
Mapping Shallow Water Environments using a
Semi-Autonomous Multi-Sensor Surface Vehicle

Dominik Kleiser, Alexander Albrecht, Thomas Emter, Angelika Zube, Janko Petereit, Philipp Woock
Fraunhofer Center for Machine Learning

Fraunhofer IOSB, Karlsruhe, Fraunhofer Institute of Optronics, System Technologies and Image Exploitation
Karlsruhe, Germany

[first name].[last name]@iosb.fraunhofer.de

Abstract—We show a multi-sensor platform for mapping tasks
of shallow water areas like rivers or harbors, both under and
above the waterline simultaneously. The autonomy of the platform
is realized just by integrating the sensors and the autonomy
box which provides, i.a., the motion planning. The sensor
data is synchronized purely in software by a newly developed
timestamping filter. Maps obtained by the autonomously driven
platform are shown as an example for the platform capabilities.

Index Terms—ASV, autonomous surface vehicle, multi-sensor
fusion, inspection, mapping

I. MOTIVATION

Authorities are obliged to keep a directory of reasonably
recent maps of underwater areas, e.g., riverbeds or harbor areas.
Usually, a fleet of mapping vessels and trained staff to operate
the vessels are necessary to accomplish this. However, this is
a cost-intensive task and in many cases, the mapping is done
much less frequently than it would be advisable or required.
This is where (semi-)autonomous surface vessels (ASV) can
substantially reduce costs and the need for onboard staff. Only
a supervisor will be required to ensure that the ASVs carry
out their work properly and assist in difficult scenarios, e.g.,
when there is a lot of traffic.

Additionally, inspection of structures above water level, i.e.,
mostly bridges, is of equal importance. This can be achieved
in passing by using the same vehicle on a mission where
underwater data is captured anyway with only little additional
one-time expenses and no additional ongoing expenses for the
additional sensor equipment. The data is acquired in addition
to the underwater data. As the platform is geo-referenced, the
resulting above-water data is also geo-referenced.

II. EXISTING WORK

Employing autonomy functionality via ROS [1], [2] is
a widespread approach due to the high versatility of the
middleware. Of course, autonomous surface vehicles using
ROS are not completely new: The very small Minnow vehicle
using ROS was presented by Calce et al. [3]. The focus was
also on low cost and small size in the ROS-based vessel of
Mancini et al. [4]. A recent approach to unmanned surface
vehicles for multi-sensor data acquisition using ROS is the
catamaran-style WAM-V of Velamala et al. [5]. There are also
commercially available small autonomous surface vehicles for
hydrographic surveys like the Sonobot [6]. Using ROS for
collision avoidance is shown in [7].

III. SOLUTION

We created a platform that is designed to operate together
with normal ship traffic, i.e., it is of a larger size to be able to
maneuver stably even in the presence of ship wakes, and it can
be seen more easily by ship captains. The platform is equipped
with an autonomy box which allows to navigate autonomously
along a path given by a set of waypoints. The waypoints
may also be changed on-the-fly if a mission change should be
necessary. On that path, the vehicle perceives the environment
through a multitude of sensors to create a complete view of
the surroundings. Due to its size, the vehicle is targeted for
larger payloads and offers the necessary platform stability for
data acquisition.

A. Platform

The platform is based on an inflatable catamaran, which
makes it a stable platform that is well suited to capture the
environment. It is based on the proven platform »Water Strider«
which we used in the Shell Ocean Discovery XPrize finals
[8]. The platform is now equipped with two electric motors
that may be rotated in common to form the rudder angle.
The multisensory equipment of the platform consists of an
inexpensive IMU (inertial measurement unit) featuring also
GNSS (Xsens MTi-G700), a 3D LiDAR (Velodyne VLP-16),
a digital compass (Precision-9), an interferometric side-scan
sonar (ITER Systems Bathyswath-2), and stereo cameras. This
is depicted in Fig. 1. The platform’s ability to maneuver
autonomously is realized by employing our algorithm toolbox
(ATB) for autonomous mobile robotic systems [9].

