Fraunhofer Einrichtung

Experimentelles
Software Engineering

Integration of System Dynamics Modelling
with Descriptive Process Modelling and Goal-
Oriented Measurement

Authors:
Dietmar Pfahl
Karl Lebsanft'
Ferdinand Vollei’

! Siemens AG, ZT SE 3, Munich, Germany

A version of this report was accepted
for publication in the proceedings of
the Software Process Simulation
Modeling Workshop (ProSim'98),
Silver Falls, Oregon, USA, June 22-24,
1998.

IESE-Report No. 032.98/E
Version 1.0
May 28, 1998

A publication by Fraunhofer IESE

Fraunhofer IESE is an institute of the
Fraunhofer Gesellschaft.

The institute transfers innovative software
development techniques, methods and
tools into industrial practice, assists com-
panies in building software competencies
customized to their needs, and helps them
to establish a competetive market position.

Fraunhofer IESE is directed by
Prof. Dr. Dieter Rombach
Sauerwiesen 6

D-67661 Kaiserslautern

Abstract

One of the obstacles that seem to impede a more frequent application of the
modelling and simulation approach System Dynamics (SD) in the software en-
gineering community is the fact that there is a lack of a well-defined and re-
peatable procedure for generating or using information that a) stems from
real industrial software development practice and b) is suitable for SD model-
ling. This problem can be resolved, at least partially, by combining SD model-
ling with already existing and commonly used modelling methods like Process
Modelling (PM) and measurement-based Quantitative Modelling (QM). In this
paper, an approach is presented that complements SD modelling with soft-
ware-related PM and QM. The new approach is called IMMOoS (Integrated
Measurement, Modelling and Simulation). It originates from lessons learnt that
have been derived from an industrial SD modelling activity.

Copyright © Fraunhofer [ESE and Siemens AG1998 v

Vi

Copyright © Fraunhofer IESE and Siemens AG 1998

Table of Contents

2.1
2.2
2.3
2.3.1
2.3.2
2.4
2.4.1
2.4.2
2.4.3
2.5

4.1
4.2
4.3

5.2.1
52.2
523
5.3

5.3.1
53.2
533
534

Introduction

The PSIM project
Project goals

PSIM model structure
PSIM functionality
Running a simulation
Analysis of simulation results
PSIM applications
Project planning
Project control
Process improvement
Lessons Learnt

Outline of IMMoS

Products of IMMoS components
SD modelling work products

GQM work products and QM types
Information contained in a DPM

Relationships among IMMoS components
Overview of IMMoS interdependencies

Detailed description of interdependencies between
IMMoS components

Relationships between GQM and DPM
Relationships between SD and DPM
Relationships between SD and GQM

IMMoS example scenario

Start situation and goals

Relationships SD - PM - SD

Relationships SD - GQM - PM - GQM - SD
Relationships SD - PM/ GQM - SD

Conclusion

References

Copyright © Fraunhofer IESE and Siemens AG1998

—_

— O LW NUTUTWNN

—_

—_
w

14
14
15
16

18
18

20
20
21
22
22
24
24
25
26

27

29

Vii

1 Introduction

During the 1950s, the modelling method System Dynamics (SD) was developed
at MIT to tackle socio-economic and/or socio-technical problems [For61]. The
method is based on the assumption of the ubiquity of feedback processes in
human interactions: considered from a high level of abstraction, a socio-
economic or socio-technical system can be modelled as a feedback structure,
whose complex behaviour is generated by the interaction of many (possibly
non-linear) loops over time. Simulation with SD models is used for learning
about the dynamic complexity of systems, for the identification of optimal poli-
cies in existing systems, and for improvement of system behaviour through pa-
rameter or structural changes. The method has been applied to a wide range
of domains, from the management of production-distribution systems to the
management of ecosystems. During the last ten years the management of
software projects and analysis of software processes has emerged as a new
application domain (e.g. [Lin89], [LeL91], [AbM91], [Lin93], [Mad94], [PfK95],
[Tve96], [LAS97]. An overview of potential application domains related to
software development is presented in [WaP94]. Typical examples of software-
related applications are training of project managers, comparison of process al-
ternatives, and optimisation of certain process parameters for the purpose of
project planning (including trade-off analysis, project control, risk analysis, re-
planning, etc.)

In this paper, a new approach is introduced that combines SD modelling with
Process Modelling (PM) and measurement-based Quantitative Modelling (QM)
in the application domain of software development. The purpose of the new
approach is to generate synergy effects from using already existing modelling
methods and, by doing so, to overcome some of the weaknesses of SD model
building. The new approach is called IMMOoS (Integrated Measurement, Model-
ling and Simulation).

The structure of the paper is as follows. In the next section, the results of an
SD project conducted in the software development department of a large tele-
communication company is sketched and the lessons learnt are listed. Some of
the lessons learnt serve as a general motivation for defining the IMMoS ap-
proach which is outlined in the third section. In Section 4, the relevant prod-
ucts and concepts which are provided or supported by the individual IMMoS
components are presented. The relationships between products and concepts
of the individual IMMoS components are described in detail in Section 5. Sec-
tion 6 summarises the main results presented in this paper and draws conclu-
sions for future work.

Copyright © Fraunhofer IESE and Siemens AG 1998 1

2 The PSIM project

The motivation for the development of IMMoS originated from experiences
with a SD modelling project which was conducted inside a large software de-
velopment department of the Siemens Private Networks Group (Siemens PN) in
the years 1994 and 1995. As a result of this pilot project the SD model PSIM
(Project SIMulator) emerged [Pfa94]. The main objective of the PSIM project
was to explore the potentials of the SD approach in a real setting, and al-
though the PSIM model was only a prototype which has not been used in pro-
ductive work on a regular base, it was a very useful experience which gener-
ated many new insights, especially about methodological and organisational
aspects of SD modelling in software industry.

In the following sub-sections the PSIM project goals of the intended model us-
ers, the PSIM model structure, example PSIM applications, and lessons learnt
from the PSIM project are summarised. A more detailed description of the
PSIM project and potential applications can be found in [PfK95][Pfa95].

2.1 Project goals

The project goals of the potential PSIM model users can be separated into
short term and long term goals. The major short term goals were related to the
planning and control of software development projects. In the long run, it was
hoped to be able to use PSIM as a support tool for continuous process im-
provement.

Related to project planning and control the following aspects were in the focus
of interest:

» Defect generation, detection, and propagation along development phases,

» Trade-off between project duration, product quality, and manpower (ef-
fort),

» Effects of unexpected change requests,
* Interdependence between software features,

* Interdependence between concurrent projects.

2 Copyright © Fraunhofer IESE and Siemens AG 1998

2.2 PSIM model structure

The first version of the SD model PSIM covered the software development
phases high-level design (HLD), low-level design (LLD), implementation (IMP)
and developer test (TEST). In a later version, the test phase was divided into
two sub-phases, namely component test (CoT) which is conducted by the de-
velopment team, and system test (SyT) which is conducted by a separate test
team. To increase the readability of the overall model, each development phase
was implemented as a separate module (or view). Of course, all modules are
mutually interrelated, reflecting critical aspects of the interdependency be-
tween development phases.

As an important input to the development of the SD model, a wide range of
structural and quantitative information about the actual development process
was used. The process information gathered from managers and experienced
developers formed the basis of the causal structure of the model. Since PSIM is
supposed to serve mainly for project planning and control, additional project
data must be fed into the model before a simulation can be started. The proj-
ect performance is then reflected by the simulation output data. A rough idea
of the model structure for phase HLD provides Figure 1.

SW development process>

Process data
=productivity
=learning

empty pages < document ready =fatigue
44— Project data

—— =deadlines
=product size
| write ! | =workforce
+ inspect =change requ.

rework
4 Output data

=product quality
Process structure =project duration

=effort

Figure 1: Overall model structure of phase HLD.

In the PSIM model, the generic process behaviour is generated endogenously
by the cause-effect structure of the model, i.e. without any additional informa-
tion which is not already included in the model structure. The project mapping

Copyright © Fraunhofer IESE and Siemens AG 1998 3

Figure 2:

is done through additional model variables representing the project specific in-
formation. These project variables are exogenous, i.e. although they have an
impact on the project-specific process dynamics, they are immune against
feedback effects. During a simulation, and within certain limits, the project
variables can be manipulated by project management to influence the project
performance. Since the project management function is not part of the causal
structure of the SD model, all project management decisions must as well be
interpreted as exogenous influences on the generic process behaviour.

— m—
aximal Overt
Ideal Workforce to Feature Relation
e Interrelationship Ideal Size to Feature Relation
a——Number of Features Hypothetical H
hange Request Size| \ \
Work F{)w/
. g aximal L
| Project Size]
Errors generat
Work to do WorK 7 .
accomplished Hypothetical
Errors undetected
etical Rework Pages per Error - Insp
Errors Inspections:
detected performed
nspection Rat
;\lnspection Delay /
~

Causal diagram of phase HLD.

For each of the software development phases, a causal diagram containing the
qualitative cause-effect relationships, and a more formal flow graph containing
the mathematical equations of the simulation model, were set up. Figure 2
sketches the causal diagram of phase HLD, showing a) the core process with
the major state variables (surrounded by boxes), and b) the network of influ-
encing factors.

a) Core process: The set of customer requirements defines the amount of
work to do (state variable: Work to do). The design activity produces a set
of design documents (state variable: Work accomplished). Before the de-
sign documents can be released to the subsequent phase (LLD) they are
subject to inspections (state variable: Inspections performed). If defects are
detected during an inspection (state variable: Errors detected) the design

Copyright © Fraunhofer IESE and Siemens AG 1998

document has to be - at least partially - reworked and goes back to the
(virtual) amount of work to do (state variable: Work to do).

b) The large set of factors influencing the core process can be subdivided into
two groups: exogenous and endogenous factors. Exogenous factors that
can be controlled by project management include, among others,
Workforce, Projects per Designer, Time left, etc. Endogenous factors are an
integral part of the modelled software development system (determined by
the number, experience, and skills of the development team members, as
well as tools, methods, guidelines, physical equipment, etc.). They cannot
directly be manipulated by project management. Examples of endogenous
factors include Learning, Time pressure, Fatigue, Errors generated, etc.

2.3 PSIM functionality

Basically, the PSIM simulation system provides two functions:

* Running a simulation.

» Analysis of simulation results.

A simulation can be run in interactive or batch mode. In interactive mode, the
model user can stop the simulation after each individual simulation step and
change a pre-defined set of parameters (exogenous model variables).

2.3.1 Running a simulation

Before a simulation run can be started, an output file must be defined in which
all subsequently generated simulation results are stored for potential future
analysis.

To support running a simulation, PSIM provides a specifically tailored user inter-
face, the so-called simulation cockpit (Figure 3). The simulation cockpit consists
of three sectors for input parameters (variable project parameters), simulation
control parameters, and output parameters.

A. Variable project parameters include:

— Planned work product size (for each phase separately), e.g. number of
document pages, number of lines of code, number of test cases, etc.,

- Planned project duration (with milestones),

Copyright © Fraunhofer IESE and Siemens AG 1998 5

— Number of concurrent projects to which a team member is involved (on
average),

— Number of available inspection rooms,
— Change request (time and size),

— Number of features,

- Estimated feature complexity,

— Number of test machines,

- Workforce (number of developers and testers), etc.

B. Simulation control parameters include:

Selection of batch mode or interactive mode,

Simulation step size (for interactive mode only),

Switch to analysis of simulation results,

Abort of simulation, etc.

C. Output parameters:

- Total project duration.

- For selected model variables (e.g. work product size, number of defects
generated, time pressure, etc.) there is a specific pre-defined output
graph for each project phase. Control buttons allow to switch between
different phases.

Copyright © Fraunhofer IESE and Siemens AG 1998

=] Vensim Application Environment [- =]
HLD LLD IMPL High Tevel Design Report
i evel Design Repo:
Elﬂé::“;"*é ‘ D:l | - - 5 ErrorPage
:r:l 0.087 6,000 Error H ‘
comeny | [[T L
s] || [o] || [+] phase specific
SRS T |] o [graphical output
[«] [+] [+ 1
25 Error/Page
repectan u D D 3,000 Error
]] | 3
S— 1 1
3
crem A s I o 0 ErorPoge
0 Error
o Tine 1]] 0o
0 35 70 103 140
Comp-TST System.TST Time
Completion Date 220 Completion Date Eik # undeteced errors per HLD page Error/Page
. total # detected errors during HLD Error
Ted o testduiation rosnastinss 22 End o HLD
[fosed prcctuct quality
variable o perbles] r— e e e] [0
project parameters [N
- e e | [e simulation control
parameters
pomtmr o pocties] Rt atuns [oo | ome [[wome | [cosme [)
[o o |
Figure 3: The PSIM simulation cockpit.

2.3.2 Analysis of simulation results

A detailed analysis of simulation results is often necessary to better understand
the specific behaviour of certain output parameters. Especially, when the re-

sults of a simulation do not coincide with the expectations of a model user, it is

helpful to learn more about the complex interactions of the cause-effect rela-
tionships that forced a certain simulation output to be generated.

For the analysis of simulation results PSIM provides several analysis screens.

Figure 4 provides an example of such a screen, showing the screen description,

a list of choices for jumping into a different analysis screen, a graph with the
causes tree of the selected model variable, and a graph that displays the be-

haviour of the selected variable.

Copyright © Fraunhofer IESE and Siemens AG 1998

Figure 4:

2.4

HLD COMPLEXITY BETWEEN FEATUR. ES>
HLD complexity
complesitylookp tree of causal
variables

HLD Average Overtime
>HZLD eff fatigue quality

Eff fatigue quality lookup HLD achual errors per page

HLD faction complete
>HZLD learning cffect

HLD learning effect lookup

HLD NOMINAL ERRORS PER PAGE

BASE
menue of choices | 6 - change o graph basea HLD ac2tua1 errors per page
branchi ng into T - change to table hased
other P1 - print tree //\
. P2 - print graph 175
ar]d yS S s:r%ns S -select a new variable to trace

graphical output of
the andysis variable

Go hack to analysis screen 15

description of th 0 715 143 2145 286
p e 3 Time
ana yS| S screen

An example PSIM analysis screen.

In total, the PSIM analysis screens provide the following functions:

Selection of simulation runs (output files). If more than one simulation run is
selected, graphical output data is displayed in different colours for better
comparison of results.

Selection of the model variable to be analysed in detail. Each individual vari-
able contained in the model can be selected without any restriction.

Representation of the behaviour of the selected variable as a graph or in a
table (time series data).

Representation of structural model information (causes tree and effects tree
of the selected variable).

Representation of the behaviour of all variables with direct effect on the
selected variable (strip graph or table).

Identification of structural difference between selected simulation runs.

PSIM applications

The potential applications of PSIM were already mentioned in Sub-Section 2.1,
namely project planning, project control, and process improvement. For the
purpose of illustration, in the following sub-sections for each of these applica-
tions a fictitious example is sketched.

Copyright © Fraunhofer IESE and Siemens AG 1998

2.4.1 Project planning

Figure 5:

Under the assumption that the SD model contained in PSIM is a valid predictive
model, a project manager might use PSIM for the purpose of project planning
in the following way. For a set of given project parameters (e.g., manpower,
estimated product size, number of features, estimated feature complexity, etc.)
she/he predicts the duration of the individual project phases and the overall
product quality.

High Level Design (BASE) Low Level Design (BASE)
2,000 Page ——— 4,000 Page
4,000 Error 4,000 Error h
4000 Eror | 4 4000 Eror | | 1
200 inspection] 400 inspection T T
1,000 Page | 2 2,000 Page | I 4
2,000 Error T 2,000 Error | |
2,000 Error // | i 2,000 Error | 1 2
100 inspection | 200 inspection |
0 Page | 0 Page |
0 Error % 3 0 Eror a2 3
0 Error —TT 0 Error /’—
0 inspection Y/ | 0 inspection |
0 20 40 60 80 100 120 140 0 20 40 60 80 100 120 140
Time Time
HLD Work Accomplished - (1) ——————— Page LLD Work Accomplished - (1) ————— Page
HLD Errors Detected - (2) - Error LLD Errors Detected - (2) — Enor
HLD Errors Undetected - (3) —_ Enor LLD Errors Und d - (3) Error
HLD Inspections - (4) -~ inspection LLD Inspections - (4) -~ inspection
Implementation (BASE) Component Test (BASE)
400 KLOC 2,000 testcase
230 Ener —— 50 Eror —
2,000 Error | | 4 500 Error | 1
800 inspection | 1 . ;
200 KLOC | | | |
1,000 Error 1,000 testcase
1,000 Error | HEE 250 Error ! !
400 inspection [P 250 Error ! !
0 KLOC | ZamrEN)"Z !
0 Error [T 1|3
0 Error I [k} 0 testcase |
0 I 0 Error | |
0 20 40 60 80 100 120 140 0 Error L2
Time 0 20 40 60 80 100 120 140
Time
IMP Work Accomplished - (1) — KLOC
IMP Errors Detected - (2) - Ernor TST Work Accomplished - (1) —————————— testcase
IMP Errors Undetected IMP - (3) ——————— Error TST Errors Detected - (2) — Enor
IMP Inspections - (4) -~ inspection IMP Errors Ur TST-(3) Error

PSIM simulation result for project planning.

Figure 5 shows the output of a simulation run generated from a project spe-
cific set of input parameters. For each of the four phases HLD, LLD, IMP and
TEST, work product quality (model variable: "Defects undetected") and other
variables are displayed in individual graphs. The phase duration is highlighted
with a black bar.

2.4.2 Project control

Copyright © Fraunhofer IESE and Siemens AG 1998

A possible application of PSIM for project control might be the following: As-
sume that during the conduct of a project an unexpected change request in-

creases the amount of work by 10% (expressed in terms of additional design
documents). How should the project manager react to avoid time overrun
and/or quality loss? Within a certain limit, she/he can vary two control parame-
ters: workforce and the time planning for intermediate project milestones.

Graph for “Defects undetected”

600 La ELASJ ' —
. T s
04
300 .
— _,/_.,_/ /ﬁﬁ_
a7
0 /j7 BA*E/ o1 oé

0 14 28 42 56 70 84 98 112 126 140

Figure 6: PSIM simulation result for project control.

The curves in Figure 6 show the behaviour of the product quality indicator
"Defects undetected" as well as the overall project duration (project stops at
the end of test phase). The simulation run BASE indicates the behaviour with-
out occurrence of the change request. The simulation run CR_BASE shows
what would happen if the change request occurs and the project manager
does not change any of the parameters she/he is controlling (i.e. workforce
and milestone planning). The simulation runs O1 to O5 show the project per-
formance if either of the two or both control parameters are altered. The proj-
ect manager can use these results to find an optimal policy.

2.4.3 Process improvement

PSIM can also be used to evaluate candidate process improvements. Let's as-
sume that an analysis of available data and discussions with project team
members have uncovered that formal inspections are done sloppily in the pres-
ence of high time pressure, with the consequence of poor product quality. In
this situation, project management suggests to implement a mechanism that
enforces the correct conduct of formal inspections (e.g. by installing an ade-
quate reward mechanism). However, before the intended improvement is im-
plemented, management would like to test the suggested process change.

10 Copyright © Fraunhofer IESE and Siemens AG 1998

Figure 7:

2.5

Undetected errorsper KLOC at end of system test with a planned project duration of

20 340 days (black vertical line):
| Process 1
V4
15 9,2 Errorg KLOC
-~ \ i = end of system test after 363 days
RS
10 7 = 7 5,8 Errors/ KLOC
//\ Trhdl ~~\5:>E|ndofsystemtestonlyafter473days
.. N Y e
5 7
4 Process 2 5,8 Errors/ KLOC
. 4 = end of system test after 400 days
100 175 250 325 400
Time

—— Because of high scedul e pressure formal inspections are not carried out correctly in
phases High Level Design, Low Level Design and Implementation. (Process 1)

— — Formal inspectionsin phases High Level Design, Low Level Design and
Implementation are always carried out according to process handbook. (Process 2)

PSIM simulation result for process improvement.

Figure 7 shows simulation results achieved with a differently calibrated model
as in the previous sub-sections. It can clearly be observed that the process
change leads to improved product quality (process 2). Of course, there is a
time delay of about 10% as compared to the old behaviour (process 1). How-
ever, the product quality can be increased by more than 40%. If process 1 had
to achieve the same product quality as process 2, a time overrun of almost
30% would occur due to extremely extended testing.

Lessons Learnt

The simulation model PSIM was the first SD application within Siemens PN.
Therefore, many valuable lessons could be learnt. Three main clusters of les-
sons learnt can be distinguished, comprising organisational issues, tool issues,
and methodological issues.

A. Organisational issues:

— Before the modelling activity starts, the future model users must be iden-
tified. Otherwise, there is a high risk that the model will not be used af-
ter completion.

— The purpose for which the SD model will be used by its future users
must be stated precisely. Otherwise there is a high risk that the model
will be used for the wrong purpose. Also, the model purpose should be

Copyright © Fraunhofer IESE and Siemens AG 1998 11

well focused. Otherwise there is a high risk that the model becomes too
complex to be useful (i.e. model validity is threatened, and the modelling
activity takes too long).

— The future model users should participate in the modelling activity. Oth-
erwise there is a risk that the final model will not meet there needs.

— Process experts and experienced software developers should be inter-
viewed during the modelling activity. Otherwise there is a risk that im-
portant aspects of the modelled system are ignored or misunderstood
(this threatens model validity).

— The modelling process should proceed iteratively and a first executable
model should be at hand soon. Otherwise there is a risk that future
model users loose interest.

— The future maintenance of the model should be planned. Otherwise
there is a risk that the model will soon become useless for the model us-
ers.

B. Tool issues:

- The PSIM model was developed with the help of the SD tool Vensim
[Ven95]. The tool was easy to use and no major negative experiences
were made. Especially, the availability of a powerful set of analysis tools
(different types of graphs, strip graphs, causes trees, tables, etc.) was
very much appreciated. One drawback of Vensim worth mentioning is
the support for user interface building. It is uncomfortable and should be
improved.

C. Methodological issues:

— The SD modelling activity must be goal-driven (i.e. top-down). Otherwise
there is a risk to loose focus resulting in a waste of effort and time.

— There is a need for a detailed process description for the planning and
execution of the SD modelling activity.

— There is a need for guidelines that help to a) identify existing and b) gen-
erate new information which can be used for SD model building.

The IMMoS approach, which will be described in more detail in the remainder
of this paper, concentrates mainly on the last of the three issues mentioned in
cluster C.

Copyright © Fraunhofer IESE and Siemens AG 1998

3 Outline of IMMOS

IMMOoS is an approach that helps to improve the building of SD models dealing
with problems in software development by defining and exploiting links to
well-defined and commonly used existing modelling methods which generate
static models.

Promising candidates for this kind of complementary modelling activities are a)
software Process Modelling (PM) and b) measurement-based quantitative
modelling. These methods can be used to provide two types of information:

¢ Qualitative information, describing the software development process as a
whole (i.e. the product flow), as well as the individual products, process
steps, resources used, etc.

« Quantitative information, characterising attributes of real-world entities and
their relationships.

As a result of a software PM activity [CKO92], qualitative information about
software development processes is elicited and represented in a Descriptive
Process Model (DPM). A DPM captures a lot of relevant information about
what actually happens during software development [BHV97]. Therefore it can
help to identify those of the state variables in the SD model that represent
physical real world entities in the software organisation.

Valuable quantitative information can be provided by Quantitative Models
(QMs) which are derived via statistical analysis from empirical data. According
to [BDR96], there are three types of QMs: descriptive QMs (DQMs), predictive
QMs (PQMs), and evaluative QMs (EQMs). To make sure that the QM building
is based on solid grounds a systematic (i.e. goal-oriented) measurement pro-
gramme must be applied. Therefore, in the context of IMMOS, it is assumed
that measurement is conducted according to the widely used Goal/Question/
Metric paradigm [BCR94], following a measurement process as described in
[GHW95]. More information on the relationship between QM types and meas-
urement goals is presented in [BDR96]. A recent practical experience of model
building based on measurement data can be found in [LSO+98].

Copyright © Fraunhofer IESE and Siemens AG 1998 13

System Dynamics

(SD)
SD model
Goal-Oriented Process Modelling
Measurement | > (PM)
(GQM)
QM DPM
Figure 8: IMMoS overview.

Figure 8 gives an overview of IMMOoS, indicating the relationships between the
three complementary modelling approaches SD, GQM, and PM, and their main
products SD model, QM, and DPM. Each of the three blocks in Figure 9 will be
denoted as the IMMoS components in the remainder of this paper.

4 Products of IMMoS components

As a preparation for a more detailed description of IMMoS which has to deal
with a detailed analysis of the relationships between individual IMMoS com-
ponents, in this section, the most important products of SD modelling and

GQM as well as the main concepts contained in a DPM are briefly introduced.

4.1 SD modelling work products

Relevant work products of SD modelling and simulation are [Ran80][RiP81]:

14

Copyright © Fraunhofer IESE and Siemens AG 1998

* Modelling goal: learn, plan, control, improve.

» Reference mode: The reference mode describes the typical or expected be-
haviour of an entity (state variable) which is in the centre of interest. It is the
starting point of any SD modelling activity and serves for defining model
boundaries, for generating hypotheses about cause-effect relationships, and
for model validation.

» Base mechanisms and causal diagram (joint set of causal relationships).

» Flow graph and associated mathematical model equations (initial executable
simulation model).

+ Simulation results (e.g. for test purposes).
Relevant end products of SD modelling and simulation are:

» Final executable simulation model (with adequate user interface).

» Analysed and interpreted simulation results that help to solve the problem
defined in the modelling goal.

4.2 GQM work products and QM types

Relevant work products of GQM planning and measurement execution are
[GHW95]:

» Measurement goal, specifying object, quality focus, purpose, viewpoint, and
context of the measurement programme.

* GQM plan (definition of goal-related questions and metrics).

* Measurement plan.

* Measurement data.

End products of a GQM programme are analysed and interpreted QMs, namely
[BDR96]:

* DQMs, i.e. models that describe attributes of certain real-world objects
guantitatively,

e PQMs, i.e. models that describe the relationships between certain real-world
objects and impacting factors quantitatively, or

* EQMs, i.e. models that supports decision making.

Copyright © Fraunhofer IESE and Siemens AG 1998 15

4.3

16

Information contained in a DPM

A DPM captures the current software development practices and organisa-
tional issues of a software producing unit. The content of a DPM is mainly
based on knowledge elicitation from process experts and software develop-
ment practitioners, i.e. actual processes and not official processes are repre-
sented [BFL+95]. The relevant real-world aspects are represented by entities
and relationships between these entities (e.g., input/output relations, se-
guences of activities, reporting channels between roles, role assignments to ac-
tivities, etc.). Entities are formalised in an operational way through attributes
which characterise the entities. Examples of attributes are size, complexity,
status, time, effort, etc.

Different approaches for descriptive process modelling can be applied. Here,
no recommendation of a specific method will be given, only a set of the most
important types of entities that typically are contained in a DPM are listed,
based on the conceptual framework suggested in [ArK94]:

e Artefacts consumed and produced;

e Activities carried out;

* Agents (with roles) involved;

e Tools used;

» Technologies, techniques, and methods used;

» Relationships between activities and artefacts (i.e. flow of artefacts);

* Assignment of roles to activities;

» Usage of tools in activities;

» Application of technologies/techniques/methods in activities;

* Relationships between products (i.e. product hierarchies);

* Relationships between roles (i.e. communication network);

e etc.

A comprehensive formal schema for process models that supports integration
with measurement can be found in [BeW97].

Figure 9 presents an overview of the basic components typically contained in a
DPM. Using the object-oriented notation of UML (Unified Modelling Language
[UML97]) it shows in the upper part classes that can be used to model the core
process information (i.e. activities, artefacts, and agents), as well as their major
associations. The product flow consists of activities that produce artefacts and

Copyright © Fraunhofer IESE and Siemens AG 1998

use resources like tools, rooms, physical equipment, artefacts, etc. The lower
part shows how agents are linked to activities, as well as classes that can be
used to model the organisational structure. Each entity can have a list of char-
acterising and potentially measurable attributes, like status, size, duration, etc.

canlans ke
Project Erily
usas 4 owns 0.1
ol Acdivily — Pasowca Agent
produces
contains m
L
- Anifact Taoal Foom Equipment
cantaing
iz assignad to |
Agenl Activiy
A Belarigs 1
Crganesaticon belangs 1o Prrsen
ASSUMAs involvas
L J L 4
fill=
¥
Pesiticn
repors top Raole

Figure 9: Main DPM components [BeW97].

Copyright © Fraunhofer IESE and Siemens AG 1998

17

5

5.1

18

Relationships among IMMoS components

With the information provided in the previous section, a detailed description of
IMMoS can be provided in this section. First, a complete overview of the whole
set of possible interdependencies between the three IMMoS components is il-
lustrated, then a more detailed insight into the relationships between individual
products of the IMMoS components is given. Finally, a short example on the in-
tegration of SD model building with information derived from a DPM and an
associated PQM is presented to demonstrate the benefits of IMMoS.

Overview of IMMoS interdependencies

The various relationships between the individual modelling stages as well as
the work products and end products of SD, GQM and PM can be identified. A
summary is sketched in Figure 10, indicating:

» Model user: role (or agent) and goal(s).

» Modelling stages: descriptive and prescriptive PM, GQM planning and exe-
cution, SD modelling and simulation.

* PM, GQM, and SD work products: measurement goals, GQM and meas-
urement plans, SD reference mode, causal diagram, SD model (flow graph
with model equations).

* PM, GQM, and SD end products: DPM, Prescriptive Process Model (PPM),
measurement data with related QM(s), simulation results.

» Reality: industrial software development.

» Relationships (depicted as arcs) between model user, modelling stages,
modelling work/end products, and reality.

When and how the products of the three complementary modelling ap-
proaches are combined depends on the goals of the potential model user.
There are four different types of goals that can be supported by a modelling
activity: to learn, to plan, to control, and to improve. A PPM (grey shaded in
Figure 10) is only needed to specify how an intended process change will look
like. As soon as the process change is successfully implemented, the PPM
automatically becomes the new DPM.

Copyright © Fraunhofer IESE and Siemens AG 1998

Figure 10:

A

/
\

Role with Goal(s)

PM GQM \ SD

descriptive prescriptive planning execution modelling simulation

meas. goal(s), simulation
plans results

TN

ref. mode,
causal diagram,
SD model

DPM - PPM

real world
software é'
%%‘

Interaction between IMMoS components.

Three short examples will be given to illustrate the contents of Figure 10.

Example 1 (learn): The role process engineer wants to better understand the
existing communication channels between different functions in the software
organisation. For that purpose she/he sets up a DPM, e.g. using the Strategic
Dependency Modelling [Yu94] method which is specifically suited for this pur-
pose. The DPM provides qualitative information only. In a next step, the proc-
ess engineer would like to know which are the most important communication
links. For that purpose she/he plans and executes a little measurement pro-
gramme which provides him with the relevant quantitative information (i.e, a
DQM that counts the occurences and duration of interactions between roles).

Example 2 (improve): The process engineer (same as in example 1) wishes to
improve the communication in the organisation. Therefore she/he conducts
analyses based on the DPM and DQM. These analyses result in a change of the
current process model, and a PPM is defined according to which the future
communication channels should be established. The success of this process
change can later on be evaluated through a specifically tailored measurement
programme. If the evaluation is positive, i.e. the process change turns out to
be a real process improvement, the PPM automatically becomes the new DPM.

Copyright © Fraunhofer IESE and Siemens AG 1998 19

5.2

5.2.1

20

Example 3 (learn and improve): Now, the process engineer wants to analyse
(and subsequently improve) the effectiveness of the software development ac-
tivities regarding product quality. For his analysis, again, a DPM and several
DQMs will be an important input. In analogy to example 2, based on his analy-
ses, the process engineer suggests a process change that is expected to in-
crease the product quality. To reduce the risk of failure, this time, however,
the process engineer wants to simulate the effects of the process change be-
fore its implementation. This can be done by using an EQM in combination
with either a PQM or a SD model. If the simulation shows positive results, the
change is implemented and evaluated (cf. example 2).

Detailed description of interdependencies between IMMoS components

A complete description of the detailed relationships between individual prod-
ucts of IMMoS components, including DPM, is presented in the following.

Relationships between GQM and DPM

The detailed description of the relationships between GQM planning and in-
formation contained in a DPM covers the following aspects:

 DPM Measurement goal: Usually, the object which is subject to meas-
urement is an entity in the DPM, and the quality focus of the measurement
goal is specified by some of the entity's attributes. On the other hand, it can
turn out during the specification of a measurement goal that the software
processes are not yet clearly defined. In that case, a process modelling ac-
tivity is initiated.

« DPM - GQM plan: The definition of the measurement programme is done
via so-called abstraction sheets (for details cf. [GHW95]). Usually, the set of
entities and attributes gathered in abstraction sheets is determined by the
information contained in the organisation-specific DPM.

* DPM - Measurement plan: When, how and by whom measures that have
been defined in the GQM plan are collected is usually specified in accor-
dance with the development process (as represented by the DPM). An in-
structive example that describes how a DPM is used for defining the meas-
urement plan can be found in [BDT96].

Of course, the results from the application of a QM can be useful input to pro
cess modelling. For example, an EQM can be used to evaluate a suggested
process change as specified in a PPM, or a PQM can indicate that either proc-

Copyright © Fraunhofer IESE and Siemens AG 1998

ess alternative A or process alternative B should be followed, depending on the
actual values of certain explanatory variables (cf. example in Figure 11).

a Size of work product = constant
Inspection efficiency

Changed (new)
Inspection
Process (2)

Unchanged (old)
Inspection
Process (1)

Region A Region B

0 c PreparationEffort
Figure 11: Efficiency characteristic of two different inspection processes.

5.2.2 Relationships between SD and DPM

The detailed description of the relationships between SD modelling and the in-
formation contained in a DPM covers the following aspects:

 Indirect relationship via measurement (see above).

» Direct relationship through usage of qualitative process information from a
DPM as input for the definition of reference modes, base mechanisms,
causal diagrams, and by mapping the product flow to SD concepts in the
flow graph.

Again, the results of simulation runs might be used for (prescriptive) process
modelling.

Copyright © Fraunhofer IESE and Siemens AG 1998 21

5.2.3 Relationships between SD and GQM

The detailed description of the relationships between SD modelling and GQM
covers the following aspects:

e Measurement data — Reference mode: If adequate measurement data is
available, it can be used to define the reference mode.

» Reference mode - Measurement goal (and GQM plan): If a reference
mode shall be based on empirical data and this data is not yet readily avail-
able, an adequate measurement goal has to be defined. Formally, five as-
pects have to be specified for a complete goal definition. Three of the five
aspects are determined by the reference mode. The measurement object is
defined by the real-world entity under consideration, the measurement
quality focus is defined by the attributes which describe the reference be-
haviour of the entity under consideration, the measurement purpose is de-
fined as monitoring (quantitative characterisation of attribute(s) over time).

» Base mechanisms (causal relationships) - Measurement goal (and GQM
plan): Base mechanisms define cause-effect relationships which are sup-
posed to generate the reference mode. If the identification of cause-effect
relationships shall be based on empirical evidence, appropriate measure-
ment has to be conducted. Therefore, one or more measurement goals with
measurement purpose control (characterisation of attribute relationships)
have to be defined. Then, the GQM plans based on these measurement
goals will capture the attributes describing effects in the quality focus sec-
tion, and attributes describing causes in the variation factors section.

* GQM plan - Base mechanisms (causal relationships): During the definition
of GQM plans (via so-called abstraction sheets [GHW95]) there is a chance
that new attributes are identified which are considered as relevant for de-
fining the cause-effect relationship under consideration. These new attrib-
utes can be included in the mental model represented by the set of base
mechanisms.

e Measurement results — Base mechanisms & model equations: Measure-
ment results that come out of an adequately defined measurement pro-
gramme can help to identify and define cause-effect relationships qualita-
tively (base mechanisms) and quantitatively (model equations). For that pur-
pose, statistical modelling and data mining techniques (e.g. Rough-set ap-
proach [Ruh96] or Optimised Set Reduction (OSR) [BBH93]) can be applied.

5.3 IMMoS example scenario

In this sub-section, an example scenario of a hypothetical SD modelling activity
that is linked to PM and GQM is presented to further illustrate IMMoS.

22 Copyright © Fraunhofer IESE and Siemens AG 1998

Adopting the perspective of a SD modelling project, the example scenario is
organised according to Figure 12. It begins with the description of the start
situation (white area), and then concentrates on the links between SD (dark
grey area), GQM (grey area), and PM (light grey area) as follows:

* SD modelling triggers PM and exploits the resulting DPM;

* SD modelling triggers GQM-based measurement and exploits resulting
DQMs and PQMs;

» SD simulation results serve for process analysis and subsequent identifica-
tion of potential improvements, eventually resulting in a PPM for specifica-
tion of the candidate process improvements;

» Evaluation of the process changes via EQMs and use of the (re-validated) SD
model for project planning and control.

Role (User) < » Process/ Project
analyse / change T

v

DPM / PPM &
Project plan

Problem /
Modelling goal

Reference mode

A

Base mechanisms / 5
Causal diagram GQM Plan &-.......
*= .

Flow graph / Model | Measurement Plan Iji _________
Simulatin result(s) \ Meas. Result / QM { :

V

rol

Experience
Base (EB)

Figure 12: IMMoS example scenario.

Copyright © Fraunhofer IESE and Siemens AG 1998 23

5.3.1

The work and end products (white boxes) listed in the respective grey columns
coincide with those mentioned in Section 4. The box Experience Base indicates
that the organisation might want to build up and use a repository of reusable
SD, GQM, and PM products.

Start situation and goals

Assume, that a SEPG consisting of process engineers and technical project
leaders is interested in achieving a better understanding of the trade-off effects
between development time and software product quality. Moreover, if possi-
ble, the team would like to improve the project performance as a result of an
adequate process change. If the process change is successful, the project lead-
ers would like to have a simulation model that supports project planning and
control.

To sum up, the SEPG has four goals: to learn (understand process/project dy-
namics), to improve (change process to achieve better project performance), to
plan and control (project performance). The team expects, that a SD simulation
model can help to support achievement of their goals.

5.3.2 Relationships SD -~ PM - SD

24

As a first step towards SD model building, a problem definition is provided, re-
stricting the abstraction level of the model structure to those development ac-
tivities and associated work products that play a key role for effort and time
consumption, as well as product quality. To identify the most relevant activities,
artefacts, resources, roles, etc., a DPM that describes the static structure of the
current development process should be consulted. The DPM either has to be
developed, or - if already existing - can be extracted from the organisation's
experience base.

As soon as the DPM is available, it is used to help identify the most important
state variables of the SD model. Typical state variables are countable attributes
of artefacts (like size, or number of defects contained), of activities (like dura-
tion), of relationships between artefacts and activities (like number of defects
generated and number of defects detected), of agents (like number), etc. A
subset of these state variables will be used to define the SD model's reference
mode. Additionally, the information contained in the DPM can be the starting
point for discussing possible causal relationships between model variables.

Figure 13 shows an extract from the SD model's flow graph which is devel-
oped based on the information in the DPM and additional analyses.

Copyright © Fraunhofer IESE and Siemens AG 1998

SCHEDULED COMPLETION DATE

pressure

/—\‘
scheduled time remaining schedule

\-.

overtime

required work flow

Time> productivity

Code fraction complete

Design Code eff fatigue quality
g work flow /
——
(/m errors per kloc
Defects
undetected/

Defect discoveryrate
preparation time per inspection

kloc per inspection

Code inspection rate
£ Cod_e Code Defects
Inspections detected
Figure 13: Extract from a view of the SD model's flow graph (implementation phase).

5.3.3 Relationships SD -~ GQM - PM - GQM - SD

The reference mode is needed to sketch the most essential surface behaviour
of the development process, i.e. it is a description of the dynamic behaviour of
key parameters that characterise the system to be modelled. A reference mode
might contain, for example, the trajectories of defects detected, effort con-
sumed, change requests, etc. over project time. The reference mode can be
based on expert opinion or on empirical data. The SEPG team decides to use
empirical data from typical projects. The respective data might again either be
extracted from an existing experience base, or gained from a newly started and
specifically tailored measurement programme. The measurement goals of such
a programme are determined by the needs of SD modelling. The generic speci-
fication of a measurement goal for defining a reference mode looks like this:

Analyse process (or product) [object]
with respect to <state variable> [quality focus]
(e.g. manpower allocation)
for the purpose of characterisation [purpose]

of dynamic behaviour
from the viewpoint SEPG team [viewpoint]
in the context of typical projects of the software [environment]

organisation

Copyright © Fraunhofer IESE and Siemens AG 1998 25

The complete specification of what will be measured is then worked out in the
form of a GQM plan. The execution of the measurement programme is de-
fined by the measurement plan which is derived from the GQM plan and addi-
tional information taken from the DPM and its instances (i.e. project plans).
The measurement programme will result in a set of DQMs that are used to de-
fine the reference mode.

Empirical data can also play a crucial role for the identification of causal rela-
tionships. For, example, correlation analysis can be applied to define the SD
model variable Defect discovery rate in Figure 13. The defect discovery rate de-
fines the number of defects that are detected during a work day. More pre-
cisely, it is the sum of the defects found in all the code inspection that were
carried out on a work day. The number of inspections is represented by the
variable Code inspection rate. The (average) number of defects found in a code
inspection is a function of the variables Kloc per inspection and preparation
time per inspection. Such a function is equivalent to a PQM. The exact defini-
tion of this PQM can be derived through regression analysis applied to empiri-
cal data.

A fully documented example of such a measurement-based analysis can be
found in [BLW97]. The authors describe how a measurement programme was
specified, and how the statistical analyses were conducted to derive a PQM on
inspection effectiveness (where effectiveness = number of detected defects /
size). Of course, similar measurement-based analyses can be conducted for
other SD model variables. Sometimes, however, it is very time and effort con-
suming, or even impossible to carry out an appropriate empirical analysis. In
these cases, the only solution is to rely on expert opinion. And often, due to
lack of adequate data, empirical analysis cannot result in a precise definition of
SD model equations, but still provide enough evidence for an association or
correlation between certain model variables. This more qualitative information
is still very useful when developing causal diagrams.

5.3.4 Relationships SD -~ PM / GQM - SD

26

In the course of building the SD model, the SEPG has already gained much
new insight about those aspects of the development process that influence
project duration and product quality. Gaming with the simulation model allows
the team to better understand the dynamic behaviour patterns and to conduct
a systematic analysis of the trade-off between project duration and product
quality. Hence, model building and simulation satisfy the goal to learn.

Having the SD model at hand, the analysis and interpretation of the simulation

outcomes might trigger several process improvement suggestions (goal: to im-
prove). To decrease the risk of loosing money with unsuccessful pilot projects,

Copyright © Fraunhofer IESE and Siemens AG 1998

the improvement suggestions should first be investigated by implementing the
intended process changes in the SD model and comparing simulation results. If
these analyses confirm the improvement suggestions, this might even be an
additional argument to convince management that the suggested process
change should be piloted in real world software development.

Of course, before a process change is implemented, it must be specified in a
PPM, and after implementation it must be evaluated. This can only be done by
using a measurement based EQM that compares the performance of the new
process to a baseline. If the improvement is actually confirmed this will also
support the validity of the SD model, and the project leaders might use it for
project planning, risk management and project control (goals: to plan and to
control).

Process engineers and project leaders might even use the SD model as a tool
for process or project benchmarking. This can be done by comparing the proc-
ess/project behaviour predicted by the SD model with control data derived
from an appropriate measurement programme (goal: to control). Assuming
that the SD model is valid, a big difference between the model predictions and
the measurement data indicates an undetected alteration of the real system.
An example of such an undetected alteration might be a gradually increasing
loss of conformance with inspection guidelines. The identification of such a de-
cay of the inspection process might result in an reinforcement of the guidelines
and prevent from future loss of money (i.e. during maintenance).

6 Conclusion

Motivated by lessons learnt from an SD pilot application in an industrial setting
the integration of System Dynamics (SD) with well-known static modelling ap-
proaches that are widely used in software engineering was suggested. As
promising candidates for complementary modelling methods, Process Model-
ling (PM) and goal-oriented measurement according to the
Goal/Question/Metric (GQM) paradigm were identified. The integrated devel-
opment and usage of SD models with PM and GQM has been given the acro-
nym IMMoS (Integrated Measurement, Modelling, and Simulation).

Copyright © Fraunhofer IESE and Siemens AG 1998 27

28

In this paper, the mutual interdependencies between the three IMMoS compo-
nents have been presented and the relevance of IMMoS was illustrated
through examples.

The work on IMMoS emerged from an industrial collaboration between Fraun-
hofer IESE and Siemens Corporate Research. In the course of this collaboration,
the following work has been done:

» Description of scenarios for the usage of SD in software industry.

» Clarification of the relationships between SD models and DPMs, as well as
SD models and QMs.

» Definition of a detailed SD process model tailored to the needs of software
industry.

» Development of supportive guidelines and templates.
The future work will mainly concentrate on:

» Research towards a full integration of the three IMMoS components. This
should result in a comprehensive formal and uniform IMMoS process model
that combines the SD modelling process with the GQM planning and execu-
tion process as defined in [GHW95], and with a recommended (or standard)
PM elicitation process.

» Application of IMMOS in industrial environments (pilot projects and case
studies).

Copyright © Fraunhofer IESE and Siemens AG 1998

7 References

[AbM91] Abdel-Hamid TK, Madnick SE: Software Project Dynamics — an In-
tegrated Approach, Prentice-Hall, 1991.

[Ark94] Armitage JW, Kellner MI: "A Conceptual Schema for Process Defi-
nitions and Models". Proc. 3rd Int'l Conference on the Software
Process (ICSP 3), IEEE Computer Soc., pp. 153-165, 1994.

[BFL+95] Bandinelli S, Fuggetta A, Lavazza L, Loi M, Picco GP: “Modeling
and Improving an Industrial Software Process”. IEEE Trans. on SE,
Vol. 21, No. 5, pp. 440-453, May 1995.

[BCR94] Basili VR, Caldiera G, Rombach HD: " Goal Question Metric Para-
digm". In Marciniak JJ (ed.), Encyclopedia of Software Engineering,
Vol. 1, pp. 528-532, John Wiley & Sons, 1994.

[BHV97] Becker U, Hamann D, Verlage M: “Descriptive Modeling of Soft-
ware Processes”. Proceedings of the Third Conference on Software
Process Improvement (SPI '97), Barcelona, Spain, December 1997.

[BeW97] Becker U, Webby R: "Towards a Comprehensive Schema Integrat-
ing Software Process Modeling and Software Measurement".
Technical Report, No. 021.97/E, Fraunhofer IESE, Kaiserslautern,
July 1997.

[BBH93] Briand LC, Basili VR, Hetmanski C: "Developing Interpretable Mod-
els with Optimized Set Reduction for Identifying High Risk Software
Components", IEEE Trans. Software Engineering, Vol. SE-19 (11),
pp. 1028-1044, 1993.

[BDR9O6] Briand LC, Differding CM, Rombach HD: “Practical Guidelines for
Measurement-Based Process Improvement”. Software Process Im-
provement and Practice, Vol. 2, No. 4, pp. 253-280, 1996.

[BLW97] Briand LC, Laitenberger O, Wieczorek I: “Building Resource and
Management Models for Software Inspections”. Technical Report,
No. 041.97/E, Fraunhofer IESE, Kaiserslautern, December 1997,

[BDT96] Brockers A, Differding C, Threin G: "The role of software process
modeling in planning industrial measurment programs"”. Proceed-
ings of the Third International Software Metrics Symposium, Berlin,
I[EEE Computer Society Press, March 1996.

Copyright © Fraunhofer IESE and Siemens AG 1998 29

30

[CKO92]

[Fore1]

[GHW95]

[LSO+98]

[LeL91]

[Lin89]

[Lin93]

[LAS97]

[Mad94]

[Pfa94]

[Pfa95]

[PfK95]

Curtis B, Kellner M, Over J: "Process Modeling", Communications
of the ACM, Vol. 35, No. 9, Sept. 1992.

Forrester JW: Industrial Dynamics. Productivity Press, 1961.

Gresse C, Hoisl B, Wist J: "A Process Model for Planning GQM-
based Measurement". Technical Report, STTI-95-04-E, Software
Technology Transfer Initiative (STTI), University of Kaiserslautern,
October 1995.

van Latum F, van Solingen R, Oivo M, Hoisl B, Rombach HD, Ruhe
G: "Shifting to Goal-Oriented Measurement in Industrial Environ-
ments - Experiences of Schlumberger”, IEEE Software, pp. 78-86,
January-February 1998.

Levary RR, Lin CY: "Modelling the Software Development Process
Using an Expert Simulation System Having Fuzzy Logic", Software
— Practice and Experience, pp. 133-148, Feb. 1991.

Lin CY: "Computer-Aided Software Development Process Design”,
IEEE Trans. on Software Engineering, pp. 1025-1037, Sept. 1989.

Lin CY: "Walking on Battlefields: Tools for Strategic Software
Management", American Programmer, pp. 33-40, May 1993.

Lin CY, Abdel-Hamid T, Sherif JS: "Software-Engineering Process
Simulation Model (SEPS)". Journal of Systems and Software, Vol.
38, pp. 263-277, 1997.

Madachy RJ: A Software Project Dynamics Model for Process Cost,
Schedule and Risk Assessment. PhD Dissertation, University of
Southern California, December 1994.

Pfahl D: PSIM Bedienungsanleitung (in German), Siemens AG,
1994 (unpublished).

Pfahl D: "Software Quality Measurement Based on a Quantitative
Project Simulation Model", Proc. of the European Software Cost
Modelling Conference (ESCOM '95). Rolduc, The Netherlands, 15-
17 May 1995.

Pfahl D, Kammerer R: "Optimierung von Projekten und Prozessen

in der Software-Entwicklung mit PROSYD". ZFE Technical Report
(in German), No. Z0950040, Siemens AG, March 1995.

Copyright © Fraunhofer IESE and Siemens AG 1998

[Ran80] Randers J (Ed.): Elements of the System Dynamics Method. Produc-
tivity Press, Cambridge, 1980.

[RiP81] Richardson GP, Pugh AL: Introduction to System Dynamics Model-
ing with DYNAMO. Productivity Press, Cambridge, 1981.

[Ruh9s] Ruhe G: "Qualitative Analysis of Software Engineering Data Using
Rough Sets", Proc. of the Fourth International Workshop on Rough
Sets, Fuzzy Sets, and Machine Discovery, Tokyo, pp. 292-299, Nov.
1996.

[Tve96] Tvedt JD: An Extensible Model for Evaluating the Impact of Process
Improvements on Software Development Cycle Time. PhD Disserta-
tion, Arizona State University, May 1996.

[UML97] Unified Modeling Language. Version 1.0. Rational Software Com-
pany, 1997.

[Ven95] Ventana Simulation Environment (Vensim) - Reference Manual,
Version 1.62, Ventana Systems, Inc., 1995.

[WaP94] Waeselynck H, Pfahl D: "System Dynamics Applied to the Model-
ling of Software Projects". Software Concepts and Tools, Vol. 15,
pp. 162-176, 1994.

[Yu94] Yu ES: "Modelling Strategic Relationships for Process
Reengineering”, Technical Report, DKBS-TR-94-6, Department of
Computer Science, University of Toronto, December 1994.

Acknowledgements

The authors would like to thank Siemens AG for supporting much of the work
presented in this report. Special thanks go to Reinhard Kammerer for initiating
the PSIM project, as well as to Jérg Lottermoser for helpful discussions during
the project. The review comments on earlier versions of this report provided by
Andreas Birk, Khaled El Emam, and GUnther Ruhe contained many valuable
improvement suggestions which were highly appreciated.

Copyright © Fraunhofer IESE and Siemens AG 1998 31

32

Copyright © Fraunhofer IESE and Siemens AG 1998

Document Information

Title:

Date:
Report:
Status:

Distribution:

Integration of System
Dynamics Modelling with
Descriptive Process Model-
ling and Goal-Oriented
Measurement

May 28, 1998
[ESE-032.98/E
Final

Public

Copyright 1998, Fraunhofer IESE.

All rights reserved. No part of this publication may
be reproduced, stored in a retrieval system, or
transmitted, in any form or by any means includ-
ing, without limitation, photocopying, recording,
or otherwise, without the prior written permission
of the publisher. Written permission is not needed
if this publication is distributed for non-commercial

purposes.

