstract the concrete strings in the documents (see Section

4.2) and to learn the logical structure of the documents (see Section 4.3). The grammatical

inference approach is further refined to allow for inferring general expressions involving arbi-

trary ordering (see Chapter 5).

The developed learning algorithms are embedded into a flexible and friendly user inter-

face, implemented in the programming language Smalltalk (see Section 6.2). The user inter-

face supports utilities for a variety of tasks, such as organizing predefined recognition pat-

terns, manual mark up of examples, etc., in a uniform framework.

The approach described in this thesis thus fills the gap between structuring manually and

structuring by a programming approach. It supports an easy way for the user who wants to

structure similar on-line electronic documents and it can be applied in many areas where such

“repetitive” documents occur.

The MarkItUp! system is fully implemented and forms an operational front-end to the

DREAM parser (see Section 3.1).

1.4 A Guide to this Dissertation

The remainder of this thesis is organized as follows. Chapter 2 introduces some basic concepts

which are used in the following chapters. In Chapter 3 the overall approach of MarkItUp! is

presented. The parser of MarkItUp! – the DREAM parser generator is discussed first, and then

the overall learning cycle of MarkItUp! is described. Finally, some examples demonstrate the

learning process that has been discussed in the above learning cycle. Chapter 4 concentrates

on the learning strategies in MarkItUp! and discusses how to derive grammars from marked-

up examples by abstraction at the content level and how to unify and abstract these grammars

at the structure level. Chapter 5 discusses the sequences with arbitrary ordering in a document

collection, that is, these sequences describe how the structures of subdocuments in the docu-

ment collection may have different ordering. Chapter 6 depicts the system architecture of

MarkItUp! and detail functions, learning strategies, or major implementation algorithms of

each component in the architecture with/without examples. Chapter 7 surveys related work in

the areas of editing-by-example techniques and machine learning approaches. Finally, Chapter

8 illustrates some results, gives limitations of the learning approach and discusses the future

work.

 8 �	���� � ���������
��

������ � ���
	�	���	�� ��

(2 2 2 2 2 22

Preliminaries

To derive a general recognition grammar from document examples, two areas are built: Ma-

chine learning and document structure recognition. To discuss the problem of these areas, the

following definitions and theorems should be taken into account. They can be separated into

two parts corresponding to the above two areas.

The learning methods refer to inductive learning. The concepts of formal languages and

graphs form the representational basis for the learning approaches.

Besides the machine learning approach to recognition, this thesis concentrates on the re-

sult of document structure recognition, that is, how to represent the structured document, rath-

er than the processing of document structure recognition, that is, how to really abstract the

logical structure from the document. Therefore, this chapter also introduces SGML – a stan-

dard document description language and its related concepts and notions, such as document

structures, markup, etc.

To associate the definitions and theorems with their use in this thesis, a short explanation

is given, at the beginning or end of some sections, on why the definitions or theorems are

introduced in a section and where they will be applied in the thesis.

2.1 Formal Languages

Since regular grammars are used to represent and manipulate the structure of document exam-

ples and regular expressions are used to abstract a set of concrete strings, it is necessary to

introduce some definitions about formal languages and discuss some of their characteristics.

2.1.1 Strings and Languages

A finite nonempty set � of arbitrary symbols (such as the ASCII character set) is called a finite

alphabet.

A string over � is a finite sequence of symbols from �. All strings over � form an infinite

set, denoted by �*. The symbol � stands for the empty string which contains no symbols and is

 10 ������ � ��	�
������

considered to be in �* for every �. The length of a string s, denoted by �s�, is the number of

symbols in s.

If u and v are strings over �, uv is the concatenation of them. Two strings u and v are

equal if u and v have the same length and contain the same symbols in the same order.

The string u is a prefix of the string v if and only if there exists a string w (w � �) such

that uw = v, e.g., “ban” is a prefix of “banana”. Respectively, the string u is a suffix of the

string v if and only if there exists a string w (w � �) such that wu = v, e.g., “nana” is a suffix of

“banana”.

The concept of the strings is used widely in Chapter 4 and 6.

Any finite or infinite subset of �* is called a language L.

A positive example of language L is a string accepted by L; conversely, a negative exam-

ple of L is a string not accepted by L. The MarkItUp! learning system, currently, only adopts

positive examples during the learning process.

2.1.2 Regular Expressions and Finite Automata

A regular expression [27] over a finite alphabet � is defined recursively as follows:

• � is a regular expression;

• For each a � �, a is a regular expression;

• If r and s are regular expressions denoting the languages L(r) and L(s), respectively, then

(r)�(s), (r)(s), (r)* and (r) are regular expressions that denote the sets L(r)�L(s),

L(r)L(s), L*(r) and L(r), respectively.

In the above notations, the parentheses (r) and (s) may be substituted by regular expres-

sions if desired.

A language denoted by a regular expression r is called as a regular set, written as L(r).

For instance, L(a�b) = {a, b}.

If two regular expressions r and s denote the same language, r and s are called equivalent

and denoted as r � s, for example, (a�b) � (b�a).

A regular expression can be compiled into a recognizer which is a program. It takes a

string x as input and answers “yes” if x is a sentence of the language and “no” otherwise. The

������ � ���
	�	���	�� ���

recognizer represents a generalized transition diagram called a finite automaton (also called a

Deterministic Finite Automaton, DFA for short). A DFA is formally denoted by a 5-tuple (Q,

�, σ, q0, F), where

• Q is a finite nonempty set of states;

• � is a finite alphabet of input symbols;

• σ is a transition function mapping Q � � � Q;

• q0 � Q is a start state;

• F � Q is a set of final states.

A DFA allows only a single transition from a state on a specific input symbol. When a

finite automaton allows zero, one or more transitions from a state on the same input symbol,

the finite automaton is called a Nondeterministic Finite Automaton (NFA for short). Formally

a NFA is denoted by a 5-tuple (Q, �, σ, q0, F), where Q, �, q0, and F (states, inputs, start state,

and final states) have the same meaning as for a DFA, but σ is a map from Q � � � ℘ (Q).

The transition on the empty input � is called an �-transition, denoted as σ(q, �).

To implement the manipulations on regular sets, the following theorems provide a

theoretical basis.

Theorem 2.1 ([27, Theorem 2.3]) Let r be a regular expression. Then there exists a NFA

with �-transitions that accepts L(r). ❚

In [3], the authors give an algorithm to construct a DFA from an NFA ([3, Algorithm

3.2]).

Theorem 2.2 ([27, Theorem 3.8]) There is an algorithm to determine if two finite automata

are equivalent. ❚

The following result is a direct corollary of the above theorems.

Corollary 2.3 There is an algorithm to determine if two regular expressions are equivalent.

Based on these results, a regular expression can be represented as a DFA. Thus, whether two

regular expressions are equal can be determined by comparing their corresponding DFAs

(Chapter 6).

 12 ������ � ��	�
������

2.1.3 Binary Relation of Regular Expressions

To abstract from concrete strings in documents and grammar rules, the more-specific-than

binary relation of regular sets plays an important role. It is a basis of organizing regular ex-

pressions and using rewrite rules. Mitchell [37] and Vanlehn & Ball [49] give two kinds of

definitions of this binary relation in their applications.

Let ℜ be a set of regular expressions. For a given regular expression r � ℜ , let L(r) be a

set of strings matched by r. The following definitions are introduced.

Definition 2.1 (Relation �) Given r, s � ℜ , if L(r) � L(s), then we say r is more specific

than s, denoted by r � s, shorthanded as more-specific-than. ❚

Definition 2.2 (Relation �) Given r, s � ℜ , if L(r) � L(s), then we say r is more specific

than or equal to s, denoted by r � s, shorthanded as more-specific-than-or-equal-to. ❚

Definition 2.3 (Relation �) Given r, s � ℜ , if L(r) = L(s), then we say r is equivalent to s,

denoted by r � s. ❚

Clearly, “�” identifies an equivalence relation over ℜ .

Definition 2.4 (Comparable and Incomparable) Given r, s � ℜ , if at least one of the rela-

tions r � s and s � r holds, then we say that r and s are comparable, denoted as s � r; other-

wise, they are incomparable, denoted as s�/ r. ❚

The following result is derived from the above definitions.

Theorem 2.4 The relation �(and �) over ℜ is transitive.

Proof: Let r, s, and t � ℜ such that r � s � t. That is, L(r) � L(s) � L(t), so that L(r) �

L(t). By Definition 2.1, we have r � t. Similarly, if r � s � t, we can infer r � t. ❚

These definitions and theorems in the above sections are widely used in chapters 3, 4 and

6.

2.2 Graphs

This section introduces some related concepts with respect to graphs. These concepts will be

used in Chapters 4 and 5 to organize a set of regular expressions and to discuss sequences of

elements with arbitrary ordering.

�	����� � ����
�
��
�� ���

2.2.1 Directed Graphs and Undirected Graphs

A directed graph, G, consists of a finite set V and an irreflexive binary relation on V [19]. The

members in V are called nodes (or vertices). The binary relation may be represented either as a

collection E of ordered pairs or as a function from V to its power set,

Adj: V � ℘ (V),

where Adj(v) is called the adjacency set of node v. The ordered pair(v, w) � E is called an

edge.

A sequence of nodes (x0, x1, ..., xn), n � 1, is a path of length n from node x0 to node xn if

there is an edge which leaves node xi –1 and enters node xi for 1 � i � n.

For a node x, the number of edges entering x is called the in-degree of x, the out-degree of

x is the number of edges leaving x.

Two graphs G = (V, E) and G� = (V�, E�) are called isomorphic, denoted G � G�, if there

is a bijection f: V � V� satisfying for all x, y � V,

(x, y) � E � (f(x), f(y)) � E�

Let G = (V, E) be a graph with node set V and edge set E. The graph G–1 = (V, E–1) is said

to be the reversal of G, if

 E–1 = {(x, y) � (y, x) � E},

A symmetric closure of G is the graph G = (V, E), where

E = E � E–1

A graph G = (V, E) is called undirected if its adjacency relation is symmetric, i.e., if

E = E–1,

or equivalently,

E = E

2.2.2 Directed Acyclic Graphs

A directed acyclic graph (or DAG for short) is a directed graph that has no cycles. Figure 2.1

shows an example of a DAG.

 14 ������ � ��	�
������

Fig. 2.1 Example of a DAG

1 2

3 4

5 6 7

A node having in-degree 0 will be called a base node. One having out-degree 0 is called a

leaf. In Figure 2.1, nodes 1, 2, and 4 are base nodes and nodes 2, 5, 6 and 7 are leaves.

If (x, y) is an edge in a DAG, x is called a direct ancestor of y, and y is called a direct

descendant of x. For example, in Figure 2.1, node 4 is a direct ancestor of node 7; node 7 is a

direct descendant of node 4.

If there is a path from node x to node y, then x is said to be an ancestor of y and y is said to

be a descendant of x. In Figure 2.1, node 6 is a descendant of node 1; node 1 is an ancestor of

node 6.

DAGs are used in Section 4.2.4 to construct concept bases and to infer linear ordering

lists of the nodes in the concept bases.

2.2.3 Permutation Graphs

Let � be a permutation of numbers 1, 2, ..., n and denoted as the sequence [�1, �2, ..., �n]. For

example, the permutation � = [2, 3, 4, 1] has �1 = 2, �2 = 3, �3 = 4, �4 = 1. The notation ��1
i

denotes (�–1)i which indicates the position in the sequence where the number i can be found,

that is, (��1)�i
 = i; for the above example, ��1 = [4, 1, 2, 3], where ��1

1 = 4, ��1
2 = 1,

�
�1
3 = 2, ��1

4 = 3.

Given a permutation � of numbers 1, 2, ..., n, a permutation graph (or PG for short) for �

is an undirected graph G[�] = (V, E) where

V = {1, 2, ...,n}, and E = {(i, j) � i, j � V and (i – j)(��1
i – �

�1
j) � 0}.

Informally, each edge in a PG indicates an inversion between two nodes. An undirected

graph G is called a permutation graph if there exists a permutation � such that G is a graph

isomorphic to G[�].

�	����� � ����
�
��
�� ���

Theorem 2.5 For a permutation � of numbers {1, 2, ...,n} there is a sole PG corresponding

to it, i.e., a permutation � of numbers {1, 2, ...,n} and a permutation graph G[�] expressing a

one-to-one mapping.

Proof: The definition of the permutation graph and the construction of it ([19], Golumbic, pp.

157).

The application of the PG is described in Chapter 5.

2.3 Document Structures

Since the problem domain of this thesis refers to documents structure recognition (Section

1.1), starting from this section some concepts are introduced which provide background

knowledge related to the problem domain and overall goals.

Document structures are meant to describe the various parts of a document and the con-

nections between them. Generally, two distinct structures are associated with a document: the

layout structure and the logical structure which are independent of each other and are deter-

mined by different processes – formatting process (layout structure) and editing process (log-

ical structure).

However in the problem domain of this thesis, the source documents have unusual struc-

tures – implicit structures, they are called syntactic structures of the documents. In the follow-

ing sections, the syntactic structure of the documents is introduced first, and then the usual

structures of documents are discussed.

2.3.1 Syntactic Structures

Syntactic structures of documents describe a kind of implicit structures, such as the field

names in bibliography documents; the delimiters, such as the points in an expression of date;

invariant strings at the beginning of e-mail documents (e.g., the string “From”, “Subject”,

etc.); and section numbering etc.. With the help of such structures, the human reader can easily

recognize the contents of documents and understand what is meaning of the contents.

Note that not every document is associated with a syntactic structure.

2.3.2 Layout Structure

The geometric or layout structure is the result of dividing and subdividing the content of a

document into increasingly smaller parts, on the basis of the presentation [47].

 16 ������ � ��	�
������

The document layout structure is usually determined by a formatting process, for

instance, a book has 100 pages, on page 3 there are 28 lines. The formatting process may be

controlled by attributes called geometric directives associated with the logical structure. For

example, the geometric directive requires that a chapter starts on a new page, or the title of a

section and the first two lines of its first paragraph are presented on the same page. Geometric

directives may be collected into layout styles each of which may be referred to by one or more

logical objects.

2.3.3 Logical Structure

The logical structure is the result of dividing and subdividing the content of a document into

increasingly smaller parts, on the basis of the human perceptible meaning of the document

content [47].

The document logical structure is determined by the author and embedded in the docu-

ment during the editing process, e.g. title of the document, author(s), summary, chapter, etc. It

specifies a kind of logical relationship among the logical objects.

The relationships among logical objects in the logical structure are typically in the form

of sequences and hierarchical nests. The logical structure breaks a document, for example,

into chapters, sections, and paragraphs, defines headings, and determines links and references

among various objects. The structure in question is abstract and totally independent of the way

the document is presented.

The document logical structure is often represented by a tree structure [16, 14]. This

model is particularly useful since it allows both sequences and hierarchical nests of objects to

be expressed.

In order to parameterize recognition algorithms and, in particular, to interpret the layout

structure to build up the logical structure, or to transform one logical structure into another

logical structure, a formal description is necessary. A formalism based on grammars seems

appropriate to describe a generic logical structure [29, 33]. The nonterminals of this grammar

represent the various hierarchical objects in the logical structure, while terminals correspond

to document elements. Grammar rules allow optional objects to be described, as well as se-

quences, alternatives and iterations.

2.3.4 Relations Between Layout and Logical Structure

The layout (or geometric) structure and the logical structure provide alternative views on the

same document. For instance, a block can be regarded as consisting of chapters containing

�	����� � ����
�
��
�� ���

figures and paragraphs, or alternatively, as consisting of pages that contain text blocks and/or

graphic blocks. There is an obvious relationship between these two structures because the task

of an editor is to make the logical structure defined by the author reveal itself in the presenta-

tion of the document.

There is no one-to-one mapping between logical structure and geometric structure since

the same logical document can be presented in different ways, in other words, a logical struc-

ture corresponds to a variety of geometric structures, while a geometric structure can be ab-

stracted into different logical structures. However, certain links can be established between the

two structures.

A transformation of a geometric structure into a logical structure can usually be found,

that is, a logical structure can be regarded as an abstraction of a geometric structure. But the

reverse transformation does not always exist because some typesetting elements are needed

that have no corresponding description in the logical structure. For instance, layout notions

such as a page or a line do not have logical equivalents, nor do page numbers and hyphens in

divided words. These must be considered as artificial elements introduced during typesetting.

Within this framework, the goal of document structure recognition can be regarded as

determining a logical abstraction from a geometric structure.

2.4 Markup

Document processing systems typically require to incorporate additional information into the

document being processed. When a document is to be printed, a formatter has to process the

document. The input to such a formatter consists of the text of the document interspersed with

formatting commands. These formatting commands or added information in the natural text of

the document being processed and structured are called markups. With the advent of text-pro-

cessing systems, new types of markup and new types of processing came. Until now there are

three major types of markup [13] to work with the unstructured documents: Presentational

markup, procedural markup, and descriptive markup.

Presentational markup expresses the most basic organization of a document, such as hori-

zontal and vertical spacing etc. The goal of presentation markup is to make the document suit-

able for reading.

Procedural markup consists of formatting commands, such as “insert a blank line” and

“start a new page”, in a document. The problem of procedural markup is that the markups are

 18 ������ � ��	�
������

mapped to actions of a specific device, that means, certain markups correspond to a special

formatter. When the document is manipulated by different formatters or is used in some other

applications, the markup in the document must be changed.

Descriptive markup is the highest level of markup. It overcomes the problem of proce-

dural markup, e.g. it is independent from device and software. In addition, descriptive markup

can guarantee a one-to-one mapping between logical elements and markup. This markup is

adopted in the standard document description language – SGML (see following sections) and

becomes a part of SGML-documents.

An SGML-document is a string of characters which consists of the text of the document

interspersed with markup tags to identify the start and end of each logical item. In other

words, it consists of two different types of data: one type forms the content of a document, the

other type constitutes the markup of a document which explains the content’s structure. The

rigorous structure description of an SGML-document is machine readable but also easily un-

derstood by humans.

Recently, to specify the formatting and transformation of SGML-documents, the Interna-

tional Standards Organization (ISO) defined the Document Style Semantics and Specification

Language (DSSSL). It is also a kind of markup but associates processing with SGML-docu-

ments rather than unstructured documents.

2.5 Document Description Language – SGML

SGML (Standard Generalized Markup Language) was standardized by ISO in an effort to

standardize electronic manuscript encoding techniques [5]. It specifies how descriptive mark-

up can be incorporated into a document which can help to organize a well-defined logical

structure of documents.

SGML is a generic markup language. It can be used to describe any document structure

and the description is independent from hardware and software.

The main idea of SGML is to add tags to the document that identify the different structur-

al components independent of the layout information. For example, a tag for a chapter could

be <chapter> (this thesis uses the font like <chapter> to describe examples) instead of a

chapter-head description (e.g. 16pt Times, Bold, Centered). The tagged documents (SGML-

documents) are independent of devices (computer systems or other text entry/processing de-

vices), character sets, types of processing, and file organizations.

�	����� � ����
�
��
�� ���

SGML is not a text formatting system. It is designed as a standard for text interchange

format. For example, an SGML-document is easily converted to text formatters like TEX [32],

troff [41], or some other similar type of formatter. It can be used to produce a typeset docu-

ment on paper [50] also.

The following subsections detail the main features of SGML: SGML markup, SGML

DTD (Document Type Definition), and SGML parser.

2.5.1 SGML Markup

Marking up in SGML means to insert tags into the documents. Every element that requires

markup is enclosed between <tag name> and </tag name>. <tag name> is called a start-tag of

the “tag name” and </tag name> called an end-tag of the “tag name”. The contents among

start-tag and end-tag is called tagged. For instance, a chapter would therefore be marked up as

follows:

<chapter>

MarkItUp! is a system to recognize...

...

... one major issue for further developments.

</chapter>

Total tagging is cumbersome for a user, thus the SGML syntax allows the omission of

end-tag where they are redundant. For example, to define a list, the end marker can be left out

for each element, only the start marker is identified.

<list>

<item> this is the first item. No end marker.

<item> this is second item.

 Only the end of list marker is required.

</list>

These examples show that an SGML-document does not contain formatting instructions

for word processors or printers. To obtain a formatted output from an SGML source docu-

ment, such as the above examples, the markup has to be translated into specific formatting

commands for the text formatter to enable formatting and printing.

2.5.2 SGML DTD

Every SGML-document refers to a program DTD which specifies the document class, defines

the logical structure of a document in terms of the elements that comprise it (title, author, ad-

 20 ������ � ��	�
������

dress etc.) and the rules for marking up the document instance. A document markup is formal-

ized by associating it with a DTD, which includes a specification describing the order in

which document elements can occur.

The DTD contains a set of ELEMENT definitions giving the name (generic identifier) of

the element and a content model that defines which sub-elements and character strings can

occur in the content.

The content model consists of elements or terminals with the group connectors – and(&),

or(|) and seq(,), where the group elements are evaluated from left to right, and the occurrence

indicators – rep(*), opt(?) and plus(+) to describe the relationship among the elements or the

characteristic of the elements in a structural description. The occurrence indicators in a DTD

indicate how often the preceding element or group of elements may occur. The indicators are

directly corresponding to the operators defined in elements. If no occurrence indicators are

used, the preceding element must occur exactly once. The indicator * allows an element oc-

curring zero or more times. The indicator + requires the element occurring at least once, and

the indicator ? denotes an optional element.

As an example, consider a scientific paper described by a DTD grammar:

<!ELEMENT paper - - (title, abstract?, te-para+)>

<!ELEMENT title - - CDATA>

<!ELEMENT abstract - - (ab-para+, ind-term*)>

<!ELEMENT ab-para - - CDATA>

<!ELEMENT ind-term - - CDATA>

<!ELEMENT te-para - - CDATA>

where te- para, ab-para, and ind-term express text- paragraph, abstract- paragraph, and index-

term, respectively.

The DTD means that the first logical element in a paper conforming to this grammar must

be its title . The paper can optionally have an element abstract , that is, the following ele-

ment of title may be an element abstract if there is, or may be a text paragraph if there is no

element of type abstract in a document.

2.5.3 SGML Parser

An SGML-document is read and interpreted by an SGML parser which analyses and checks

whether the markup in the document conforms to the rules defined in the associated DTD, and

������ � ���
	�	���	�� ���

inserts tags whose presence is implied. The end product is a fully SGML-document conform-

ing to the DTD, or an error message. An SGML parser is a program or a suite of programs.

After an SGML parser parsed the logical structure of an SGML-document, it will report

any error messages it finds. But it does not correct the error messages and does not mark up a

non-SGML document. Once an SGML-document has been verified by a parser, it can be pro-

cessed in many different ways, for instance, it can be inserted into databases.

2.5.4 The Marking Up (Tagging) Process

Independent from whether procedural markup or descriptive markup is used, there always ex-

ists the problem of correctly inserting the markup into the text of the document. Since SGML

defines only the syntax of a standard generalized markup language, it does not support an ap-

proach to insert tags into the large number of untagged documents.

The early and normal marking up approach is that the user inserts markup into the text by

hand. For example, for powerful formatters such as TEX or troff the user usually inserts the

formatting commands provided by TEX or troff into a document.

For SGML markup, there are several ways [25] of working:

• In a normal editor, tagging is done by hand

• In certain editors, frequently occurring tags in the text are bound to program keys on the

keyboard, or templates for a given DTD are supported, i.e. a skeleton SGML file with

the major tags already in the file

• The tags are added by a program, such as the tools IMSYS, FastTAG, and DREAM.

 22 ������ � ��	�
������

�	���� � �� �����	
 �� ��
����������
���� ��
�������� ���

3 3 3 3 3 33

An Approach to Document-

Structure Recognition

This chapter gives an overview of the learning system MarkItUp!. At first the DREAM parser

generator is introduced which is used by MarkItUp! to actually mark up source documents. In

particular, the DREAM DSD (Document Structure Description) is discussed which is used to

describe the necessary structuring knowledge. After that, Section 3.2 gives an overview of

MarkItUp! which learns DSDs from examples. Section 3.3 provides an example to demon-

strate the learning process of MarkItUp!. Details of the learning approaches are discussed in

chapter 4 and the system implementation is given in chapter 6.

