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Abstract 

In today’s business environment, the trend towards more product variety and customization is unbroken. Due to this development, the need of 
agile and reconfigurable production systems emerged to cope with various products and product families. To design and optimize production
systems as well as to choose the optimal product matches, product analysis methods are needed. Indeed, most of the known methods aim to 
analyze a product or one product family on the physical level. Different product families, however, may differ largely in terms of the number and 
nature of components. This fact impedes an efficient comparison and choice of appropriate product family combinations for the production
system. A new methodology is proposed to analyze existing products in view of their functional and physical architecture. The aim is to cluster
these products in new assembly oriented product families for the optimization of existing assembly lines and the creation of future reconfigurable 
assembly systems. Based on Datum Flow Chain, the physical structure of the products is analyzed. Functional subassemblies are identified, and 
a functional analysis is performed. Moreover, a hybrid functional and physical architecture graph (HyFPAG) is the output which depicts the 
similarity between product families by providing design support to both, production system planners and product designers. An illustrative
example of a nail-clipper is used to explain the proposed methodology. An industrial case study on two product families of steering columns of 
thyssenkrupp Presta France is then carried out to give a first industrial evaluation of the proposed approach. 
© 2017 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the scientific committee of the 28th CIRP Design Conference 2018. 
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1. Introduction 

Due to the fast development in the domain of 
communication and an ongoing trend of digitization and
digitalization, manufacturing enterprises are facing important
challenges in today’s market environments: a continuing
tendency towards reduction of product development times and
shortened product lifecycles. In addition, there is an increasing
demand of customization, being at the same time in a global 
competition with competitors all over the world. This trend, 
which is inducing the development from macro to micro 
markets, results in diminished lot sizes due to augmenting
product varieties (high-volume to low-volume production) [1]. 
To cope with this augmenting variety as well as to be able to
identify possible optimization potentials in the existing
production system, it is important to have a precise knowledge

of the product range and characteristics manufactured and/or 
assembled in this system. In this context, the main challenge in
modelling and analysis is now not only to cope with single 
products, a limited product range or existing product families,
but also to be able to analyze and to compare products to define
new product families. It can be observed that classical existing
product families are regrouped in function of clients or features.
However, assembly oriented product families are hardly to find. 

On the product family level, products differ mainly in two
main characteristics: (i) the number of components and (ii) the
type of components (e.g. mechanical, electrical, electronical). 

Classical methodologies considering mainly single products 
or solitary, already existing product families analyze the
product structure on a physical level (components level) which 
causes difficulties regarding an efficient definition and
comparison of different product families. Addressing this 
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Abstract 

Due to digitization, demographic change and a growing demand for sustainability, companies are facing great challenges. Latest research reveals 
the biological transformation of manufacturing as the next leap. Digital technologies enable the usage of sensitive biological materials for resource 
friendly production, gaining natural products and circular economy. Therefore, adaptive biology-technology interfaces are necessary in order to 
enable bidirectional real time information exchange between biological and technological systems, which is still a gap in research. We thus 
present conceptual basics of biology-technology-interface (BTI) engineering, discuss BTI examples for various industrial applications and 
introduce an interdisciplinary theoretical model for communication and process control across systems. We conclude with a summary and 
recommendations for future research. 
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1. Introduction 

Sustainability is inevitable for the future of manufacturing 
[1]. Companies currently face a variety of challenges, e.g. 
demographic change, individualization, digitization, assurance 
of continued resource availability and minimization of 
environmental impact. Although sustainability is playing an 
increased role in global politics and local business decisions 
since almost fifty years, little has changed. Global resource 
extraction has doubled in the past 30 years [2]. Under current 
circumstances a further doubling of resource consumption by 
2050 is likely [3]. Many resources are already considered scarce 
today. Security of supply still largely determines regional 
prosperity. Simultaneously, climate change threatens large 
parts of the world as a result of drastically changing climatic 

