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Abstract: Deconvolution of images taken through atmospheric turbulence often requires 

regularization in order to prevent the restoration algorithm over-fitting the noisy observation. For 

this purpose many object priors have been proposed but their utility might be limited to one class 

of real objects. Optical effects of atmospheric turbulence are well understood and therefore priors 

on the point-spread function form a viable alternative. We show their usefulness. 
OCIS codes: (110.0115) Imaging through turbulent media, (100.1455) Blind deconvolution 

 

1. Introduction 

Solutions to recovery of high-resolution images when observing through atmospheric turbulence usually fall into the 

software (“post-processing”) or the hardware (adaptive optics, interferometry) category or the combination of both. 

Even with very expensive adaptive optics (AO) systems it is necessary to use deconvolution (image reconstruction) 

to remove image blurring completely [1,2]. 

Successful restoration of images degraded by atmospheric turbulence was first achieved using the co-called 

speckle imaging techniques [3]. Speckle imaging works because average short-exposure power spectrum has non-

negligible spectral content up to the telescope’s diffraction limit D/λ [4]. On the other hand, for long exposures 

average optical transfer function (OTF) quickly drops to values below the noise limit above the cut-off r0/λ. No 

information can be recovered from the part of the spectrum where signal-to-noise ratio (SNR) falls below unity. It is 

this SNR cutoff that actually determines available resolution, with or without deconvolution, and the SNR cutoff is 

nearly always short of the diffraction cutoff [5]. Therefore, non-regularized deconvolution of long-exposure images, 

taken without AO, rarely results in reliable amplification of the high-frequency content. 

Multi-frame blind deconvolution (MFBD) [6-8] is an image reconstruction method relying on the availability of 

several images of an object. In addition, many of the MFBD algorithms rely on short exposures for the reason stated 

above. The multiplicity of image frames acts as an implied constraint because the object is common to every image, 

while noise and turbulence fluctuations vary randomly between frames [5]. Even with this advantage, MFBD can 

get easily trapped in local minima [9]. We are studying approaches to alleviating this problem. 

2. Motivation 

Regularization is the most popular approach to balancing resolution enhancement and amplification of noise. We 

include statistical prior information through the maximum a posteriori (MAP) approach. There, one finds estimates 

for the object o and the PSFs h which jointly maximize the expression: 
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where i is the data. Historically, most efforts were directed towards finding useful expressions for the prior 

probability of the object, p(o). Since actual probability density function (PDF) of the object is in general not known, 

solutions in the form of functions with desirable mathematical properties (e.g. noise suppression, edge enhancement) 

are often used. As these ad hoc formulas are not real PDFs, regularization parameters must be used to balance their 

influence on the cost function in Equation (1). Often these parameters have to be chosen manually [1,8]. Apart from 

the problem of choosing the right value for them, the mere form of the prior (e.g. an object’s power spectral density) 

could be applicable only to a limited class of real objects, although the object’s power spectral density could be 

estimated from the images themselves [10]. In this paper we focus on PSF priors because for the problem treated 

here – imaging through Kolmogorov turbulence – they will be generally applicable to all objects being imaged. As 

such, they hold the promise of eliminating the need for regularization parameters. We are testing this hypothesis. 



3. Methodology 

For the data-fidelity term in Equation (1) we use the standard maximum-likelihood expression under the assumption 

of stationary Gaussian noise. For the PSF constraint we use image intensity statistics although constraints in other 

domains (pupil-plane or Fourier-frequency) are also possible [11]. Our goal is to make blind deconvolution 

automatic, or at least less user-dependent than it currently is (the “art” of deconvolution). Therefore we strived to 

find approaches capable of extracting the (average) PSF directly from the data. For this purpose we use the “Fourier 

contrast” method [12]. It should be noted that this average PSF is also required for computation of the prior 

probability of each of the PSFs, p(h), in our multi-frame algorithm. 

To model short-exposure PSF statistics use is made of the gamma PDF [4]: 
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where K is the number of speckle frames and X and Y are the numbers of pixels in x and y directions, M is the 

general integration parameter, a product of the spatial, spectral and temporal integration parameters [13]. This PDF 

was tested on simulated data with good results [14]. The PDFs were converted to negative log-likelihoods and, 

together with analytic gradients, inserted into a Variable Metric with Limited Memory (VMLM) optimizer [15]. 

An alternating approach is used to jointly calculate both the object and the PSFs. In this approach, the object is 

first estimated with the current set of PSFs. After ten VMLM iterations, the current estimate of the object is used to 

update each PSF in ten new VMLM iterations. This double process constitutes one iteration of the main loop. 

Subsequently, the updated set of PSFs is used to re-estimate the object thus starting a new loop. The algorithm is 

stopped after a user-specified number of iterations or after the object achieves some level of convergence. For the 

results shown in this paper, we forced convergence level to be very demanding and so the maximum number of 

iterations was always reached first.   

The VMLM object-loop can be replaced by the Wiener filter estimation [16]. This object estimate is then used to 

update the PSFs. This allows us to reduce the computation time because ten iterations of the non-linear VMLM 

process are substituted by only one Wiener-filter operation. Besides, it also allows us to introduce some prior 

knowledge about the object by means of its power spectral density [17]. 

4. Input data 

I-band (800-900 nm) observations of the bright single star HR2219 have been obtained with the 3.5 m telescope at 

the Starfire Optical Range with adaptive optics switched off (but with the tip/tilt system switched on). Thousand 

frames were recorded, with exposure time set to 10 ms. We obtained D/r0 = 34 (and so r0 = 10.5 cm) from the 

Fourier contrast method. Speckle images from HR2219 were used as PSFs. They were convolved with a schematic 

representation of the Hubble Space Telescope (Figure 1) which acted as the true object. The resulting images were 

corrupted with Gaussian noise of standard deviation equal to 1 count. This corresponds to signal-to-noise ratio of 

around one hundred in the blurred data (Figure 1). 

 

 

Fig. 1. Left: original object. Center: arbitrarily chosen short-exposure image. Right: long-exposure image. Images are represented in individual 

min-max scales. 
 

5. Results 

Figure 2 shows visually the benefit of using PSF prior in terms of delaying the onset of noise amplification. This 

figure is based on tests with 100 frames whereby the average PSF was computed directly from the data. To quantify 

reconstruction quality we used the peak signal-to-noise ratio (PSNR) [14]. When examining the plots in Figure 3 

(left) the reader should remember that PSNR is a logarithmic metric. Here, we supplied the algorithm with initial 



PSFs which were the original star images used to produce the input data but additionally blurred with Gaussian 

functions. 

 

Fig. 2. Top: results at various stages of the reconstruction process based on data-fidelity term alone. Bottom: results with the PSF prior. Images 

are represented in individual min-max scales. Initial PSF: Fried’s model based on r0 = 10.5 cm from the Fourier contrast method [12]. 

We also tested the susceptibility of the blind reconstruction process to initial (average) PSF guess. It turns out that 

deconvolution is actually very susceptible to the starting point (Figure 3, right). Actual blind deconvolution would 

have little chance of producing the desirable output. 

                                          

Fig. 3. Left: evolution of the PSNR metric for the tests with and without PSF prior, based on 25 frames. Initial PSF: three different blurred 

versions of the real kernel used to create the dataset. Right: reconstruction results at 50th iteration when the algorithm was supplied with 
mismatched PSF based on r0 = 5 cm (left panel) and r0 = 15 cm (middle panel). Also shown is the reconstruction obtained with correct r0 = 10.5 

cm (right panel). In all three cases initial PSF was a synthetic one based on the Fried’s model. 
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