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Abstract Automatic inspection tasks have successfully been im-
plemented in several industrial fields and are of growing impor-
tance. Visual inspection using optical sensors is wide spread due
to the vast variety of different sensors, observable features and
comparatively low prices. It seems obvious that corresponding
systems are blind towards mechanical features and inspection of
those typically requires highly specialized, inflexible and costly
systems. Recently, we have shown in the context of sensor-based
sorting that tracking objects over a time period allows deriving
motion-based features which potentially enable discrimination
of optically identical objects, although an optical sensor is used.
In this paper, we take one step back from the specific application
and study the classification of test objects based on their trajecto-
ries. The objects are observed while receiving a certain impulse.
We further refrain from manually designing features but use raw
coordinates as extracted from a series of images. The success of
the method is demonstrated by discriminating spheres made of
similar plastic types while bouncing off a plane.
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1 Introduction

How can a cooked egg be distinguished from a raw one? Obviously,
the difference cannot be determined by their appearance. A common
household trick is to lay both eggs on a flat surface, rotate them like a
spinning top and observe their rotation. While the boiled egg rotates
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uniformly, the raw egg performs a much more unstable movement due
to the inertia of the liquid interior of the egg. This example demon-
strates how an object to be tested is stimulated within the framework
of an experiment in order to observe a characteristic behaviour. Due to
their cognitive abilities, humans are immediately able to evaluate the
observed movement behaviour and distinguish between the two ob-
jects. To a certain extent, an optical inspection is carried out here on
the basis of a non-optical object property, namely the inertial tensor.

Away from the home kitchen, the task of sorting particles contained
in a material stream according to certain criteria exists in several in-
dustrial fields. There exist two main types of systems for automation
of the sorting process, namely mechanical sorting and sensor-based
sorting [1]. Examples of mechanical sorting include sieving for separa-
tion based on size, sink–float processes for separating materials based
on specific gravity and air-stream separation for separating particles
with different aerodynamic characteristics. In sensor-based sorting, the
characteristic used to distinguish particles from different classes deter-
mines the choice of the sensor used. For instance, RGB cameras are
used for discrimination based on color, texture and shape, hyperspec-
tral cameras can be used to retrieve information about the chemical
composition of the particles and X-ray in order to measure the atomic
density.

1.1 Problem statement and contribution

In the introductory example, we were interested in sorting objects ac-
cording to mechanical properties. For many cases, this can be achieved
by using mechanical sorting as discussed above. However, such pro-
cesses typically suffer from a lack of flexibility, limited throughput
and/or cost-intensive implementation. Sensor-based sorting systems
appear to be an attractive alternative in all these regards. However,
systems designed for high-throughput typically use imaging sensors
and are hence by definition limited to optically perceivable character-
istics.

In this paper, we propose a machine vision approach for the clas-
sification of objects based on non-optical properties in the context of
automatic visual inspection. Our approach is based on the use of an
area-scan camera in combination with object tracking methods. The
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classification is based on the trajectories of objects as observed in a spe-
cific scene. The movement of the objects is tracked using an image
sequence recorded at a high temporal resolution. We present an ex-
perimental setup in which the objects are observed while receiving a
certain impulse. The setup supports the generation of huge datasets by
realizing a circulation of test objects. With the help of machine learn-
ing, it is shown that optically identical objects made of similar materials
can be distinguished from each other based on their trajectories with-
out any further feature engineering. The proposed approach can easily
be extended for high throughput applications and requires inexpensive
hardware.

1.2 Related work

Although the use of imaging sensors dominates in sensor-based sort-
ing, other systems have been proposed to sort materials on the ba-
sis of non-optical properties. An example is performing classification
based on impact resonant acoustic emissions. For instance, in [2], the
applicability of such sorting systems is evaluated for the detection of
damaged wheat kernels, including defects that are optically not per-
ceivable. In [3], the authors propose a similar system for the sorting
of End-of-Life vehicles’ plastic materials. Their system further includes
laser triangulation scanning to combine information regarding the size
of single plastic flakes with features derived from the impact acoustic.