and weather impacts. External costs for damage caused by air 
pollution account for roughly one trillion Euro p.a., only in 
Europe [4]. These examples show that previous strategies for 
the creation of a sustainable economy have barely succeeded. 
Assuming a need to preserve western standards of living, a 
suitable satisfaction of the (material) needs of future 
generations is required. This is, however, not possible with 
today's production techniques and process designs. In this 
context, recent studies reveal an increasing relevance of 
biological systems in future manufacturing environments not 
only in the process and medical industry, but as well in discrete 
parts manufacturing. While companies currently face great 
challenges in the context of the digital transformation, the 
biological transformation is viewed as the next technological 
leap. Byrne et al. thus predict an increasing “use and integration 
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of biological and bioinspired principles, materials, functions, 
structures and resources for intelligent and sustainable 
manufacturing technologies and systems with the aim of 
achieving their full potential” [5]. Miehe et al. characterize the 
term biological transformation as the systematic application of 
the knowledge about biological processes leading to an 
increasing integration of production, information and 
biotechnology [6, 7]. Thereby, three development modes are 
differed (see figure 1) [6, 7]. 

 
Fig. 1. Development modes of biological transformation according to 

Miehe et al. [6]. 
 
While the inspiration allows a translation of evolutionary 

biological phenomena into solely technical value creation 
systems (e.g. lightweight construction), functionalities (e.g. 
biomechanics), organizational solutions (e.g. swarm 
intelligence, neural networks), the knowledge of biology finds 
application in form of an actual integration of biological 
systems into production systems (e.g. substitution of chemical 
by biological processes). Practical examples of this mode are 
the functionalization of polymers, the recovery of bioplastics 
from CO2 waste streams and the use of microorganisms for the 
recovery of rare earths from magnets. Not least, the 
comprehensive interaction of technical, informational and 
biological systems leads to the creation of completely new, self-
sufficient production technologies and structures, so-called 
biointelligent manufacturing systems. A manufacturing system 
is considered to be biointelligent, if there is at least one 
biological component in the product or production process. In 
addition a real time exchange of information between biological 
and technical components is required, which in turn demands 
for online process control. 

The vision drawn here by Miehe et al. is based on a pilot 
survey funded by the German government that included 
interviews with 123 highly renowned national and international 
experts as well as workshops with over 200 participants of 
various industries and backgrounds. Among others, the survey 
identified key technologies and future fields of action in order 
to shape the transformation. Artificial intelligence, 3D 
bioprinting, gene sequencing and editing, adaptive bioreactors 
and biorefineries as well as biosensors and –actuators were 
identified as the most promising technologies. With an 
increasing implementation of biological in technical systems, 
the demand for an appropriate design of biology-technology-
interfaces (BTIs) rises. Consequently, the survey identified the 
realization of bidirectional, real-time informative connections 
between technical and biological systems as one of 10 decisive 

fields of future research in order to enable biointelligent value 
creation. Although the significance of adaptive biology-
technology interfaces (BTIs) for the biological transformation 
remains unquestioned, its fundamental design currently depicts 
a gap in research. Hence, this paper discusses three basic 
questions of BTIs:  

 
1. What types of BTIs exist?  
2. What are fundamental aspects of a control oriented 

model?  
3. What are areas of future research?  
 
Therefore, the paper is to be understood as a first approach 

towards this highly substantial field of research in order to set 
the basis for further works in different application fields of 
BTIs. The results presented below are the outcome of a lose six 
months discussion of a highly interdisciplinary team of 
researchers including biologists, biotechnologists, industrial, 
process and control engineers as well as sociologists. The 
authors expect that the field of BTI will be of increasing 
importance to future research in the CIRP community, not only 
in the field of biomanufacturing and process engineering but in 
discrete manufacturing.  

2. Basics and examples of BTIs  

Although the interpretation of biological communication as 
sign processes and communication patterns dates back to the 
1980s [8], basic scientific research in the field of BTI was first 
conducted extensively in the early 2000s within the German 
SFB 563 (bioorganic functional systems on solids) by the Max-
Planck-Society [9]. Thereby, solid progress was made on the 
interface between living biological systems (cells or cell 
models) and anorganic solid state substrates (metals, 
semiconductors, insulators) aiming to enable a bio-
functionalisation of solid surfaces, a detailed spectroscopic 
characterization of interactions between biosystems and their 
substrates, as well as an experimental realization of 
bioelectronic hybrid systems, e.g. living cells communicating 
with ‘intelligent’ substrates. From a basic research perspective 
the feasibility of various interface types between biology and 
solid state physics is thus verified. In contrast, a transfer of 
existing findings to applicable solutions for industries is 
required in order to realize biointelligent manufacturing 
systems, e.g. autonomous bioreactor-bioprinter systems. This 
especially applies to the creation of a real time exchange of 
information as well as appropriate online process control 
models. 

