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Abstract

We study the problem of listing all closed sets of a closure operator σ that is a
partial function on the power set of some finite ground set E, i.e., σ : F → F
with F ⊆ P(E). A very simple divide-and-conquer algorithm is analyzed that
correctly solves this problem if and only if the domain of the closure operator
is a strongly accessible set system. Strong accessibility is a strict relaxation
of greedoids as well as of independence systems. This algorithm turns out to
have delay O(|E| (TF + Tσ + |E|)) and space O(|E|+ SF + Sσ), where TF , SF ,
Tσ, and Sσ are the time and space complexities of checking membership in F
and computing σ, respectively. In contrast, we show that the problem becomes
intractable for accessible set systems. We relate our results to the data mining
problem of listing all support-closed patterns of a dataset and show that there
is a corresponding closure operator for all datasets if and only if the set system
satisfies a certain confluence property.
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1. Introduction

The problem of listing all closed sets (i.e., fixpoints) of a given arbitrary
closure operator σ : P(E)→ P(E), where P(E) denotes the power set of some
finite set E, is well studied in different areas (see, e.g., [1, 2, 4]). In this work,
we consider the problem generalization allowing closure operators that are only
defined on some restricted domain, i.e., σ : F → F with F ⊆ P(E). In addition,
we investigate the relation of this problem to listing the family of all support-
closed patterns of a dataset as defined in data mining. Given a transactional
database, a set is called support-closed if all its supersets are contained in strictly
less transactions than itself. We discuss some motivating examples in Section 7.
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(Axel Poigné), stefan.wrobel@iais.fraunhofer.de (Stefan Wrobel)

Submitted to Theoretical Computer Science October 27, 2009



For a set system (E,F) with closure operator σ let n denote the size of E and
N the number of closed sets. Moreover, let TF , SF , Tσ, and Sσ be the time and
space complexity of checking membership in F and computing σ, respectively.
In this paper we present the following results:

(i) In Sections 3 and 4 we consider a simple divide-and-conquer algorithm and
show that it correctly lists all closed sets of strongly accessible set systems
with delay O(n(TF + Tσ + n)), hence, total time O(Nn(TF + Tσ + n)),
and space O(n+ TF + Tσ). Strong accessibility means that every Y ∈ F
can be reached from all X ⊂ Y with X ∈ F via augmentations with single
elements “inside F”. This is a strict relaxation of independence systems
as well as of greedoids and can be thought of as an abstract generalization
of connectivity in the sense that the family of all connected vertex sets of
a graph always forms a strongly accessible set system. The algorithm also
provides an algorithmic characterization of strongly accessible set systems
because it is correct for all closure operators of an input set system if and
only if that set system is strongly accessible. As we discuss in Section 8,
this is a difference to related approaches like our former algorithm [8] or
an algorithm described by Arimura and Uno [9].

(ii) In Section 5 we show that the problem becomes intractable for the class
of accessible set systems. Specifically, we prove a lower bound of Ω(2n/4)
on the worst-case number of closure and membership computations that
has to be performed by any correct algorithm accessing the input only via
these two operations. This bound holds even if the problem is restricted to
instances with a constant number of closed sets. In particular this shows
that no output polynomial time algorithm exists for that task.

(iii) In Section 6 we show that support-closedness for all datasets is induced by
a closure operator if and only if the set system satisfies a certain confluence
property. Moreover, a corresponding closure operator can be computed
efficiently if its domain is strongly accessible. In conjunction with result
(i) we have an O

(
n2 (|D|+ nTF )

)
delay and O(n+ SF ) space algorithm

for listing the support-closed patterns of confluent and strongly accessible
set systems (E,F) with respect to a given dataset D. This constitutes a
fairly general sufficiency criterion for the tractability of listing all support-
closed patterns of a dataset. In contrast, if there is no corresponding
closure operator, the problem turns out to be hard even for independence
systems.

2. Definitions

A (finite) set system is an ordered pair (E,F), where E is some (finite) set,
called ground set, and F ⊆ P(E). In this paper we consider only finite non-
empty set systems. Let (E,F) be a set system. A mapping σ : F → F is called
a closure operator if it satisfies for all X,Y ∈ F that

• X ⊆ σ(X) (extensivity),

• X ⊆ Y ⇒ σ(X) ⊆ σ(Y ) (monotonicity), and

• σ(X) = σ(σ(X)) (idempotence).
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Figure 1: Relations among the introduced classes of set systems and application examples.

A set F ∈ F is called closed if it is a fixpoint of σ, i.e., if σ(F ) = F . The family
of closed elements of F is denoted by σ(F), i.e., σ(F) = {F ∈ F : σ(F ) = F}.
Note that we defined the domain of the closure operator as some subset of P(E),
and not P(E). Thus, in general, σ does not induce a closure system on F : since
F is not necessarily closed under intersection, neither is σ(F).

The main computational problem studied in this work can then be formalized
as follows.

Problem 1 (list-closed-sets). Given a set system (E,F) with ∅ ∈ F and
a closure operator σ : F → F , list the elements of σ(F).