B. Mesh Connectivity

In order to establish the connection between the operator at
the coast and the Water Strider platform, we setup a wireless
mesh network based on the IEEE 802.11s standard [10] and
the B.A.T.M.A.N. advanced routing protocol [11]. One notable
feature of this setup is that its mechanism is relying on MAC
addresses rather than IP addresses, abstracting the mesh to a
single layer 2 broadcast domain. Even if the network topology
is made of multiple hops, the entire mesh will look like a
single layer 3 network from the user’s view, thus TCP and
UDP connections are not lost even when moving and changing
the routing path. This allows us to bridge large distances to
the platform without the loss of communication by placing



Fig. 1: Top: Autonomous surface vehicle »Water Strider« where
the red square shows where the above-water sensors are placed.
Bottom: Detailed view of the laser scanner, GNSS and IMU
assembly.

Fig. 2: Network topology.

dedicated relay nodes on the coastline or using other robotic
platforms as intermediate mesh nodes. A visualization of the
network topology can be seen in Fig. 2.

C. Multi-sensor fusion

1) Fusion architecture: The vehicle employs a versatile
fusion filter framework for localization that is able to handle
measurements from multiple sources in an asynchronous yet
timing-correct way, i.e., all sensor data is processed with the
timestamp of arrival in the processing system. This filter
framework is based on an extended Kalman filer (EKF)
and is able to flexibly handle different sensor configurations
comprising an IMU, GNSS, compass, platform specific non-
holonomic constraints, and different kinds of odometry in
2D and 3D from, e.g., LiDAR odometry, visual odometry
or wheel encoders (in land-based applications). While the
measurements of the IMU are incorporated with a strapdown
algorithm in the prediction step of the EKF, the GNSS and
compass measurements are integrated using correction updates.
Odometry measurements like 6DoF LiDAR odometry by scan
matching of consecutive pairs of scans being additional relative
measurements, i.e., measuring a difference between states,
are included in a correct fashion (being relative sensors)
via stochastic cloning [12]. The filter framework is not only
employed for the Water Strider, but also in a variety of different
research platforms, ranging from wheeled platforms to heavy
machinery each with its individual sensor setup [9].

2) Timestamp filtering: Typically, the sensors to be inte-
grated do not provide a standardized technique for hardware
synchronization and especially on research platforms, it is
advantageous to be able to quickly change the sensor setups or
add new sensors. Thus, a novel approach for synchronization
based on timestamps of arrival without the need for an
additional hardware installation has been developed: The clocks
of the individual sensors are quite precise but will drift apart
without hardware synchronization. Then again, the timestamps



of arrival of the computer processing all sensor data could serve
as common reference. However, these timestamps are prone
to latency jitter, because a standard PC without a real-time
operating system is used. Therefore, a fusion of the precise
short-term clock information of the sensors and the timestamps
of arrival of the PC is employed. It is also based on a Kalman
filter where the clock of the sensor is used for the prediction
step and the timestamp of arrival serves for the update step.

Fig. 3 shows a comparison of the deltas of unfiltered
and filtered timestamps of arrival of the IMU data with a
nominal rate of 100 Hz, i.e., a cycle time of 10 ms. While
both mean deltas of 10.0008 ms and 10.0001 ms respectively
are very close to the nominal cycle time, the unfiltered deltas
has fluctuations (jitter) of several milliseconds. The deltas of
the filtered timestamps of arrival are nearly constant and no
deviations are visible in the figure.

0 2 4 6 8 10
t in s

6

7

8

9

10

11

12

13

∆
t

in
m

s

unfiltered
filtered

Fig. 3: Timestamp of arrival deltas of the IMU of the Xsens
MTi-G700 with a nominal rate of 100 Hz.

D. Motion planning

The platform provides two different methods for motion
planning: A naïve waypoint tracking control system (see Fig. 7),
as it is already widely available in ship autopilots, and a more
advanced path-following control system (see Fig. 9), allowing
for precise navigation in tight areas that can be easily extended
with obstacle avoidance capabilities.

The waypoint tracking control system takes a list of GNSS
coordinates as an input. With a rate of 2 Hz the system
calculates the heading difference between the ships current
position and the next waypoint solving the inverse geodesic
problem. Based on that, a course change command is sent to
the rudder controller over NMEA 2000. When the ship enters
the waypoint’s radius of 5 m, the waypoint is marked as reached
and the next waypoint is targeted. The vessel’s speed is kept
at a constant speed between waypoints and reduced linearly if
the ship is in close distance to the waypoint.