Generally, the two most significant differentiation 
parameter of BTIs are type and level of interaction. For the 
former, various physical principles, e.g. electrical, chemical, 
mechanical or optical, may be used in order to achieve an 
interaction of technical components with cellular systems. 
Then again, the interaction with a technical system can be 
implemented with entire cells, organelles, individual 
biomolecules or even organisms (including humans). The 
exchange of information at the interface between biological 
and technical systems can be subdivided into sensory and 
actuarial components, whereby a control by means of actuators 
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is possible both from the technical to the biological side and 
vice versa. The sensor system includes (physical, optical or 
spectrometric) metrological methods for recording state 
variables of biological or technical systems. Table 1 
summarizes examples of BTIs at different levels and types of 
interaction. 

 
Table 1. Examples of BTIs at different levels and types of interaction. 
 

 Level of interaction 

Type of 

interaction 
Organism Cell 

Electrical Human-Brain-
Interfaces Neuron chips 

Chemical Bacterial cells in 
hydrogel Protein receptors 

Optical Light control, 
emotion detection 

Optogenetics, 
photoreceptors 

Mechanical Exosceleton 
feedback 

Atom Force 
Microscopy  

 
A common example of the utilization of biological cells via 

electrical signals are neuron chips or multi-electrode arrays, 
which connect neuronal signals with electrical circuits. 
Existing chips are used for both in vitro and in vivo applications 
[10, 11]. Due to the far greater sensitivity, sensor applications 
with neuron cells as the data-receiving component bear great 
potential for future application as they are likely to create 
completely new functions, e.g. smelling [6, 7, 12, 13]. Another 
example is the coupling of technical and biological systems via 
optical signals, i.e. optogenetics. Here, cells are specifically 
equipped with photoreceptors, so that cellular responses can be 
controlled and read out via light of different wavelengths [14-
16]. While current examples of BTIs are developed in order to 
control biological systems via technology, a biointelligent 
manufacturing system requires a bidirectional real time 
information exchange between the systems in order involve the 
biological into the manufacturing system without harming its 
vitality. As a rare example of fully controlled systems that have 
been implemented in technical prototypes bioreactors equipped 
with integrated on-line sensors allowing constant control can 
be mentioned [17]. A multitude of research gaps remain in 
order to achieve applicability in manufacturing systems 
ranging across the development of basic control engineering 
models and regulatory principles [17], specific biological 
actuators, e.g. bacteriophages, as well as appropriate sensor 
technologies and integration, e.g. for online measurement. 
Other sensor related fields of research include the development 
of multivariate, bio-based, non-invasive and non-consuming 
sensor techniques and principles as well as softsensors with 
underlying process models and new concepts for biosensors 
[18, 19]. Even in the biological part of a BTI further research 
is needed. Especially the fields of synthetic biology and 
systems biology offer great potential for integrating biological 
molecules and components in technical systems in a targeted 
manner, to reduce their complexity and to make them 
manageable through a selection of functional components 
(semisynthetic systems) [20]. 