We assume that the closure operator as well as the set system are given implic-
itly by a closure oracle respectively a membership oracle, i.e., a boolean-valued
function that, for every F ⊆ E, returns “true” if and only if F ∈ F . The
computational complexity of algorithms for Problem 1 will be investigated with
respect to those of the membership and closure oracles as well as to the size
of the ground set |E| = n. Since |σ(F)| can in general be as large as 2n (e.g.,
F = P(E) and σ is the identity operator), there is no algorithm solving list-
closed-sets in time polynomial in n. Thus, one aims for a good time bound
per closed set and particularly a good bound on the delay, i.e., the maximum
time between the output of two successive sets (see, e.g., [6]).

We investigate the properties of Problem 1 with respect to different struc-
tural assumptions on the input set system. A (non-empty) set system (E,F) is
called

• accessible if for all X ∈ F \ {∅} there is an e ∈ X such that X \ {e} ∈ F ,

• an independence system if Y ∈ F and X ⊆ Y together imply X ∈ F ,

• a greedoid if it is accessible and satisfies the augmentation property, i.e.,
for all X,Y ∈ F with |X| < |Y |, there is an element e ∈ Y \X such that
X ∪ {e} ∈ F , and

• a matroid if it is a greedoid and an independence system.

In addition, we introduce two new classes of set systems that are related to
Problem 1 as we will show in subsequent sections.
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Definition 1 (Strongly Accessible). A set system (E,F) is called strongly
accessible if it is accessible and for all X,Y ∈ F with X ⊂ Y , there is an
e ∈ Y \X such that X ∪ {e} ∈ F .

By definition, strongly accessible set systems are also accessible. Moreover, it
is easy to see that strong accessibility generalizes independence systems as well
as greedoids. The next class of set systems does not stand in any containment
relation with those given previously.

Definition 2 (Confluent). A set system (E,F) is called confluent if for all
I,X, Y ∈ F with ∅ 6= I ⊆ X and I ⊆ Y it holds that X ∪ Y ∈ F .

The relations among all introduced set system classes are illustrated in Figure 1
along with the application problems considered in Section 7.

3. Divide-And-Conquer Closed Set Listing—
An Algorithmic Characterization of Strong Accessibility

Algorithm 1 Divide & Conquer Closed Set Listing

Input : finite set system (E,F) with ∅ ∈ F and closure operator σ on F
Output: family of closed sets σ(F)

main:
1. print σ(∅)
2. list (σ(∅), ∅)

list(C,B):
1. choose an element e ∈ E \ (C ∪B) satisfying C ∪{e} ∈ F if such an e exists;

otherwise return
2. C ′ ← σ(C ∪ {e})
3. if C ′ ∩B = ∅ then
4. print C ′

5. list (C ′, B)
6. list (C,B ∪ {e})

In this section we analyze Algorithm 1—a simple divide-and-conquer algo-
rithm solving Problem 1 that recursively applies the following principle: For
the current closed set C, first list all closed supersets of C containing some aug-
mentation element e and then all closed supersets of C not containing e. This
is a well-known listing scheme (see for instance [3]). However, in contrast to
other closed set listing algorithms, it is defined for any F ⊆ P(E) with ∅ ∈ F .
We will show that, for strongly accessible set systems, this algorithm efficiently
solves list-closed-sets. In contrast, if the input set system is not strongly
accessible, Algorithm 1 is not even “correct” for the identity map as closure
operator. This statement builds on the following notion of correctness:

(i) Algorithm 1 behaves correctly on input (E,F) and σ if it exactly and non-
redundantly prints the elements of σ(F) for all correct implementations
of line 1 in list, i.e., for all correct choices of augmentation elements.
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(ii) Moreover, we say that Algorithm 1 is correct for a set system (E,F) if for
all closure operators σ on F it behaves correctly on input (E,F) and σ.

The motivation for requiring correct behavior for all choices of augmentation
elements (item (i) above) is that, in case there is only some sequences of choices
leading to the correct output, it is unclear how to find such a sequence in general.

Theorem 1. Let (E,F) be a set system with ∅ ∈ F . Algorithm 1 is correct for
(E,F) if and only if (E,F) is strongly accessible.

Proof. (“⇐”) Let (E,F) be strongly accessible and σ be a closure operator
on F . For C,B ⊆ E, let C(C,B) = {C ′ ∈ σ(F) : C ′ ⊃ C ∧ C ′ ∩ B = ∅}. We
prove by induction on the height h of the recursion tree of list(C,B) that

list(C,B) prints exactly C(C,B) and (1)
list(C,B) prints no set more than once. (2)

Since main calls list(σ(∅), ∅) and prints only the closed set σ(∅), this concludes
the proof of the sufficiency. For h = 0, no augmentation element is selected in
line 1. Therefore, list(C,B) prints no element on the one hand and, as (E,F)
is strongly accessible, C(C,B) = ∅ on the other hand, from which (1) and (2)
directly follow. For the induction step h > 0 we must have that an augmentation
element e ∈ E \ (C ∪ B) has been selected in line 1. We distinguish two cases
depending on C ′ = σ(C ∪ {e}) computed in line 2:

(i) Suppose C ′ ∩B 6= ∅. Then the set of closed sets printed by list(C,B) is
equal to the set L printed by list(C,B∪{e}). Applying the induction hypothesis
to list(C,B ∪ {e}), we get L = C(C,B ∪ {e}) and (2). Thus, to prove (1) it
suffices to show that C(C,B∪{e}) = C(C,B). Clearly, C(C,B∪{e}) ⊆ C(C,B).
Conversely, let C ′′ ∈ C(C,B). Then e 6∈ C ′′, as otherwise we would have
σ(C ∪ {e}) ⊆ σ(C ′′) = C ′′ by the monotonicity and idempotence of σ and
hence, C ′′ ∩B 6= ∅ contradicting C ′′ ∈ C(C,B). Thus, C ′′ ∈ C(C,B ∪ {e}).