Several works have also discussed the idea of performing classifica-
tion or quality assessment on the basis of motion information obtained
from image data. For instance, in [4], two material properties of fabric,
namely stiffness and area weight, are estimated based on motion in-
duced by unknown wind forces. The authors propose a framework
which includes extraction of the magnitudes of motion from video
data, deriving statistical features and implements a regression model
to estimate the material properties. In [5] a quality control system for
application in an industrial setting based on the tracking of sputters
during a laser-welding process is proposed. The events are tracked at
a high frame rate in order to distinguish strong sputter events that are
critical to the welding process from harmless ones. Regression of physi-
cal properties of objects from video data has also recently been studied.
Motivated by gaining knowledge about how humans learn to predict
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motion of objects in the real world, the authors propose a model that
allows predicting physical properties which are then fed into a physics
engine in order to simulate the continuation of a dynamic scene [6].

Recently, we have proposed utilizing motion-based features for the
characterization of materials in sensor-based sorting [7, 8]. We have
shown that spheres made of different materials can be distinguished
based on their motion while being transported on a conveyor belt.
However, to that point, we restricted ourselves to using test objects
made of strongly differing materials. Furthermore, rather primitive,
hand-crafted features based on motion statistics were used and only
passively induced interaction with the environment, in this case fric-
tion with the conveyor belt, was considered. The study presented here
distinguishes itself from the former one in that very similar materials
are used as test objects, no feature engineering is performed and an
active impulse on the test objects is observed.

2 Materials and methods

The following is a description of the setup designed to acquire a dataset
and the methods used for analyzing the data.

2.1 Data acquisition

The phenomenon we want to observe in our experimental setup is elas-
tic collision. We adopt the setup from [3] by using an inclined plane
to accelerate the test objects and a second plane with which the objects
collide, see Figure 9.1. Hence, we observe the test objects while bounc-
ing off the second plane. After the collision(s), the test objects fall into
a funnel and are re-applied on the inclined plane by using a Venturi
loader.

With respect to the optical hardware, we use the camera Ximea xiQ
MQ022 and an 8 mm lens. The camera is connected to a computer us-
ing the USB 3.0 interface. We further crop the image to an resolution of
1220× 950 pixels and record images at 194 fps. Illumination is realized
by using an LED back light.

As for test objects, we are interested in using objects of the same
shape made of different, yet similar materials. For this purpose, we cre-
ated 3D prints of sphere shaped test objects made of different plastics.
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(a) Field of view of the camera. (b) Exemplary motion pattern observed by
the camera.

Figure 9.1: Impressions of the observed experimental situation.

We consider 8 materials from 4 different types of plastic, namely acry-
lonitrile butadiene styrene (ABS), polyamide (PA), polycarbonates (PC)
and polypropylen (PP). All spheres have a diameter of 10 mm. An im-
pression of the test objects is provided in Figure 9.2. It is important
to note that the difference in appearance, i.e., color, is not used for the
classification.

Figure 9.2: Photo of the test objects, from l. t. r.: ABS1, ABS2, PA1, PA2, PC1,
PC2, PP1, PP2.

Our goal is to extract discrete time series data from the images which
represent the path traveled by the test objects in 2D space. We neglect
the third dimension as the objects move approximately only in one
plane and the camera points perpendicular to that plane. In order to
locate an object in an image, we apply image processing. In a first step,
an image received from the camera is segmented using background
subtraction using the implementation from the OpenCV library which
is based on [9, 10]. The resulting binary image is further pre-processed
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using morphological operations, namely erosion and subsequent dila-
tion, followed by Gaussian filtering. In case an object is contained in
the image, its contour is extracted using the implementation of [11] in
OpenCV, yielding a measurement of form

p(t) := (x, y, t) . (9.1)

The contextual attribute of the time series is a timestamp and the be-
havioural attribute is given by the 2D position of the center of the
sphere in the image. A trajectory is then modelled as a set of sub-
sequent measurements:

T := {p(t1), . . . , p(tn) | tn ≤ tn+1} . (9.2)

As has been mentioned, our experimental setup enables circulation of
a test object by re-applying it over and over again. Therefore, we need
to determine which measurements belong to a single trajectory and
which to different ones. We can group measurements to a single tra-
jectory by determining the time difference between two measurements.
At a constant recording speed, a trajectory is only valid if two consec-
utive points also originate from two directly consecutive images of the
recording. A trajectory of a single pass can hence be formalized as

T := {p(t1), . . . , p(tn) | tn < tn+1, tn+1 − tn ≤ ε} (9.3)

where ε := 1/fps is the time between two consecutive frames.

2.2 Data preparation and analysis

Prior to data analysis, we perform data cleaning in order to make sure
we only work with trajectories without missing or possibly faulty mea-
surements. For instance, we require that for each time point only a
single measurement exists. The movement of each object is therefore
described by a trajectory consisting of a temporally unambiguous point
set to ensure that no faulty detection is included. We further only con-
sider complete trajectories. The latter is ensured by exploiting a priori
knowledge about the scene. We require that the first measurement lies
within the area were the test objects enter the scene, i.e., the upper left
corner with respect to Figure 9.1, and the last measurement where the
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objects leave the scene, i.e, the lower left corner. Using the described
procedure, we create a dataset containing individual trajectories that
are labeled with the corresponding material. For each of the 8 mate-
rials, the resulting dataset contains more than 10000 trajectories that
were deemed valid.

We intend to use the recorded coordinates directly as the input for
the classification without any further feature extraction. However, the
trajectories are of varying length which results in a variable length of
the feature vector, which is not supported by many classification al-
gorithms. Therefore, for our experiments, we use two ways to extract
trajectories of fixed length. The first method is extraction and padding.
We calculate the median length of all recorded trajectories and use this
length to either crop trajectories that contain more measurements or
pad shorter trajectories to the length by filling up with zero-valued co-
ordinates. The second method is based on geometric interpolation of
the trajectories. The sampling is calculated with the help of a spline in-
terpolation and the trajectories are up-sampled to 256 data points. We
further discard the temporal component, i.e., the timestamp associated
with each measurement, for the interpolation.

As a learning model, we use a support vector machine (SVM) with
a radial basis function (RBF) kernel. The features, i.e., the coordinates,
are standardized by removing the mean and scaling to unit variance.

3 Experimental results

For the experimental validation, we consider two types of classification
problems. The first problem is to classify the material based on the
trajectory data according to the plastic type as described in Section 2.1.
For each type, there exist two individual test objects. For the second
classification problem each individual test object is to be classified. We
use 10000 trajectories of each material for the training and testing, re-
sulting in a total of 80000 samples. The dataset is split into train and
test sets whereas the size of the test set is 30% of the entire dataset.

Results when using cropped and padded trajectories are provided
in Figure 9.3. As can be seen from Figure 9.3 (a), test objects of type
PA and PC can be distinguished very well from the other types while
a noteworthy amount of false classifications happen for ABS and PP.
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With respect to the latter, it can also be seen that the wrong classifica-
tions happen mainly between these two classes, i.e., ABS test objects are
held falsely for PP and vice versa. From Figure 9.3 (b), the amount of
false classifications with respect to the material within the plastic types
can further be seen. It can be observed that with respect to PA, for
instance, a large amount of false classification happen within the type,
while this is not the case for PC. The false classifications happening
between ABS and PP can be seen as well.
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(a) Results using material types.
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(b) Results using individual test objects.

Figure 9.3: Normalized confusion matrices for classification results for cropped
and padded trajectories.

Results for the geometrically interpolated trajectories are very simi-
lar to those using the cropped and padded trajectories, see Figure 9.4.
Overall, a slight loss in classification performance can be observed,
which might be explained by the loss of temporal information. More
precisely, the data does not allow to extract information whether a test
object passes the experiment faster than another one. In turn, results
show that the cropping and padding did not harm the classification
performance, which suggests that the additional step of interpolation
is not necessary.
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(b) Results using individual test objects.

Figure 9.4: Normalized confusion matrices for classification results for geomet-
rically interpolated trajectories.

4 Conclusions

In this paper, we have extended our previous work on motion-based
classification for application in automatic visual inspection. We de-
signed an experimental setup suitable for the recording of huge
amounts of data which makes application of purely data driven learn-
ing models feasible. Furthermore, we showed that modelling the tra-
jectory as a time series with a timestamp as the contextual and 2D
position as behavioural attribute suffices to achieve high classification
performance, making feature engineering dispensable.

In the near future, we intend to gain more knowledge about the ro-
bustness of the classification performance by not only mixing materials
but also shapes of the test objects. Furthermore, we want to integrate
the approach in sensor-based sorting by incrementally adapting the ob-
served situation. For instance, instead of an impulse induced by a col-
lision, a rippled chute could be used as a transport mechanism. Lastly,
the approach can be made applicable for high throughput applications
by integrating multiobject tracking. This would allow motion-based
classification of several objects observed at the same time.
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