3. Theoretical basics at interdisciplinary level 

In order to develop a generic model for bi-directional 
communication between different types of systems, a review of 
fundamental system theory approaches in life sciences, 
sociology and control engineering is required. Generic models 
of interactions between systems and their environment have a 
long history and are described by different authors [20-24]. 
How different systems (here: biological and technical) behave 
in close coupling has, however, received little attention in 
literature. In existing theory, technology has not been 
considered as autopoietic [22], which is likely to change in the 
era of machine learning and artificial intelligence. Biological, 
technical, social and mental systems are distinguished in 
general system theory in that they produce and reproduce 
themselves materially (biologically), follow algorithms 
(technically), operate meaningfully (socially) and think 
(mentally) [22]. In order to combine living and artificial 
systems in form of an intelligent interaction an intermediary 
function is needed. Biological systems are autopoietic, self-
regulative, adaptive and variable – they follow the principle of 
‘actio et reactio’ to keep the biological balance. In contrast, 
technical systems are static and allopoietic, their process 
regulation is developed by humans [22]. Neither the biological 
nor the technical system can act across logical contexts from 
within itself, observing their own behaviour in distinction to 
their environment. Intelligent interface behaviour, considering 
the interlinking of different contexts and logics, is solely 
observed in humans, yet. The adaptivity of humans is a quality 
that can be interpreted as a self-regulative network interaction 
on the interface of different systemic logics, namely biological, 
mental and social systems, each operating with reference to 
their environment [25]. The main task in systems design across 
biological and technical systems, is thus to equip the technical 
system with a BTI that provides correcting variables to support 
the technical system in developing towards self-regulation 
(adaptivity), just as the biological system does. To create 
appropriate conditions for the biological system on the other 
hand, the BTI must be able to recognize the outer and inner 
state of the highly variable biological system in the first place. 
To achieve a self-optimizing network interaction between both 
systems, they need the ability to act in relation to the (cross-) 
contextual sense of the industrial environment, too. Basic 
elements of BTIs thus are adaptive process control, sensors, 
actuators and network-based modelling of dynamical and 
highly variable systems.  

4. Basics of control oriented modeling of BTI 

Current approaches to the regulation of biological processes 
are non-linear model predictive regulations that are primarily 
applied in process engineering in order to identify optimal 
control values [26-28]. These models are, however, not 
adaptive. This function is, however, required, e.g. in order to 
advance bioreactor systems via cell-responsive automation or 
to converge single technical solutions (bioreactors, 3D printers, 
biosensors and actuators, self-learning algorithms) into Smart 
Biomanufacturing Devices (SBDs). These completely new 
decentralized, autonomous and organically adaptive 



	 Robert Miehe  et al. / Procedia CIRP 81 (2019) 63–68� 65
2 Robert Miehe et al./ Procedia CIRP 00 (2019) 000–000 

of biological and bioinspired principles, materials, functions, 
structures and resources for intelligent and sustainable 
manufacturing technologies and systems with the aim of 
achieving their full potential” [5]. Miehe et al. characterize the 
term biological transformation as the systematic application of 
the knowledge about biological processes leading to an 
increasing integration of production, information and 
biotechnology [6, 7]. Thereby, three development modes are 
differed (see figure 1) [6, 7]. 

 
Fig. 1. Development modes of biological transformation according to 

Miehe et al. [6]. 
 
While the inspiration allows a translation of evolutionary 

biological phenomena into solely technical value creation 
systems (e.g. lightweight construction), functionalities (e.g. 
biomechanics), organizational solutions (e.g. swarm 
intelligence, neural networks), the knowledge of biology finds 
application in form of an actual integration of biological 
systems into production systems (e.g. substitution of chemical 
by biological processes). Practical examples of this mode are 
the functionalization of polymers, the recovery of bioplastics 
from CO2 waste streams and the use of microorganisms for the 
recovery of rare earths from magnets. Not least, the 
comprehensive interaction of technical, informational and 
biological systems leads to the creation of completely new, self-
sufficient production technologies and structures, so-called 
biointelligent manufacturing systems. A manufacturing system 
is considered to be biointelligent, if there is at least one 
biological component in the product or production process. In 
addition a real time exchange of information between biological 
and technical components is required, which in turn demands 
for online process control. 

The vision drawn here by Miehe et al. is based on a pilot 
survey funded by the German government that included 
interviews with 123 highly renowned national and international 
experts as well as workshops with over 200 participants of 
various industries and backgrounds. Among others, the survey 
identified key technologies and future fields of action in order 
to shape the transformation. Artificial intelligence, 3D 
bioprinting, gene sequencing and editing, adaptive bioreactors 
and biorefineries as well as biosensors and –actuators were 
identified as the most promising technologies. With an 
increasing implementation of biological in technical systems, 
the demand for an appropriate design of biology-technology-
interfaces (BTIs) rises. Consequently, the survey identified the 
realization of bidirectional, real-time informative connections 
between technical and biological systems as one of 10 decisive 

fields of future research in order to enable biointelligent value 
creation. Although the significance of adaptive biology-
technology interfaces (BTIs) for the biological transformation 
remains unquestioned, its fundamental design currently depicts 
a gap in research. Hence, this paper discusses three basic 
questions of BTIs:  

 
1. What types of BTIs exist?  
2. What are fundamental aspects of a control oriented 

model?  
3. What are areas of future research?  
 