3.1 DREAM

DREAM [20, 21] is a parser generator (see Figure 3.1) specifically designed for extracting

the logical structure of documents, based on formatting and content information. For this pur-

pose it uses DSDs (Document Structure Descriptions) which consist of rules to relate the lay-

out information found in unstructured documents with a desired logical structure.

Source
Document

DSD DTD

SGML–
Document

DST

Interpreter: DreamPar

Generator: DreamGen

Fig. 3.1 The system architecture of DREAM

The input of the DREAM system are a source document and a DSD. The source docu-

ments are untagged documents which come from electronic sources or which are the result of

documents layout structure analysis. The output of the system are an SGML-document and its

DTD if the user requires the DTD.

��� ��
���� � �� �����
�� �� ���������	�������� ����������

The two main components of DREAM are a generator DreamGen and a parser Dream-

Par. DreamGen is used to compile DSDs and generate corresponding parser tables DSTs

(Document Structure Tables). DreamPar uses the DSTs in order to introduce markups into the

source documents, that express their logical structure.

For various source documents DREAM requires different DSDs to define their logical

structure. And with different DSDs man can get diverse SGML-documents. Therefore, to get

the desired SGML-documents by DREAM, it is required to support correct DSDs for source

documents.

A DSD consists of two parts, the structure description and the recognition style. The

structure description is very similar to SGML DTDs. The recognition description is a charac-

teristic part of DSD which is composed of regular expressions and functions. Section 3.1.1

and 3.1.2 will describe these two parts in more detail.

3.1.1 Structure Description of a DSD

The structural part of a DSD describes the document structure in terms of hierarchically

structured elements.

Each DSD starts with a statement “<!DOCTYPE type-name [” which gives a document

type name and ends with a statement “]>”, where the part with italic font means a variable part

in the DSD.

The square brackets in the statements enclose the entire definition part of a DSD which

consists of a set of element definitions. Each element definition has the form:

“<!ELEMENT element-name – – (structure description / recognition style)>”

Where the italic font has the same meaning as above; the element-names are used as tag

names in the markup process. If an element-name E appears in a structure description, it leads

to another element definition, that is, there is an element definition to describe the element-

name E in the DSD.

The first element definition in any DSD is called the document structure root (or root for

short). Except the document structure root, all element definitions may appear in arbitrary or-

derings. For instance, a piece of a sample document could look like this:

��
���� � �� �����
�� �� ���������	�������� ���������� ���

Document-Sample 3.1

...

! �Suad�Alagic\n

” �Object–Oriented Database Programming �”\n

...

where the symbol � and the symbol \n denote a blank character and a return character (an

empty string at the end of a line) respectively (in the following examples the symbols express

the same meaning). These symbols express the syntactic structure of this document. In Docu-

ment-Sample 3.1 the symbols ! � indicate the document author, the author is followed by the

document title indicated by the symbols ” �. Before the element author and after the element

title there are other elements which are omitted here (denoted by ... in the example). A com-

plete example will be given in Document-Sample 3.2 in Section 3.1.3. The document hierar-

chy structure is easily written down in terms of a DSD:

DSD-Sample 3.1

<!DOCTYPE bibdoc [

 <!ELEMENT bibentry – – (author, title)>

 <!ELEMENT title – – recognition style >

 <!ELEMENT author – – (fname, “ �”, lname)>

 <!ELEMENT fname – – recognition style >

 <!ELEMENT lname – – recognition style >

...

]>

where the document type name is bibdoc . The document structure root is bibentry . The

elements bibentry and author are described by the structure descriptions: author,

title and fname, “ �”, lname , respectively. The structure description author, title

has two meanings: (1) the element bibentry contains two elements: the element author

and the element title ; (2) the element author is followed by the element title . A similar

explanation can be applied for the element author . The elements title , fname , and lname

are described by recognition style which will be replaced by DSDs’ expressions and

functions in Section 3.1.3.

��� ��
���� � �� �����
�� �� ���������	�������� ����������

DSD-Sample 3.1 shows the structure of the document definition that explains those parts

of DSD’s which are similar to SGML DTD’s. The following section will discuss the extension

of DSD’s with respect to DTD – recognition styles.

3.1.2 Recognition Styles of DSDs

Recognition styles in DSDs provide detailed information by regular expressions and functions

to actually analyze and mark up the document. To describe recognition styles, it is necessary

to define the allowed form of regular expressions and functions in DSDs.

3.1.2.1 Regular Expressions in DSDs

Regular expressions in DSDs identify delimiting text portions and element contents.

Delimiters, such as the symbols ! � and ” � in Document-Sample 3.1, are filtered out and the

remainder of the texts are mapped into corresponding elements in the output document.

DREAM supports a form of regular expression notations defined in [20]. But this section

only gives the partial notations which will be used in the following examples.

(a) The regular expression ‘A’ matches exactly one character ‘A’.

(b) The regular expression ‘.’ matches any character.

(c) A set of characters enclosed by square brackets [and] matches any single character in

that set. For example, the regular expression [0123456789] matches any single digit.

A range of ASCII characters may be specified by giving the first and last characters,

separated by a hyphen –. For example, the above regular expression [0123456789]

can be shortened as [0–9] .

(d) A regular expression matching a single character may be followed by one of several

repetition operators:

 ? The preceding regular expression is optional and matched at most once;

 + The preceding regular expression will be matched one or more times;

 * The preceding regular expression will be matched zero or more times;

 # It has a similar meaning as the operator *. But it forces minimal parsing (see

below).

(e) Two regular expressions may be concatenated; the resulting regular expression matches

any string formed by concatenating two substrings that respectively match the

concatenated subexpressions. For example, two regular expressions [A–Z] and

��
���� � �� �����
�� �� ���������	�������� ���������� ���

[a–z]+ can be concatenated as [A–Z][a–z]+ which matches the strings starting with

a capital letter and followed by an arbitrary number of small letters.

(f) Two regular expressions may be combined by the alternation operator |; the resulting

regular expression matches any string matching either subexpression. For example, two

regular expressions [A–Z] and [a–z] joined as [A–Z]|[a–z] match a capital letter

or a small letter.

(g) Repetition takes precedence over concatenation, which in turn takes precedence over

alternation. A whole subexpression may be enclosed in parentheses (and) to override

these precedence rules.

(h) The caret ^ matches the empty string at the beginning of a line and the $ matches the

empty string at the end of a line.

(i) In the above regular expressions the special characters such as, ?, +, *, |, –, and \, etc.,

lose their special meaning when used in backslashed versions \?, \+, *, \|, \–, and \\.

The operator # is a new and an important operator in the DREAM DSD. It parses ele-

ments only if none of the subsequent element definitions is matched. With the regular expres-

sion .#, the DREAM parser tries to parse subsequent regular expressions before accepting the

next character as belonging to .#. The regular expression .# means that the parser can accept

arbitrary strings.

3.1.2.2 Functions in DSDs

DREAM offers three functions: copy(), cut() and paste() which can be described by a general

form: function-name(<regexp>). The names and functions of copy() and cut() in DSDs corre-

spond to the current editing operations in text processing programs. The content included by

copy() is mapped into the output document, whereas the content in cut() is filtered out. The

extra function paste() makes it possible to add extra sequences into the output document. Reg-

ular expressions in DSDs are used only as an argument of these functions.

These regular expressions and functions can replace the recognition style of the

element title in DSD-Sample 3.1 as follows:

<!ELEMENT title – – (cut(^“\” �”), copy([a–zA–Z �\–]+), cut(“ �\””$))>

The string beginning cut(^“\” �”) and ending cut(“ �\””$) is called a recognition style

of the element title . The meaning of the recognition style is that the strings matched by the

��� ��
���� � �� �����
�� �� ���������	�������� ����������

regular expressions “\” �” with the empty string at the line beginning and “ �\”” with the

empty string at the line end are filtered out. The string matched by the regular expression

[a–zA–Z �]+ (arbitrary letters and blanks) is mapped onto the element title in the output

document.

3.1.3 A Complete Example of a DSD

A complete description of Document-Sample 3.1 and the corresponding DSD are shown as

follows.

Document-Sample 3.2

\ �bk\n

! �Suad�Alagic\n

” �Object–Oriented Database Programming �”\n

/ �Springer �* �1989\n

>�DBDobject\n

where the symbols \ � at the beginning of the example indicate the document code, the code

followed by the document author starting with the symbols ! �, the document title starting

with the symbols ” �, the document source starting with / �, and the document category start-

ing with the symbols >�. The DSD of the example is written down as:

DSD-Sample 3.2

<!DOCTYPE bibdoc[

<!ELEMENT bibentry – – (code, author, title, source, category)>

<!ELEMENT code – – (cut(^“\\ �”), copy([a–z]+), cut($))>

<!ELEMENT title – – (cut(^“\” �”), copy([a–zA–Z �\–]+),

cut(“ �\””$))>

<!ELEMENT author – – (cut(^“! �”), fname, cut(“ �”), lname, cut($))>

<!ELEMENT fname – – (copy([A–Za–z\–.]+))>

<!ELEMENT lname – – (copy([A–Za–z]+))>

<!ELEMENT source – – (cut(^“/ �”), publication, cut(“ �* �”), date,

cut($))>

<!ELEMENT publication – – (copy([a–zA–Z]+)) >

<!ELEMENT date – – (copy([0–9]+)) >

<!ELEMENT category – – (cut(^“\> �”), copy([A–Za–z]+), cut($))>

]>

��
���� � �� �����
�� �� ���������	�������� ���������� ���

With this DSD the DREAM parser identifies the document author by the following se-

quence: the symbols ! � at the beginning of the line, the element of the first name fname , the

symbol �, the element of the last name lname at the end of the line. The symbols are filtered

out, the elements are identified further on the basis of their element definitions somewhere in

the DSD. Thus, the element author is described as follows: filtering out the symbols ! � at

the beginning of the line, mapping arbitrary letters, hyphens, or periods (denoted by the regu-

lar expression [A–Za–z\–.]+) into the element fname in the output document, filtering out

the symbol �, mapping arbitrary letters (denoted by the regular expression [A–Za–z]+) into

the element lname in the output document, and then filtering out the empty string at the end

of line. A similar explanation holds for the other elements.

DREAM has already been successfully applied to diverse sources as Usenet, Articles,

Publishing Abstracts, and downloads from online databases like Compuscience and Confer-

ence. The resulting documents can be further processed with any SGML-based tool.

3.2 System Overview of MarkItUp!

The goal of the MarkItUp! system is to learn DREAM DSDs from examples instead of the

user writing the DSDs. The system is designed on the basis of the scheme proposed by B.

Knobe and K. Knobe [31], a kind of refinement method for grammatical inferences. Figure

3.2 shows the overall structure of the MarkItUp! system.

The input document of the MarkItUp! system is a document collection (see Section 1.1)

which consists of (nested) sequences of subdocuments with similar format. The document

collections as source documents can be provided either by electronic sources, such as elec-

tronic mail, on-line public databases etc., or as results of document layout structure analysis,

like ASCII information from OCR.

The output document of the system is a structured document (SGML-document).

The tagging part of the system is the DREAM parser [20, 21].

Three components – structure editor, scanner, and learning which includes content ab-

straction and structure unification & abstraction – form the kernel of the system. A list of

concepts contains partial ordered abstract strings (they are called concepts and represented by

regular expressions in Section 4.2) which describe the general characteristic of strings appear-

ing in a class of documents and are used by the learning component. Diverse sets of abstract

strings correspond to different concept sequences, that is, the list of concepts is changeable.

��� �	���� � �� �����	
 �� ��
����������
���� ��
��������

user

structure editor

scanner

content abstraction

structure unification
 & abstraction

 grammar
 base

example grammar

abstracted grammar

old grammar

DREAM parser

document
collection

 learned grammar

structured
documents

Fig. 3.2 System overview of MarkItUp!

 list of
concepts

example selection

DREAM
DSD

learning feedback loop

markup cycle

tentatively markup

example

corrected markup

learned grammar

When the user starts the MarkItUp! system, the system enters a learning cycle: the mark-

up cycle. In the learning cycle, the user can:

• control the system when it is called and when it will be stopped;

• select examples from a document collection through a computer terminal;

• input or modify the abstract strings of the document’s collection;

• manually mark up the initial example in the structure editor;

• judge the tentatively marked up examples on whether they are correct and correct them if

they are not satisfactory.

To accomplish the other functions in the cycle, the user calls the system to generate the

list of concepts on the basis of the given abstract strings of the documents’ collection and to

start the learning feedback loop in which the system can

�	���� � �� �����	
 �� ��
����������
���� ��
�������� ���

• scan the structured document;

• abstract from the concrete strings;

• learn a new logical structure of documents on the basis of the old grammar;

• translate the learned grammar into a DREAM DSD;

• finally call the DREAM parser to mark up new examples.

The following subsections describe the MarkItUp! system under four aspects: starting the

system, structure editor, scanner and learning strategies.

3.2.1 Starting the MarkItUp! System

The system is started when the user activates it. The user selects an example (example selec-

tion), which is sent to the parser. Since initially there is no grammar for the document, the

parser cannot further structure the example. In this case, the user has to manually mark it up

by means of a simple yet comfortable structure editor. In subsequent cycles, when a grammar

is available, the parser tries to mark up the example with as much structure as possible. If the

user is not satisfied with the marked up structure, the user can change the markups or add new

markups with the help of the structure editor.

3.2.2 Structure Editor

The structure editor is a window to allow the user accessing documents, executing the MarkI-

tUp! system commands, marking up documents, correcting the marked-up documents, and

displaying the results using a graphic representation, etc.

For giving a complete explanation of the functions of the structure editor, let us consider

a process to manually mark up an example in the structure editor at the initial state of the

started system. The initial state of structure editor looks like the description in Figure 3.3.

��� �	���� � �� �����	
 �� ��
����������
���� ��
��������

Fig. 3.3 The initial state of the structure editor

In this case the user has to first access the example (e.g. Document-Sample 3.2 in Section

3.1.3) from a file or type it from the keyboard into the structure editor directly. When the ex-

ample is loaded, the structure editor shows the example as described in Figure 3.4.

�����
� � �� ������	� �� ��	��
�������	���
 �
	������ ���

Fig. 3.4 An example loaded into the structure editor

In the structure editor man can manually mark up a string with the following three steps:

(1) highlight a tagging string by a mouse;

(2) call the tagging function from the editor menu;

(3) type a string as the highlighted string’s tag name when the function requires it.

Figure 3.5 shows the steps (1) and (3): the highlighted string “Object–Oriented Database

Programming” and a dialog view, in which the tag name “title” of the highlighted string is

typed.

��� �	���� � �� �����	
 �� ��
����������
���� ��
��������

Fig. 3.5 Manually marking up a string in the structure editor

The dialog view is displayed after the second step is done. After the function is executed,

the highlighted string is enclosed by the tag name with a bold font shown in the structure edi-

tor. The result of tagging a string is shown in Figure 3.6.

�	���� � �� �����	
 �� ��
����������
���� ��
�������� ���

Fig. 3.6 The result of manually marking up a string in the structure editor

By repeating the three steps, the user can mark up the whole example in the structure

editor. The marked-up result of Document-Sample 3.2 in the structure editor is shown in Fig-

ure 3.7:

��� �	���� � �� �����	
 �� ��
����������
���� ��
��������

Fig. 3.7 The manually marking up result of the example in Figure 3.4

where tag names are included by angled brackets < and > and displayed in bold font. The bold

font is not necessary in SGML-documents. It is used here to aid the user.

Either start-tag <tag name> or end-tag </tag name> expresses a tag. The contents sepa-

rated by tags are strings. There are two kinds of strings: cut-string and copy-string.

Cut-strings are filtered out explicitly. They are identified by the following rule: if a string

is not directly surrounded by a pair of tags which consists of a start-tag and an end-tag with

the same tag name, the string is a cut-string. For instance, in Figure 3.7, the string “\ �” in the

�	���� � �� �����	
 �� ��
����������
���� ��
�������� ���

first line is a cut-string because it is directly surrounded by the tags <bibentry> and <code>

which are not a pair of tags.

Copy-strings are formed by the rest in the document and are mapped with the surround-

ing tag in the output document. For instance, the string “bk” in the first line is a copy-string

and is shown in the output document as <code>bk</code> . In the same way, man can judge

the other cut- and copy-strings in the example.

The marked-up example is then passed to a scanner.

3.2.3 Scanner

The scanner scans a marked-up example and extracts the format and the structure information

from the example. The extracted information is represented by a grammar (a hypothesis gram-

mar) which can be easily translated into a DREAM DSD. Regardless of their representation, a

grammar and its DREAM DSD are the same.

Each nonterminal of the grammar corresponds to a tag. Its definition in the form of a rule

is generated on the basis of the example structure.

Each concrete string in the grammar is a terminal. Since there are two kinds of concrete

strings: cut-strings and copy-strings which play different roles in the learning process, it is

necessary to distinguish them in a grammar rule, obviously. If the right-hand side (RHS) of a

rule contains other nonterminals, the terminals (if they exist) in the rule are cut-strings; if the

RHS of a rule contains only one terminal without nonterminals, the terminal is a copy-string.

3.2.4 Learning

With the initial grammar DREAM is obviously able to parse and to mark up exactly the origi-

nal example. In order to mark up subsequent examples, the grammar has to be abstracted such

that DREAM can parse different contents and slightly different structures. For this purpose the

version space technique is applied to the current domain knowledge (a set of predefined ab-

stract strings) for abstracting the terminals (content abstraction). Original strings from the

document are matched by the abstract strings with a heuristic search procedure. The abstract

strings will cover more strings than the original one.

In order to reflect structural deviations, such as missing or multiply occurring elements, a

generalization subroutine is called which unifies a new grammar with the grammar acquired

��� �	���� � �� �����	
 �� ��
����������
���� ��
��������

from previous examples (initially empty) and generalizes them (structure unification & ab-

straction) with rewrite rules. The new grammar is stored and can be used to parse a new ex-

ample, whereby a new markup cycle could be started.

The acquired structure of a concrete document can be regarded as a prototype of a class

of document structures. Although one cannot determine all features of a class after analyzing

only a few examples, the structures derived from them give important clues for the description

of the class.

3.3 Demonstration of MarkItUp!

To demonstrate the MarkItUp! approach, suppose that the user wants to structure a portion of

a document. The portion contains two examples. One example is Document-Sample 3.2 in

Section 3.1.3, the other is as follows:

Document-Sample 3.3

\ �pr\n

! �Robert �Abarbanel\n

@�Intellicorp\n

” �Connections, Perspective and Reformation �”\n

/ �ACM SIGMOD 87�* �May.1987\n

>�DBDkb\n

where the symbols \ � at the beginning of the example indicate the document code, the code

followed by the document author starting with the symbols ! �, the document location starting

with the symbols @�, the document title starting with the symbols ” �, the document source

starting with the symbols / �, and the document category starting with the symbols >�.

The user selects the first example, and marks it up manually according to SGML syntax

in the structure editor (see Section 3.2.2, Figure 3.7).

The MarkItUp! system accepts the marked-up example and generates a grammar to de-

scribe the structure of the example. Each rule of the grammar has the form: nonterminal –>

right-hand side of the nonterminal (for the syntax of the grammar rule see Section 4.3.2). The

initial grammar looks like the following:

Grammar-Sample 3.1

bibentry –> “^\\ �” code “\n^! �” author “\n^\” �” title “ �\”\n^/ �”

source “\n^> �” category “\n”

�	���� � �� �����	
 �� ��
����������
���� ��
�������� ���

code –> “bk”

author –> fname “ �” lname

fname –> “Suad”

lname –> “Alagic”

title –> “Object–Oriented Database Programming”

source –> publication “ �* �” date

publication –> “Springer”

date –> “1989”

category –> “DBDobject”

where the terminals are enclosed in the quotations “” . The nonterminals in the RHS of a rule

will be further defined somewhere in the grammar.

There are two kinds of rules in the grammar: (1) the RHS of the rule contains cut-strings

(terminals) and element names (nonterminals), such as the rule bibentry and author , this

rule type represents a kind of structure; (2) the RHS of the rule contains only a copy-string

(terminal), such as the rules code and category . Since the two kinds of rules play totally

different roles in the thesis, it is necessary to formally and separately define them.

Definition 3.1 (Structure-rule) If the right-hand side of a grammar rule consists of nontermi-

nal(s) or nonterminal(s) and terminal(s), the rule is called a structure-rule. ❚

Definition 3.2 (String-rule) If the right-hand side of a grammar rule consists of terminal(s),

the rule is called a string-rule. ❚

The applications of the structure-rules and the string-rules will be further discussed in the

following paragraphs and latter chapters.

With the initial grammar – Grammar-Sample 3.1, DREAM can exactly parse the same

example but cannot properly parse another example. In order to mark up other examples, the

initial grammar is abstracted further with a set of abstract strings (the details of the string ab-

straction see Section 4.2). The concepts used here are a subset of the example concepts in Fig-

ure 4.2, that is, the concepts applied here do not include small letter and capital letter:

Grammar-Sample 3.2

bibentry –> “^\\ �” code “\n^! �” author “\n^\” �” title “ �\”\n^/ �”

source “\n^> �” category “\n”

��� ��
���� � �� �����
�� �� ���������	�������� ����������

code –> “bk” | [a–zA–Z]+

author –> fname “ �” lname

fname –> “Suad” | [a–zA–Z]+

lname –> “Alagic” | [a–zA–Z]+

title –> “Object–Oriented Database Programming”

 | [a–zA–Z]+“\–”([a–zA–Z]+“ �”)+[a–zA–Z]+

source –> publication “ �* �” date

publication –> “Springer” | [a–zA–Z]+

date –> “1989” | [0–9]+

category –> “DBDobject” | [a–zA–Z]+

where the changed parts are denoted by the bold fonts, note that in the following examples, the

part with bold font in the examples always identifies some kind of difference between old and

new examples (except tags); the strings consist of one of the following contents: (1) a concrete

string such as bk ; or (2) an abstract string such as [a–zA–Z]+ . Each content matches a kind

of string(s).

Comparing Grammar-Samples 3.1 and 3.2, man may find that the structure-rules in

Grammar-Sample 3.1 are not changed after being abstracted by abstract strings, but the string-

rules are changed, that is, besides their original strings they have an alternative on the RHS in

Grammar-Sample 3.2. For example, on the RHS of the rule code there are two alternatives:

an original string “bk” and an abstract string [a–zA–Z]+ . The abstract string [a–zA–Z]+

means that the RHS of the rule code can be arbitrary letters. The similar explanation is ap-

plied to the other string-rules. The original strings are kept here for two reasons: (1) showing

the original strings to the user; and (2) ensuring the grammar can exactly mark up the old ex-

ample. When more than one different examples have been learned, there are no concrete

strings in the old string-rules (see Grammar-Sample 3.3 at below).

Now a new example (Document-Sample 3.3) is sent to the parser that uses the existing

grammar – Grammar-Sample 3.2 to tag the new example, the result will be:

DSD-Sample 3.3

<!DOCTYPE bibdoc>

<bibentry><code>pr</code>

<author><fname>Robert</fname>

��
���� � �� �����
�� �� ���������	�������� ���������� ���

<lname>Abarbanel</lname>

</author>

<title> <anything>@ �Intellicorp</anything>

</title>

<source> <anything>Connections, Perspective and Reforma-

tion</anything>

<publication>ACM</publication>

<date> <anything> SIGMOD 87</anything>

</date>

</source>

<category> <anything>May.1987</anything>

DBDkb</category>

</bibentry>

DREAM cannot tag the element starting with the symbols @� since there is no such ele-

ment in Document-Sample 3.2 and cannot correctly tag the elements title , publication ,

and date since they have different contents which are not covered by the string abstractions

in Grammar-Sample 3.2. It marks the unknown elements up using a special tag name anything

which tells the user that the tagged is an unrecognizable element in the example. The italic

fonds used in the example and the following DSD-Sample 3.4 show a learning or a learned

portion in the examples.

