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Agenda 



 Rotor blades are complex geometries        no intuitive design possible 

 Optimization is necessary 

 Blades consists of airfoils        airfoil optimization needed 

 

 

 High accuracy for prediction of loads        computational fluid dynamics (CFD) 

 

 

 CFD + conventional optimization        expensive 

 adjoint approach 
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Motivation 



 Optimization using gradients 

 

 Traditionally by finite differences 

 

 More design parameters       more evaluations 

 

 Every time full CFD necessary 

 

 Computationally expensive 
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Gradient-Based Optimization:  
Traditional Approach 



 Solving a few more equations 
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Gradient-Based Optimization:  
Adjoint Approach 

Adjoints in CFD 



 Solving a few more equations and each single point can be design parameter 
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Parameters 

Adjoints in CFD 



 Solving a few more equations and each single point can be design parameter 

 

 

 

 

 

 

 

 

 Computation of gradient independent from number of design parameters 

 Only two solver runs for each gradient necessary 

 Arbitrary amount design parameters possible 
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Gradient-Based Optimization:  
Adjoint Approach 

Design 

Parameters 

Adjoints in CFD 



Setup of Verification Case 
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 NACA 0012 

 Re = 2,000 

 AoA=3° 

 Laminar flow, y+<1 

 Approx. 55,000 cells, 350 faces on airfoil 

 OpenFOAM-2.3.0 

 



Setup of Verification Case 
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 Gradients from the adjoint approach compared with gradients obtained by finite 
differences FD (forward, 1st order) 

 Finite differences:   

Fine mesh        small mesh movement       small force changes        high convergence 

 expensive computation 



Verification of Gradients 
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 Evaluation at selected design points only (      expensive FD) 

Generally good agreement 

Design point 16 critical 



Drag Reduction of IWES 600-180 
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 IWES 600-180 

 Re = 3·106, AoA = 12°  

 

 Objective: min I=½·(cd-0.15)2 w.r.t. cl ≥ cl,0  

 

 Spalart-Allmaras turbulence model 

 Optimization including adjoints to 
turbulence model 

 

 Drag reduction > 3% 

 



Detail View of Shapes 
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 Pure numerical problem, no wind tunnel data existing 

 Shape moves downwards 



Setup for Leading Edge Slat 
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 Comparison with experimental data from wind tunnel in Oldenburg 

 Re=0.6·106, incompressible solver 

 Re=7.89·106, incompressible and compressible solver (Ma>0.3) 
 

 Spalart-Allmaras turbulence model, y+<1 

 480 faces on slat, 700 faces on airfoil, 
160,000 cells in total 

 Block-structured O-mesh 

 Radius 25·chord 

 



Validation for Leading Edge Slat 
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 Differences in stall 
 



Validation for Leading Edge Slat 
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 Similarities in linear range 

 Differences between compressible and incompressible solvers 
 



Optimization of Leading Edge Slat 
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 Re=0.6·106, AoA=13° 

 

 Objective: min I=cd w.r.t. cl ≥ cl,0  

 

 Optimization at low Re=0.6·106, incompressible solver 

 (optimization framework more stable at low Re) 

 Check design at high Re=7.89·106, compressible solver 

 (final slat on 80m blade) 

 

 Drag reduction > 2% at AoA=13° 



Optimization of Leading Edge Slat 
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 Lower drag at higher angles of attack 

 Drag reduction > 2% at AoA=13° 

 



Optimization of Leading Edge Slat 

22 

 Higher maximum lift 

 Max. lift at higher angle of attack 
 



Detail View of Shapes 
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 Thinner shape, same position 

 Increase in cl³/cd² of approx. 3% at AoA=13°  



Conclusions & Outlook 
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 Implementation of adjoints for shape optimization in OpenFOAM 

 

 Verification of gradients 

 

 Numerical optimization of thick airfoil 

 

 Validation and optimization of leading edge slat 

 

 

 

 Extension of framework for the use of constraints 

 



 
Thank you for attention! 
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