Therefore, the paper is to be understood as a first approach 

towards this highly substantial field of research in order to set 
the basis for further works in different application fields of 
BTIs. The results presented below are the outcome of a lose six 
months discussion of a highly interdisciplinary team of 
researchers including biologists, biotechnologists, industrial, 
process and control engineers as well as sociologists. The 
authors expect that the field of BTI will be of increasing 
importance to future research in the CIRP community, not only 
in the field of biomanufacturing and process engineering but in 
discrete manufacturing.  

2. Basics and examples of BTIs  

Although the interpretation of biological communication as 
sign processes and communication patterns dates back to the 
1980s [8], basic scientific research in the field of BTI was first 
conducted extensively in the early 2000s within the German 
SFB 563 (bioorganic functional systems on solids) by the Max-
Planck-Society [9]. Thereby, solid progress was made on the 
interface between living biological systems (cells or cell 
models) and anorganic solid state substrates (metals, 
semiconductors, insulators) aiming to enable a bio-
functionalisation of solid surfaces, a detailed spectroscopic 
characterization of interactions between biosystems and their 
substrates, as well as an experimental realization of 
bioelectronic hybrid systems, e.g. living cells communicating 
with ‘intelligent’ substrates. From a basic research perspective 
the feasibility of various interface types between biology and 
solid state physics is thus verified. In contrast, a transfer of 
existing findings to applicable solutions for industries is 
required in order to realize biointelligent manufacturing 
systems, e.g. autonomous bioreactor-bioprinter systems. This 
especially applies to the creation of a real time exchange of 
information as well as appropriate online process control 
models. 

Generally, the two most significant differentiation 
parameter of BTIs are type and level of interaction. For the 
former, various physical principles, e.g. electrical, chemical, 
mechanical or optical, may be used in order to achieve an 
interaction of technical components with cellular systems. 
Then again, the interaction with a technical system can be 
implemented with entire cells, organelles, individual 
biomolecules or even organisms (including humans). The 
exchange of information at the interface between biological 
and technical systems can be subdivided into sensory and 
actuarial components, whereby a control by means of actuators 

 Robert Miehe et al./ Procedia CIRP 00 (2019) 000–000  3 

is possible both from the technical to the biological side and 
vice versa. The sensor system includes (physical, optical or 
spectrometric) metrological methods for recording state 
variables of biological or technical systems. Table 1 
summarizes examples of BTIs at different levels and types of 
interaction. 

 
Table 1. Examples of BTIs at different levels and types of interaction. 
 

 Level of interaction 

Type of 

interaction 
Organism Cell 

Electrical Human-Brain-
Interfaces Neuron chips 

Chemical Bacterial cells in 
hydrogel Protein receptors 

Optical Light control, 
emotion detection 

Optogenetics, 
photoreceptors 

Mechanical Exosceleton 
feedback 

Atom Force 
Microscopy  

 
A common example of the utilization of biological cells via 

electrical signals are neuron chips or multi-electrode arrays, 
which connect neuronal signals with electrical circuits. 
Existing chips are used for both in vitro and in vivo applications 
[10, 11]. Due to the far greater sensitivity, sensor applications 
with neuron cells as the data-receiving component bear great 
potential for future application as they are likely to create 
completely new functions, e.g. smelling [6, 7, 12, 13]. Another 
example is the coupling of technical and biological systems via 
optical signals, i.e. optogenetics. Here, cells are specifically 
equipped with photoreceptors, so that cellular responses can be 
controlled and read out via light of different wavelengths [14-
16]. While current examples of BTIs are developed in order to 
control biological systems via technology, a biointelligent 
manufacturing system requires a bidirectional real time 
information exchange between the systems in order involve the 
biological into the manufacturing system without harming its 
vitality. As a rare example of fully controlled systems that have 
been implemented in technical prototypes bioreactors equipped 
with integrated on-line sensors allowing constant control can 
be mentioned [17]. A multitude of research gaps remain in 
order to achieve applicability in manufacturing systems 
ranging across the development of basic control engineering 
models and regulatory principles [17], specific biological 
actuators, e.g. bacteriophages, as well as appropriate sensor 
technologies and integration, e.g. for online measurement. 
Other sensor related fields of research include the development 
of multivariate, bio-based, non-invasive and non-consuming 
sensor techniques and principles as well as softsensors with 
underlying process models and new concepts for biosensors 
[18, 19]. Even in the biological part of a BTI further research 
is needed. Especially the fields of synthetic biology and 
systems biology offer great potential for integrating biological 
molecules and components in technical systems in a targeted 
manner, to reduce their complexity and to make them 
manageable through a selection of functional components 
(semisynthetic systems) [20]. 