(ii) Suppose C ′ ∩ B = ∅. Then the family printed by list(C,B) is equal
to {C ′} ∪ L1 ∪ L2, where C ′ is the closed set printed in line 4 and L1,L2

are the families printed by list(C ′, B) and list(C,B ∪ {e}), respectively. Let
C ′′ ∈ C(C,B) with e ∈ C ′′ and C ′ 6= C ′′. Then C ′′ ∈ C(C ′, B) for C ∪{e} ⊆ C ′′
and C ′ = σ(C∪{e}) ⊂ σ(C ′′) = C ′′. Thus, C(C,B) = {C ′}∪C(C ′, B)∪C(C,B∪
{e}), from which (1) directly follows by applying the induction hypothesis to
list(C ′, B) and list(C,B ∪ {e}). Since C ′ 6∈ L1 ∪ L2 and L1 ∩ L2 = ∅ because
C(C ′, B) ∩ C(C,B ∪ {e}) = ∅, we get (2) by applying the induction hypothesis
to list(C ′, B) and list(C,B ∪ {e}).

(“⇒”) Suppose that (E,F) is not strongly accessible. Then choose X =
{x1, . . . , xk} ∈ F minimal such that there is a Y ∈ F with X ⊂ Y and (X ∪
{y}) 6∈ F for all y ∈ Y \ X. Let σ be the identity map on F that is clearly
a closure operator. We show that there are possible choices of augmentation
elements that result in an incorrect output. Consider the sequence of recursive
calls

list(X0, ∅), list(X1, ∅), . . . , list(Xk, ∅)

with Xi = {x1, . . . , xi}, which arises as prefix of the call sequence in case xi
is chosen as augmentation element in line 1 of list(Xi−1, ∅). If there is an
augmentation element e in list(Xk, ∅) then e 6∈ Y by the choice of X and Y .
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Thus, Y can neither be found in that incarnation of list nor in any of its subcalls
list(C,B) because e ∈ C for all such calls. For all other subsequent calls
backtracking has occurred at least once. Thus, xi ∈ B for some i ∈ {1, . . . , k}
for all such calls list(C,B), and consequently Y will be rejected by the check in
line 3 in case it is found. Altogether, Algorithm 1 does not print Y and, hence,
is incorrect for input (E,F) and σ. �

As a byproduct of Theorem 1 we get an algorithmic characterization of strong
accessibility. Note that the degree of freedom of the closure operator is not nec-
essary for the proof of the “only if”-part of that theorem. Thus, the characteri-
zation can simply be stated as in Theorem 2 below. Recall that the underlying
notion of correctness involves correct computation for all implementations that
are in accord with the pseudo-code specification of Algorithm 1; in particular
this means correctness for all valid choices of augmentation elements in line 1.

Theorem 2. Let (E,F) be a set system with ∅ ∈ F . Then (E,F) is strongly
accessible if and only if Algorithm 1 correctly lists F on input (E,F) and the
identity operator on F (as closure operator).

This characterization is a distinctive feature that separates Algorithm 1 from
related algorithms discussed in Section 8.

4. Performance

Algorithm 2 Modified Algorithm

main′:
1. initialize C and B to be empty stacks
2. let e1, . . . , en be an arbitrary fixed ordering of E
3. push all c ∈ σ(∅) onto C
4. print C
5. list′(1)

list′(d):
1. push ⊥ onto C, push ⊥ onto B //set restoration point
2. for i = 1, . . . , n do
3. if ei ∈ (C ∪B) or C ∪ {ei} 6∈ F then continue with next i
4. push all c ∈ (σ(C ∪ {ei}) \ C) onto C
5. if C ∩B = ∅ then
6. if d is even then
7. print C
8. list′(d+ 1)
9. else

10. list′(d+ 1)
11. print C
12. while top of C not equal to ⊥ do pop C //restore C
13. push ei onto B
14. while top of B not equal to ⊥ do pop B //restore B
15. pop C, pop B //remove restoration point
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We now turn to the complexity of Problem 1 restricted to strongly accessible
set systems. In addition to the size of the input ground set E, the complexity
also depends on the representation of the set system and on the closure operator.
Accordingly, we will study the time and space complexity also in terms of those
of (i) checking membership in F and (ii) computing the closure of an element in
F . We denote by TF , SF , Tσ, and Sσ the maximum time and space requirements
of these operations for an input of size |E|, respectively. We assume that single
elements of E can be stored, compared, or otherwise manipulated in time and
space O(1). For environments violating this assumption all complexities have
to be multiplied by log |E|.

For our analysis we consider a modified formulation of the divide-and-conquer
algorithm given in Algorithm 2. While the two algorithms are input-output
equivalent, Algorithm 2 allows us to prove a stronger performance statement.
The changes are:

M1 The tail-recursion of the list procedure is replaced by a for-loop iterating
over all potential augmentation elements e ∈ E\(C∪B) using an arbitrary
but fixed ordering of E.

M2 The parameters of the list procedure are replaced by global variables. In
particular this can be realized by implementing them as stacks of single
elements of the ground set because—due to the recursive structure of the
algorithm—elements are added and removed in a last-in-first-out fashion.

