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Abstract 

Most resource efficiency optimization measures being discussed in resent publications focus on component downsizing and adaptive control of 
components regarding the standard ISO 14955. Optimization of discrete manufacturing process parameter is a further approach to reduce resource 
consumption during operation. This paper presents a meta heuristic genetic algorithm approach which has been used to determine a pareto front 
of feasible machining parameter. The pareto front is used to select optimal solutions for the resource consumption integrated multi-dimensional 
optimization task. The results are presented for a turning process with respect to resource consumption, machining time and machining cost under 
product quality constrains and machine performance limits. 
 
© 2015 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the International Scientific Committee of the Conference “22nd CIRP conference on Life Cycle 
Engineering. 

 Keywords: Resource efficiency; multi-objective optimization; genetic algorithm 

1. Introduction 

The aspect of resource consumption gains more and more 
attention since resources are running short and the resulting 
costs per manufactured part are directly related with this 
development [1]. Manufacturing process optimization is 
usually performed on process level with the adaptation of 
process variables to find a reliable operation state. In the past, 
the aim was a reduction of manufacturing cost and cycle time. 
The preliminary definition of the process values is typically part 
of the process planning stage and often done as off-line process 
control. Selection of process variables is traditionally based on 
a machine book, tool manufacturer recommendation or the 
operator’s experience [2]. 

Now the decrease of manufacturing process related resource 
consumption is taken into account as an additional target [3]. In 
metal cutting processes, optimization is typically done by 
adjusting three impact factors, 

 

 cutting speed vc 
 feed rate f 
 depth of cut ap, 

while maintaining the required product quality. Model 
supported process planning is therefore a step forward and 
provides better and faster results for a stable and a multi object 
oriented manufacturing of products. Off-line process planning 
uses process models to select process variables based on 
experimental results, e.g. the influence of cutting parameters on 
quality features like surface roughness. Measured values are 
used to determine the expected values according to an analytical 
model. Therefore, off-line process control depends on quality 
and accuracy of the data available for modeling, and the 
capability of the applied analytical model. 

Venkata Rao [4] gives a detailed review of contemporary 
methodologies and practice on the modeling and optimization 
of manufacturing processes. Different optimization 
methodologies have been applied for solving constrained 
problems of determining manufacturing costs and cycle time in 

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license 
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer-review under responsibility of the scientifi c committee of The 22nd CIRP conference on Life Cycle Engineering



823 Frank Kübler et al.  /  Procedia CIRP   29  ( 2015 )  822 – 827 

 

metal cutting processes, like regression analysis, ant colony 
optimization as well as genetic algorithms. For example, Bajić 
and Belajić [5] and Oktem et al. [6] used response surface 
methodology, while Jabri, Barkany and Khalfi [7] as well as 
Belloufi, Assas and Rezgui [8] used genetic algorithms for 
machining process optimization. Genetic algorithms were also 
used for optimization of emerging manufacturing processes like 
electro chemical machining [9] laser beam cutting [10], and 
rapid prototyping [11]. Braun and Heisel included energy 
consumption in process modeling and optimization [12]. Kara 
and Li as well as Winter derived empirical models for energy 
consumption of manufacturing processes [13,14]. 

Manufacturing and technological processes nowadays claim 
implementation of control systems using sophisticated 
mathematical methods for efficiency purposes. In particular the 
prior task is to determine those values of the process parameters 
that will allow achievement of the demanded product quality. 
A further task is to optimize manufacturing process 
performance regarding cost efficiency and resource 
consumption.  

 

 

Fig. 1. Characteristic resource consumption of a turning processes 

Due to the high number of different resources consumed on 
process and machine level shown in fig. 1, research is needed 
to get the mathematical approximations of machining processes 
and suitable optimization methods which are able to consider 
resource consumption as valid optimization target. The above 
mentioned approaches show the interest of selecting optimal 
cutting parameters in manufacturing process.  

The aim of this research is to adapt a multi objective 
optimization algorithm that relates resource consumption of a 
machine with the manufacturing process time. Resources 
selected in this approach are the empirically determined process 
energy consumption  and tool wear based on the three cutting 
parameters:cutting speed (vc), feed per turn (f) and depth of cut 
(ap), of the multi-pass surface turning process shown in fig. 3. 
The work piece surface roughness as quality determining 
feature has a significant impact on resource efficiency of the 
manufacturing process, since poor work piece quality demands 
reworking by additional resource consumption, or leads to 
scrap as material loss. 