3. Theoretical basics at interdisciplinary level 

In order to develop a generic model for bi-directional 
communication between different types of systems, a review of 
fundamental system theory approaches in life sciences, 
sociology and control engineering is required. Generic models 
of interactions between systems and their environment have a 
long history and are described by different authors [20-24]. 
How different systems (here: biological and technical) behave 
in close coupling has, however, received little attention in 
literature. In existing theory, technology has not been 
considered as autopoietic [22], which is likely to change in the 
era of machine learning and artificial intelligence. Biological, 
technical, social and mental systems are distinguished in 
general system theory in that they produce and reproduce 
themselves materially (biologically), follow algorithms 
(technically), operate meaningfully (socially) and think 
(mentally) [22]. In order to combine living and artificial 
systems in form of an intelligent interaction an intermediary 
function is needed. Biological systems are autopoietic, self-
regulative, adaptive and variable – they follow the principle of 
‘actio et reactio’ to keep the biological balance. In contrast, 
technical systems are static and allopoietic, their process 
regulation is developed by humans [22]. Neither the biological 
nor the technical system can act across logical contexts from 
within itself, observing their own behaviour in distinction to 
their environment. Intelligent interface behaviour, considering 
the interlinking of different contexts and logics, is solely 
observed in humans, yet. The adaptivity of humans is a quality 
that can be interpreted as a self-regulative network interaction 
on the interface of different systemic logics, namely biological, 
mental and social systems, each operating with reference to 
their environment [25]. The main task in systems design across 
biological and technical systems, is thus to equip the technical 
system with a BTI that provides correcting variables to support 
the technical system in developing towards self-regulation 
(adaptivity), just as the biological system does. To create 
appropriate conditions for the biological system on the other 
hand, the BTI must be able to recognize the outer and inner 
state of the highly variable biological system in the first place. 
To achieve a self-optimizing network interaction between both 
systems, they need the ability to act in relation to the (cross-) 
contextual sense of the industrial environment, too. Basic 
elements of BTIs thus are adaptive process control, sensors, 
actuators and network-based modelling of dynamical and 
highly variable systems.  

4. Basics of control oriented modeling of BTI 

Current approaches to the regulation of biological processes 
are non-linear model predictive regulations that are primarily 
applied in process engineering in order to identify optimal 
control values [26-28]. These models are, however, not 
adaptive. This function is, however, required, e.g. in order to 
advance bioreactor systems via cell-responsive automation or 
to converge single technical solutions (bioreactors, 3D printers, 
biosensors and actuators, self-learning algorithms) into Smart 
Biomanufacturing Devices (SBDs). These completely new 
decentralized, autonomous and organically adaptive 
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manufacturing technologies are expected to enable distributed, 
personalized and scalable value creation.  

Adaptive process control is thus indispensable for the direct 
coupling of biological and technical systems, since the 
behavior of biological systems can only be irritated from the 
outside, but not clearly predicted. Limited reproducibility and 
variability of results as well as the sole availability of indirect 
measurements pose additional difficulties of combining the two 
systems [31]. Today proper sensors for direct measurement 
simply do not exist. Furthermore, the analytical connections 
within biological systems have not yet been sufficiently 
explored nor can they be modeled appropriately. One way of 
predicting the behavior of living systems thus is through pattern 
recognition based on the systems structure, an approach well-
known from the teaching of chaotic systems. In this context, 
trainable soft sensors represent a promising instrument as they 
are able to learn the recognition of the invisible inner state of a 
biological system through data from existing sensors, e.g. 
spatially resolved spectroscopy for material and condition 
monitoring [30].  