For the recognizable elements, DREAM automatically throws away cut-strings and

marks up copy-strings appropriately. For the unrecognizable strings or incorrect elements, the

user uses the structure editor for correcting the markups of the example.

DSD-Sample 3.4

<!DOCTYPE bibdoc>

<bibentry><code>pr</code>

<author><fname>Robert</fname> �<lname>Abarbanel</lname></author>

@�<location >Intellicorp</ location >

<title> Connections, Perspective and Reformation </title>

<source><publication>ACM SIGMOD 87</publication>

<date> May.1987 </date></source>

<category>DBDkb</category>

</bibentry>

The corrected example is not a correct SGML-document because it contains cut-strings

@� to provide some learning information for a new learning cycle. When the system learns

��� ��
���� � �� �����
�� �� ���������	�������� ����������

the corrected example, the cut-strings can be automatically identified and added into a new

grammar, that is, a complete description of the new element location can be captured from the

example. However, a simple SGML-document cannot give such information to the learning

cycle. Therefore, at the beginning, the cut-string cannot be filtered out. After the corrected

example has been learned, the user deletes the cut-string to aim at a SGML-document.

The corrected example is sent into a new learning cycle. There are two alternative strate-

gies to learn the corrected example: one is an exhaustive learning strategy – learning from an

entire example; the other is a partial learning strategy – learning from those elements in the

example which are deviations from the existing elements in the grammar. For the details of

these strategies see Section 6.6.2.

The new grammar of DSD-Sample 3.4 is abstracted and combined with the Grammar-

Sample 3.2 to generate a unified grammar – Grammar-Sample 3.3:

Grammar-Sample 3.3

bibentry –> “^\\ �” code “\n^! �” author (“\n^@ �” location)?

“\n^\” �” title “ �\”\n^/ �” source “\n^> �” category “\n”

code –> [a–zA–Z]+

author –> fname “ �” lname

fname –> [a–zA–Z]+

lname –> [a–zA–Z]+

location –> “Intellicorp” | [a–zA–Z]+

title –> [a–zA–Z]+“\–”([a–zA–Z]+“ �”)+[a–zA–Z]+ |

 [a–zA–Z]+[.,])+([a–zA–Z]+“ �”)+[a–zA–Z]+

source –> publication “ �* �” date

publication –> [a–zA–Z]+ | ([a–zA–Z]+“ �”)+[0–9]+

date –> [0–9]+ | [a–zA–Z]+[.,][0–9]+

category –> [a–zA–Z]+

Grammar-Sample 3.3 is more general than Grammar-Sample 3.2. The differences between

Grammar-Samples 3.2 and 3.3 are: (1) there is a new rule location in Grammar-Sample 3.3

and the element location is an optional element, denoted by (“\n^@ �” location)? in

the rule bibentry , because the element location occur only in Document-Sample 3.3 but

not in Document-Sample 3.2; (2) except the new rule location , there are no other concrete

�	���� � �� �����	
 �� ��
����������
���� ��
�������� ���

strings in Grammar-Sample 3.3, since the old rules have learned two different examples; (3)

the right-hand side of the rules title , publication , and date have new alternative ab-

stractions since their old abstractions cannot recognize the new strings in Document-Sample

3.3.

After finishing the above processes, a new markup cycle could start when the user selects

another new example.

3.4 Summary

The main characteristic of the MarkItUp! learning cycle is an incremental learning which

combines manual markup and automated markup methods. The motivation of the learning ap-

proach is to make the task easier for the user who wants to structure documents. The user

needs only to provide an idea of how s/he expects a formatted document to be structured and

the system synthesizes a recognition program from this information. The details of the system

learning and synthesizing methods are discussed in Chapter 4.

��� �	���� � �� �����	
 �� ��
����������
���� ��
��������

����	���� � ����
��

4 4 4 4 4. 44

Learning

This chapter formalizes the learning approaches and explains their basic properties. It details

the problems associated with abstracting the concrete strings in documents and with learning

deviating structures in documents.

4.1 Learning Problems and Learning Levels

Learning in MarkItUp! is isolating the differences and extracting the common features from

source documents.

The most obvious difference between individual documents is their contents. To be able

to cover similar contents (strings) in the subdocuments, an approach is needed to match differ-

ent contents in documents. In order to also accept and structure similar documents which devi-

ate from the learned documents structure, an approach is needed to learn the new logical struc-

tures.

In MarkItUp! a grammar is used to describe the structure of documents. The terminals of

the grammar specify a content level that expresses the concrete strings in the document; and

the nonterminals of the grammar specify a structure level that describes the documents’ log-

ical structure. Thus, learning in MarkItUp! is carried out at the two levels. That is, the termi-

nals in the grammar are abstracted at the content level and the nonterminals in the grammar

are generalized at the structure level.

Figure 4.1 presents a high-level description of the learnings at the two levels in MarkI-

tUp!. When the grammar contains concrete strings, content abstraction will be carried out.

The concrete strings are replaced by a set of string patterns. When the system cannot correctly

mark up a new example with the existing grammar, the user has to provide proper information

to structure the example, then the existing grammar is merged with the grammar generated

from the updated example. After the merging, a new grammar is inferred.

��� �	���� �����
��

learning in
MarkItUp!

 learning at the
content level

content abstraction structure abstraction
 & unification

Fig. 4.1 MarkItUp! learning

learning at the
 structure level

4.2 Learning at Content Level

4.2.1 Goals, Problems and Overall Approach

Learning at the content level means abstracting sequences of terminals to form string patterns.

The aim of abstracting a string is to arrive at rules which also accept similar strings; that is, the

strings which are matched by the same string patterns. To reach such a goal, the version-space

method [35, 26] (see Section 7.2.2) is adopted. With aid of such method the concrete strings

are generalized on the basis of partial ordering domain knowledge components, which are

called concepts (see Definition 4.1 in Section 4.2.2).

The learning problem at the content level can be summarized as follows.

Input:

A set of example strings.

Output:

A list of abstractions within the provided concepts that are matched with the presented

example strings.

Techniques:

(1) A representation of a concept.

(2) A set of concepts to abstract example strings.

(3) An ordering strategy for concepts.

����	���� � ����
��

(4) Algorithms to learn strings on the basis of the concepts.

The string concepts are required to identify the common characteristics of concrete

strings, such as all strings of the digits, all strings of small letters, etc. For this reason, the

concepts should satisfy the following two requirements:

(1) Expressiveness: Being able to denote a set of strings showing some characteristics,

for example, the strings starting with a capital letter.

(2) Tuneability: Being able to capture the main characteristics of the document strings;

that is, the concepts should be able to distinguish between strings of different kinds.

For instance, an e-mail address is always required to contain the symbol @, where-

as a normal post address has not such a requirement. Therefore, for e-mail docu-

ments the symbol @ must be one of the concept in its domain knowledge, but for

the normal post documents there may be no such concept contained in its domain

knowledge.

Expressiveness refers to the problem of how to represent a concept (Section 4.2.2). Tune-

ability refers to the problem of what kind of concepts are suitable for individual documents

(Section 4.2.3). Besides representing and defining concepts, the problems are how to organize

the concepts in the MarkItUp! system (Section 4.2.4) and how to use the concepts to abstract

strings (Section 4.2.5).

4.2.2 Concepts and Binary Relation

Since this thesis is not interested in analyzing the semantics of the document but only the syn-

tactic structure, syntactic concepts like <digit> or <letter> (Figure 4.2) suffice for these

purposes. These syntactic concepts can be easily described by regular expressions. Regular

expressions can express what strings can appear in documents and search for the strings in the

documents. Especially, regular expressions have an important property based on the more-

specific-than binary relation (Definition 2.1). It means that two regular expressions r and s

fulfill the binary relation r�s, if and only if r matches a subset of all the strings which s

matches.

Note that the more-specific-than relation is defined in terms of the denotations of expres-

sions in the representation language, and not the expressions themselves. To practically com-

pute a more-specific-than relation by a computer program, it must be possible to determine

whether r is more specific than or equal to s by examining the expressions of r and s, rather

��� �	���� �����
��

than computing the (possible infinite) sets of examples which they match. For regular expres-

sions, the relation is practically computed by means of DFAs/NFAs, that is, automata theory

[27] is the theoretical foundation for applying regular expressions in MarkItUp!.

The more-specific-than relation however has the property that given any two regular ex-

pressions man cannot always find the one that is more specific than the other although they

may have some common strings that can be matched. For instance, two regular expressions

[Ff]rom (it can match strings “From” and “from”) and From* (it can match the strings

starting with “Fro” and followed by arbitrarily many characters ‘m’) can be both applied to

one specific string “From” without the requirement that one of them applies to every string the

other applies to.

However, the relation has the transitivity property over a regular expressions set ℜ (Sec-

tion 2.1.3, Theorem 2.4). This property is important. With such a property the relation pro-

vides a powerful basis for determining concepts, ordering concepts and deciding string match-

ing strategies in the domain knowledge of MarkItUp!.

On the basis of the above discussions, it is able to give a definition for concepts in this

thesis.

Definition 4.1 (Concept) A concept is a domain knowledge component that denotes a set of

strings. It is defined and supplied by the user and represented by a regular expression. ❚

4.2.3 Determining Concepts

The requirement of tuneability discussed in Section 4.2.1 is a condition which must be consid-

ered when the concepts for a class of documents are defined.

At first sight, a natural and an attractive idea is that from example strings one directly

induces a concept matching the example strings. In other words, the idea is to infer a smallest

finite automaton of a concept which is compatible with a given finite sample consisting of a

finite set of strings marked as “accepted” and another finite set of strings marked as rejected.

But it can be shown that this idea is an NP-hard problem [18, 6].

However, it is possible to find reasonable concepts, that match the given example strings,

from a set of given concepts defined by the user. The restriction is to seek a specific concept

from the reasonable concepts. The specific concept means that it matches not only the exam-

ple strings, but also a small amount of other strings which are not elements in the set of the

����	���� � ����
��

example strings. The reason of the restriction is that if the user defines a general concept, for

example the concept [a–zA–Z0–9]+ , it may match a large amount of strings but hardly dis-

tinguish some strings, such as “1994” and “abc”. Therefore, the concept is not of any help for

the string recognition. For this reason, determining specific concepts is very important al-

though it is not easy.

The following sections will discuss how to find the reasonable concepts from a set of

concepts defined by the user and how to select a specific concept from the reasonable con-

cepts.

4.2.4 Ordering Concepts

Since there exist two kinds of concepts: comparable and incomparable, it is not easy to direct-

ly order a set of given concepts. For this reason, the concepts are organized in a concept base

in the form of a directed acyclic graph (a DAG). A DAG gives a picture of what kind of rela-

tionships (comparable or incomparable) exists among the concepts. On the basis of the DAG,

using the Topological Sorting algorithm [2], it is easy to get a linear ordered list of the given

concepts. With the help of this list a specific concept can be derived.

4.2.4.1 Concept Base

An efficient organization of the concept base lies in observing how the more-specific-than

relation is defined on the concept base. Suppose that the input concepts are c1, c2, ..., cn. Then

on the basis of the given concepts and the more-specific-than relation among them, a concept

base is built in the form DAG G as follows.

Let a concept base be a DAG G, G = (C, E), where

C = (c1, c2, ..., cn), ci � cj (i � j), 1 � i, j � n,

E = {(ci , cj) | ci , cj � C, cj � ci and ci is a direct ancestor of cj }.

This construction shows that if two concepts r and s, r � s, then there is an edge from s to

r, s�r in the concept base. In other words, comparable concepts are connected with edges in

the concept base.

Figure 4.2 gives an example of the concept base. To explain the meaning of the node

(concept), in this concept base each node has two parts: the name of the node and the syntacti-

cal expression of the node. Actually, the node’s name does not appear in the concept base. The

��� �
���� ��������	

name of each node is enclosed by angled brackets < and >, and the syntactical expression of

each node is enclosed by parentheses (and) . For instance, the node <any character>

(‘.’) expresses that the concept has a name any character in the concept base and its

syntactical expression is a regular expression ‘.’ .

<any character> (‘.’)

Fig. 4.2 An example of the concept base

<letter>([a–zA–Z])
<digit>([0–9])

<small letter>
 ([a–z])

<capital letter>
 ([A–Z])

<blank>(‘ �’) <delimiter>
 ([.,])

From Figure 4.2, we can see that <blank> , <delimiter> , <digit> , <small

letter> , and <capital letter> (as well as <blank> , <delimiter> , <digit> ,

and <letter>) are incomparable concepts. However, <small letter> and <letter>

(as well as <capital letter> and <letter>) are comparable concepts. Furthermore,

the concept <small letter> is more-specific-than the concept <letter> (as well as the

concept <capital letter> is more-specific-than the concept <letter>) . The concept

<any character> is comparable with every other concept in the figure and each concept

is more-specific-than <any character> ; that is, the concept <any character> is an

ancestor of every other concept in the concept base.

For various documents their concepts can be different. But the method to create the con-

cept base is the same.

4.2.4.2 Linear Ordering List of Concepts

On the basis of the concept base, the concepts can be ordered by the topological sort algo-

rithm. A topological sort of a DAG is any ordering m1, m2, ..., mk of the nodes of the graph

such that edges go from nodes earlier in the ordering to later nodes; that is, if mi�mj is an

edge from mi to mj , then mi appears before mj in the ordering. Since incomparable concepts

cannot be ordered as comparable concepts, the ordering of the concepts is not unique. Howev-

er, in every ordering, if mi�mj , then the sequence always holds: mi appears before mj .

����
���� � �������	

Aho, Hopcroft, and Ullman (reference [2], page 222) give an algorithm to do the topolog-

ical sort with a depth-first search procedure.

After the topological sort of the concept base, we arrive at a linear ordering list of the

concepts which is in reverse topological order, but meets our needs. For instance, the ordered

list C of the concept base shown in Figure 4.2 is:

C = <blank> , <delimiter> , <digit> , <small letter> , <capital letter> ,

<letter> , <any character>

Since the topological sort algorithm does not order incomparable concepts, such as the con-

cepts <blank> , <delimiter> , <digit> , <small letter> , and <capital let-

ter> . The positions of the incomparable concepts in the ordered list are changeable. In other

words, it is able to get various ordered lists for the incomparable concepts. However, because

the concept <small letter> is more-specific-than the concept <letter> and the con-

cept <capital letter> is more-specific-than the concept <letter> , the concepts

<small letter> and <capital letter> must appear before the concept <letter>

in any ordered list of the above concepts as well as in the above ordered list C.

Using the ordered list, string abstracting can now be carried out.

4.2.5 Learning from Strings

A string is a list of characters. Two kinds of strings have been introduced in Section 3.2.2:

copy-strings and cut-strings. Because they play different roles in the learning process, the two

kinds of strings are abstracted by different strategies.

Copy-strings record the contents in the document which will be mapped into the output

document. However, for different documents copy-strings are very different. Therefore, they

need to be abstracted so that the abstracted copy-strings are able to mark up documents with

the same structure, but different contents.

Cut-strings will be filtered out during the process of mark up. They usually serve as indi-

cators for the beginning or the end of an element. Abstracting these delimiters too much

would result in an ambiguous grammar. Therefore, cut-strings are abstracted much less than

copy-strings.

The following two subsections will discuss the problems of learning from copy-strings

and cut-strings, respectively.

��� �
���� ��������	

4.2.5.1 Learning from Copy-Strings

Copy-strings represent concrete strings which will be transported from one document to

another. Therefore, a copy-string is assumed that it consists of a variable number of characters

which play the same roles in the document, that is, there is no special character which has a

special meaning in the document and is required to be identified especially. In other words, the

following two hypotheses are reasonable:

(1) the characters in a copy-string are at the same level;

(2) the number of characters in the copy-strings does not influence the abstracted result.

These two hypotheses imply that a string pattern can be inferred which matches the copy-

string. Under these two hypotheses, abstracting a copy-string includes two steps:

(1) to abstract each character in the copy-string on the basis of the ordered list of concepts;

(2) to infer a string pattern based on the abstractions of the characters in the string.

The following algorithm 4.1 will discuss how to abstract a copy-string S. Suppose that S

consists of a set of characters sl , 1 � l � m, that is, S = {s1, s2, ..., sm}. On the basis of an

ordered list of the concepts C = c1, c2, ..., cn, the algorithm tries to abstract each character in

the string S and stores the abstracted result at first in a sequence which consists of abstract

concepts and/or concrete characters (unmatched characters). The algorithm starts with the first

character in the string S. If one character is accepted by a concept ci , 1 � i � n, ci is added

into the sequence; If there is no concept matching with the character, the algorithm directly

adds the character in the sequence as a default most specific concept for the string. When all

characters in the string S have been parsed, the sequence is further abstracted to form a string

pattern. For instance, subsequent occurrences of a concept (e.g. [a–z][a–z][a–z]) and subse-

quent occurrences of concepts (e.g. [A–Z][a–z]+‘�’[A–Z][a–z]+‘ �’) in the sequence are

transformed into an arbitrarily long sequence ([a–z]+) and an arbitrarily long sequence

(([A–Z][a–z]+‘�’)+) in the string pattern, respectively. The aim of the algorithm is to find a

specific string pattern for the string S.

Algorithm 4.1 Abstracting a copy-string based on an ordered list of the concepts

Input. A copy-string S = s1, s2, ..., sm and an ordered list of the concepts C = c1, c2, ..., cn.

Output. A string pattern p which accepts the string S.

Method. Parse S from left to right. For each character in S, scan the list C from left to right,

choose the first element ci (if any exists) in C which accepts the character. Then ci is a specific

����
���� � �������	

concept of the character. If ci does not exist, the algorithm keeps the character in the string

pattern p as the default most specific concept. When the whole string is parsed, the parsed

result is abstracted and the algorithm outputs the abstracted string pattern p. The formal de-

scription of the algorithm is given as follows. Note that the italic fonts in the body of the algo-

rithms express variables, parameters, or functions; while the bold fonts express key words.

1 begin
2 p := null;

3 b := false;

//b is a global variable. If there exist unmatched characters in the string, it is true.

//It is tested in Algorithm 4.2.
4 for (l = 1; l � the length of S; l++) do // parse string from left to right.

5 begin
6 for (i = 1; i � n; i++) do //i is used to count the length of the list C.

7 if ci accepts sl then
8 begin
9 add ci into p;

10 break;

11 end;

12 if (i = n + 1) then b := true; //i = n + 1 means that there is no concept which accepts sl .
13 end;

14 scan p from left to right to abstract the concept sequence;

15 transform subsequent occurrences of a concept (e.g. [a–z][a–z][a–z]) into

an arbitrarily long sequence ([a–z]+) or subsequent occurrences of concepts

(e.g. [A–Z][a–z]+‘�’[A–Z][a–z]+‘ �’) into an arbitrarily long sequence
(([A–Z][a–z]+‘�’)+);

16 return (string pattern p);

17 end ❚

Algorithm 4.1 gives an approach to abstract a concrete copy-string on the basis of a set of

concepts. Note that each copy-string is a RHS of a string-rule in the grammar. When learning

different examples, for the same string-rule (e.g. R), the concrete strings may be different. Af-

ter the different copy-strings are abstracted by Algorithm 4.1, it is able to get several string

patterns of the copy-strings for the rule R. A list is chosen to contain these string patterns and

the list of the rule R is denoted as AR. Of course, each string-rule in the grammar has its own

string pattern list. These lists are the final output of the string learning.

To get the output, the focus is on the string-rule R in the grammar which has various

string patterns of copy-string after learning several examples. The goal is to get the list AR that

maintains the whole learned string patterns of the rule R and has no redundant abstracted

��� �	���� �����
��

form. The following algorithms discuss how to arrive at the goal. Before that, two definitions

are given:

Definition 4.2 (Abstracted-list AR) A list AR is called an abstracted-list for the string-rule R,

if the list contains all learned string patterns of the RHS of R. ❚

Definition 4.3 (Reduced AR) An abstracted-list AR is called reduced, if for any two string

patterns in AR, none is more-specific-than the other. ❚

In Algorithm 4.2 (see below), AR either is an empty list or a reduced list. When learning a

new copy-string E (got from another example) of the rule R, the list AR is used to test whether

the new string can be accepted by AR. If so, there is no change for the list AR. AR will be used

for the following examples of copy-strings again. Otherwise, the string E will be abstracted by

Algorithm 4.1. and return a value to Algorithm 4.2. On the basis of the return value, the algo-

rithm constructs a new reduced list or an error message to the user.

Algorithm 4.2 Learning from a new copy-string

Input. A new copy-string E of the rule R, an ordered list of the concepts C = c1, c2, ..., cn, and

the reduced list AR = p1, p2, ..., pk.

Output. A “new” reduced list AR which accepts all strings accepted by the input AR, as well as

the string E; or an error message to the user.

Method. If the reduced list AR is not an empty list, scan the list AR from left to right, to choose

the first element pj in AR such that pj accepts the string E, 1 � j � k. The algorithm outputs

the original AR to the caller. Otherwise, the algorithm calls Algorithm 4.1 to abstract the string

E. If the abstracted result contains concrete characters, the algorithm gives an error message to

the user and the user is required to redefine the concepts. If the abstracted result is a new string

pattern pj , it will be added into the list AR, while AR is required to still be a reduced list. The

formal description of the algorithm is given as follows.

1 begin
2 if AR is not an empty list then
3 for j := 1 to k do
4 begin
5 take the string pattern pj from AR;
6 use the string pattern to match the string E;

7 if (the string pattern can match the string) then return (the list AR);

8 end;

����	���� � ����
��

9 call Algorithm 4.1 to abstract the string E on the basis of C, and get a return value p;
10 if b then return (an error message to the user)

// there is at least one character which has not been abstracted by the concepts.

11 else
12 begin
13 delete all pt in AR, such that pt � p, 1 � t � k;

14 add a new string pattern p into the list AR;

15 return (the list A);

16 end;

17 end ❚

Algorithms 4.1 and 4.2 are used to abstract concrete copy-strings and to learn new copy-

strings from different examples. Note that the order that examples are presented to the algo-

rithms does not affect the result given.

4.2.5.2 Learning from Cut-Strings

For a cut-string, it may consist of key characters and/or no-key characters. The number of key

characters influences the recognition of the cut-string. Therefore, the key characters in the cut-

string are not allowed to be further abstracted. However, characters in sequences of trailing

blanks, tabs, and returns (all shorted as S) are regarded as no-key characters. They are allowed

to be abstracted into the form (S)+. If there are different key words for a cut-string, they are

simply kept in a list as alternatives of the cut-string.

4.2.5.3 Examples for String Abstraction

Section 3.3 has shown an example of string abstraction (Grammar-Sample 3.2) by applying

Algorithms 4.1 and 4.2 with a subset of the example concepts in Figure 4.2. The following

grammar shows an abstracted result by using the example concepts in Figure 4.2.

Grammar-Sample 4.1

bibentry –> “^\\ �” code “\n^! �” author “\n^\” �” title “ �\”\n^/ �”

source “\n^> �” category “\n”

code –> “bk” | [a–z]+

author –> fname “ �” lname

fname –> “Suad” | [A–Z][a–z]+

lname –> “Alagic” | [A–Z][a–z]+

title –> “Object–Oriented Database Programming”

 | [A–Z][a–z]+“\–”([A–Z][a–z]+“ �”)+[A–Z][a–z]+

��� �
���� ��������	

source –> publication “ �* �” date

publication –> “Springer” | [A–Z][a–z]+

date –> “1989” | [0–9]+

category –> “DBDobject” | [A–Z]+[a–z]+

Comparing Grammar-Sample 3.2 (see Section 3.3) and Grammar-Sample 4.1, it is not

difficult to find that the same string may have different abstracted result when it is abstracted

by different concept set. And when there are more comparable concepts in the domain knowl-

edge, the abstracted form of copy-strings will be more complex. The reason is that in this case

it is easier for each character to find its own specific concept, but it is not easy to find a com-

mon concept for most characters in the string. However, since it is not so important in English

to distinguish capital letter and small letter, the abstracted result of Grammar-Sample 3.2 is

also acceptable.