M3 For odd recursion depths the order of lines 4 and 5 of Algorithm 1 is
changed, i.e., the new closed set is printed only after the recursive call
backtracked.

Modifications M1 and M2 are only equivalent reformulations. The third mod-
ification follows an idea described by Nakano and Uno [7] in the context of
listing trees of a fixed diameter. It does not change what is printed—and thus
does not affect correctness—but “holds back” some of the output elements for a
certain time until eventually printing them. As a result the moments in which
closed sets are printed are more evenly distributed during the running time of
the algorithm. This improves the delay, i.e., the maximum time between the
generation of two consecutive closed sets, by a factor of |E| over that of the
original formulation, without changing the total time.

Theorem 3. Restricted to strongly accessible set systems, list-closed-sets
can be solved with

delay O(|E| (TF + Tσ + |E|)) , and (3)
space O(|E|+ SF + Sσ) . (4)

Proof. Let n = |E|. To see the delay, first observe that the algorithm can-
not backtrack more than two times without printing a new set or terminating.
Moreover, if list′(d) is called with an even d, without printing a new closed set
or backtracking there can be at most

• n membership checks (cost TF each),

• n closure computations (cost Tσ each) and
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• n manipulations and accesses to a constant number of variables of size at
most O(n) (cost O(n) each).

Finally, for list′(d) with an odd d there cannot be more than the same opera-
tions of time O(TF + Tσ + n) without calling list′ with an even d or backtrack-
ing. The claimed delay follows by noting that main′ prints a set and calls list′

after time O(Tσ + n).
The space complexity is straightforward: since C ∪ B ⊆ E always holds,

there are never more than O(n) elements to be stored. Equation (4) directly
follows. �

From this theorem it immediately follows a bound on the total running time
(i.e., |σ(F)| times the delay given in Equation (3)) because of the exactness and
non-redundancy guaranteed by Theorem 1. In fact this bound on the total time
and the space bound can already be shown for the algorithm incorporating only
the equivalent reformulations M1 and M2 above. The amortized cost of a single
invocation of list is similar to the one found in the proof of Theorem 3 and
non-redundancy and exactness imply that list(C ′, B) in line 5 of Algorithm 1
is called at most once for each C ′ ∈ σ(F). Closing this section, we can thus
note:

Remark 1. Restricted to strongly accessible set systems, Algorithm 1 can be
implemented to solve list-closed-sets with total time

O(|E| (TF + Tσ + |E|) |σ(F)|)

and space as given in Equation (4).

5. Problem Complexity for Accessible Set Systems

Clearly, for any set system (E,F) and closure operator σ on F , σ(F) can
be listed in total time O(2n) by a deterministic algorithm that has access to F
only by means of membership oracle and closure computations, if the invoca-
tion of the membership oracle and the closure computation are both charged
by unit time. Theorem 4 below not only shows that this bound cannot be sub-
stantially improved for accessible set systems, but also implies that there is no
deterministic algorithm solving list-closed-sets for this problem fragment in
output polynomial time, i.e., by an algorithm having a time complexity that is
polynomially bounded in n+ |σ(F)|.

Theorem 4. For accessible set systems (E,F) and closure operators σ on F
such that |σ(F)| ≤ 2, there is no deterministic algorithm that has access to F
only by means of membership oracle and closure computations, and correctly
solves problem list-closed-sets by invoking the membership oracle and com-
puting the closure operator at most 2n/4 times where n = |E|.

Proof. LetA be a deterministic algorithm solving the problem described in the
claim by invoking the membership oracle and computing the closure operator
at most 2n/4 times. We show that A is incorrect by constructing two problem
instances such that A fails to compute the correct closed set family for at least
one of them.
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For a positive integer n > 4 dividable by 4, consider the set system (E,F)
with E = X ∪ Y such that X,Y are disjoint sets, both of cardinality n/2,
F = P(X), and define the function σ : F → F by σ(F ) = X for all F ∈ F .
Clearly (E,F) is accessible, σ is a closure operator, and |σ(F)| = 1. Thus,
(E,F) and σ form an instance of the problem described in the claim.

Since A invokes the membership oracle or computes the closure operator
at most 2n/4 <

(
n/2
n/4

)
, there is at least one subset of Y of cardinality n/4, say

Y ′ = {e1, . . . , en/4}, such that A on input F and σ does not access (neither by
the membership oracle nor by the closure computation) Y ′ ∪ F for all F ⊆ X.
For the same reason there is a subset X ′ ⊆ X of cardinality n/4 such that A
does not access X ′ ∪ F for all F ⊆ Y . Let X \ X ′ = {en/4+1, . . . , en/2} and
consider the set system (E,F ′) with F ′ = F ∪ {S1, . . . , Sn/2}, where S0 = X ′

and Si = Si−1 ∪ {ei} for every i = 1, . . . , n/2. Note that Sn/2 = X ∪ Y ′. Let
the function σ′ : F ′ → F ′ be defined by

σ′ : F 7→

{
X, if F ∈ F
Sn/2, otherwise .

One can easily check that (E,F ′) is accessible, σ′ is a closure operator on F ′,
and |σ′(F ′)| = 2. Hence, (E,F ′) and σ′ form a second instance of the problem
defined in the statement.