Figure 2 illustrates an adaptive process control model 
between biological and technical systems in form of a BTI. The 
biological system could be an algae, producing different types 
of protein. Its proportion depends on the nutritional status and 
light irradiation. To achieve the production of a specific 
proportion of different protein, the corresponding supply of 
temperature, light and nutrition must be triggered via intelligent 
control on the basis of trained soft sensors or 2,5D-
measurements. By the help of spectroscopic sensors the 
reaction of the algae is detected and possible nutrient 
deficiency could be stated. The BTI derives information from 
sensor data, transforms it into digital signals in order to control 
the technical system, which either provides the necessary 
inputs for controlling the biological systems or can use the 
information for parallel working processes. For the imaging of 

the dynamical variability of the biological system statistical 
modelling, known as “reservoir computing” [31, 32] and deep 
learning algorithms [33, 34] are downstreamed of the 
biochemical state recognition. The physical-mathematical 
models enable sensor simulation. On the basis of rugged and 
reliable state-descriptive models of biological objects, 
synthetic sensor data can be generated. Impinging the 
biological objects with surface defects, the availability of 
synthetic sensor data sets could be scaled to an unlimited 
amount. The specific challenge of biological objects is their 
optical correlation with light to visualize defects. With different 
methods of 2,5D-measurement a 3D-point-cloud can be 
received, which describes geometric surface characteristics of 
the biological object [35]. Through continuous feedback loops, 
production processes are maintained in optimal condition for 
the biological process by adapting their technical code 
expression. They do that by extending their range of biological 
behavior recognition and also by expanding their control 
capabilities. This demonstrates the biggest challenge for 
engineering science, the development of adaptivity in 
technology. The adaptability of biological systems generally 
serves to maintain the balance between necessary flexibility 
and stability ("edge of chaos"). For its transfer to technological 
systems, the soft sensor needs to get extended by self-learning 
ability in a polycontextural environment, driven by the logics 
of biology, technology and information to set the functionality 
of self-regulative balance in technical systems. Sensors, 
actuators, algorithms and a network-based modelling form the 
basis for the realization of a digital image for a biointelligent 
value creation system.  

5. Summary and outlook 

Due to digitization, demographic change and a growing 
demand for sustainability, manufacturing companies are forced 

Fig. 2. General control oriented BTI model [own graphic]. 
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to evolve their processes and technologies. The systematic 
application of the knowledge about biological processes, the 
so-called biological transformation, is viewed as a promising 
technological leap that will lead to an increasing integration of 
production, information and biotechnology. Whereas today’s 
products are produced in complex value chains shipping 
resources and goods around the globe, the biological 
transformation will enable decentralized, autonomous, 
biointelligent value creation. Decisive for this novel form of 
manufacturing is the realization of appropriate bidirectional, 
real-time, informative connections between technical and 
biological systems.  

In this paper, we thus presented fundamental elements of 
BTI engineering. Therefore, we briefly outlined conceptual 
basics, discussed the main features of BTI in terms of function, 
type and level of interaction based on existing literature and 
introduced an interdisciplinary theoretical model for 
communication and process control across systems. Several 
research fields, however, remain in order to extensively cross-
link biological and technical manufacturing systems. Missing 
elements are in particular suitable sensors, actuators, 
algorithms and models for digital images of the biological 
system as well as their information-regulated interaction. BTI´s 
are likely to evolve for disruptive innovations through the 
interactions with biological elements and represent a basis for 
various industrial applications. Among others a closer 
cooperation between information and control engineering, 
biotechnology and manufacturing technology (e.g. robotics, 
microsystems technology, additive manufacturing) is required. 
As a limitation of the results it remains to be mentioned that in 
the future field of the development of fully interactive, 
bidirectional, real-time BTI not all developments are 
foreseeable, why the models presented here were kept as 
general as possible. Although major advances have already 
been made in biotechnology and information technology, basic 
research is necessary to make the vision a reality. 
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manufacturing technologies are expected to enable distributed, 
personalized and scalable value creation.  

Adaptive process control is thus indispensable for the direct 
coupling of biological and technical systems, since the 
behavior of biological systems can only be irritated from the 
outside, but not clearly predicted. Limited reproducibility and 
variability of results as well as the sole availability of indirect 
measurements pose additional difficulties of combining the two 
systems [31]. Today proper sensors for direct measurement 
simply do not exist. Furthermore, the analytical connections 
within biological systems have not yet been sufficiently 
explored nor can they be modeled appropriately. One way of 
predicting the behavior of living systems thus is through pattern 
recognition based on the systems structure, an approach well-
known from the teaching of chaotic systems. In this context, 
trainable soft sensors represent a promising instrument as they 
are able to learn the recognition of the invisible inner state of a 
biological system through data from existing sensors, e.g. 
spatially resolved spectroscopy for material and condition 
monitoring [30].  