Let’s see another example for dates. Support there are four forms to express a date:

01.03.1994

01. 03. 1994

Jan. 03. 1994

Jan. 3rd. 1994

If we use the example concepts in Figure 4.2. and apply Algorithms 4.1 and 4.2 to ab-

stract them separately, we my get the following forms:

 date –> “01.03.1994” | ([0–9]+[.,])+[0–9]+

 date –> “01. 03. 1994” | ([0–9]+[.,] “ �”)+[0–9]+

 date –> “Jan. 03. 1994” | [A–Z][a–z]+[.,] “ �” [0–9]+[.,] “ �” [0–9]+

 date –> “Jan. 3rd. 1994” |

 [A–Z][a–z]+[.,] “ �” [0–9][a–z]+[.,] “ �” [0–9]+

The later example indicates another fact. That is, different representations of a string lead

to different string patterns.

4.3 Learning at Structure Level

4.3.1 Goals, Problems and Overall Approach

The goal of learning at the structure level is to incrementally construct a grammar from a finite

number of structured examples, in such a way that similar but not necessarily identical struc-

����
���� � �������	

tures of different examples can be recognized and unified automatically. To arrive at the goal

the grammar is generalized by a set of generalization rules. The learning problem at the struc-

ture level can be summarized as:

Input:

(1) A logical structure description of a new example.

(2) A logical structure description of previous examples (initially empty).

Output:

A general logical structure description that is consistent with all the presented sample

structures.

Techniques:

(1) A representation of logical structure description.

(2) A method to abstract and unify the old and new logical structure description.

Similar to the content level, the first problem is how to describe the logical structure of

documents. Then it is necessary to decide the generalizing strategies of the structures learned

from examples. These two problems are dependent, that is, different descriptions of document

logical structure correspond to different generalizing strategies. They will be discussed in the

following subsections. Section 4.3.2 gives a formal description of the document logical struc-

ture. Section 4.3.3 discusses the strategies to generalize the structures learned from examples.

Section 4.3.4 gives control strategies to use the learning rules and shows some examples using

the rules.

4.3.2 Representation of Document Logical Structure

MarkItUp! uses a subset of the SGML grammar [5] – also called document type definitions

(DTDs) – for representing the logical structure of input documents. The simplified SGML

grammar is a regular grammar and consists of several rules (productions) which break down

logical elements into more simple elements. The syntactical form of each rule is as follows:

element_name –> rexpr (e1, e2, ..., ek)

where,

• element_name (nonterminal) is a non-empty string;

��� �
���� ��������	

• rexpr is a regular expression on elements (parameters) e1, e2, ..., ek and ei �ε for all

i , 1�i �k ;

• each of e1, e2, ..., ek is either a regular expression or a new element_name that must

be defined by a new rule somewhere in the grammar. This ensures that the rules are non-

recursive.

The elements e1, e2, ..., ek use a number of operators for sequence elements (,), repeti-

tion elements(+), iteration elements(*), optional elements(?), and alternative elements(|).

Where the plus sign +, the asterisk or star *, and the question mark ? are three occurrence

indicators.

+ Required and repeatable: the element occurs one or more times

* Arbitrarily repeatable: the element appears zero or more times

? Optional: the element appears zero or one times

Parentheses (and) are used to group expressions, and items within groups occur accord-

ing to the connectors used as follows:

, Sequence: the elements must occur in the specified order

| Alternative: exactly one of the connected elements may occur

For saving some parentheses the binding precedence (? + �� ,) is assumed.

Currently a restriction beyond the regularity of the simplified SGML grammar is the lack

of support of sequences of elements with arbitrary ordering (the connector operator is the

symbol ampersand &, it means that all elements in a group must occur but can be in any or-

der). Although this feature can be useful as a goal for structural abstraction (see below), gener-

al purpose rules for unifying and abstracting permutation sequences tend to perform too badly

to be incorporated into the highly interactive mark up process. The sequences of arbitrary or-

dering will be discussed in Chapter 5.

4.3.3 Learning Logical Structure by Rewrite Rules

When incrementally generalizing a grammar from a limited number of structured examples,

four situations can occur (see below). To deal with them the corresponding rewrite rules are

defined.

(1) The same logical structure can appear in more than one example or slightly deviat-

ing logical structures can share many common elements. Keeping the structures as

����
���� � �������	

alternatives is not necessary and is redundant. To get a simple expression of the log-

ical structures, unification rules are applied.

(2) The nested elements of a grammar rule, such as

A1� ...�Am� (B1� ... �Bn) �C1� ... �Ck,

should be simplified, otherwise, these will lead to a complex or unclear structure in

the subsequent learning process. Simplification rules are used to deal with such

cases.

(3) Some elements in one grammar occur more than once. In this case, man can assume

that the elements can occur repeatedly in the documents and adopt an abstract ex-

pression to represent it. This is done by abstraction rules. For instance, an element

A is repeated two times, it may be abstracted as A+. After that the element may oc-

cur arbitrarily often as opposed to the actual number of occurrences in the example.

Of course, the abstracted expression will lose the precision.

(4) The last and also the most complex circumstance is that the unification rules cannot

be directly applied, and the structures cannot be simplified and abstracted by using

the simplification and abstract rules above. For further simplifying these structures,

the abstract-merge rules are introduced.

The following sections discuss unification rules (with the name unify), simplification

rules (with the name simplify), and abstraction rules (including two kinds of rules with the

names abstract and abstract-merge, respectively) in detail. Each rewrite learning rule has one

of the general patterns: rule-name(parameter) or rule-name(parameter1; parameter2), where

a parameter expresses a right-hand side of a grammar rule.

These learning rules lead to two distinguishing steps in the learning process: In section

4.3.3.1, unifying new example structures with an already existing grammar or simplifying an

existing grammar is discussed such that the resulting grammar can recognize exactly the struc-

ture of the additional example and all the old ones. In section 4.3.3.2 the strict unification rules

are extended to a more tolerant merging mechanism – abstraction rules, whereby the resulting

grammar can anticipate small structural deviations.

4.3.3.1 Unification and Simplification Rules

The purpose of the unification and simplification rules are to simplify the grammar derived

from structured examples. The unified or simplified grammar is exactly equal to the original

��� �
���� ��������	

one, that is, the unified or simplified grammar recognizes and describes the same structure of

documents as the non-simplified grammar does.

Rules for Unification

The most straightforward way of unifying several grammars for structured examples would be

to simply form a top level disjunction. However, such a grammar would soon get highly re-

dundant and, more gravely, would give no clue for further abstraction. The simple disjunction

(enumeration) of all different example substructures of each element does not carry us much

further. Each element would be defined as an alternative of highly overlapping sequences. The

unification rules described in the following merge new structures with existing element rules

such that the commonalities are represented only once, and the structural deviations are made

explicit.

The general pattern of all unification rules is: unify(old; new). The rules express the mini-

mal language that contains the languages defined by old and new. The parameter old is the

already acquired definition of some elements, and the parameter new is the sequence of ele-

ments derived from the new example (possibly empty).

Let ℜ be a set of regular expressions. The formal description of the function unify over ℜ
is as follows: unify(old; new) � (old � new), where old, new �ℜ .

Definition 4.4 (Trivial unification) If unify(old; new) = (old � new), the unification is called a

trivial unification. ❚

Rule 1 Unification of elements or sequences with an empty element ε:
unify(ε; A) = unify(A; ε) = A?

A is an arbitrary expression except ε.

ε denotes an empty element, that is, when an expression A exists in old (or new) exam-

ples, but does not exist in the new (or old) examples, then the non-existing expression A

in the new (or old) examples is defined as an empty element ε. Such empty elements may

be introduced by applying rule 4.

Rule 2 Unification of an expression with a more specific expression:

unify(B; A) = unify(A; B) = A if B � A

A, B are arbitrary expressions.

����
���� � �������	

Rule 3 Unification of optional elements:

A, B are arbitrary expressions except A = ε.

unify(B; A?) = unify(A?; B) =
 A* if B = A+ or B = A*

A? if B = A
(unify(A; B))? otherwise

Rule 4 Unification of sequences with a common prefix or suffix:

(a) unify((A, B); (A, C)) = A, unify(B; C)

(b) unify((B, A); (C, A)) = unify(B; C), A

A, B, C are arbitrary expressions except A = ε.

Rule 5 Unification of alternatives:

unify(A1 � ... � An; B) =

A1 � ... � An � B if unify(Ai ; B) is trivial for all i

Ai , B are arbitrary expressions except B = ε and Ai = ε, for all i (1 � i � n).

C1 � ... � Cn � B Ci =

unify(Ai ; B) for all i, unify(Ai ; B) is
 non-trivial

Ai otherwise

If for all i there exist only trivial unifications between B and Ai , then B is simply added as

an additional alternative. Otherwise, B is merged with all those Ai for which there exists a

non-trivial unification of Ai and B.

Rule 6 Trivial unification:

unify(A; B) = A�B

A, B are arbitrary expressions.

Definition 4.5 (Non-overlapping elements) When two elements A and B are unified, and

only the trivial unification (Rule 6) can be applied, the elements A and B are called non-over-

lapping. ❚

By applying the rules exhaustively, in order of their specification, man arrives at gram-

mars in which the elements are non-overlapping. Otherwise, they can be further simplified by

one of unification rules (except Rule 6).

Rules for Simplification

��� �
���� ��������	

The application of Rules 2-6, as will be discussed in Section 4.3.4, or an intellectual modifica-

tion of the generated grammar may lead to nested expressions. A number of simplification

rules are applied using the associativity of sequence and alternative for flattening.

There is only one parameter in the simplification rules. The general pattern of the simpli-

fication rules is simplify(x) which gives a simplified representation of element x. Over ℜ , a

formal description of the function simplify is: simplify(x) � x, x � ℜ .

Rule 7 Simplification of operators:

(a) simplify((A*)?) = A*

(b) simplify((A*)*) = A*

(c) simplify((A+)?) = A*

(d) simplify((A*)+) = A*

(e) simplify((A+)*) = A*

(f) simplify((A?)?) = A?

(g) simplify((A?)*) = A*

A is an arbitrary expression except A = ε.

Rule 8 Simplification of optional elements:

simplify((A1 � ... � Am)?) = A1?� ... �Am?

Rule 9 Simplification of sequences:

simplify(A1, ..., Am, (B1, ..., Bn), C1, ..., Ck) = A1, ..., Am, B1, ..., Bn, C1, ..., Ck

Ai , Bj , Ch are arbitrary nonempty elements for all i, j, and h

(1 � i � m, 1 � j � n, and 1 � h � k).

Rule 10 Simplification of alternative elements:

simplify(A1� ... �Am� (B1� ... �Bn) �C1� ... �Ck) = A1� ... �Am�B1� ... �Bn�C1� ... �Ck

Ai , Bj , Ch are arbitrary nonempty elements for all i, j, and h

(1 � i � m, 1 � j � n, and 1 � h � k).

Since the unification (also simplification) rules are disjoint and the input and output of

the rules are equivalent, the sequence in which the examples are used does not influence the

final result.

4.3.3.2 Abstraction Rules

The aim of the abstraction rules is to induce a new grammar from structured examples so that

the resulting grammar rules can recognize more of the document-structures than what the

����
���� � �������	

original grammar rules have been able to recognize. Two kinds of abstractions are distin-

guished:

• The first one is an extension of the unification rules. It will be applied during merging

when only trivial unification (Rule 6) is possible. It has two parameters with the general

pattern: abstract-merge(old | new). The abstract-merge function over ℜ can be formally

depicted as: (old | new) � abstract-merge(old | new), where old, new � ℜ .

• The second one is an extension of the simplification rules. It is applied before an exam-

ple grammar unifies with another example grammar or after the example has been

merged into the old grammar to further simplify the inferred grammar. It has only one

parameter with the general pattern abstract(x). The formal description of the abstraction

function over ℜ is:

x � abstract(x), x � ℜ .

Rules for Abstraction

For merging new examples with the existing grammar in a more tolerant way than in the cases

where only the trivial unification exists, five abstraction rules are introduced: Whereas the

unification Rules 4(a) and 4(b) merge only sequences with a common prefix or suffix, the ab-

straction Rules 11(a)-(b) merge sequences with a comparable prefix or suffix (where A� � A),

the abstraction Rules 12(a)-(c) merge sequences with a number of common subsequences in-

terleaved with distinct subsequences.

Rule 11 Abstraction merge of comparable prefix or suffix:

(a) abstract-merge(A, B; A�, C) = max(A�, A), unify(B; C) if A� � A

(b) abstract-merge(B, A; C, A�) = unify(B; C), max(A�, A) if A� � A

where A, A�, B, C are arbitrary expressions, except A = ε and A� = ε;

max(A�, A) =

A� if A � A�

A if A� � A

This rule is an extension of Rule 4. It considers the case A� � A. For example, for the two

elements ac* and bc+ , a suitable unification rule cannot be found to simplify them (except

Rule 6). But they can be abstracted by Rule 11. The abstraction result is (a|b)c* which is not

equal to the original expression ac*|bc+ , since (a|b)c* includes the element b, but

ac*|bc+ does not.

��� �	���� �����
��

When there exists no rule to be used in merging new examples with existing grammar

rules (except Rule 6), Rule 12 adopts the methods of defining new optional elements or of

dividing sequences into two parts to get non-trivial unification subsequences.

Rule 12 Abstraction merge of sequences:

(a) abstract-merge(A, B1, ..., Bm; C1, ..., Cn) = A?, unify(B1, ..., Bm; C1, ..., Cn)

when unify(B1, ..., Bm; C1, ..., Cn) is non-trivial.

Likewise, there are two rules (b) and (c).

(b) abstract-merge(B1, ..., Bm, A; C1, ..., Cn) = unify(B1, ..., Bm; C1, ..., Cn), A?

when unify(B1, ..., Bm; C1, ..., Cn) is non-trivial.

(c) abstract-merge(A1, ..., Ah, B1, ..., Bm; D1, ..., Dk, C1, ..., Cn)

= unify(A1, ..., Ah; D1, ..., Dk), unify(B1, ..., Bm; C1, ..., Cn)

when at least one of unify(A1, ..., Ah; D1, ..., Dk) and unify(B1, ..., Bm; C1, ..., Cn) is

non-trivial.

To further simplify the grammar in the second abstraction case, Rule 13 performs a

grouping on finite sequences of consecutive equal subsequences in a similar way as for ab-

straction at the content level.

Rule 13 Abstraction of repeated elements

abstract(A, (B1, ..., Bm), (B1, ..., Bm), ..., (B1, ..., Bm), C) = A, (B1, ..., Bm)+, C

A, Bi , C are any expressions, except Bi = ε, for all i (1 � i � m).

Although the abstraction rules are disjoint, the input and output of the rules are not equiv-

alent. Therefore, the final result is dependant on the sequence of examples.

4.3.4 Applying the Learning Rules

The four types of learning rules have been discussed in Section 4.3.3. They will be used for

dealing with the different cases in the learning process. Now the problem is when and how

they are applied during learning cycles. The following sections give some control strategies

for applying the learning rules and show some examples to explain how the rules are

executed.

4.3.4.1 Control Strategies for Applying the Learning Rules

One reason for applying the learning rules is to make the form of the learned grammar simple

and exact. Of course, the two aspects of simplification and exactness are mostly contradictory

����
���� � �������	

in the learning problem. In this thesis, simplification is considered as the major aim. For this

reason, when two grammar rules are unified, the simplification rules and the abstraction rules

will be applied at first. After that the unification rules, and then the abstract-merge rules are

chosen. By this requirement, an ordering is described as follows:

Strategy: The control strategy for applying the learning rules

1 apply the simplify rules and/or the abstract rule to the grammar rules;

2 unify the old and new grammar rules with the unify rules; If only the trivial unification is

possible, go to 3, otherwise unify them and then stop;

3 abstract the old and new grammar rules with abstract-merge rules (call Rule 6ext).

For applying the abstraction rules, an extension rule of Rule 6 is added:

Rule 6ext: The control strategy for applying abstract-merge rules

When two rules are unified and only the trivial unification (Rule 6) is possible, one of the ab-

stract-merge rules is tentatively applied as follows:

1 if Rule 11 can be applied then abstract the rules with Rule 11else

2 begin

3 find incomparable subsequences C such that

the remaining subsequences of the input rules are non-trivial;

4 if C is a subsequence at the beginning of one of the input rules then apply Rule 12(a)

5 else if C is a subsequence at the end of one of the input rules then apply Rule 12(b)

6 else apply Rule 12(c);

7 apply the unification rules to the abstracted rules further and then stop;

8 end

4.3.4.2 Some Examples for the Learning Rules

The following examples illustrate the usage of the above learning rules. Note that the element

name in SGML is limited to 8 characters. To more easily read the following examples, any

number of characters describing an element are allowed in the following examples.

Example 4.1 Abstraction of repetition elements

Let a paper element of SGML DTD be:

SGML-DTD 4.1 paper –> title , author , address, author , address,

 author , address, abstract , text-para *

When the abstraction Rule 13 is applied to the RHS of paper , the following result is

produced:

��� �	���� �����
��

abstract (title, author, address, author, address, author,

 address, abstract, text-para*)

�
13

 title, (author , address)+, abstract, text-para*

Example 4.2 Unification of sequences with the maximum common prefix or suffix

Let two elements of SGML DTD paper be:

SGML-DTD 4.2 paper –> title, author, address, abstract, text-para

SGML-DTD 4.3 paper –> title, author, address, abstract

Unify the RHSs of the two elements as follows:

unify (title, author, address, abstract , text-para;

 title, author, address, abstract)

�
4a

 title, author, address, abstract, unify (text-para; ε)

�
1

 title, author, address, abstract, text-para?

The unified RHS of the element paper is:

paper –> title, author, address, abstract, text-para?

Example 4.3 Unification of alternative elements

Let an element date be defined as:

SGML-DTD 4.4 date –> day �month �year

To discuss the two cases of the unification Rule 5, another two elements of date unify

with SGML-DTD 4.4 :

SGML-DTD 4.5 date –> time

SGML-DTD 4.6 date –> month

(a) unifying SGML-DTD 4.4 and SGML-DTD 4.5

unify (day|month|year; time)

�
5

 day|month|year|time

Now a new SGML–DTD is generated:

����
���� � �������	

SGML-DTD 4.7 date –> day|month|year|time

(b) unifying SGML-DTD 4.4 and SGML-DTD 4.6

unify (day|month|year; month)

�
5&2

 day|month|year

The result of the unification is the following SGML–DTD:

SGML-DTD 4.8 date –> day|month|year

Of course, SGML-DTDs 4.7 and 4.8 can be further unified using other unification rules,

but in this example the focus is on the unification Rule 5.

Example 4.4 Unification of optional elements

From the result of Example 4.2, the element of SGML DTD paper is:

SGML-DTD 4.9 paper –> title, author, address, abstract,

 text-para?

Let a new element of SGML DTD paper be:

SGML-DTD 4.10 paper –> title, (author, address)+, abstract,

 text-para *

When the RHS of SGML-DTD 4.9 is unified with the RHSs of SGML-DTD 4.10 , the

following result is obtained:

unify (title, author, address, abstract, text-para?;

 title, (author, address)+, abstract, text-para*)

�
4a&2

 title, (author, address)+, abstract,

 unify (text-para?; text-para *)

�
3

 title, (author, address)+, abstract, text-para *

Example 4.5 Abstraction merge of sequences

Let elements of SGML DTD biography be:

SGML-DTD 4.11 biography –> ID, head, body, reference

��� �
���� ��������	

SGML-DTD 4.12 biography –> head, body

SGML-DTD 4.13 biography –> name, biogdata, body, signature

They are used to show the application of abstraction Rule 12:

(a) unifying SGML-DTD 4.11 and SGML-DTD 4.12 :

unify (ID, head, body, reference; head, body)

�
6ext

 abstract-merge (ID, head, body, reference; head, body)

�
12a

 ID? , unify (head, body, reference; head, body)

�
4a

 ID? , head, body, unify (reference; ε)

�
1

 ID? , head, body, reference ?

(b) unifying SGML-DTD 4.11 and SGML-DTD 4.13 :

unify (ID, head, body, reference; name, biogdata, body,

 signature)

�
6ext

 abstract-merge (ID, head, body, reference; name, biogdata,

 body, signature)

�
12c

 unify (ID, head; name, biogdata), unify (body, reference;

 body, signature)

�
4a&6

(ID, head � name, biogdata), body,

 unify (reference; signature)

�
6

 (ID, head � name, biogdata), body, (reference � signature)

4.4 Summary

The learning approach discussed in this chapter covers the following characteristics: (1) Incre-

mental learning so that the grammar can be efficiently modified using additional examples;

(2) Embedding version-space methods in the grammatical inference learning cycle, with the

aid of version-space methods man can generalize concepts on the basis of a set of training data

and a language; (3) Isolated learning of each production; (4) Judging the positive and negative

examples by the user. The learning result is a grammar which can be used to mark up an elec-

tronic document into an SGML-document with the DREAM parser.

���������� � ������
� � ��	������ ��������

(5 5 5 5 5. 55

Sequence of Arbitrary Ordering

The kind of structure-rule whose RHS consists of ordered elements has been discussed, that is,

for this kind of rule the positions of the elements in its RHS are fixed. After learning several

examples, some structure-rules may have alternative RHSs in which the positions of elements

are exchanged. This chapter will discuss these RHSs that consist of the sequences whose ele-

ments have arbitrary ordering.

5.1 Problem and Goal

For a document collection (see Section 1.2) the logical elements may occur in different order-

ing in the subdocuments. When such subdocuments are met, man can derive a set of RHSs for

a structure-rule in which the logical elements have different orderings, that is, the positions of

the elements in the RHSs are not fixed. The set of RHSs of such a structure-rule is called al-

ternative RHSs or alternative sequences of the structure-rule (or short alternative sequences).

A simple and typical example is the name of an author that consists of first name(s) and

last name(s). The first name will be written before the last name or after the last name. When

man uses a grammar rule to describe such cases, man gets a rule author whose RHS has two

alternatives: first-name followed by last-name (denoted as first-name , last-name)

or last-name followed by first-name (denoted as last-name , first-name).

When a RHS of a structure-rule consists of n elements and the positions of all elements

are exchangeable, man may derive n! permutation sequences of the elements, that is, the num-

ber of the alternative sequences of the elements can be at most n!. Although the number of

alternative sequences, normally, is smaller than n!, enumerating all alternatives is too clumsy.

Further more, it may lead to complex or unclear descriptions in the subsequent learning pro-

cess or during the translation from an abstracted grammar to a DSD. For these reasons, an

expression is needed to represent such alternative sequences. Fortunately, SGML provides a

connector ampersand & , with which such alternative sequences can be described by a general

expression. For instance, the alternative sequences of the above example can be represented

by the general expression: first-name & last-name .

��� ������� � ������
� � ��	������ ��������

It is now easy to connect all elements in the alternative sequences by the connector am-

persand & which definitely includes all actually existing alternative sequences. However,

these completely unordered sequences are normally too ambiguous.

Thus the goal of this chapter is to infer a general expression to represent the alternative

sequences derived from the learned examples and introduce a mechanism which identifies the

minimal subsequences that can be unordered but keeps the rest of it ordered in the general

expression. The way from a set of concrete alternative sequences to a general expression is

therefore an abstraction learning process. The learning process will be discussed in the follow-

ing sections.