2. Multi-Objective Optimization  

Genetic Algorithms (GA) are meta heuristic search 
algorithms based on the methods of natural selection and 
natural genetics [4,7,8]. A GA starts with an randomly 
generated initial population of individuals  Each individual 
is represented by a string of design variables coded into series 
of bits or a real number. To get the ranking of the strings in a 
population, a fitness function based on the defined objective 
functions is evaluated. If the end condition is not reached new 
individuals are generated by using genetic operators like 
crossover, selection and mutation. In each generation the 
ranking is conducted. The fittest will be selected and new 
individuals will be created to get a conceivably better 
population of strings which are closer to the optimum solution 
to the problem. So in each generation, the GA creates a set of 
strings from the bits and pieces of the previous strings, 
occasionally adding random new data to keep the population 
from stagnating. The final result is a search strategy that is 
tailored for vast, complex, multi-modal search spaces. Fig. 2 
shows a flow chart of the operation of a GA. 

  

Fig. 2 Flow chart of the operation of the genetic algorithm 

3. Resource Consumption Integrated Turning Process 
Model 

In this work a hybrid approach has been used in order to 
generate the mathematical model for the resource consumption 
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integrated turning process. The resource consumption process 
model will be the basis for the applied multi-objective 
optimization. 

 
 
 
 
 
 
 
 
 
 
 

Fig. 3 Process parameters of the turning process 
 
Fundamental for the modeling is an adaption of the works 

related to multi-pass turning process [15,16,17] including the 
energy consumption model as third objective.  

 
Manufacturing process time 
 
The first objective function is the total manufacturing process 
time tm  of actual operation. For multi-pass turning operation, 
total manufacturing time is the sum of the single cuts  given 
by Eq. 1 [18]: 

 

 
(1) 

where:  
d1 = diameter before cutting  
d2 = diameter after cutting 
L =  length of cut 
 
and the process adjusting and quick return time ta. 
The number of passes n is given as integer by: 
 

 

 
 

(2) 

  
(3) 

 
Tool wear 
 
The second objective function is tool wear ξ. It is considered 
as the part of the whole tool life which is consumed in the 
multi-pass turning process [18]: 
 

 

 
(4) 

Where: Tr are the Taylor tool life of turning operations, with 

the constants C0, p, q, r and  as weight factor respectively 
[18]: 
 

 

 
(5) 

Process Energy 
 

The third objective function is the corresponding process 
energy consumption.  Due to the fact that the actual energy 
consumption depends on the components installed and varies 
from the analytical calculation by the cutting force, the model 
for energy consumption is gathered empirically by a design of 
experiments (DOE) based regression analysis related to 
[19,20,21]. This common and widespread parametric approach 
quantifies the impact of machining parameters on output 
parameters [22]. A central composite design (CCD) is applied 
to provide the necessary data points for the following empirical 
second-order polynomial model (6): 
 

 

(6) 

 
where b0, bi, bij, bii are regression coefficients, and Xi, Xj are 
the coded values of input parameters. The required number of 
experimental points for CCD is determined as follows in (7): 
 

 (7) 

 
where k is the number of parameters, n0 is the repeated design 
number on the average level, and nα is the design number on 
central axes. In total CCD of experiment demands 20 observed 
experiment conditions, 8 experiments with 3 factors on two 
levels, 6 experiments on the central axes and 6 experiments on 
the average level. 
 
Machining Constraints: 
 
The decision variables constraints are the allowed cutting 
parameter values. Typically the boundaries are given either by 
the tool manufacturer or by common engineering reference 
tables. 
 

 
 

(8) 

 
 

 
(9) 

 
 

 
(10) 

 
The major constraint which is affecting the optimization 
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process is the maximum cutting power available on the 
machine. The cutting power must not surpass the machine main 
spindle power.  
 

 (11) 
 
The product related limitation will be taken into account by 
the obtained surface roughness [23] regarding the tool radius 
R which is given by Eq. 12 
 

 
 

(12) 

 

4. Experimental Set Up and Results 

The type of machine tool used for the turning process was 
the universal lathe TC 300 manufactured by Spinner. The test 
sample used in experiments was a cylinder made of steel 
42CrMo4 with dimensions 150 mm length and a diameter of 
60 mm. The turning experiments were executed by the tool 
TP2500 MF5390, produced by Seco. Each run was executed 
with a new and unused cutting tool. Process energy 
consumption was measured by utilizing the Beckhoff three 
phase power measuring terminal EL3403 and the Janitza cable 
split core current transformer 400 A/1A at the Siemens 
Sinumerik 840D frequency converter of the Spinner turning 
lathe. Process energy consumption data was then passed via bus 
coupler to a SQL database each 5 ms. All measuring 
instruments were calibrated before testing. The experiments 
were carried out with 6 % cooling and lubrication agent 
concentration at 3 bar application pressure. Twenty 
experiments from the CCD setup were performed in order to 
allow the regression analysis (equation 6). For modeling the 
DOE regression equation the MATLAB statistics toolbox [24] 
and for the GA implementation the MATLAB global 
optimization toolbox was applied [25].  
 
Machining Parameter 
 
The design variables constraints are given by table 1. The 
boundaries are the tool manufacturer recommendation from 
Seco. 
 