Figure 2 illustrates an adaptive process control model 
between biological and technical systems in form of a BTI. The 
biological system could be an algae, producing different types 
of protein. Its proportion depends on the nutritional status and 
light irradiation. To achieve the production of a specific 
proportion of different protein, the corresponding supply of 
temperature, light and nutrition must be triggered via intelligent 
control on the basis of trained soft sensors or 2,5D-
measurements. By the help of spectroscopic sensors the 
reaction of the algae is detected and possible nutrient 
deficiency could be stated. The BTI derives information from 
sensor data, transforms it into digital signals in order to control 
the technical system, which either provides the necessary 
inputs for controlling the biological systems or can use the 
information for parallel working processes. For the imaging of 

the dynamical variability of the biological system statistical 
modelling, known as “reservoir computing” [31, 32] and deep 
learning algorithms [33, 34] are downstreamed of the 
biochemical state recognition. The physical-mathematical 
models enable sensor simulation. On the basis of rugged and 
reliable state-descriptive models of biological objects, 
synthetic sensor data can be generated. Impinging the 
biological objects with surface defects, the availability of 
synthetic sensor data sets could be scaled to an unlimited 
amount. The specific challenge of biological objects is their 
optical correlation with light to visualize defects. With different 
methods of 2,5D-measurement a 3D-point-cloud can be 
received, which describes geometric surface characteristics of 
the biological object [35]. Through continuous feedback loops, 
production processes are maintained in optimal condition for 
the biological process by adapting their technical code 
expression. They do that by extending their range of biological 
behavior recognition and also by expanding their control 
capabilities. This demonstrates the biggest challenge for 
engineering science, the development of adaptivity in 
technology. The adaptability of biological systems generally 
serves to maintain the balance between necessary flexibility 
and stability ("edge of chaos"). For its transfer to technological 
systems, the soft sensor needs to get extended by self-learning 
ability in a polycontextural environment, driven by the logics 
of biology, technology and information to set the functionality 
of self-regulative balance in technical systems. Sensors, 
actuators, algorithms and a network-based modelling form the 
basis for the realization of a digital image for a biointelligent 
value creation system.  

5. Summary and outlook 

Due to digitization, demographic change and a growing 
demand for sustainability, manufacturing companies are forced 

Fig. 2. General control oriented BTI model [own graphic]. 
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to evolve their processes and technologies. The systematic 
application of the knowledge about biological processes, the 
so-called biological transformation, is viewed as a promising 
technological leap that will lead to an increasing integration of 
production, information and biotechnology. Whereas today’s 
products are produced in complex value chains shipping 
resources and goods around the globe, the biological 
transformation will enable decentralized, autonomous, 
biointelligent value creation. Decisive for this novel form of 
manufacturing is the realization of appropriate bidirectional, 
real-time, informative connections between technical and 
biological systems.  

In this paper, we thus presented fundamental elements of 
BTI engineering. Therefore, we briefly outlined conceptual 
basics, discussed the main features of BTI in terms of function, 
type and level of interaction based on existing literature and 
introduced an interdisciplinary theoretical model for 
communication and process control across systems. Several 
research fields, however, remain in order to extensively cross-
link biological and technical manufacturing systems. Missing 
elements are in particular suitable sensors, actuators, 
algorithms and models for digital images of the biological 
system as well as their information-regulated interaction. BTI´s 
are likely to evolve for disruptive innovations through the 
interactions with biological elements and represent a basis for 
various industrial applications. Among others a closer 
cooperation between information and control engineering, 
biotechnology and manufacturing technology (e.g. robotics, 
microsystems technology, additive manufacturing) is required. 
As a limitation of the results it remains to be mentioned that in 
the future field of the development of fully interactive, 
bidirectional, real-time BTI not all developments are 
foreseeable, why the models presented here were kept as 
general as possible. Although major advances have already 
been made in biotechnology and information technology, basic 
research is necessary to make the vision a reality. 
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