The remainder of this chapter is organized as follows. Section 5.2 introduces some basic

concepts and notations which will be used in the following sections. Section 5.3 discusses

how to infer a general expression from the alternative sequences.

5.2 Basic Concepts and Notations

Since the focus is on the RHSs of the structure-rules, the following definitions and discussions

serve for these RHSs.

Definition 5.1 (Unordered elements and Ordered elements) The elements e1, e2, ..., en of a

RHS of a structure-rule are unordered elements, if their positions can be changed in the alter-

native sequences of the rule. Otherwise, they are ordered elements. ❚

Suppose there are unordered elements e1, e2, ..., en. If the position of the element ei (1 � i

� n) in a sequence is denoted by a number j (1 � j � n), the list of the numbers, denoted by

{1, 2, ..., n}, expresses a sequence of the elements. Each permutation sequence of the elements

corresponds to a list of the numbers, denoted by π = [the sequence of numbers]. For simplicity,

when man discusses permutation sequences, the numbers can be used to describe the se-

quences instead of the concrete elements of the sequences. For instance, π = [3, 4, 2, 1] ex-

presses the permutation sequence e3, e4, e2, e1. Among the permutation sequences, there exists

a special sequence, which is called a standard sequence.

Definition 5.2 (Standard sequence and normal sequences) If a permutation sequence con-

sists of elements e1, e2, ..., en and the position of element ei in the sequence is the number i for

all i (1 � i � n), the sequence of the elements is called a standard sequence, denoted by

π=[1, 2, ..., n]. The other permutation sequences of the elements are called normal sequences.❚

���������� � ������
� � ��	������ ��������

For the alternative sequences derived from the learned examples, the sequence that ap-

peared in the first example is appointed as the standard sequence.

In the π of the standard sequence, the numbers are ordered according to the ordering de-

fined on natural numbers. If two numbers in a π occur out of this ordering, that is, the larger

number is to the left of the smaller one in a sequence, they form an inversion. For example, in

the permutation sequence π = [2, 1, 3, 4], numbers 2 and 1 form an inversion.

Definition 5.3 (General expression) A general expression (GE) of numbers {1, 2, ...,n}, de-

noted by a symbol η, is an abstracted expression of the alternative sequences in which the

numbers are written from 1 to n and connected by parentheses ‘(’ and ‘)’, commas ‘,’, and

ampersands ‘&’, where the ampersand has a higher associated precedence than the comma. ❚

Note that a general expression always implies a standard sequence.

If π = [4, 2, 3, 1], a GE of the π is inferred as η := 1 & (2, 3) & 4 which means that num-

ber 2 must appear before number 3 in any sequence and they can exchange the position with

number 1; number 4 can exchange with number 1 to number 3, but it is not adjacent to number

3 (except in the standard sequence of the numbers). From this GE, man can derive the follow-

ing normal sequences: π1 = [4, 2, 3, 1], π2 = [4, 1, 2, 3], π3 = [2, 3, 1, 4], π4 = [2, 3, 4, 1], and

π5 = [1, 4, 2, 3], where π2 to π5 are extra normal sequences which do not occur before the GE

is inferred. It means that a GE may include other permutation sequences which have not oc-

curred before the GE is inferred.

5.3 Inferring a General Expression

It is not easy to infer a general expression directly from a set of alternative sequences. Howev-

er, a PG (see Section 2.2.3) represents a good way to describe the positions of unordered ele-

ments in a sequence. Therefore, with the help of their PGs a general expression can be inferred

from alternative sequences. The major steps to reach such the goal are:

(1) Creating permutation graphs (PGs) of permutation sequences (Section 5.3.1);

(2) Getting the union graph of the PGs (Section 5.3.2);

(3) Inferring a general expression on the basis of the union graph (Section 5.3.3).

5.3.1 Constructing a Permutation Graph

The definition of permutation graphs (PGs) and the relationship between a permutation graph

G[π] and a permutation π of numbers {1, 2, ...,n} have been described in Section 2.2.3. On

��� ������� � ������
� � ��	������ ��������

the basis of these knowledge, a permutation graph G[π] can be constructed from a permuta-

tion π of numbers {1, 2, ...,n} in the following way:

(1) The nodes of G[π] are numbered from 1 to n;

(2) Two nodes are joined by an edge if they form an inversion.

For instance, π := [3, 4, 2, 1] contains five inversions, since in the standard sequence both

number 3 and number 4 should follow number 1 and number 2, and number 2 should follow

number 1. Therefore, the G[π] in Figure 5.1 shows: both number 3 and number 4 connected to

number 1 and number 2 (four edges), and number 2 connected to number 1 (one edge).

Fig. 5.1 The permutation graph of π = [3, 4, 2, 1]

 1 ––––– 2 ––––– 3 4

Where, a continuos line “–––––” is used to express an inversion (normal edge) in a permutation

graph.

The permutation graph of the standard sequence consists of isolated nodes, that is, there

is no edge among the nodes in the PG. The PG is called a standard PG. In the following sec-

tions, when a graph is called a permutation graph, it means that it is not a standard permutation

graph.

If the numbers in a sequence are ordered differently from their ordering in the standard

sequence, then this is a normal sequence. In other words, a normal sequence is always defined

relative to a standard sequence. Since there is a one-to-one mapping between the permutation

graph and the normal sequence, if a permutation graph is not a standard permutation graph,

the graph also implies a standard permutation graph. Therefore, for a non-standard permuta-

tion graph there always exists two sequences: a standard sequence and a normal sequence.

5.3.2 Union Graph of PGs

A union graph of PGs is called an abstraction graph (AG) and defined as follows:

Definition 5.4 (Abstraction graph) If PGi = (V, Ei), 1 � i � n, an abstraction graph (AG) of

permutation graphs is a union graph of them so that AG = (V,�
n

i�1
Ei). ❚

���������� � ������
� � ��	������ ��������

1 2 ––––– 3 4
1 ––––– 2 3 4

combine G[π1] and G[π2]

Fig. 5.2 A union graph is a PG

1 ––––– 2 ––––– 3 4

Fig. 5.2a G[π1], π1 = [1, 3, 4, 2] Fig. 5.2b G[π2], π2 = [2, 3, 4, 1]

Fig. 5.2c A new AG

Note that an AG may either be a permutation graph (called a PG-AG) or a non-permutation

graph (called a non-PG-AG), because of two possible cases occurring when PGs are com-

bined:

(1) The union graph is still a PG, that is, there exists a permutation π of numbers {1, 2, ...,n}

for the union graph (see Theorem 2.5 in Section 2.2.3);

For example, in Figure 5.2, π1 = [1, 3, 4, 2], π2 = [2, 3, 4, 1]. Their corresponding per-

mutation graphs G[π1] and G[π2] are shown in Figure 5.2a and Figure 5.2b, respectively.

Combining G[π1] and G[π2] produces a new AG (Figure 5.2c). The new AG is a PG, the

corresponding permutation sequence π of AG is π = [3, 4, 2, 1]. Therefore, this AG is a

PG-AG.

(2) The union graph is not a PG, that is, for the union graph there does not exist a correspond-

ing permutation π of numbers {1, 2, ...,n}.

For example in Figure 5.3, π1 = [1, 3, 4, 2], π2 = [2, 1, 3, 4]. Their corresponding per-

mutation graphs G[π1] and G[π2] are shown in Figure 5.3a and Figure 5.3b, their union

graph (Figure 5.3c) is a new AG but it is not a PG, that is, there does not exist a π of num-

bers {1, 2, 3, 4} whose permutation graph is the result of the combination. This AG thus

is a non-PG-AG.

Similarly combining a PG and an AG (with the same nodes), the consequence may be a

PG-AG or a non-PG-AG. Every AG, no matter whether it is either a PG-AG or a non-PG-AG,

has the property described below.

��� ������� � ������
� � ��	������ ��������

Fig. 5.3 A union graph is not a PG

1 2 ––––– 3 4 1 ––––– 2 3 4

combine G[π1] and G[π2]

1 ––––– 2 ––––– 3 4

Fig. 5.3a G[π1], π1 = [1, 3, 4, 2] Fig. 5.3b G[π2], π2 = [2, 1, 3, 4]

Fig. 5.3c A new AG

In a PG (or an AG) there are two kinds of nodes: (1) isolated node which has no edge

connected with other nodes in the PG; (2) connected node which has at least one edge con-

nected with another node in the PG. The connected nodes construct a connected graph, that is,

there exist paths from one node to another node in the graph. A PG may consist of several

connected sub-graphs and isolated nodes. The following lemma and corollary describe the

property of the nodes in the connected sub-graphs.

Recall that each node in a permutation graph is always identified by a corresponding inte-

ger. Thus, for convenience, a set of nodes is called an interval if the set of integers correspond-

ing the nodes forms an interval (of integers).

Lemma 5.1 Given a permutation graph PG, the set of nodes in each connected sub-graph of

PG forms an interval.

Proof: Let PG� = (V�, E�) be a connected sub-graph of PG. At first we show if (i, j) � E�, i �

j, then k � V� for any i � k � j.

Observe that (i, j) � E� implies ��1
i � ��1

j . If ��1
i � ��1

k , then (i, k) � E�; if ��1
i �

�
�1
k then ��1

k � ��1
j and hence (k, j) � E�. Thus, k � V�.

Now let m and n be respectively the minimal and maximal nodes in V�. It follows that there is

a path from m to n. In this path, each edge, say (i, j), implies that k � V� for any i � k � j.

Consequently, k � V� for any m � k � n. This completes the proof. ❚

Corollary 5.2 Given an abstraction graph AG, the set of nodes in each connected sub-graph

of AG forms an interval.

���������� � ������
� � ��	������ ��������

Proof: Since each connected sub-graph of AG is a union of several connected sub-graphs of

permutation graphs, the result immediately follows from Lemma 5.1. ❚

5.3.3 Deriving a General Expression from an AG

An AG may be a PG-AG or a non-PG-AG. Whatever it is, Lemma 5.1 and Corollary 5.2 en-

sure that the nodes in the sub-graph of the AG form an interval.

For a PG-AG, if the nodes i and j form an inversion, where i < j, based on the definition

of PG (see Section 2.2.3) the property can be inferred: j with each node in the interval [i+1,

j–1] forms an inversion also. On the basis of this property and Lemma 5.1 a GE of a PG-AG

can be derived.

For a non-PG-AG this property doesn’t hold. Since every AG originally comes from PGs,

to derive a GE of a non-PG-AG, the AG can be abstracted by using this PG’s property, that is,

if the above condition holds: i < j and i and j form an inversion, it is assumed that j connects

with each node in [i+1, j–1] although some edges may not exist in the AG.

On the basis of the above discussion, the following algorithm is used to derive a GE (see

Definition 5.3) of the AG.

Since edges in an AG express that the positions of nodes connected by them are ex-

changeable, isolated nodes denote that the positions of the nodes in a sequence are non-ex-

changeable, the nodes in the AG are first classified into isolated nodes and connected nodes.

Each set of connected nodes consists of a connected sub-graph. From Corollary 5.2, man

knows that the nodes in the connected graph form an interval. Therefore, the nodes in the con-

nected graph can be sequentially scanned and can be connected with commas, ampersands and

parentheses. Finally all sub-graphs are connected by commas according to increasing nodes’

numbers.

Algorithm 5.1 Deriving a general expression from an AG

Input. An AG.

Output. A general expression of the AG.

Method. Suppose the nodes are ordered from number 1 to number n, that is, the node number

stands for the position of the node in the standard sequence. Here when two nodes are ex-

��� ������� � ������
� � ��	������ ��������

changeable, it means their positions are exchangeable. On the basis of such an assumption,

man can sort and group the nodes by the following steps:

(1) Partition the AG to several sub-graphs (GHs) which are either connected graphs or iso-

lated nodes, that is, each sub-graph j (GHj) is either a connected graph or an isolated node.
The sub-general expression of GHj is denoted by ηgh(j). The ηgh(j) of an isolated node is

the number of the node and the ηgh(j) of a connected graph is inferred by the following
step;

(2) For each connected graph (Vj = [j, k], 1 � j � k � n), scan the nodes from j to k and
connect them using commas, ampersands and parentheses to get a sub-general expres-
sion ηgh(j). Since ampersand has a higher associated precedence than comma, when a set

of ordered elements will be connected with an unordered element, they are put in paren-
theses as an entire unit to connect with other unordered elements. For this reason the or-

dered elements are tried to figure out first (see the first part of Function subGE, from line 5
to line 13) and are kept in a pair of parentheses when they are connected with another
unordered elements (see Function parGE).

(3) If there exist m (m � 1) sub-graphs, use the commas to connect each sub-graph according
to increasing nodes’ number (Lemma 5.1 and Corollary 5.2 ensure that it can be done in

such ordering), that is, η := η, ηgh(j) (1 � j � m).

Routine Deriving_GE

Suppose there are m sub-graphs.

1 begin
2 V := {the nodes of AG};
3 E := {the edges of AG};

//E is a global variable such that the following functions can call it

4 if AG is not a connected graph then partition the AG to several sub-graphs (GHs);

5 for each connected sub-graph GHj (Vj = { j, j+1, ..., k–1, k}) do ηgh(j) := subGE(j, k);
6 η := ηgh(1);

7 for j := 2 to m do η := η, ηgh(j);

8 return (η); //η is a general expression of the AG

9 end

Function subGE(startNode, endNode)
1 begin1 //to make readers easily match the corresponding begin and end in this function,

// the number at the end of each begin and end identifies pairs of begin and end.

2 ηgh := startNode; i := startNode; //ηgh is used to express a GE of a sub-graph

3 while i�endNode do
4 if i connected with i+1 then
5 begin2

6 scan the nodes from left to right;

���������� � ������	� �� ��������� ��
����

7 find the biggest node l � [i+1, endNode] such that the nodes in [i+1, l]
are ordered elements and each of them is connected with i;

8 if ∃ a node� [i+1, l] which is connected with at least one node (except i) in ηgh

9 then ηgh := parGE(ηgh, i+1, l);

10 if l = i+1 then ηgh := ηgh & i+ 1 // to avoid unnecessary parentheses around l.
11 else ηgh := ηgh & (i+1, i+2, ..., l–1, l);

12 i := l;

13 end2

14 else
15 begin3 // i doesn’t connect with i+1
16 if i+1 doesn’t connected with any node in ηgh

17 then ηgh := ηgh, i+1

// i+1 as an ordered element connected with the nodes in [startNode, i]

18 else // i+1 as an unordered element connected with one of the nodes in [startNode, i]
19 begin4

20 ηgh := parGE(ηgh, i+1, l);

21 ηgh := ηgh & i+1;

22 end4;

23 i := i+1;
24 end3;

25 return (ηgh);

26 end1

Function parGE(ηgh, startNode, endNode)

1 begin
2 scan ηgh from left to right;

3 find the first node h in ηgh which is connected with one of the nodes in [startNode, end-

Node];

// suppose startNode is connected with h, man can infer that startNode is connected

// with the nodes in [h+1, startNode–1] also.
4 if the h is not in a pair of parentheses ()

5 then //h is not yet classified into an entire unit

add the left parenthesis (to the ηgh before the node h and the right parenthesis) to

the end of ηgh // to create an entire unit
6 else //h has been included in an entire unit

add the left parenthesis (to the ηgh in front of the existed the leftest parenthesis which

includes h and the right parenthesis) to the end of ηgh;

 // to form a new entire unit that contains the old one

7 return (ηgh)
8 end

The algorithm is also applicable for permutation graphs. With the above algorithm, man

can infer a general expression on the basis of a PG or an AG. Now let us consider some exam-

ples to apply the above algorithm.

��� ������� � ������
� � ��	������ ��������

Example 5.1 A PG in Figure 5.4

Fig. 5.4 A PG

1 ––––– 2 3 ––– 4

(1) no sub-graph

(2) ηgh = (1&2, 3)&4

(3) η := ηgh

The general expression denotes the permutation sequences: π1 = [1, 2, 3, 4], π2 = [2, 1, 3, 4],

π3 = [4, 1, 2, 3], π4 = [4, 2, 1, 3]. Where π2 and π3 are new normal sequences which do not

appear in the existing sequences represented by Figure 5.4.

Example 5.2 A PG in Figure 5.3a

(1) two sub-graphs, GH1 = {1}, ηgh(1) = 1; GH2 = {2, 3, 4}

(2) ηgh(2) = 2&(3, 4)

(3) η := 1, 2&(3, 4)

The general expression denotes the permutation sequences: π1 = [1, 2, 3, 4], π2 = [1, 3, 4, 2]

which are equal to the alternative sequences represented by Figure 5.3a.

Example 5.3 A PG in Figure 5.3b

(1) three sub-graphs, GH1 = {1, 2}; GH2 = {3}, ηgh(2) = 3; GH3 = {4}, ηgh(3) = 4

(2) ηgh(1) = (1&2)

(3) η := (1&2), 3, 4

The general expression denotes the permutation sequences: π1 = [1, 2, 3, 4], π2 = [2, 1, 3, 4]

which are equal to the alternative sequences represented by Figure 5.3b.

Example 5.4 An AG in Figure 5.3c

(1) no sub-graph

(2) ηgh = 1&2&(3, 4)

(3) η := ηgh

The general expression denotes the permutation sequences: π1 = [1, 2, 3, 4], π2 = [2, 1, 3, 4],

π3 = [1, 3, 4, 2], π4 = [2, 3, 4, 1], π5 = [3, 4, 1, 2], π6 = [3, 4, 2, 1]. Where π4 to π6 are new

���������� � ������
� � ��	������ ��������

normal sequences which do not appear in the existing sequences represented by Figures 5.3a

and 5.3b, in other words, the abstracted expression can denote more permutation sequences

than exist in the original AG.

The four examples show that the general expression inferred on the basis of a PG, on the

one hand, may denote more sequences than the existing sequences represented by the PG (Ex-

ample 5.1), on the other hand, it can denote exactly the same sequences represented by the PG

(Example 5.2 and Example 5.3). However, for an AG (Example 5.4), the general expression

always implies more sequences than the existing sequences represented by the AG.

5.4 Summary

This chapter describes a learning approach to infer a general expression of sequences of ele-

ments with arbitrary ordering. The overall idea of the learning approach is to use permutation

graphs describing the alternative sequences, where the edges of the permutation graphs de-

scribe the deviation among the sequences. After combining the permutation graphs, man can

get a union graph that contains all edges in the permutation graphs. On the basis of the union

graph man can infer a general expression of the alternative sequences.

��� ������� � ������
� � ��	������ ��������

����	����� � ����������
�

6 6 6 6 6. 66

Implementation

The first section of the chapter gives an overview of the system architecture of MarkItUp!.

According to the architecture, the subsequent sections describe the major implemented algo-

rithms of each component in the system. Section 6.6 discusses several examples in detail to

illustrate the different strategies for incrementally learning a grammar. Section 6.7 evaluates

the effectiveness of MarkItUp! on a bibliographic document source. Finally, Section 6.8 sum-

marizes implementation and evaluation.

6.1 System Architecture of MarkItUp!

Figure 6.1 gives the system architecture of MarkItUp!. It shows the main components of Mar-

kItUp!: the user interface component which accepts the users’ operations and feeds back the

system results; the scanner which scans the marked-up examples; the learning component

which abstracts contents at the content level and structures at the structure level; the DREAM

grammar generator which translates the abstracted grammar into DREAM DSD (document-

structure description); and the DREAM parser which parses examples with the DREAM DSD.

The list of concepts is used to contents abstraction. The grammar is applied for both con-

tents abstract and structures unification and abstraction. The document collection contains

many subdocuments with similar structures.

All components except the parser are implemented in Smalltalk, the DREAM parser is

implemented in C++.

6.2 User Interface

MarkItUp! supports two views to keep contact with the users: The structure editor and the

concept editor. The structure editor is available for text-editing and structure-editing. It can

support untagged or tagged documents, and the tagging process. The concept editor accepts a

set of concepts, creates and displays a corresponding concept base as a DAG. Both editors

support several functions (see Sections 6.2.1 and 6.2.2) via pull-down menus.

��� �	����� � ����������
�

Fig. 6.1 System architecture of MarkItUp!

concept editor

content abstraction

 structure editor

 list of
concepts

structure abstraction
 & unification

grammar

 manual markup /
correction example concepts

document
collection

DREAM parser

scanner

tentatively marked-up
example

 DREAM grammar
 generator

user
example selection / subdocuments access

error message

User Interface

Learning

subdocuments

marked-up example

initial grammar

abstracted grammar

new grammar

DREAM DSD

partial ordered concepts

6.2.1 Structure Editor

Section 3.2.2 has briefly introduced the structure editor. This section will describe the individ-

ual components of the structure editor and their functions of the components.

The structure editor supports a graphical interface consisting of three views for distinct

functions used to capture a grammar description from the user. The views are: Structure View,

Editor View, and Graphic View. They are identified in Figure 6.2 and will be discussed in their

respective subsections, in no particular order. Figure 6.3 shows the structure editor in use.

����	����� � ����������
�

Structure View

Editor View

Graphic View

Fig. 6.2 Organization of the structure editor

Mark-It-Up

Structure View

The Structure View is shown on the left side of the structure editor. It displays a list of tag

names which appear in the Editor View as markups. The tag list can be changed when the user

manually tags an example in the Editor View or uses the menu in the Structure View. More

details of the former case are described in the Editor View in the part of special-editing-opera-

tions. Here the latter case is discussed which uses the menu in the Structure View to modify

the tag list. When the cursor is moved into the Structure View, and the right button of the

mouse is clicked, the user is offered the following options via the menu in the Structure View:

• Option add: It allows the user to add a new tag name into the Structure View. After the

new tag is accepted by the system, the system automatically sorts the tags names accord-

ing to alphabetic ordering.

• Option delete: It permits the user to delete a tag name from the Structure View.

• Option rename: It allows the user to change a tag name in the Structure View. But the

user should note that the corresponding markup’s name in the Editor View cannot be

changed automatically. Therefore, it has to be changed manually. Otherwise, an inconsis-

tency will raise an error message when the changed tag name is highlighted in the Struc-

ture View or when the content of the old tag name in the Editor View is manipulated.

• Option save: It permits the user to save the tags names to a file that can be loaded at a

later time. During the execution of this option, the system will ask the user for the output

file name.

��� �	����� � ����������
�

Fig. 6.3 An example of structure editing

• Option load: It allows the user to load the previously created tags names into the Struc-

ture View. Similarly to the option save, there is a dialog between the system and the user

for an input file name.

When the user wants to modify one of the tags in the Structure View, the cursor must be

positioned in the Structure View at first. Then the user selects the desired function from the

menu with the right button of the mouse. For example, if the user wants to delete the tag name

author in Figure 6.3, the user will do the following two steps:

• Highlight author in the Structure View with the mouse;

����	����� � ����������
�

• Select the option delete in the menu.

After the two steps have been done, the system will execute the corresponding function and

delete the tag name. When the function is performed, the name author will disappear from

the tag list.

Besides modifying the tags, one can also see the RHS of a tag in the Graphic View, when

the tag is highlighted with the cursor in the Structure View (the detailed explanation and an

example of the such a function will be depicted in the description of the Graphic View below).

Editor View

The Editor View is a text view for inputting and editing documents. The cursor can be posi-

tioned anywhere within the Editor View by using the mouse. Once a text or part of it has been

highlighted with the cursor, options such as cut/copy and paste can be performed on the high-

lighted text. These options can be called from an editing-menu. Besides them, the editing-

menu represents other options that can be grouped as compile-operations, special-editing-op-

erations, normal-editing-operations, and I/O-operations. The four groups contain a set of im-

portant options, therefore, they need to be further explained in the following.

The compile-operations include four options that can be performed for compiling a par-

ticular marked-up example. These options operate on three different marked-up examples:

• Option Compiling the first marked-up example.

When the system starts, there is no marked-up example and no grammar. Usually

the user marks up an example and then uses the compiling option to utilize the

marked-up example in the markup cycle (Figure 3.2) without grammar unification.