Table 1: Design variables value range 

Coded 
values 

Levels -1 -0.5 0 0.5 1 

Ph
ys

ic
al

 
va

lu
es

   
   

   X1=vc 
[m/min] 310 337 365 393 420 

X2=ap 
[mm] 0.35 0.525 0.7 1.05 1.4 

X3=f 
[mm/turn] 0.3 0.338 0.375 0.413 0.45 

 
The energy values are determined by a numerical integration 
of the individual CCD experiment load curve. Fig. 4 shows 
the load curve for the experiment with the decision variable  
values X=[0,0,0]. Quick return time is const. 1 sec per pass. 

 
Fig. 4  Process parameters of the turning 

 
The empirical energy regression model is determined as 

follows: 
 

 18027.3 - 28123.1 * x(1) - 26.9 * x(2) - 
9092.3 * x(3) + 24659 * x(1)² + 2840.8 * x(3)² + 
6.4 * x(1) * x(2) + 5016.6 * x(1) * x(3) + 1.9 * 
x(2) * x(3) 

(13) 

 
Testing of the DOE Epr model was performed with 5 additional 
experiment data that had not been used in the modelling 
process. The resulting model prediction error is given as mean 
square percentage error in table 2. 
 
Table 2: Relative prediction error for Epr 

Exp. Numb. Epr [%] 
I 12.04% 
II 13.22% 
III 20.44% 
IV 8.26% 
V 14.17% 

Average 13,63% 
 
The constraints for power and surface roughness are: 
 

 
 

(14) 

 
 

 
 

(15) 

 
Genetic algorithm parameters 
 
For determining the pareto front for the multi-objective 
optimization problem the GA based non dominated sorting 
algorithm-II (NSGA-II) [24] is applied. All objectives are 
simultaneously considered. Table 3 shows the search options 
used.  
 
Table 3: Applied GA-Parameter 

GA-Parameter value 

Solution space size (population) 500 

Maximum number of iterations 100 

Crossover probability  70 % 

Mutation probability 5 % 
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The randomly distributed initial population X0 is shown in  
fig. 5. 
 

 
Fig. 5 Initial population of the GA 
 

After the 100 iterations the final determined pareto front is 
shown in fig. 6. The corner points 1;2;3 indicate the local 
optimal point for the single objectives within the pareto 
solution space. The related process parameters for the three 
characteristic points are shown in table 4. All other points 
represent possible compromise solutions regarding the multi-
dimensional optimization, each with a different focus on the 
three single objective functions.  
 

 
Fig. 6  Pareto front of the multi-pass turning processs 
 
For the manufacturing task a order-related specific solution 
can be chosen from the pareto set. 
 
 
 

Table 4: Design variables for the identified optima 
Decision Vector #1 #2 #3 

X1=f 
[mm/turn] 0.3 0.44 0.5 

X2=vc 
[m/min] 300 325.11 358.06 

X3= ap 
[mm] 2 1.95 2 

 [Wh] 164.42 120.01 120.03 

 [%] 3.41 6.38 10.17 

 [sec] 162.09 165.6 161.06 

5. Conclusion 

The purpose of this study was to analyze the capability of a 
genetic algorithm based on a posteriori multi-objective 
resource consumption optimization of a multi-pass turning 
process. The application example gives an answer regarding 
optimal combinations of input process parameters for 
simultaneously minimizing energy consumption, minimizing 
tool wear and minimizing manufacturing process time. 
Because it is a meta heuristic approach, the search results can 
only be specified in relation to the initial population. The 
results were positively evaluated for their behavior with respect 
to the valid fundamentals of machining. Regarding the results, 
the approach is found to be capable of identifying a pareto front 
including predictions on single optimization goals and of 
finding simultaneously multi-dimensional optimization 
solutions. The range of possible solutions suiting the derived 
pareto front varies 6.5 % for tm from min  161.06 to max 171.5 
sec; 96.6 % for EPr from min 120.01 to max 235.6 Wh; 297,4 % 
for  min 3.41 to max 10.17 %. 

Due to the fact that accurate predictions are substantial to 
improve off-line process control resulting in significant 
reduction of machining cost and resource consumption, the 
approach is considered to be suitable for this purpose. For 
further detailing a comparison of the absolute optima results of 
additional optimization algorithms needs to be performed.  

Today only a small amount of modern evolutionary 
computation technology has been transferred to manufacturing. 
Therefore, off-line process control as an approach that 
demonstrates its capabilities to be applied in practice and easily 
integrated in existing conditions represents a key for successful 
and resource efficient machining. For complex manufacturing 
tasks a feature division application is recommended. 

In addition to the comparison with different optimization 
algorithms a next step to advanced manufacturing processes, 
the established approach has to be applied into a closed 
methodology to determine suitable process models and 
parameters for cost-, time- and resource- efficient operating 
points.  
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