Fig. 4: Control scheme.

The path-following control system also plans the platforms
motion through a given sequence of waypoints. Howevever,
graph search in a state-time lattice structure is applied [13]
to compute feasible paths based on the platform kinematics.
If an obstacle detection is available, the planned paths are
collision-free considering the platform length and width. During
planning, not only the next but multiple waypoints are included
in the planned path in order to achieve an optimal motion
sequence. The planning is done online with a replanning rate of
about 10 Hz. This allows fast reactions to unforeseen platform
behavior (e.g., due to drift) or collision situations.

For ease of simplicity, we will focus in the following sections
on the more advanced path-following control system.

E. Control

The platform is actuated by commanding the motors’ number
of revolution and the rudder angle, which rotates the frame of
both motors simultaneously. In order to follow a given path, a
control scheme with multiple layers is realized (see Fig. 4).

On the top level, a path controller controls the platform
motion along the planned path. The path controller computes
the desired platform speed and orientation based on the
current platform pose determined by the localization filter
by means of a nonlinear adaptive line-of-sight (LOS) control
law [14]. Several constraints, like minimum and maximum
translational speed, rotational speed, and maximum acceleration,
are considered.

The desired platform speed is controlled by an underlying PI-
controller. The actuating variables are the numbers of rotation
of the two electric motors. The current platform speed is
determined by the localization filter.

For heading control, a simple proportional controller is
implemented. This controller computes the rudder angle
according to the desired yaw angle and the current yaw angle
identified by the localization filter.

F. Accessibility

The distinctive feature of our platform is its flexibility. Due
to our modular software architecture (see Fig. 5), modifications
and extensions of the platform’s capabilities are easy. Marine
systems have been traditionally created using standards defined
by the National Marine Electronics Association (NMEA).
Another, recent effort called Signal K [15] aims to bring a
totally open data format for marine data exchange and is built
on modern technologies used in web applications such as



NMEA2000 Components

Onboard PC

Controllino

RPM

Rudder

Motor 
Controller

AutopilotWeather Station GNSS

NMEA 2000 
Interface

Compass AIS

NMEA-to-ROS

Waypoint
tracking

SignalK Server

SIGNALK-to-ROS

OnshoreOperator

Gamepad

openCPN

WS Interface

Path-
following

Waypoints

Mapviz

Monitoring

Control

Trajectory

Fig. 5: Schematic overview of the vehicle components and their
interaction. Colors have the following meaning: Blue denotes
actuators, yellow denotes NMEA components, green denotes
ROS components, orange denotes inputs and grey denotes 3rd-
party components.

HTTP, JSON and WebSockets. We implemented interfaces to
bridge between the ROS framework and both NMEA 2000
and Signal K, which means that our autonomy capabilities
can be added to basically any vehicle that has rudder and
motor accessible via one of the mentioned protocols. This also
allows us to easily integrate any sensor connected to the ship’s
communication bus in our software. Additionally, the platform
can be monitored either with graphical interfaces provided by
the ROS framework, i.e., rqt, rviz and mapviz [16], or by using
using open technologies like the web-based signalk-server-node
[17] (see Fig. 6) or OpenCPN [18].

IV. OPERATION AND RESULTS

A. Mission Planning

The vessel is given a mission area and after generation of a
trajectory covering the area, the vehicle follows that trajectory,
avoiding detected obstacles in the way.

In Fig. 7, a bird’s eye view of the mission points and the
driven trajectory in the naïve waypoint motion planning is
given. Also shown is the map comprising a point cloud of the
installments on shore.

B. Control resilience

In the scenario shown in Fig. 9 , one of the motors was
disabled from time to time in the marked area. The vehicle
trajectory remained stable as the vehicle control continued
seamlessly using the remaining motor.

Fig. 6: Screenshot of the visualization via SignalK showing
the vehicle’s internals.