• Option Compiling non-marked-up examples.

After the first example is compiled, the system is able to mark up another example

based on the existing grammar. This option is selected when the system gets a new

example and there is an old grammar in the system.

• Option Compiling the user updated element.

When a tentatively marked-up example does not satisfy the user, it has to be cor-

rected. When the option is selected, the corrected results (new structures or new

strings) will be learned by the system.

• Option Compiling the user updated example.

The option is similar with the above option. The difference between them is that

��� ������� � ���
�������	�

this option is used to implement the exhaustive learning strategy, whereas, the

above option is used to implement the partial learning strategy. For details on the

two learning strategies see Section 6.6.2.

The special-editing-operation contains one option markUpAString. When a string is high-

lighted in the Editor View and this option is selected, the system will:

• insert start- and end-tags into the highlighted string.

This changes the focus of attention to the definitions of tags. When tagging a string

with such a option, two cases will occur: the given tag name does not exist or it

exists already.

If a tag does not exist, a new tag name is created. The new tag is added into the

Structure View and the marked string is surrounded by the new start- and end-tags

in the Editor View. For example, if there is an untagged string “pp” in the Editor

View and the user wants to tag it with the name code which does not exist in the

Structure View, the result of executing markUpAString is (1) the new tag name

code is created in the Structure View and (2) the string “pp” is marked up by

<code>pp</code> .

If the tag already exists, such as the tag code in Figure 6.3, after the above option is

executed, the system will ask the user whether to insert the tag into the marked

string to validate the regularity of the grammar. If there is no conflict, the start- and

end-tags are inserted into the marked string. Otherwise, the user will define a new

tag name for the marked string or cancel the call.

When a string occurs between two start- (or end-) tags or between different start-

and end-tags, it is recognized as a cut-string.

The normal-editing-operations include seven Smalltalk system options (again, undo, cut,

copy, paste, accept and cancel) in the menu, where the option accept means that, when a block

of data is accepted by Smalltalk, the data has been stored in the Smalltalk system environ-

ment.

The last group in the editing-menu is I/O-operations. It includes two options that work on

document files. One is to load a document from a file (getTextFromFile). Another one is to

save the marked-up document as a file (saveTextInFile). The file can be read or stored into a

directory which the user has identified.

Therefore, the input to the Editor View can come from two sources: either an entire file as

discussed above, or by keystrokes from the keyboard when a user is entering text. If one part

����	����� � ����������
�

of the text is loaded from a file, the user can expand the text with the keyboard. When the

input of the expanded text is finished the user can select the accept option to store it in the

Smalltalk environment. Normally, the user doesn’t know where the data is stored. It is man-

aged by the Smalltalk system.

Graphic View

The area of the Graphic View is located on the right-bottom of the structure editor (Figure 6.2)

and is used to display the structure of a grammar rule. When the user highlights a tag in the

Structure View, the corresponding rule is displayed on the Graphic View. For instance in Fig-

ure 6.3, the tag name bibentry is highlighted in the Structure View, the RHS of it shows in

the Graphic View, where the bold string bibentry expresses a nonterminal of the grammar.

The graph describes the RHS of the tag bibentry which contains cut-strings, such as
’
@’

and nonterminals, such as, author , location , etc., in the grammar. If the structure of a

highlighted tag does not exist, the area of the Graphic View is empty.

The Graphic View has its own menu with which one can get more information about the

rule. The menu contains two options that can be performed on a selected terminal or nontermi-

nal string. A string is selected (highlighted) by using the mouse. Once a string is selected, one

of the following options in the menu on the Graphic View can be chosen and the correspond-

ing function will be executed.

• Option select: The corresponding function of the option is a movement command.

It changes the focus of attention to the definition of the selected string. If the se-

lected string is a terminal, there is no highlighted tag in the Structure View, and the

content in the Graphic View does not change. If the selected string is a nonterminal,

the highlighted tag in the Structure View is changed into the selected string, and the

corresponding RHS of the selected string is shown on the Graphic View instead of

the old one. For instance, in the Graphic View of Figure 6.3, if strings
’
@’ is se-

lected, no tag name is highlighted in the Structure View, while the content in the

Graphic View is not changed; whereas, if the string author is selected, in the

Structure View the tag name author is highlighted and in the Graphic View, the

RHS of author is displayed.

• Option inspect: It shows the class type of the selected string. Every string in the

MarkItUp! grammar belongs to one of class types which are defined by the system.

��� ������� � ���
�������	�

6.2.2 Concept Editor

In the concept editor the screen is divided into two areas by a vertical line: Concept Set View is

on the left of the vertical line and Concept Base View is on the right of the vertical line. Figure

6.4 shows views and options in the menus of the concept editor.

Concepts and Concept Base

 Concept
Base View

 Concept
Set View

Fig. 6.4 Views and menus of concept editor

execute
again
undo
copy
cut
paste
accept
cancel
getFromFile
saveOnFile

getFromFile
saveOnFile

The Concept Set View is responsible for accepting a set of concepts from an external file

or direct type-in from the keyboard. Once the concepts are entered, the user can select an

execute option in the menu on the Concept Set View to construct a corresponding concept

base. The graphic display of the concept base is shown in the Concept Base View immediate-

ly. The concepts or concept base can be stored as a file using the saveOnFile option in the

menu.

Figure 6.5 shows the prototype of the concept editor in use. There are six concepts:

[a–zA–Z]+ , [a–z]+ , [A–Z]+ , [b–z]+ , [f–n]+ , and [a–p]+ in the Concept Set View. The

Concept Base View shows the corresponding concept base of the six concepts (in Smalltalk a

string is enclosed by single right quotations ’). The symbol star * means any string which is

not described in the input concepts and added automatically by the system as a default value.

Among the concepts in the Concept Base View, there exists a kind of descendant relation

which is a very important factor to directly identify whether concepts are comparable or in-

comparable according to the DAG in the Concept Base View. For each concept there is one or

more symbol points . in front of it. The number of points identifies the descendant relation

described by the following definition in visible as indentations.

����	����� � ����������
�

Fig. 6.5 Prototype of a concept editor

Definition 6.0 (Descendant concept) A concept A is a descendant of another concept B in the

Concept Base View, if the number of points in front of A is larger than the number of points in

front of B and from A to B there is no other concept C, where the number of points in front of

B and C are equal. ❚

For instance, in Figure 6.5, the concept [b–z]+ is a descendant of the concept [a–z]+ , but it

is not a descendant of the concept [A–Z]+ since from [b–z]+ to [A–Z]+ there is another

concept [a–z]+ , and [a–z]+ and [A–Z]+ have the same number of points in front of them.

Using the number of the symbol points and the descendant relation one can decide about

the comparability of the concepts in the Concept Base View by the following rules. Suppose

concept A, concept B, and concept C be different (not equivalent) concepts in a Concept Base

View, then the rules are:

• If the concept A and the concept B have the same number of points in front of them

in the Concept Base View or they have different numbers of points in front of them

but there is no descendant relation between them, they are incomparable. For

��� �	����� � ����������
�

instance, in Figure 6.5, the concept [a–z]+ and [A–Z]+ are incomparable since

they have the same number of points in front of them; the concept [A–Z]+ and

[b–z]+ are also incomparable since there is no descendant relation between

[A–Z]+ and [b–z]+ .

• If A is a descendant of B, then A and B are comparable and A�B, for instance the

concept [f–n]+ and [a–zA–Z]+ in Figure 6.5.

• If the concept A1, A2, ..., An are incomparable and C � A1, C � A2, ..., C � An, the

concept C will appear n times in the Concept Base View. For example, in Figure 6.5

the concept [b–z]+ and [a–p]+ are incomparable, but they are comparable with

the concept [f–n]+ , therefore, the concept [f–n]+ appears twice. Note that this

rule applies only for displaying the concept C in the Concept Base View. In the sys-

tem DAG, the concept C (e.g. [f–n]+) shows as in Figure 6.6 and appears only

once .

Fig. 6.6 A graphic description of the concept base in Fig. 6.5

*

[a–zA–Z]+

[A–Z]+ [a–z]+

[a–p]+[b–z]+

[f–n]+

Until now the discussion and description concentrate on how the concept base is shown at

the user interface. Algorithm 6.1 will discuss how the concept base is created in the system.

Algorithm 6.1 Creating a concept base

Input: A set of concepts which the user defines

Output: A concept base as a DAG (described in Section 2.2.2) in which the concepts are

ordered according to the binary relation (described in Section 2.1.3), that is, �(ci , cj) � DAG,

cj�ci

Method:

Routine create_Concept-base

����	����� � ����������
�

1 begin
2 N := {input concepts}; //a set of concepts defined by the user.

3 dag := ∅ ; sub-dag-set := ∅ ;
4 While N�∅ do
5 begin
6 select a node from N;

7 insert_node(dag, node);

8 N := N – {node};

9 end;

10 end

Function insert_node(dag, node)

1 begin
2 norelate := true;

3 if (dag = ∅) then // there is no DAG. The case occurs at the beginning of the algorithm.
4 let any string ‘*’ be a base node of dag

5 else for all direct descendants of the base in the current dag do

 //find a suitable position for the node in dag.

6 begin
7 case compare(descendant, node) of:
8 ‘>’: // node � descendant, that is, node is a descendant of descendant.

9 if (descendant is a DAG) then insert_node(descendant, node)

10 else add node into dag as a direct descendant of descendant;

11 norelate := false;
12 break;
13 ‘<’: // descendant � node, that is, node is an ancestor of descendant.

add descendant into sub-dag-set; //node may have more than one descendants.

14 norelate := false;
15 break;
16 end;

17 if norelate then // node and descendants are incomparable.

add node into dag as a direct descendant of the current base;

18 else if sub-dag-set � ∅ then
19 begin //node is an ancestor of the node(s) in sub-dag-set.

20 create a sub-dag in which node is its base node;

21 insert the whole elements in sub-dag-set as direct descendants of the sub-dag’s base;

22 add the sub-dag into dag as a direct descendant of the dag’s base;

23 sub-dag-set := ∅ ;
24 end;
25 return (dag);

26 end // It is of no significance if two equivalent concepts are in the concept base, therefore,

 // if two concepts are equivalent, only one concept is kept in the dag.

Function compare(a, b)

// a,b are regular expressions.

��� �	����� � ����������
�

1 begin
2 if a�b then return (‘=’) // a is equivalent to b.

3 else if a�b then return (‘<’) // a is more-specific-than b.

4 else if b�a then return (‘>’) // b is more-specific-than a.

5 else return (‘n’);
6 end

With this algorithm, the concepts example in Figure 4.2 is depicted in the concept editor as

Figure 6.7, where the string [\]+ is a system representation of an arbitrary number of

blanks.

Fig. 6.7 A prototype of concept editor for the concepts in Fig. 4.2

For different type classes, the user can easily create the corresponding concept base. For

simplicity, MarkItUp! does not choose a strategy that allows to add new concepts dynamically

without changing the whole existing concept base. For example, if one wants to add a new

concept [Fr]om in the concept base shown in Figure 6.7, the system will rebuild the concept

base and generate a new concept base rather than searching the concept base and finding a

suitable place for the new concept.

����	����� � ����������
�

6.3 From Marked-up Example to a Grammar

MarkItUp! translates a marked-up example into a grammar by using a scanner. The scanner

attempts to scan the marked-up example and to generate a corresponding grammar describing

the document structure. If the scanned portion is incorrect, that is, the tags are not matched,

then the user is asked to supply additional information. For instance, in a marked-up example

there is only a start-tag <author> but no end-tag </author> , in such case, the user has to

correct the marked-up example. Otherwise, the scanner identifies start-end tags to create a

marked-up tree since a tree is an appropriate data structure for storing both the structure and

the text of the document. The document structure can be viewed as the document (root node)

which is subdivided into components (interior nodes), and which can be further subdivided

until the indivisible components (leaf nodes) are reached. Such a representation is convenient

for verifying that a document obeys the syntax rules of the language.

When the scanner processes a marked-up document, at first, a tree called MUTree is

created in the MarkItUp! system. At the end, the tree is converged into a set of grammar rules

which have the syntactical form described in Section 4.3.2, that is, the RHSs of the grammar

rules are regular sets. For each grammar there is a root rule which is called a start rule in the

implementation system.

An example transformation from a marked-up example to a MUGrammar is shown by

Figure 3.7 in Section 3.2.2 and Grammar-Sample 3.1 in Sections 3.3.

6.4 Implementation of Learning Component

The learning component consists of two parts: content abstraction and structure abstraction &

unification. The content abstraction learns abstracted concepts from the concept sequence.

The structure abstraction & unification solves the problem of generalization grammars by

making the grammars more general using more positive examples.

In Section 3.3, the two types of grammar rules have been distinguished on the basis of the

RHS of the rules: structure-rule (Definition 3.1) and string-rule (Definition 3.2). When discus-

sing the content abstraction, the focus is on the RHS of the string-rules, whereas, when using

learning rules, the focus is only on the RHS of the structure-rules. Therefore, when a grammar

is used as input into the learning component, the string-rules and structure-rules are separated.

The string-rules are abstracted by algorithms 4.1 and 4.2 in Section 4.2.5.1; the structure-rules

are unified and abstracted by the rules in Section 4.3.3.

��� �	����� � ����������
�

The implementations of the rules have two features: (1) the parameters of them are

formed by the expressions in the RHS of a grammar rule; (2) the implementations are isolated

for each rule, that is, if the left hand side of rule A is not equal to the left hand side of rule B in

a grammar, the procedure to unify and abstract the RHSs of the rule A does not influence the

learning process of the rule B.

When the RHS of a structure-rule consists of nonterminals and terminals (cut-stings), the

nonterminals and terminals can be separated into several groups. The different grouping strat-

egies for the nonterminals and terminals will lead to different results. To get a correct conse-

quence, what remains to be done for the structure-rules is to determine the grouping of cut-

strings and nonterminals. This detail strategy is discussed in the following subsection.

6.4.1 Grouping Cut-Strings with Nonterminals

Cut-strings play a role as delimiters in the structure-rules. Usually, certain cut-strings accom-

pany certain nonterminals, in other words, if one nonterminal does not occur in the rule, the

cut-string(s) caused by it will also not occur. The relation among nonterminal and cut-strings

are called a cause-effect relation. However, the problem is that the relation is not obvious in a

structure-rule. For example, two bibentry rules look like:

Rule-Sample 6.1

bibentry –> “^\\ �” code “\n^! �” author “\n^@ �” location “\n^\” �”

 title “ �\”\n^/ �” source “\n^> �” category “\n”

Rule-Sample 6.2

bibentry –> “^\\ �” code “\n^! �” author “\n^\” �” title “ �\”\n^/ �”

 source “\n^> �” category “\n”

where cut-strings and nonterminals are sequentially organized. From the rule, it is not easy to

see the cause-effect relation among them. However, if the relations in structure-rules are not

correctly identified, when unifying and/or abstracting the rules, a wrong result will be created.

For instance, if the RHSs of Rule-Samples 6.1 and 6.2 are unified without being based on the

relations, one of the results will be:

Rule-Sample 6.3

bibentry –> “^\\ �” code “\n^! �” author “\n^@ �” | “\n^\” �” location?

 “\n^\” �”? title “ �\”\n^/ �” source “\n^> �” category “\n”

����	����� � ����������
�

This is not a correct rule of bibentry since the element location cannot start with the

string “\n^\” �” in documents. Therefore, the proper identification of which cut-strings are

caused by which nonterminals becomes an important problem.

One simple solution is to compare additional different examples to detect the relations.

For instance, in Rule-Sample 6.2 the nonterminal location is missing, at the same time, the

cut-string “\n^@ �” has not occurred in the rule bibentry . Therefore, one knows that the

cut-string “\n^@ �” is caused by the nonterminal location . However, this is not a practical

way since one cannot determine the cause-effect relations in a structure-rule until one finds

proper examples.

The other solution is using an algorithm to group cut-strings and nonterminals in a struc-

ture-rule (Algorithm 6.2). The basic strategy of the algorithm is that the first element of the

rule determines the combining form of cut-strings and nonterminals. If the first element of the

rule is a cut-string, the form is one “cut-string followed by nonterminal” (denoted as cut-

string + nonterminal) or “cut-string followed by nonterminal followed by cut-string” (de-

noted as cut-string + nonterminal + cut-string); otherwise, the form is “nonterminal followed

by cut-string” (denoted as nonterminal + cut-string) or a single “nonterminal”. Each form ex-

presses a syntactic cause-effect relation and is called a cut-copy group.

Algorithm 6.2 Grouping cut-strings with nonterminals in a structure-rule

Input: A structure-rule R containing cut-strings and a global variable aGroup

Output: A set of groups to record the combination of cut-strings and nonterminals

Method:

Function grouping(R, aGroup)

1 begin
2 if the first element on the RHS is a cut-string then idx2 := 0

3 else idx2 := 1;

4 while idx2 < the size of the rule do
5 begin
6 pos := idx2;

7 idx1 := the position of the first cut-string searching from pos;

8 idx2 := the position of the first cut-string searching from idx1;
9 if idx2 = 0 then idx2 := the size of the rule;

10 if idx2 � the size of the rule then idx2 := idx2 – 1;

11 get a group which contains the elements from the positions idx1 to idx2;

��� ������� � ���
�������	�

12 add the group to the tail of aGroup with the same name of the nonterminal in the
group;

13 end;
14 return (aGroup);

15 end

Applying the above algorithm, the groups of Rule-Samples 6.1 and 6.2 are:

Cut-Group-Sample 6.1

(“^\\ �” code); (“\n^! �” author); (“\n^@ �” location);

(“\n^\” �” title); (“ �\”\n^/ �” source); (“\n^> �” category “\n”);

Cut-Group-Sample 6.2

(“^\\ �” code); (“\n^! �” author);

(“\n^\” �” title); (“ �\”\n^/ �” source); (“\n^> �” category “\n”);

On the basis of Cut-Group-Samples 6.1 and 6.2, when the RHSs of Rule-Samples 6.1 and

6.2 are unified, a single correct result shown as Rule-Sample 6.4 is easily inferred:

Rule-Sample 6.4

bibentry –> “^\\ �” code “\n^! �” author (“\n^@ �” location)?

“\n^\” �” title “ �\”\n^/ �” source “\n^> �” category “\n”

where cut-string “\n^@ �” is regarded as a part of the nonterminal location .

This strategy is simple and general. But for some special case, the grouping is not exactly

correct. For instance, consider the subsequence title “ �\”\n^/ �” source of Rule-

Sample 6.1, if using the above strategy, the string “ �\”\n^/ �” is grouped with source .

However, the substring “ �\”” is caused by title rather than source . Normally, the group-

ing will not lead to an error. Only for the case that title or source is missing in another

example, the grouping will result at an incorrect solution. Of course, this is not serious. To

overcome the worst case, an alternative strategy to group cut-strings and nonterminals is con-

sidered. Each line of documents is supposed to have complete semantics such that one can

regard the character return as a specific delimiter. Under the hypothesis, it is assumed that a

group is ended by the return character. According to this strategy, the groups of Rule-Sample

6.1 are:

Cut-Group-Sample 6.3

����	����� � ����������
�

(“^\\ �” code “\n”); (“^! �” author “\n”);

(“^@ �” location “\n”); (“^\” �” title “ �\”\n”);

(“^/ �” source “\n”); (“^> �” category “\n”);

The semantic meaning of the groups are clearer than in Cut-Group-Sample 6.1. However this

strategy lacks generality as it assumes special semantics. The system therefore still adopts the

first strategy to group cut-strings and nonterminals.

6.5 DREAM Grammar Generator

The process of the document-structure recognition and tagging is realized by the DREAM

parser. Therefore, the inferred grammar from the learning component has to be translated into

a DREAM DSD. If the DSD is correct, the DREAM parser will tag the document correctly.

Otherwise, DREAM cannot get a correct result. The task of translating the grammar rules into

DREAM DSD is done by the DREAM grammar generator.

From the abstracted grammar, a DREAM DSD is generated in two steps: First, the SGML

structure is built (without cut-strings); Second, the cut-copy groups at the content-level are

used to form the expressions at that level.

To parse subsequent examples with slightly deviating structures and contents, every ELE-

MENT name in the DSD has been associated with a fallback rule anything , which parses all

those parts which cannot be parsed by one of the available ELEMENT definitions and is

stopped when the next element can be correctly recognized. Such portions, which are sur-

rounded by <anything> and </anything> , then can be easily identified and further disam-

biguated by the user.

Figure 6.8 shows a complete DREAM DSD generated from the abstracted grammar of

the manually marked-up example in Figure 6.3. The concepts for the examples are:

[a–zA–Z] , “.” and “ �” . The original document of the marked-up example is:

Document-Sample 6.1 The original document of the marked-up example in Figure 6.3

\ �pp

! �Alfs �Berztiss\n

@�Un.Pittsburgh\n

” �A Taxonomy of Binary Tree Traversals �”\n

/ �BIT �* �1987\n

>�DBDops\n

��� �	����� � ����������
�

Fig. 6.8 DREAM DSD of the example in Figure 6.3

<!DOCTYPE bibdoc [

<!ELEMENT bibentry – – code,
 author,
 location,
 title,
 source,
 category >

<!ELEMENT code – – (anything#, cut(^“\\ �”), copy([a–zA–Z]+))?>

<!ELEMENT author – – (anything#, cut($^“! �”), fname, lname)?>

<!ELEMENT fname – – (anything#, copy([a–zA–Z]+))?>

<!ELEMENT lname – – (anything#, cut(“ �”), copy([a–zA–Z]+))?>

<!ELEMENT location – – (anything#, cut($^“@ �”),
 copy([a–zA–Z]+“.”[a–zA–Z]+))?>

<!ELEMENT title – – (anything#, cut($^“\” �”),
 copy(([a–zA–Z]+“ �”)+[a–zA–Z]+))?>

<!ELEMENT source – – (anything#, cut(“ �\””$^“/ �”),
 publication, date)? >

<!ELEMENT publication – – (anything#, copy([a–zA–Z]+))? >

<!ELEMENT date – – (anything#, cut(“ �* �”), copy([0–9]+))? >

<!ELEMENT category – – (anything#, cut($^“> �”),
 copy([a–zA–Z]+), cut($^))?>

<!ELEMENT anything – – copy(.#)>

]>

Based on the DSD annotated with recognization patterns, the DREAM parser checks for

syntax errors in the DSD. If there is no error message, DREAM produces a tagged document

which conforms to a document type definition (DTD) in SGML and can be further processed

with any SGML-based tools. For instance, when Document-Sample 6.1 is tagged by the

DREAM parser with the DSD (shown in Figure 6.8), the tagged document is shown in Figure

6.9.

���������� � ���
�������	�

<!DOCTYPE bibdoc>
<bibentry><code>pp</code>
<author><fname>Alfs</fname>
<lname>Berztiss</lname>
</author>
<location>Un.Pittsburgh</location>
<title>A Taxonomy of Binary Tree Traversals</title>
<source><publication>BIT</publication>
<date>1987</date>
</source>
<category>DBDops</category>
</bibentry>

Fig. 6.9 The tagged document of Document-Sample 6.1 is

 created by the DREAM DSD in Figure 6.8

It is an SGML-document generated by a DSD not a learning example, therefore, it does not

look like its manually marked-up example (in Figure 6.3) which maintains cut-strings in the

document.

6.6 Learning Strategies

The implementation of each component in the system architecture (Figure 6.1) has been se-

quentially discussed. This section will give several examples to show how the system is used

and what kind of learning strategy can be chosen.

6.6.1 Fallback Rule

When the DSD in Figure 6.8 is applied to a new example (Document-Sample 6.2), the effect

of the fallback rule anything is shown in Figure 6.10.