Let A1(F1), . . . , Ak(Fk) be the sequence of membership queries and closure
computations performed by A on the first instance defined by (E,F) and σ.
That is, Ai(Fi) is either MF (Fi) or σ(Fi) for some Fi ∈ P(E)\{S0, S1, . . . , Sn/2}
for every i = 1, . . . , k, where MF denotes the membership oracle for F . Since A
is deterministic, Fi 6∈ {S0, S1, . . . , Sn/2}, and MF (X) = MF ′(X) and σ(X) =
σ′(X) for every X ∈ P(E)\{S0, S1, . . . , Sn/2}, A will perform the same sequence
of membership queries and closure computations for the second instance defined
by (E,F ′) and σ′ and generate the same family of closed sets. But this implies
that A is incorrect on at least one of the two instances, as σ(F) 6= σ′(F ′). �

6. Support-Closed Sets

So far we have defined a closed set as a fixpoint of some closure operator. In
data mining a different notion of closedness is used. To define it, we first recall
some necessary definitions from frequent pattern mining. A dataset over a set E
is a multiset D of subsets of E. The elements of D are called transactions. We
say that D is non-redundant if for all e ∈ E there is a D ∈ D with e 6∈ D, i.e.,
there is no element that is contained in every transaction. For a set X ⊆ E, the
support set of X with respect to D, denoted D[X], is the multiset of transactions
of D containing X.

Based on support sets one can define the following notion of closedness: a
set X ∈ F is support-closed if X ⊂ Y implies D[X] ⊃ D[Y ] for every Y ∈ F . By
SC(F ,D) we denote the family of all support-closed sets in F with respect to
D. Note that for ∅ ∈ F it holds that, for all D, D is non-redundant if and only
if ∅ ∈ SC(F ,D). We include this requirement in our formal problem statement
for listing closed sets. Though it is a minor restriction, it makes our results
applicable to more problems of practical interest (for instance Problem 5 from
Section 7).
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Problem 2 (list-sc-sets). Given a set system (E,F) and a non-redundant
dataset D over E, list the family of support-closed sets SC(F ,D).

The two notions of closedness, based on support sets and based on closure
operators, are not equivalent: there are set systems and datasets such that
no closure operator exists having exactly the support-closed sets as fixpoints.
Hence Algorithm 1 is not generally applicable to Problem 2. Indeed, even when
restricted to independence systems, list-sc-sets is intractable (see Example 1).

Theorem 5. There is no algorithm solving list-sc-sets restricted to indepen-
dence systems in output polynomial time (unless P=NP).

Proof. Let (E,F) be an independence system. For D = {∅, E} the problem
of listing SC(F ,D) is equivalent to listing the bases of (E,F), i.e., the maximal
elements of F . For the latter problem it was shown by Lawler et al. [10] that it
cannot be solved in output polynomial time (unless P=NP). �

If, however, such a closure operator exists, we call it support closure operator of
F with respect to D. In case of existence such an operator is uniquely defined
as follows:

Lemma 6. Let (E,F) be a set system and D a dataset over E. If a support-
closure operator σ on F with respect to D exists then it is well-defined by

σ(F ) = max Σ(F ) (5)
where Σ(F ) = {F ′ ∈ F : F ⊆ F ′ ∧ D[F ] = D[F ′]} ,

i.e., the family Σ(F ) has a unique maximal element for all F ∈ F .

Proof. Note that for all F ∈ F ,

F ∈ SC(F , D) ⇐⇒ ∃G ∈ F such that F is maximal in Σ(G) . (6)

Let σ be a support closure operator on F and F ′ be a maximal element in Σ(F ).
Then F ′ is support-closed by (6) and hence σ(F ′) = F ′. Since F ⊆ F ′, we have
F ⊆ σ(F ) ⊆ σ(F ′) = F ′ by extensivity and monotonicity of σ. But this implies
D[F ] = D[σ(F )], as D[F ] = D[F ′] by F ′ ∈ Σ(F ). Thus σ(F ) ∈ Σ(F ). But then,
σ(F ) must be maximal in Σ(F ), as it is maximal in Σ(σ(F )) by (6). Hence,
σ(F ) = F ′ because σ(F ) ⊆ F ′. �

A unique maximal element of Σ(F ) does not always exist (e.g., F = ∅
with F = {∅, {a}, {b}} with D = {{a, b}}), and even if it exists, σ defined
by (5) is not always monotone (consider, e.g., F = {∅, {a}, {a, b}, {a, c}} with
D = {{a, b}, {a, b, c}}). If, however, max Σ(F ) is unique for every F ∈ F and σ
as defined above is monotone, the reverse of the above lemma holds.

We now show that confluence characterizes the existence of the support
closure operator for arbitrary non-redundant datasets. That is, restricted to
confluent set systems, Problem 2 is a subproblem of Problem 1.

Theorem 7. Let (E,F) be a set system. The support closure operator for F
with respect to D exists for all non-redundant datasets D over E if and only if
(E,F) is confluent.
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Proof. (“⇐”) Suppose (E,F) is confluent and let D be a non-redundant
dataset over E. Let σ(F ) be max Σ(F ) for all F ∈ F as defined in (5). We
prove that σ is a support-closure operator by showing that

(i) σ is a function,

(ii) σ(F ) is support closed for all F ∈ F , and

(iii) σ is a closure operator.

Regarding (i), we show that for all F ∈ F , there exists a unique maximal element
in Σ(F ). For F = ∅ this is trivial because Σ(∅) = {∅} by the non-redundancy
of D. Let F 6= ∅. Existence is implied by the finiteness of F . For uniqueness
assume there are distinct sets F ′, F ′′ ∈ F that are both maximal in Σ(F ).
Since F 6= ∅, F ⊆ F ′, and F ⊆ F ′′, it follows from the confluence of F that
(F ′ ∪F ′′) ∈ F . As D[F ′ ∪ F ′′] = D[F ′]∩D[F ′′] and D[F ′] = D[F ′′] = D[F ], we
have D[F ′ ∪ F ′′] = D[F ]. Thus F ′ ∪ F ′′ ∈ Σ(F ) contradicting the maximality
of F ′ and F ′′. Hence, there is a unique maximal element of Σ(F ).

Property (ii) is immediate by (6), as σ(F ) is maximal in Σ(F ). To see
(iii), the extensivity follows by definition. For idempotence we have σ(F ) =
max Σ(F ) ∈ Σ(F ) implying D[σ(F )] = D[F ]. Hence σ(σ(F )) = σ(F ), as σ(F )
is maximal. For monotonicity, let F ′, F ′′ ∈ F with F ′ ⊆ F ′′. The case F ′ = ∅ is
trivial because σ(∅) = ∅, as D is non-redundant. Let F ′ 6= ∅. Since F ′ ⊆ σ(F ′)
and F ′ ⊆ F ′′, σ(F ′) ∪ F ′′ ∈ F by the confluence of F . For the support of
σ(F ′)∪F ′′ we have D[σ(F ′) ∪ F ′′] = D[σ(F ′)]∩D[F ′′], which, in turn, is equal
to D[F ′′] because D[σ(F ′)] = D[F ′] by the definition of σ and D[F ′′] ⊆ D[F ′]
by F ′ ⊆ F ′′. Hence σ(F ′) ∪ F ′′ ∈ Σ(F ′′) and σ(F ′) ⊆ σ(F ′) ∪ F ′′ ⊆ σ(F ′′) by
maximality of σ(F ′′).

(“⇒”) Suppose that for all non-redundant datasets D over E the support
closure of F with respect toD exists. In order to show that (E,F) is confluent let
I,X, Y ∈ F with I 6= ∅, I ⊆ X, and I ⊆ Y . We show that σ(I) = X ∪Y for the
support closure operator σ : F → F with respect to the dataset D = {∅, X∪Y }.
Since, on the one hand, σ is support preserving it follows that σ(I) ⊆ X∪Y . On
the other hand, σ(I) is support-closed. Together with D[I] = D[X] = D[Y ] this
implies that X ⊆ σ(I) and Y ⊆ σ(I). Hence, it also holds that σ(I) ⊇ X ∪ Y
as required. �

Theorem 7 can be used to characterize the instances of list-sc-sets that are
also instances of list-closed-sets. But even in case that the support closure
operator exists, it is unclear whether its computation is tractable. In the follow-
ing lemma we show that if a support closure operator has a strongly accessible
domain, it can be computed efficiently by reducing it to the augmentation prob-
lem (line 1 of Algorithm 1), i.e., the problem to find an element e ∈ E \ (B ∪C)
with (C ∪ {e}) ∈ F or decide that none exists, given B,C ⊆ E. We denote the
required time to solve this problem by Ta. Note that it can always be solved
with |E \ (C ∪B)| membership queries (and no additional space). We neverthe-
less make Ta an explicit parameter of the result below, because usually it can
be implemented more efficiently than by the naive approach via membership
queries (see the examples from Section 7).

Lemma 8. Let (E,F) be a strongly accessible set system and D be a non-
redundant dataset over E. If the support closure operator of F with respect to
D exists it can be computed in time O(|E| (|D|+ Ta)) and space SF .
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Proof. Let σ be a support closure operator. Define F0 = F and

Fi+1 =

{
Fi ∪ {e} if ∃e ∈

⋂
D[F ] \ Fi such that Fi ∪ {e} ∈ F

Fi otherwise

for i ≥ 0. Since the sequence F = F0 ⊆ F1 ⊆ . . . is bounded by
⋂
D[F ], there is

a smallest index k < |E| such that Fk = Fk+1. Clearly, D[F ] = D[Fi] and hence,
Fi ∈ Σ(F ) for every i = 0, 1, . . . , k. Since there is no further augmentation
element e ∈ (

⋂
D[F ]\Fk) and (E,F) is strongly accessible, it follows that Fk is

maximal in Σ(F ). Thus, by Lemma 6, Fk = σ(F ) as required. By the definition
above, Fk can be computed by calculating

⋂
D[F ] and by finding at most |E|

augmentation elements. The statement about the time then follows because⋂
D[F ] can be computed in time O(|E| |D|). For the required space note that

for the computation of the result Fk there is no additional storage required
beside that for computing an augmentation element, which can be reused. �

Combining Theorem 3 with the results of this section, we can identify a
fairly general, tractable subproblem of list-sc-sets. While the theorem below
may not yield the strictest bounds for concrete problems where more structural
assumptions hold, its conditions can usually be checked easily and it serves as
a baseline for more specialized methods.

Theorem 9. Restricted to set systems that are confluent and strongly accessi-
ble list-sc-sets can be solved with delay O

(
|E|2 (|D|+ Ta)

)
respectively delay

O
(
|E|2 (|D|+ |E|TF )

)
and space O(|E|+ SF ).

Note that it is crucial for Theorem 9 that Theorem 3 holds for closure operators
that are only a partial function of the power set of the ground set. The support
closure operator is in general not defined for arbitrary members of the power
set.

7. Applications

In this section we present three listing problems motivated by data mining
applications and show that they can be solved with polynomial delay and space.
We derive all these positive results by applying Theorems 3 and 9.

Frequent Sets. As a first example, consider the data mining problem of listing all
support-closed frequent sets (see, e.g., [4, 5]). For an integer frequency threshold
t > 0, a subset X ⊆ E is t-frequent if |D[X]| ≥ t.

Problem 3 (list-sc-frequent-sets). Given a dataset D over a finite set E
and an integer frequency threshold t > 0, list all subsets of E that are t-frequent
and support-closed with respect to D.

Clearly, the family of t-frequent sets always forms an independence system.
If we discard the frequency requirement the underlying set system is F =
P(E), for which the support closure operator always exists and is defined by
σ(F ) =

⋂
D[F ]. It can be computed in time O(‖D‖), where ‖D‖ =

∑
D∈D |D|

denotes the size of D. Notice that if we restrict σ to the family Ft = {F ⊆ E :

12



|D[F ]| ≥ t} of t-frequent sets the resulting mapping σt : Ft → Ft is the support
closure operator of (E,Ft) with respect to D. As Ft is an independence system
and a membership test can be performed in time O(‖D‖), by Theorem 3 we get:

Corollary 10. The list-sc-frequent-sets problem can be solved with delay
O(|E| ‖D‖), and space O(|E|).

In this example we used a general observation about support closure operators
of a set system (E,F): their restriction to the family Ft of t-frequent sets of F
remains a support closure operator (with respect to the same dataset D). Thus,
if F is confluent and strongly accessible, Theorem 9 can still be applied when a
frequency constraint is added to Problem 2. Though Theorem 9 could also be
used to get a positive result on list-sc-frequent-sets, we applied Theorem 3
because the support closure operator for frequent sets can be computed faster
than by the algorithm used in the proof of Lemma 8. The bound in Corollary 10
is actually equal to the best known theoretical bound for list-sc-frequent-
sets achieved by the LCM-algorithm [5].

Poset Ideals. The next example makes use of the fact that greedoids are strongly
accessible. Let (E,≤) be a poset. Then F ⊆ E is called a (lower) ideal if for all
e ∈ F and for all e′ ∈ E, e′ ≤ e implies e′ ∈ F . Using this notion, we can state
the following listing problem:

Problem 4 (list-sc-ideals). Given a finite poset (E,≤) and a non-redundant
dataset D over E, list the family of ideals of (E,≤) that are support-closed with
respect to D.

This problem is motivated by recommendation systems where partial orders are
used for modeling a collection of user preferences (see, e.g., [11]). We show that
it can be solved with polynomial delay and space. Let F be the family of ideals
of (E,≤). Then (E,F) forms a greedoid, the so-called poset greedoid [12], which
implies that (E,F) is strongly accessible. Furthermore, (E,F) is confluent as
poset greedoids are closed under union. An augmentation element (see line 1 of
Algorithm 1) can be found in time O(‖≤‖) by touching each element (x, y) of
the direct successor relation of ≤ and checking whether x ∈ F and y 6∈ (F ∪B).
Altogether, by Theorem 9, we have the following result:

Corollary 11. The list-sc-ideals problem can be solved with delay
O
(
|E|2 (|D|+ ‖≤‖)

)
and space O(|E|).

Connected Induced Subgraphs. Finally, we consider the problem of listing all
connected induced subgraphs of a graph G = (V,E) that are support-closed with
respect to a dataset over V . Such datasets can for instance model movements
of individuals in a street network and occur in track mining applications (see,
e.g., [13]). The formal problem statement is:

Problem 5 (list-sc-connected-vertices). Given an undirected graphG =
(V,E) and a non-redundant dataset D over V , list the family of sets F ⊆ V
inducing connected subgraphs1 of G that are support-closed with respect to D.

1Note that in contrast to standard problems in graph mining, Problem 5 does not rely
by any means on subgraph isomorphism. In this article, support-closedness is always only
defined with respect to set inclusion.
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For a graph G = (V,E) and X ⊆ V let G[X] denote the subgraph of G induced
by X. We note that the family of vertex sets that induce connected subgraphs
of G is not an independence system because a subgraph of a connected graph is
not necessarily connected. It is, however, strongly accessible and also confluent.

Lemma 12. For a graph G = (V,E) let F = {X ⊆ V : G[X] is connected}.
Then (V,F) is strongly accessible and confluent.

Proof. The confluence follows since the union of any two connected subgraphs
of G with non-disjoint vertex sets is also connected. For strong accessibility,
let X,Y ∈ F with X ⊂ Y . Assume there is no vertex v ∈ Y \ X such that
X ∪ {v} ∈ F . Then X and Y \ X are disconnected in G[Y ] contradicting the
choice of Y . �

As for the previous example, an augmentation element can be found in time
O(|E|) by touching each edge e once and checking whether x ∈ F and y 6∈ (F∪B)
for x, y ∈ e. Therefore we obtain by Theorem 9:

Corollary 13. The list-sc-connected-vertices problem can be solved with
delay O

(
|V |2 (|D|+ |E|)

)
and space O(|V |).

Note that it is crucial for the list-sc-connected-vertices problem that
the datasets are non-redundant. Otherwise the support closure operator does
not always exist as the following example shows:

Example 1. Let G = ({a, b, c}, {{a, b}, {b, c}}) a path of length two and D =
{{a, c}}. Then there is no support closure operator σ for F with respect to
D because each possible choice of σ(∅), either {a} or {c}, would violate mono-
tonicity.

8. Discussion

The previous section has demonstrated that it is useful to have a listing al-
gorithm for closure operators that are only defined on a subset of the power set
P(E); particularly for subsets that are not necessarily independence systems.
Indeed, for the problems list-sc-ideals and list-sc-connected-vertices
the support closure operator is in general only a partial function on P(E) be-
cause σ is undefined for non-ideals and for vertex sets inducing disconnected
graphs, respectively. Moreover, the set systems considered for both problems
are not necessarily independence systems. As a further remark, note that, for
list-sc-ideals, the induced family of closed sets always forms a closure system
because E is an ideal of (E,≤) and F is closed under intersection. In contrast,
this is not the case for list-sc-connected-vertices.

In contrast to traditional algorithms that assume F = P(E) (e.g., [1]), our
former algorithm [8] as well as the one of Arimura and Uno [9] are also applicable
to partially defined closure operators. In fact, as we show below, the class of set
systems for which these algorithms are correct for all closure operators properly
contains the class of strongly accessible set systems while it is properly contained
in the class of accessible set systems. Thus, on the one hand, these algorithms
are correct for a larger set of inputs than Algorithm 1, but, on the other hand,
for non-strongly accessible set systems it is intractable to decide whether their
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Figure 2: The accessible set system (E,F) and the closure operator σ from Example 2 (top
left) together with the corresponding generator graph GF′,σ (top right). The closed set abcd is
not reachable from ∅ in GF′,σ . In addition the accessible set system (E′,F ′) from Example 3
(bottom left). The corresponding generator graphs are connected for all closure operators
(sketch bottom right).

output is correct. In fact this observation sheds light on a distinctive feature of
Algorithm 1: in contrast to the other algorithms it yields an exact algorithmic
characterization of strong accessibility (see Section 3). In order to show the
claims above, we briefly review both algorithms.

The first one [8] can be seen as a straightforward traversal, starting in σ(∅),
of the generator graph GF,σ = (V,E) induced by the input set system (E,F)
and the closure operator σ, i.e., the directed graph with vertices V = σ(F) and
edges

E = {(C,C ′) ∈ σ(F)× σ(F) : ∃e ∈ E \ C, (C ∪ {e}) ∈ F ∧ σ(C ∪ {e}) = C ′} .

Consequently, it runs in total time O(Nn(TF + Tσ + n)) but potentially expo-
nential space O(Nn), where n = |E| and N = |σ(F)|, because it explicitly stores
each visited vertex. The algorithm of Arimuro and Uno improves on the naive
traversal of GF,σ in that it traverses only a spanning tree without this explicit
storage. This results in an efficient space complexity O(n+ SF + Sσ) and total
time O

(
N(n3TF + n2Tσ)

)
.

However, both algorithms are incomplete, thus incorrect, if GF,σ is uncon-
nected and correct if it is connected. Recall that we call a closed set listing
algorithm correct for a set system (E,F) if it behaves correctly for all closure
operators on F . For the generator graph traversal algorithms this means that
they are correct for (E,F) if GF,σ is connected for all closure operators σ on
F . It is straightforward to check that this connectivity criterion is, on the one
hand, implied by (E,F) being strongly accessible [8] and, on the other hand,
at least requires (E,F) to be accessible (e.g., choose σ to be the identity map).
The two examples below (see also Figure 2) now show that this condition lies
strictly between strong and ordinary accessibility.

First we give an accessible set system that is not strongly accessible and a
closure operator such that the corresponding generator graph is unconnected.

Example 2. Let (E,F) be the accessible set system defined by E = {a, b, c, d}
and F = {∅, a, ab, ac, abd, abcd}. Moreover, define σ : F → F by σ(∅) = ∅,
σ(a) = σ(ac) = ac, and σ(ab) = σ(abd) = σ(abcd) = abcd.
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On the other hand, there are accessible set systems that are not strongly
accessible and still have a connected generator graph for all closure operators.
This is witnessed by the set system (E′,F ′) of Example 3.

Example 3. Let (E′,F ′) be the accessible set system defined by E′ = E ∪ {e}
and F ′ = F ∪ {ae} with (E,F) of Example 2.

Although (E′,F ′) just like (E,F) is not strongly accessible, one can check that
GF,σ is connected for all closure operators σ on F . This is caused by a being
a maximal subset of two distinct globally maximal sets ae and abcd. It follows
due to monotonicity that a is a fixpoint of all closure operators on F . In
the corresponding generator graph a will connect σ(∅) (possibly itself) to both
“arms”: {ae} as well as {σ(ab), σ(ac), σ(abc), σ(abcd)}. Consequently and unlike
Algorithm 1, the algorithms based on generator graph traversals are correct on
(E,F) for all closure operators.

Thus, these algorithms are correct for a larger set of inputs. In general,
however, it is intractable to decide whether a given pair of an accessible set
system and a closure operator induces a connected generator graph. This can be
shown by using a similar construction as in the proof of Theorem 4. Accordingly,
for a given accessible set system and closure operator it is in general intractable
to decide whether the output of these algorithms is complete.
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