Fig. 7: Visualization of autonomous waypoint navigation within
mapviz/ROS: The current position and heading of the vessel
is given by the yellow boat icon. The red line represents the
vehicle trajectory. The waypoints are displayed as a point with
a radius. Once inside the radius, the waypoint is considered
reached. The color convention for the waypoints is as follows:
Reached waypoints are depicted in turquoise, the currently
targeted WP is depicted in light green, and the remaining
waypoints are depicted in white. The LiDAR point cloud is
shown in magenta. Map data: © 2020 Google, CNES / Airbus,
GeoBasis-DE/BKG, GeoContent, Maxar Technologies

C. Localization and Mapping

In Table I, the standard deviations of the timestamps of
arrival of different sensors are listed for comparison. It can
be seen that the timestamp filtering leads to improvements
of several orders of magnitude and the filtered deltas have
standard deviations of only a few microseconds.

For the data set used for evaluation, the maximum measured
deviation without filtering was less than 5 ms and with a
maximum measured platform speed of 4 m/s, results in a
potential error of less than ±2 cm for a position estimate. The



TABLE I: Standard deviation σ in µs.

unfiltered filtered

IMU @ 100 Hz 589.2 1.6
GNSS @ 4 Hz 2121.8 7.4
LiDAR @ 347.22 Hz 26.8 0.3

(a) (b)

Fig. 8: Mapping result without (a) and with timestamp filtering
(b). The example is taken from a land-based robot to better
illustrate the benefits of the filtering. The relevant areas are
marked with red ellipses. After timestamp filtering, the resulting
map has much less consistency errors. The height of the map
is color coded from blue (low) via green to red (high).

maximum rate of rotation measured by the IMU was below
40 °/s, resulting in a potential angular error of less than ±0.2°.
I.e., the influence of the time stamp deviation on the individual
localization estimates is very small. However, the filtering of
the timestamps of arrival still has a positive effect on the
fusion for localization and mapping, since small errors in the
position have a greater effect on the 3D-LiDAR measurements.
For example, an angular error of 0.2° at a distance of 50 m
results in a deviation of about 17 cm. In addition, even small
deviations can have a greater effect on mapping over time.
As can be seen in Fig. 8 with a data set of a land vehicle
on our institute campus in some areas, which are marked by
red ellipses, the accuracy of the mapping can be increased by
timestamp filtering.

The LiDAR data shown in Fig. 9 depicts the detail which
is in the raw data. In many cases, such a level of 3D detail
is not needed and a 2.5D grid map is sufficient. In Fig. 10 a
grid height map of a port facility is shown which is generated
by accumulating and fusing the localized 3D point clouds
into grid cells. For height mapping, the grid_map package is
utilized [19]. The grid cells have a resolution of 0.5 m. The
altitude is coded by color from low (blue) to high elevation
(brown). Two detailed views (enlarged by a factor of three)
are also shown. The shown height map of the port facility was
generated by an autonomous drive of approximately 600 m.

Fig. 9: Top: Slightly oblique bird’s eye view of a point
cloud from the shoreline with trees starting close behind the
shoreline. Bottom: The mission area is depicted as yellow
polygon yielding the planned trajectory (depicted in red). The
actual taken trajectory is shown in green while the map in
form of a height-colored point cloud is shown as an overlay.
The taken trajectory does not start right at the beginning,
because we needed to do a mode switch. Satellite base imagery
is imported from Google Maps. Map data: © 2020 Google,
GeoBasis-DE/BKG, GeoContent, Maxar Technologies

V. OUTLOOK

For autonomous missions, obstacle avoidance is essential.
At the moment, LiDAR measurements of the water surface
may produce fake obstacles which the vehicle then would try
to avoid. Hence, we are planning to integrate a radar sensor
for a more reliable obstacle detection as it should provide a
clearer separation between a true obstacle and the water surface.
Since obstacle avoidance has already been employed on our
land-based platforms, the integration should be straightforward.



Fig. 10: Height map of a port facility generated by an
autonomous drive of approximately 600 m. The height map
is quantized into a resolution of 0.5 m×0.5 m. The altitude
is coded by color from low (blue) to high elevation (brown).
The two details are enlarged by a factor of three. Satellite
base imagery is imported from Google Maps. Map data:
© 2020 Google, CNES / Airbus, GeoBasis-DE/BKG, GeoCon-
tent, Maxar Technologies.

REFERENCES

[1] M. Quigley, K. Conley, B. P. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng, “ROS: an open-source Robot Operating
System,” in ICRA Workshop on Open Source Software, 2009.

[2] “ROS.org: The Robot Operating System ,” 2020. [Online]. Available:
https://www.ros.org

[3] A. Calce, P. M. Forooshani, A. Speers, K. Watters, T. Young, and M. R.
Jenkin, “Autonomous aquatic agents.” in ICAART (1), 2013, pp. 372–375.

[4] A. Mancini, E. Frontoni, and P. Zingaretti, “Development of a low-
cost unmanned surface vehicle for digital survey,” in 2015 European
Conference on Mobile Robots (ECMR). IEEE, 2015, pp. 1–6.

[5] S. S. Velamala, D. Patil, and X. Ming, “Development of ros-based gui for
control of an autonomous surface vehicle,” in 2017 IEEE International
Conference on Robotics and Biomimetics (ROBIO). IEEE, 2017, pp.
628–633.

[6] K. Kebkal, O. Kebkal, I. Glushko, T. T., R. Bannasch, M. Komar, and
S. Yakovlev, “SONOBOT - an autonomous unmanned surface vehicle
for hydrographic surveys, hydroacoustic communication and positioning
in tasks of underwater acoustic surveillance and monitoring,” June 2014.

[7] P. B. Andrzej Stateczny, “Universal autonomous control and management
system for multipurpose unmanned surface vessel,” Polish Maritime
Research, vol. 26, no. 1(101)1(101), pp. 30–39, Jan 2019.

[8] XPRIZE Foundation, “Shell Ocean Discovery XPrize: Team Arggonauts,”
2019. [Online]. Available: https://oceandiscovery.xprize.org/prizes/
ocean-discovery/teams/arggonauts___fraunhofer_iosb

[9] T. Emter, C. Frese, A. Zube, and J. Petereit, “Algorithm Toolbox for
Autonomous Mobile Robotic Systems,” ATZ Offhighway, vol. 10, no. 3,
pp. 48–53, 2017.

[10] R. C. Carrano, L. C. S. Magalhães, D. C. M. Saade, and C. V. N. Albu-
querque, “Ieee 802.11s multihop mac: A tutorial,” IEEE Communications
Surveys Tutorials, vol. 13, no. 1, pp. 52–67, First 2011.

[11] “B.A.T.M.A.N. (better approach to mobile ad-hoc networking).” [Online].
Available: https://www.open-mesh.org/projects/open-mesh/wiki

[12] T. Emter, A. Schirg, P. Woock, and J. Petereit, “Stochastic Cloning for
Robust Fusion of Multiple Relative and Absolute Measurements,” in
2019 IEEE Intelligent Vehicles Symposium (IV), 2019.

[13] J. Petereit, T. Emter, and C. Frey, “Mobile robot motion planning in
multi-resolution lattices with hybrid dimensionality,” in IFAC Intelligent
Autonomous Vehicles Symposium, 2013, pp. 158 – 163.

[14] T. I. Fossen, K. Y. Pettersen, and R. Galeazzi, “Line-of-sight path
following for dubins paths with adaptive sideslip compensation of drift
forces,” in IEEE Transactions on Control Systems Technology, 2015, pp.
820–827.

[15] “Signal K.” [Online]. Available: http://signalk.org
[16] Southwest Research Institute, “Mapviz: A modular ROS visualization

tool for 2D data,” 2020. [Online]. Available: https://swri-robotics.github.
io/mapviz/

[17] “signalk-server-node.” [Online]. Available: https://github.com/SignalK/
signalk-server-node

[18] “OpenCPN Chart Plotter Navigation.” [Online]. Available: https:
//opencpn.org

[19] P. Fankhauser and M. Hutter, “A Universal Grid Map Library:
Implementation and Use Case for Rough Terrain Navigation,” in
Robot Operating System (ROS) – The Complete Reference (Volume
1), A. Koubaa, Ed. Springer, 2016, ch. 5. [Online]. Available:
http://www.springer.com/de/book/9783319260525