Document-Sample 6.2 A new example

\ �pr\n

! �P. �Buneman\n

! �M.�Atkinson\n

” �Inheritance and Persistence in Database Programming Lan-

guages �”\n

/ �ACM SIGMOD�* �1986\n

>�DBDquery\n

In the new example there are two author s (lines that start with the string “! �”), the

first name fname with the abbreviation character point ‘.’ which is a new character not oc-

���� �	����� � ����������
�

curring in the earlier example, the element location (line that starts with the string “@�”) is

missed, and the format of element publication is new.

Fig. 6.10 A tentatively marked-up example generated by the DREAM DSD

in Figure 6.8

<!DOCTYPE bibdoc>
<bibentry><code>pr</code>
<author><fname>P</fname>
<lname> <anything>.</anything>
Buneman</lname>
</author>
<location></location>
<title> <anything>
! �M.�Atkinson</anything>
Inheritance and Persistence in Database Programming Lan-
guages</title>
<source><publication>ACM</publication>

<date> <anything> �SIGMOD</anything>
1986</date>
</source>
<category>DBDquery</category>
</bibentry>

Therefore, in Figure 6.10 the character point and the second author name are marked up with

anything , the location matches nothing, the second part of the publication is marked

up with anything . However, the code (the string “pr”), the partial fname of the first au-

thor (the character ‘P’), the lname of the first author (the string “Buneman”), the title (the

string “Inheritance and Persistence in Database Programming Lan-

guages”), the source (the structure publication , date), the partial publication (the

string “ACM”), the date (the string “1986”), and the category (the string “DBDquery”) are

properly marked up.

The user corrects the result by means of the the structure editor where the corrected result

is then shown. The corrected example is passed to the above components step-by-step, finally

a new grammar is inferred. The corrected example and new grammar will be described in the

following subsections.

6.6.2 Exhaustive vs. Partial Learning

When an initial grammar is generated, there exist two alternative strategies to learn another

example: learning from an entire example and learning from a partial example. To explain

them, let us consider the above examples again.

�����	����� � ����������
�

In Figure 6.10 the content of the element location is empty, the content of elements

author and publication are recognized only partial, and the unrecognized parts of the

content are included by the fallback rule anything . Therefore, the user will correct them.

The form of the corrected example depends on the above two learning strategies. Figures 6.11

and 6.12 show the user-corrected example using the two strategies, respectively:

Fig. 6.11 The user-corrected example using the exhaustive learning strategy

<!DOCTYPE bibdoc>
<bibentry><code>pr</code>

<author><fname>P.</fname> �<lname>Buneman</lname></author>

<author><fname>M.</fname> �<lname>Atkinson</lname></author>
<title>Inheritance and Persistence in Database Programming Lan-
guages</title>
<source><publication>ACM SIGMOD</publication>
<date>1986</date></source>
<category>DBDquery</category>
</bibentry>

<!DOCTYPE bibdoc>
<bibentry><code>pr</code>

<author><fname>P.</fname> �<lname>Buneman</lname></author>

<author><fname>M.</fname> �<lname>Atkinson</lname></author>
<location></location>
<title>Inheritance and Persistence in Database Programming Lan-
guages</title>
<source><publication>ACM SIGMOD</publication>
<date>1986</date></source>
<category>DBDquery</category>
</bibentry>

Fig. 6.12 The user-corrected example using the partial learning strategy

The difference between the two modifications is that there is no element location in

the corrected example using the first strategy (Figure 6.11), whereas it is kept in the corrected

example using the second strategy (Figure 6.12). The reason will be explained in the follow-

ing two sections.

6.6.2.1 Learning from an Entire Example

The basic idea of this strategy is to generate a new complete grammar and to learn the whole

grammar rules at the content-level and at the structure-level. Since the grammar does not al-

low the RHS of a rule to be empty (Section 4.3.2), the element location has to be deleted,

otherwise the system cannot work. For this reason, the rule location is removed in Figure

6.11. With the exhaustive strategy, the unified grammar is shown in Figure 6.13, where the

���� �
���	� � ���		�������

<!DOCTYPE bibdoc [

<!ELEMENT bibentry – – code,
 author+ ,
 location? ,
 title,
 source,
 category>

<!ELEMENT code – – (anything#, cut(^“\\ �”), copy([a–zA–Z]+))?>

<!ELEMENT author – – (anything#, cut($^“! �”), fname, lname)?>

<!ELEMENT fname – – (anything#, copy([a–zA–Z]+ | [a–zA–Z]“.”))?>

<!ELEMENT lname – – (anything#, cut(“ �”), copy([a–zA–Z]+))?>

<!ELEMENT location – – (anything#, cut($^“@ �”),
 copy([a–zA–Z]+“.”[a–zA–Z]+))?>

<!ELEMENT title – – (anything#, cut($^“\” �”),
 copy(([a–zA–Z]+“ �”)+[a–zA–Z]+))?>

<!ELEMENT source – – (anything#, cut(“ �\””$^“/ �”),
 publication, date)? >

<!ELEMENT publication – – (anything#,
 copy([a–zA–Z]+ | [a–zA–Z]+“ �”[a–zA–Z]+))?>

<!ELEMENT date – – (anything#, cut(“ �* �”), copy([0–9]+))?>

<!ELEMENT category – – (anything#, cut($^“> �”),
 copy([a–zA–Z]+), cut($^))?>

<!ELEMENT anything – – copy(.#)>

]>

Fig. 6.13 Changed rules in DSD based on the exhaustive learning strategy

bold parts indicate the differences between the old rules which are in Figure 6.8 and the new

inferred rules.

With the algorithm 4.2, one gets an abstracted-list Afname of the rule fname ,

Afname = [a–zA–Z]+ , [a–zA–Z]“.” . Here it is translated as an alternative operator in

DSD ([a–zA–Z]+ | [a–zA–Z]“.”), otherwise, DSD cannot manipulate it.

�����
���	� � ���		�������

6.6.2.2 Learning from a Partial Example

Generating a new grammar for a new example and learning the whole rules are redundant for

the elements whose structure does not deviate from the old one and whose contents can be

recognized by the existing abstracted strings. To avoid unnecessary processing, an alternative

learning strategy has been implemented – learning from part of an example, that is, the system

can compile one of the elements which is corrected by the user in the tentatively marked-up

example.

To get a new complete grammar, the partial learning strategy will be repeated several

times. Each repetition is called a learning-unit. How many learning-units are required in an

example depends on how many elements are not correctly recognized by the old grammar or

deviate from the old grammar, that is, a learning-unit corresponds to a changed element. For

this reason the empty element location is kept in Figure 6.12. In Figure 6.10 there are mere-

ly three elements author , location , and publication which are new with respect to the

old grammar, therefore, there are three learning-units. Note that if an element occurs more

than once in the example, they all are treated as one learning-unit, that means the repeated

elements are learned at the same time.

Applying the partial learning strategy for the example in Figure 6.12, the learning can be

done in three steps, where each of the learning processes is isolated, in other words, the se-

quence of executing the steps does not influence the final learning result. For instance, wheth-

er location , author or publication is learned first, the final result is the same. Let us

learn location first.

When the user highlights the empty element <location></location> , the changed

rule related to Figure 6.8 is shown in Figure 6.14:

Since new rules for code , author , fname , lname , location , title , source , publica-

tion , date , and category are not changed, they are not rewritten here.

The new DSD indicates the element location as an optional element described in the

element bibentry . When the user selected the corrected element author to learn, the

changed rule related to Figure 6.8 and 6.14 is shown in Figure 6.15:

���� �
���	� � ���		�������

<!DOCTYPE bibdoc [

<!ELEMENT bibentry – – code,
 author,
 location? ,
 title,
 source,
 category>

.

.

.

]>

Fig. 6.14 Changed rule in DSD for learning an optional element

 on the basis of the partial learning strategy

<!DOCTYPE bibdoc [

<!ELEMENT bibentry – – code,
 author+ ,
 location?,
 title,
 source,
 category>
.
.
.

<!ELEMENT fname – – (anything#, copy(([a–zA–Z]+ | ([a–zA–Z]“.”)))?>
.
.
.

]>

Fig. 6.15 Changed rules in DSD for learning a repetition element

 on the basis of the partial learning strategy

For the same reason as above, new rules for code , author , lname , location , title ,

source , publication , date , and category are not reproduced here. In the same way the

user can select publication to learn.

�����
���	� � ���		�������

<!DOCTYPE bibdoc [

.

.

.

<!ELEMENT publication – – (anything#,
 copy([a–zA–Z]+ | [a–zA–Z]+“ �”[a–zA–Z]+))?>
.
.
.

]>

Fig. 6.16 Changed rules in DSD for learning a new string

 on the basis of the partial learning strategy

Combining the changed rules in Figures 6.15 and 6.16 with the unchanged rules in Figure

6.8, a new DSD is obtained which is equal to the DSD in Figure 6.13. Since there is no redun-

dancy, the partial learning strategy is more efficient than the exhaustive learning strategy, es-

pecially, if a grammar consists of many elements, where only a few of them need to be cor-

rected.

���� �	����� � ����������
�

6.7 Experimental Evaluation of the System

This section describes some experiments with the system carried out to measure the effective-

ness of MarkItUp!’s approach to grammar learning. The experimental setting is as follows:

As an example document collection a portion of the bibliography on databases compiled

by Gio Wiederhold is taken (the most recent version is available from ftp://db.stanford.edu/

pub/siroker/biblio.txt). The randomly chosen portion consists of 260 entries. Examples from

this bibliography have been used throughout this thesis. Below one example is reproduced for

better clarity:

Document-Sample 6.3 Example of a bibliographic entry

\ �rp\n

! �M.L. �Brodie\n

! �D. �Ridjanovic\n

” �Functional Specification and Verification of Database Trans-

actions �”\n

/ �report Oct.1984\n

>�DBDmodel.0\n

>�DBDtrans.4\n

While at the top-level this is a fairly well behaved example, with elements like author,

title, etc. clearly separated by unambiguous delimiter characters, the structuring levels below

show quite a few irregularities which make the intellectual specification of a grammar non-

trivial. For example, the inner structure of authors can contain both, abbreviated first names,

as well as fully spelled out first names, and middle names may be missing. As another exam-

ple, the inner structure of bibliographic source information is very heterogeneous across the

individual bibliographic entries, with subelements like publishing date, editor information,

volume number, etc. occurring rather arbitrarily.

For this example collection, three grammars have been incrementally trained with 1, 5,

and 10 example bibliographic entries. Each grammar has been translated into a DREAM

DSD, which has been applied to the entire document collection. The resulting SGML-marked-

up documents have been evaluated along the following dimensions:

(1) the number of (correctly or incorrectly) recognized elements vs. the number of all ele-

ments including the elements that had to be accepted by the fallback rule <anything>

(copy(.#)). This ratio indicates the overall performance of a learned grammar.

�����
���	� � ���		�������

(2) the number of anything elements vs. the number of correct elements. This ratio indi-

cates the recall of the learned grammar, and thereby gives a measure for the amount of addi-

tional human refinement needed in the mark up process.

(3) the number of incorrect elements vs. the number of correct elements. This ratio mea-

sures the precision of the learned grammar. Minimizing this ratio is the most important goal,

because incorrectly tagged elements need the biggest effort to be detected and corrected.

To judge the influence of the predefined concept set used for copy-string abstraction on

the learning process, two different concept sets have been used: S1 = {[a–zA–Z]+, [0–9],

[.,\–:], [* �], [\[\]\(\)] } and S2 = {[a–zA–Z.,\–:]+, [0–9], [* �],

[\[\]\(\)] }. The sole difference between S1 and S2 is that the character sets [a–zA–Z] and

[.,\–:] are defined as separate concepts in S1, whereas they are combined to a single, more gen-

eral concept in S2 (see also sections 3.3 and 4.2.5.3 for examples of grammars (Grammar-

Sample 3.2 and Grammar-Sample 4.1) that have been generated on the basis of different con-

cept sets). Both concept sets have been applied to the same sequence of examples.

Table 6.1 gives the results of the concept set S1.

Table 6.1 The experiment results generated by applying concept set S1

1

5

10

the
number
of manually
marked examples

analysis
 assumption
 results anything elements

 vs.
correct elements (%)

incorrect elements
 vs.
correct elements (%)

the number of recognized
elements vs. the number
of all elements includ-
ing fallbacks (%)

559.7 66

97

82 7.3 2.4

2.6 1.8

In all three columns we see a clear asymptotic improvement achieved by increasing the

number of provided examples. Marking up only one example leads to very bad results. These

are mainly due to a small bug in the version of DREAM used for the experiment, which for

the highly ambiguous grammars generated by MarkItUp! accepted some document portions in

a fallback rule even if there was a more specific rule applicable in this context (this bug has

been corrected at the time of writing). Thus only about 10% of the entire document has been

encapsulated by a tag (column 1), more than half of the elements have only been accepted by a

fallback rule (column 2), and almost two thirds of the marked-up elements have been tagged

���� �
���	� � ���		�������

incorrectly (column 3). After five marked-up examples, however, the generated grammar is

much less ambiguous, and anticipates many more structural deviations. Consequently, over

80% of the document has been accepted by a specific element rule, less than 10% have re-

quired manual refinement, and as little as 2.4% of the elements have been incorrectly marked

up. Finally, after 10 examples a quite satisfactory performance has been reached, needing rath-

er small amounts of human correction.

Table 6.2 shows the results achieved by applying the concept lattice S2.

Table 6.2 The experiment results generated by applying concept set S2

1

5

10

the
number
of manually
marked examples

analysis
 assumption
 results

anything elements
 vs.
correct elements (%)

incorrect elements
 vs.
correct elements (%)

4539 40

97

86 6.9 2.3

2.8 1.9

the number of recognized
elements vs. the number
of all elements includ-
ing fallbacks (%)

Clearly, the initial performance with this more generic lattice is significantly better than

for the concept lattice S1. The generic pattern [a–zA–Z.,\–:] accepts in particular abbre-

viated names, containing “.”, and titles, containing “–”, before they have actually occurred as

names or titles in a marked-up example. However, the results after 10 examples are a little bit

worse than for S1.. In particular, the recall and the precision of applying the more generic lat-

tice have both decreased a little bit. Here the more generic pattern [a–zA–Z.,\–:] fails to

distinguish some subelements in the bibliographic source information, such as “Sep.” indicat-

ing a date from “ACM” indicating the conference of a bibliographic entry. This shows that as

soon as the content of elements, as opposed to delimiter characters, becomes important for

classifying elements, a more elaborate concept lattice leads to overall better results. On the

other hand, the rather small differences in performance also demonstrate that for syntactically

structured sources, MarkItUp! is fairly robust with respect to the concept lattice used, because

it can better rely on its powerful inductive capabilities on the structural parts. As a conse-

quence, concept-lattices can stay fairly generic and be applied to many application domains,

as long as the structure to be recognized can rely on the syntactic context.

�����
���	� � ���		�������

This result is inline with the evaluations performed in the context of the CLIP-ing project

[42]. In this project, the system TATOE has been used to detect linguistic categories, such as

proper nouns or temporal expressions, in a corpus consisting of German news messages in

order to transform them to the SGML-based News Industry Text Format (NITF). Like

DREAM, the parser underlying MarkItUp!, TATOE uses named regular expressions for struc-

ture specification, such as natural language phrases. TATOE extends these with access to lin-

guistic components, which comprise a morphological analysis, and a lexicon indicating the

semantic role of proper nouns. These components can be seen as an elaborate substitute for

the concept lattices used by MarkItUp!. In the CLIP-ping domain, the detection of linguistic

categories needs to rely much more on the linguistic resources than on syntactic structure.

And indeed, the experiments of TATOE showed that the lexical resources required much more

intellectual refinement than the set of (manually specified) syntactic rules. The comparison of

these application domains also indicates an important line of further research in using machine

learning for document recognition: Where the content of structural elements needs to contrib-

ute to disambiguation, a resource corresponding to the concept lattice may not be fixed a prio-

ri, but needs to be trainable too.

6.8 Summary

The implementation of the MarkItUp! learning system has been described. With a friendly

user interface, the system builds an easy to use environment to implement incremental learn-

ing. The different learning strategies provide a more flexible method for considering possible

revisions to the grammar rules. The evaluation shows that in particular for syntactic structur-

ing tasks, the learned grammars achieve an acceptable performance after rather few manually

marked-up examples.

���� �	����� � ����������
�

�����
���	� � �	���	� ���

(7 7 7 7 7 77

Related Work

Conceptually, the learning approach adopted by this thesis draws mainly from two fields:

Editing-By-Example, and more generally, inductive learning.

7.1 Editing-By-Example

Editing-By-Example was first introduced by R. Nix [39, 40]. It derives generic string trans-

formation programs from a few editing operations on examples in a text editor. Two ap-

proaches can be distinguished: Function approaches, which regard only the input and the out-

put of editing operations, and procedural approaches, which reason about the editing opera-

tions themselves.

7.1.1 Function Approaches

The goal of function approaches is to synthesize a transformation program on the basis of a

pair of input/output examples in a text editor. An example of the function approach is the sys-

tem EBE (Editing-By-Example) developed by R. Nix. The aim of EBE is to solve repetitive

text editing problems.

In that system, the user specifies a set of input/output pairs exemplifying a text trans-

formation, and the EBE system attempts to infer common patterns to the pairs and synthesizes

a program to perform the transformation in general. The user may then execute this program

to perform further transformations, or may give further examples to the system.

The program synthesized by EBE is called a gap program which consists of a gap pattern

that matches a portion of the text and parses it into fields (constant or variable), and a gap

replacement that copies, rearranges, or deletes the fields (and may introduce a new constant

field). For instance, the user specifies the following two input/output pairs:

Braves �4, �Brewers �12.

=> Game[winner �’ Braves ’, �loser �’ Brewers ’, �scores[4, �12]];

���� �����
� � �
��
	 ����

Orioles �1, �Cardinals �5.

=> Game[winner �’ Orioles ’, �loser �’ Cardinals ’, �scores[1, �5]];

The EBE system synthesizes the gap program of the above input/output pairs that has the

gap pattern:

–1–�–2–, �–3–�–4–. eol

and the gap replacement:

Game[winner �’–1–’, �loser �’–3–’, �scores[–2–, �–4–]]; eol

where eol is a special constant which matches the end of the line. Numbers are used as

variables. The other symbols are constants in the gap program.

This gap program matches any line that consists of a word (the first word) and a number

(the first number) separated by a blank, followed by a comma and a blank, followed by a word

(the second word) and a number (the second number) separated by a blank, followed by a

point, and replaces each such line with a new constant field Game[winner �’ , followed by

the first word, followed by a new constant field ’, �loser �’ , followed by the second word,

followed by a new constant field ’, �scores[, followed by the first number and the second

number separated by a comma and a blank, followed by a new constant field]]; .

In [39] and [40] Nix has shown many results related to the inference of gap programs.

However, gap programs are less expressive than regular expressions. Thus with this approach

only fairly simple transformations (string to string) can be generated.

7.1.2 Procedural Approaches

The goal of procedural approaches is also to synthesize a transformation program from editing

examples in a text editor. Unlike the function approach, the procedural approach synthesizes

the program from traces which record editing operations. The system developed by D. H. Mo

and I. H. Witten [38] is an example of the procedural approach that is also used to solve repeti-

tive editing problems.

In this system, synthesizing the transformation program involves two steps: (1) Users edit

some text block by editing operations defined in a simple interactive point-and-click editor, at

the same time, the sequence of editing operations with their parameters (text strings) and their

���������
� � �
��
	 ����

positional information (context, distance and position) is recorded by the editor; (2) Then this

sequence is generalized by combining some operations into higher level operations using heu-

ristic rules, by abstracting their parameters and context. For abstracting concrete strings they

use a mechanism similar to ours (Section 4.2.4.1 and Figure 4.2). The synthesized program is

applied to a larger class of inputs. If the program does not behave appropriately on a new ex-

ample in the class of inputs, the user has to modify the program manually and the program is

extended automatically to accommodate the new example.

In [38] the authors describe detailed strategies to synthesize the transformation program

on the basis of editing operations and their trace. Currently, however, the synthesized trans-

formation programs appear to be limited to the treatment of flat structures, i.e., the sequence

of editing operations is not further nested.

MarkItUp! restricts itself to structuring operations rather than arbitrary editing opera-

tions. Thus by analyzing the output of a number of structuring steps, it can determine more

expressive recognition programs than gap programs. On the other hand, the structuring opera-

tions can be easily deduced from the marked-up examples, thus there is a closer correspon-

dence between the editing procedure as perceived by the user and the generated grammar.

These nested grammars also are more expressive than the procedures described in [38].

7.2 Inductive Learning and Learning Methods

On of the most widely studied forms of machine learning is learning from examples, or induc-

tive learning, as it is more concisely called [34]. The task of learning is to induce general de-

scriptions (or concepts) that explain the given input examples provided by a teacher or the

environment and are useful for predicting new examples. Here, a concept can be regarded as

an abstract description of a class of objects.

In this thesis the learning approach refers to two kinds of inductive methods: grammati-

cal inference and version spaces.

7.2.1 Grammatical Inference

Grammatical inference uses formal grammars to represent the learned concepts and learns a

grammar from a set of examples by drawing inductive inferences, which attempt to derive a

complete and correct description of a given phenomenon from specific observations of that

phenomenon or of parts of it. In [8] the author provides a general form of inductive inference

���� �����
� � �
��
	 ����

problems. The task of grammatical inference is to determine a formal grammar that can gener-

ate a given set of symbol strings.

The most important criterion of success of the inference methods is the identification in

the limit which is defined by Gold [17]:

Definition 7.1 An inductive inference method M identifies a language L in the limit if, after a

finite number of examples, M makes a correct guess and does not alter its guess thereafter. A

class of languages is identifiable in the limit if there exists a method M such that given any

language of the class and given any admissible example sequence for this language, M identi-

fies the language in the limit.

To learn a correct grammar from a set of examples, Gold [17] proves that:

Theorem 7.1 Any class of languages containing all finite languages and at least one infinite

language can not be identified in the limit from positive examples.

The theorem means that the class of languages can not be learned from positive exam-

ples. However, Gold [17] also points out that if a learning system generalizes the representa-

tion with some restrictions on the allowed result of the generalization in the form of back-

ground knowledge, an adequate language could be learned. For example, if the system could

ask a teacher who always knows whether or not a given string is grammatical, the true lan-

guage could be learned. This strategy is applied in the MarkItUp! learning system to general-

ize grammar from positive examples. Angluin [7] gave a complete characterization of the

families learnable from positive examples.

In [11], the authors summarize four methods for grammatical inference. One of them is

refinement methods which formulate a hypothesis grammar and then refine it on the basis of

simplification heuristics and new training examples. B. Knobe and K. Knobe [31] address a

refinement-method schema which repeatedly accepts new grammatical strings from a teacher,

for each new string, the learning program generates a set of candidate productions which ac-

cept the new string and selects one of production as a new production to add to the grammar or

merges old and new productions using heuristic rules.

The MarkItUp! system architecture is designed on the basis of the refinement methods of

grammatical inference. The initial hypothesis grammar in MarkItUp! is generated in the learn-

ing cycle: markup cycle, in which the grammar incrementally accepts new grammatical

���������
� � �
��
	 ����

strings and is further refined by a set of concepts (Section 4.2) and a set of learning rules (Sec-

tion 4.3).

A related approach to generate grammar in the field of document processing is presented

by Ahonen et al. [4]. They collect a set of examples of structured documents, use a set of fi-

nite-state automata describing the examples, and choose generalization conditions to merge

and modify the example automata so that general automata are generated. The resulting au-

tomata are transformed into regular expressions to get a readable grammar. Although they de-

fine some interactive operations the approach is not intended to be used for incremental learn-

ing.

7.2.2 Version Spaces

Given a set of training data and a language in which the desired concept must be expressed,

Mitchell [35, 36] defines a version space to be “the set of all concept descriptions within the

given language which are consistent with those training instances” (Mitchell [36]). The word

consistent means that the concept description matches all the positive examples and none of

the negative examples.

Mitchell noted that the generality of concepts imposes a partial order that allows efficient

representation of the version space by the boundary sets S and G representing the most specif-

ic and most general concept definitions in the space. The S- and G-sets delimit the set of all

concept descriptions consistent with the given data. The candidate-elimination algorithm ma-

nipulates the boundary set representation of a version space to create new boundary sets that

represent a new version space consistent with all the previous instances plus the new one. For

a positive example of the unknown concept the algorithm generalizes the elements of the S-set

as little as possible so that they cover the new instance yet remain consistent with past data,

and removes those elements of the G-set that do not cover the new instance. For a negative

instance the algorithm specializes elements of the G-set so that they no longer cover the new

instance yet remain consistent with past data, and removes from the S-set those elements that

mistakenly cover the new, negative instance. When the S-set and G-set have the same single

element, the element is the desired concept.

The shortcoming of Mitchell’s algorithm was that the set of candidate concept definitions

must reflect strict consistence with data. Given some set of training data, only those concept

definitions that correctly classify all instances are considered. If no such definition exists, the

version space is empty.

���� �����
� � �
��
	 ����

Hirsh [26] developed a new algorithm, called incremental version-space merging, that

generalizes Mitchell’s notion of version space beyond strict consistency with data and pro-

poses an incremental learning method. Given old and new version spaces based on different

sets of information (about the same concept), the algorithm will find their intersection in S-

and G-sets. The resulting version space reflects all the information of the given spaces and

may contain many concept definitions in a concept description language representable by

boundary sets.

In this thesis, the version-space approach is applied to the problem of discovering string

patterns common to a set of strings (Section 4.2). Since string patterns are learned from posi-

tive examples, this version-space approach considers only the S-set. For each terminal in the

grammar, there is a corresponding version space, called a reduced abstracted-list. Similarly

with Hirsh’s approach, there may be more than string patterns in the abstracted-list which are

no more-specific-than the other. Since the string patterns are represented by regular expres-

sions, the incremental version-space algorithm can simply compare a new string pattern with

the string patterns in the existing abstracted-list and modify the abstracted-list so that the mo-

dified abstracted-list is reduced. It does not require a complex algorithm, such as the Hirsh’s

algorithm [26], to intersect the version spaces.

7.3 Application to Wrapping Semi-Structured Data

Recently, the extraction of structure from semi-structured electronic documents has

gained considerable attention for the realization of wrappers. The basic functionality of wrap-

pers is to translate queries and data from one data model into another [51].

There is no theoretical definition of semi-structured data [1]. BibTex is a kind of semi-

structured data, as well as Web-documents. All of them are sources with implicit structure, not

as rigid, static, or regular as standard database systems.

In order to query these semi-structured sources in a database-like fashion on the basis of

their underlying structure, it is required to wrap them. With the help of wrappers queries can

be converted into queries that can be processed by the underlying source and the native results

are transformed into a format understood by the application.

One of applications to wrapping semi-structured data is to query Web-documents directly

in a database-like fashion [9, 23].

In [22], Hammer et al. describe an approach to wrap Web-documents. It was be done in

two steps: First, they developed a configurable extraction program for extracting semi-struc-

�����
���	� � �	���	� ���

tured data from a set of WWW pages into object model. The extraction process is based on a

specification file that consists of text patterns that characterize the data of interest on the

WWW pages and the desired conversion into an object model with explicit structure. No

learning takes place, thus all patterns need to be specified explicitly. The specification file is

written by the user. The outcome of the extraction process is an object exchange model that

contains the extracted data together with their structure and contents. To query the extracted

result with predicates that are not originally supported by the source, the second step is to use

the wrapper generation tools [22] to generate wrappers. On the basis of the wrapper, the con-

tents on the WWW pages can be queried with an SQL-like language and the result is shown

on the similar form. For a new source, the user has to write a new specification file.

In [9], Ashish et al. include machine learning techniques into their extraction program

and try to generate wrapper semi-automatically from a few examples. This is accomplished in

three steps: First, they give some general rules to identify tokens indicating different types

(heading or sections) on a web page. With the help of the identified types and the format in-

formation, the system outputs a grammar describing the nesting hierarchy of sections in a

page; Second, a parser for the learned pages for the source is generated. Such a parser can

extract any selected section(s) from the page. Finally, a communication functionality is added

to the wrapper, so that the wrapper is able to map function from quires to URLs, to fetch pages

over a network, and to communicate between the wrapper and a mediator. In contrast to the

approach described in this thesis, however, the learning heuristics are not generically applica-

ble but only to Web-documents.

Extracting information from multiple heterogeneous data and integrating them in order to

provide information is a challenging research topic in the database area, information retrieval,

and data exchange. Wrappers provide integrated software components for accessing heteroge-

neous data sources, in which extracting information from the multiple heterogeneous sources

is a basic step. With the dramatically increasing of all kinds available electronically data, ex-

tracting information from the data will play more important role in various application areas

of data processing. For non-web documents, Smith et al. [44] and Klein et al. [30] separately

introduce a document abstract model and automation parsing to extract another kind of semi-

structured data. MarkItUp! approach described in this thesis and [15] use editing-by-example

strategy to extract logical structure information of non-web documents. The learning strategy,

however, could be also applied to Web-documents.

���� �����
� � �
��
	 ����

�����	����� � ������
�

(8 8 8 8 8 88

Conclusion

This thesis presents the MarkItUp! system for the incremental generation of structure recogni-

tion grammar (rules) from example structures. Techniques for generating an initial recognition

grammar from marked-up examples, for abstracting concrete strings at the content level on the

basis of a set of concepts, and for merging the structure of multiple examples at the structural

level on the basis of a set of learning rules have been devised for this purpose. MarkItUp!

incorporates these techniques into the markup cycle in which, with the help of a simple struc-

ture editor, the user can control the learning process and inconsistent electronic documents

with repetitive but implicit format can be structurally enriched. The system is not only suitable

for non-programmers who have to perform mark up manually, but also useful for program-

mers who have to write recognition programs to mark up documents.

The main contribution of the MarkItUp! system is to demonstrate the feasibility of infer-

ring document-structure recognition grammar from structured examples in the domain of re-

petitive electronic documents. The primary contribution of this dissertation lies in a unified

approach to manually mark up and automatically mark up documents on the basis of machine

learning. The MarkItUp! system is developed, analyzed, and implemented which turned out to

be an effective aid in automating the recognition of a large class of electronic documents.

Another contribution of this dissertation lies in combining the techniques of version

spaces and grammatical inference into the practical application of document logical structure

recognition.

To implement the techniques in MarkItUp!, the following related procedures are realized

:

(1) An algorithm to order concepts predefined by the user according to the more-

specific-than relation.

(2) Algorithms for an incremental version-space approach to abstract concrete

contents.

���� �
���	� � ��������

(3) A set of rewrite rules which simplify existing grammars in a prescribed manner

– unification and simplification rules.

(4) A set of rewrite rules which generalize existing grammars in a prescribed man-

ner – abstraction rules.

These procedures are implemented in a grammatical inference learning cycle by an ob-

ject-oriented language: SMALLTALK. The details of the implementation are described in

Chapter 6. This implementation provides an example of how such procedures might be imple-

mented in the learning cycle.

The use of an incremental editing-by-example approach to propose optimal new exam-

ples to direct grammatical inference was demonstrated in chapter 4. The principle employed

there generalizes to other regular languages, but the implementation of the general method

requires language-specific routines.

The applicability of the grammar approach to grammatical inference has been demon-

strated both theoretically and empirically in MarkItUp!. The grammatical inference learning

cycle has been illustrated in two different problem domains: (1) learning contents features

from given concepts – the content level learning, (2) learning document-structure recognition

rules from the entire example (exhaustive learning strategy) or from the parts of an example

(partial learning strategy) – the structural level learning.

At the content level, the algorithm begins by organizing all concepts predefined by the

user in a concept base, ordering the concepts in the concept base in order to get a sorted list,

then learning concepts from the ordered concepts list with the version-space approach. Fea-

tures of the learning concepts algorithm includes:

(1) Each terminal has its own version-space: a reduced abstracted-list, which may

contain more than one string patterns.

(2) Learning a new concrete string does not require to consider previously ex-

amined example strings. As a result, the system does not need to store old ex-

ample strings.

(3) Learning results are independent of the order in which examples are presented.

At the structural level, the rewrite rules provide the basis for a learning procedure that

generalizes the document-structure recognition grammar. The features of the rewrite rules are:

�����	����� � ������
�

(1) The sequence of unification rules has no special meaning, i.e. it does not ex-

press a call-order.

(2) The unification rules are chosen by the type of the elements (parameters). Af-

ter applying these rules, the unified grammar is equivalent to the old gram-

mars.

(3) After applying abstraction rules, the new grammar slightly deviates from the

old one.

(4) Learning results of applying the rewrite rules are dependent on the ordering in

which examples are presented.

By the grammatical inference learning cycle, a recognition program acquires the ability

to describe what can and cannot be determined by the generalized grammar for new examples.

The discussion of sequences of arbitrary elements gives an approach to generate a general

expression of unordered elements. It is significant to complete the MarkItUp! system for

SGML applications.

MarkItUp! has been mainly used by the author of this thesis. The personal experiences

indicate that the chosen approach is very adequate for structuring large amounts of unstruc-

tured documents with reasonable effort. As discussed in Section 6.7, especially for documents

with some repetition factor, such as bibliographies or schedules, only a few manual markups

in the range of 5–10 examples suffice structure over 95% of the complete source correctly.

Future work will be devoted to the following refinements and extensions of the presented

approach:

(1) Implementation of the general expression algorithm for sequences of arbitrary

ordering in the MarkItUp! system;

(2) Further optimization of the algorithm for general expressions to make the im-

plementation simple;

(3) Integration with techniques of structure recognition for scanned documents as

opposed to ASCII documents. These techniques utilize specialized rules for

dealing with layout information such as font properties and two-dimensional

source structure. To generate such rules from intellectually structured exam-

���� �	����� � ������
�

ples the unification & abstraction metarules have to be extended, for example

with taxonomies of font properties and a calculus for two-dimensional gram-

mars;

(4) Development of concepts for detecting and handling ambiguity in the recogni-

tion rules. Currently, the degree of abstraction performed at string level and at

structural level is hardwired. This can lead to ambiguous recogntion rules that

do not uniquely characterize the structure of example documents. An approach

which automatically detects such ambiguities and accordingly performs less

abstraction would be more convenient.

�����
��
����	�

Bibliography

1. Abiteboul, S.,

“Querying SemiStructured Data”,

Proceedings ICDT’97, 1997

2. Aho, A. V., Hopcroft, J. E., and Ullman, J. D.,

Data structures and algorithms,

Addison-Wesely series in computer science and information processing, March, 1979.

3. Aho, A. V., Sethi, R., and Ullman, J. D.,

Compilers – principles, techniques, and tools,

Addison-Wesely series in computer science, 1986.

4. Ahonen, H., and Mannila, H., and Niknnen, E.,

“Forming grammars for structured documents: an application of grammatical inference”,

Grammatical Inference and Applications, Second International Colloquium, ICGI-94, pp.

153-167, September, 1994.

5. American National Standards Institute,

Information processing – text and office systems – standard generalized markup

language(SGML),

ISO 8879-1986(E), ANSI, New York, 1986.

6. Angluin, D.,

“On the complexity of minimum inference of regular sets”,

Information and Control, Vol. 39, pp. 337-350, 1978.

7. Angluin, D.,

“Inductive inference of formal languages from positive data”,

Information and Control, Vol. 48, pp. 117-135, 1980.

8. Angluin, D. and Smith, C. H.,

“Inductive inference: Theory and methods”,

Computing Surveys, Vol. 15, No. 3, September 1983.

9. Ashish, N. and Knoblock, C.

“Wrapper Generation for Semi-Structured Internet Sources”,

Workshop on Management of Semistructured Data, Ventana Canyon Resort, Tucson,

Arizona, May 16, 1997.

10. Brown, H.,

“Standards for structured document”,

The computer journal, Vol. 32, No.6, 1989.

���� �
��
����	�

11. Cohen, P. R. and Feigenbaum, E. A.,

The handbook of artificial intelligence, Vol. III,

William Kaufmann, Inc. Los Altos, California, 1982.

12. Conway, A.,

“Page Grammars and Page Parsing – A Syntactic Approach to Document Layout

Recognition”

ICDAR 93 Second International Conference on Document Analysis and Recognition,

Tsukuba Science City, Japan, 1993.

13. Coombs, J. H., Renear, A. H., and Derose, S. J.,

“Markup systems and the future of scholarly text processing”,

Communications of the ACM, Vol. 30, No. 11, Nov. 1987.

14. Dengel, A.,

“Initial learning of document structure”,

ICDAR 93 Second International Conference on Document Analysis and Recognition,

Tsukuba Science City, Japan, 1993.

15. Fankhauser, P. and Xu, Y.

MarkItUp! – An incremental approach to document structure recognition

Electronic Publishing, Vol. 6, No. 4, Dec. 1993, pp. 447-456

16. Furuta, R.,

“Concepts and models for structured documents”,

Structured documents, the Cambridge Series on Electronic Publishing. Cambridge

University Press, pp 7-38, 1989.

17. Gold, E. M.,

“Language identification in the limit”,

Information and Control, Vol. 10, pp. 447-474, 1967.

18. Gold, E. M.,

“Complexity of automaton identification from given data”,

Information and Control, Vol. 37, pp. 302-320, 1978.

19. Golumbic, M. C.,

Algorithmic graph theory and perfect graphs,

Academic Press, 1980.

20. GÖttke, T. and Fankhauser, P.,

DREAM 2.0 User Manual,

Arbeitspapiere der GMD 660, July 1992.

�����
��
����	�

21. GÖttke, T.,

“Strukturmarkierung von Dokumenten aus Informationsdatenbanken”,

Diplomarbeit, Thechnische Hochschule Darmstadt Fachbereich Informatik, Febuary,

1993.

22. Hammer, J., Carcia-Molina, H., Cho, J., Aranha, R., and Crespo, A.

“Extracting Semistructured Information from the Web”,

Workshop on Management of Semistructured Data, Ventana Canyon Resort, Tucson,

Arizona, May 16, 1997.

23. Hammer, J., Brennig, M., Carcia-Molina, H., Nesterov, S., Vassalos, V., and Yerneni, R.,

“Template-based wrappers in the tsimmis system”,

In Proceedings of ACM SIGMOD International Conference on Management of Data

(Demonstration Track), Tucson, AZ, 1997

24. Handley, J. and Weibel, S.,

“ADAPT: Automated document analysis processing and tagging”,

Document Manipulation and Typography, Proceedings of the EP’90 Conference,

Cambridge University Press, pp. 183-192, 1990.

25. Herwijnen, Eric van,

Practical SGML,

Kluwer Academic Publishers, 1990.

26. Hirsh, H.,

Incremental version-space merging: A general framework for concept learning,

PhD thesis, Standford University, 1989.

27. Hopcroft, J. E. and Ullman, J. D.,

Introduction to automata theory, language, and computation,

Addison-Wesley, Reading, Mass., 1979.

28. Ingold, R., Bonvin, R., and Cory, G.,

“Structure recognition of printed documents”,

Document Manipulation and Typography, the Cambridge Series on Electronic Publishing

Cambridge University Press, pp. 59-70, 1988.

29. Ingold, R. and Armangil, D.,

“A top-down document analysis method for logical structure recognition”,

ICDAR 91 First International Conference on Document Analysis and Recognition,

Saint Malo, France, pp. 41-49, 1991.

���� �
��
����	�

30. Klein, B. and Fankhauser, P.

“Error tolerant document structure analysis”,

Digital Libraries, 1997, pp. 344-357

31. Knobe, B. and Knoeb, K.,

“A method for inferring context-free grammars”,

Information and control, Vol. 31, pp. 129-146, 1976.

32. Knuth, D. E.,

The TEXbook,

Addison-Wesley, Reading, Massachusetts, 1984.

33. Marovac, N.,

“Document recognition – concepts and implementations”,

SIGOIS Bulletin Vol. 13, No. 3, pp. 28-38, 1992.

34. Michalski, R. S., Carbonell, J. G., and Mitchell, T. M.,

Machine Learning: An Artificial Intelligence Approach,

Morgan Kaufmann Publishers, Ing., 1983.

35. Mitchell, T. M.,

“Version spaces: a candidate elimination approach to rule learning”,

Proceedings of IJCAI’77, pp 305-310, 1977.

36. Mitchell, T. M.,

Version spaces: an approach to concept learning,

PhD thesis, Stanford University, 1978.

37. Mitchell, T. M.,

“Generalization as search”,

Artificial Intelligence, Vol. 18, pp 203-225, 1982.

38. Mo, D. H. and Witten, I. H.,

“Learning text editing tasks from examples: a procedural approach”,

Behavior & Information Technology, Vol. 11, No. 1, pp. 32-45, 1992.

39. Nix, R.,

Editing by example,

Ph.D. Dissertation, Computer Science Department, Yale University, 1983.

40. Nix, R.,

“Editing by example”,

Proceedings of the 11th ACM Symposium on Principles of Programming Languages,

pp.186-195, 1984.

�����
��
����	�

41. Ossanna, J. F.,

NROFF/TROFF user’s manual,

UNIX Programmers Manual, 1979.

42. Rostek, L. and Alexa M.,

‘‘Marking up in TATOE and exporting to SGML – Rule development for identifying

NITFG categories”,

submitted for special issue on the ACH-ALLC ’97 Conference, to be published by

Computers and the Humanities, March 1998.

43. Schmidt, J. and Putz, W.,

“Knowledge acquisition and representation for documents structure recognition:

the CAROL project”,

Proceedings of the Ninth IEEE Conference on Artificial Intelligence in Applications,

Orlando/Florida March 1-5, 1993, IEEE Computer Society Press 1993.

44. Smith, D. and Lopez, M.,

“Information extraction for semi-structured documents”,

Workshop on Management of Semistructured Data, Ventana Canyon Resort, Tucson,

Arizona, May 16, 1997.

45. Srihari, S. N. and Zack, G. W.,

“Document image analysis”,

Proceedings of the 8th International Conference on Pattern Recognition, Paris, France,

pp. 434-436, 1986.

46. Stallman, R.,

GNU emacs manual,

Oct., 1986.

47. Tang, Y. Y., Suen, C. Y., Yan, C. D., and Cheriet, M.,

“Document analysis and understanding: A brief survey”,

ICDAR 91 First International Conference on Document Analysis and Recognition,

Saint Malo, France, 1991.

48. Toyoda, J., Nouguchi, Y., and Nishimura, Y.

“Study of extracting Japanese newspaper article”,

Proc. 6th Int. Conf. on Pattern Recognition, pp. 1114-1115, 1982.

49. Vanlehn, K. and Ball, W.,

“A version space approach to learning context-free grammars”,

Marching Learning, Vol. 2, No. 1, pp. 39-74, 1987.

���� �
��
����	�

50. Warmer, J. and Egmond, S. V.,

“The implementation of the Amsterdam SGML parser”,

Electric Publishing, Vol. 2, No. 2, pp. 65-90, July 1989.

51. Wells, D.,

“Wrappers Survey”,

URL: http://www.objs.com/survey/wrap.htm

52. Whiteside, M.,

IMSYS, the Intelligent Markup System,

Avalanche Development Company, Boulder, Colorado, 1986.

53. Wilcox, L. D. and Spitz, A. L.,

“Automatic recognition and representation of documents”,

Document Manipulation and Typography, Proceedings of the EP’88 Conference,

Cambridge University Press, pp. 47-57, 1988.

�11'/&+8� �+34 0(�+)52'3 #/& �#$-'3 ���

Appendix: List of Figures and Tables

�+)� ��� �8#.1-' 0(# ��� �	� �

�+)� ��� �*' 3934'. #2%*+4'%452' 0(����� ��� �

�+)� ��� �934'. 06'26+'7 0(�#2,�4�1� ��� �

�+)� ��� �*' +/+4+#- 34#4' 0(4*' 3425%452' '&+402 ��� �

�+)� ��	 �/ '8#.1-' -0#&'& +/40 4*' 3425%452' '&+402 ��� �

�+)� ��
 �#/5#--9 .#2,+/) 51 # 342+/) +/ 4*' 3425%452' '&+402 �	� � � � � � � � � � � � � � �

�+)� ��� �*' 2'35-4 0(.#/5#--9 .#2,+/) 51 # 342+/) +/ 4*' 3425%452' '&+402 �
� � � �

�+)� ��� �*' .#/5#--9 .#2,+/) 51 2'35-4 0(4*' '8#.1-' +/ �+)52' ��	 ��� � � � � � � �

�+)� 	�� �#2,�4�1� -'#2/+/) 	�� �

�+)� 	�� �/ '8#.1-' 0(4*' %0/%'14 $#3'
�� �

�+)�
�� �*' 1'2.54#4+0/)2#1* 0(1 � !�� 	� �� �" ��� �

�+)�
�� � 5/+0/)2#1* +3 # �� ��� �

�+)�
�� � 5/+0/)2#1* +3 /04 # �� �	� �

�+)�
�	 � �� �� �

�+)� ��� �934'. #2%*+4'%452' 0(�#2,�4�1� �� �

�+)� ��� �2)#/+:#4+0/ 0(4*' 3425%452' '&+402 �� �

�+)� ��� �/ '8#.1-' 0(3425%452' '&+4+/) 	� �

�+)� ��	 +'73 #/& .'/53 0(%0/%'14 '&+402 �

�+)� ��
 �2040491' 0(# %0/%'14 '&+402 �� �

�+)� ��� �)2#1*+% &'3%2+14+0/ 0(4*' %0/%'14 $#3' +/ �+)� ��
 ��� � � � � � � � � � � � � � �

�+)� ��� � 12040491' 0(%0/%'14 '&+402 (02 4*' %0/%'143 +/ �+)� 	�� ��� � � � � � � � � � �

�+)� �� �������� 0(4*' '8#.1-' +/ �+)52' ��� �� �

�+)� ��� �*' 4#))'& &0%5.'/4 0(�0%5.'/4;�#.1-' ��� +3

%2'#4'& $9 4*' �������� +/ �+)52' �� ��� �

�+)� ���� � 4'/4#4+6'-9 .#2,'&;51 '8#.1-')'/'2#4'& $9

4*' �������� +/ �+)52' �� ���� �

�+)� ���� �*' 53'2;%022'%4'& '8#.1-' 53+/) 4*' '8*#534+6' -'#2/+/) 342#4')9 ���� �

�+)� ���� �*' 53'2;%022'%4'& '8#.1-' 53+/) 4*' 1#24+#- -'#2/+/) 342#4')9 ���� � � � �

�+)� ���� �*#/)'& 25-'3 +/ ��� $#3'& 0/ 4*' '8*#534+6' -'#2/+/) 342#4')9 ���� � � �

�+)� ���	 �*#/)'& 25-' +/ ��� (02 -'#2/+/) #/ 014+0/#- '-'.'/4

0/ 4*' $#3+3 0(4*' 1#24+#- -'#2/+/) 342#4')9 ��	� �

�+)� ���
 �*#/)'& 25-'3 +/ ��� (02 -'#2/+/) # 2'1'4+4+0/ '-'.'/4

0/ 4*' $#3+3 0(4*' 1#24+#- -'#2/+/) 342#4')9 ��	� �

�+)� ���� �*#/)'& 25-'3 +/ ��� (02 -'#2/+/) # /'7 342+/)

0/ 4*' $#3+3 0(4*' 1#24+#- -'#2/+/) 342#4')9 ��
� �

�#$-' ��� �*' '81'2+.'/4 2'35-43)'/'2#4'& $9 #11-9+/) %0/%'14 3'4 �� ���� � � � � �

�#$-' ��� �*' '81'2+.'/4 2'35-43)'/'2#4'& $9 #11-9+/) %0/%'14 3'4 �� ��� � � � � �

