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ABSTRACT

Counting people is a common topic in the area of visual surveillance and crowd analysis. While many image-based
solutions are designed to count only a few persons at the same time, like pedestrians entering a shop or watching
an advertisement, there is hardly any solution for counting large crowds of several hundred persons or more. We
addressed this problem previously by designing a semi-automatic system being able to count crowds consisting
of hundreds or thousands of people based on aerial images of demonstrations or similar events. This system
requires major user interaction to segment the image. Our principle aim is to reduce this manual interaction. To
achieve this, we propose a new and automatic system. Besides counting the people in large crowds, the system
yields the positions of people allowing a plausibility check by a human operator. In order to automatize the
people counting system, we use crowd density estimation. The determination of crowd density is based on several
features like edge intensity or spatial frequency. They indicate the density and discriminate between a crowd
and other image regions like buildings, bushes or trees. We compare the performance of our automatic system to
the previous semi-automatic system and to manual counting in images. By counting a test set of aerial images
showing large crowds containing up to 12,000 people, the performance gain of our new system will be measured.
By improving our previous system, we will increase the benefit of an image-based solution for counting people
in large crowds.
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1. INTRODUCTION

Large public events like demonstrations always raise the question for the number of participants. Answering
this question using traditional methods like tally counters leads to massive need of staff, inaccuracies and no
option to check the result for plausibility. An image-based solution offers the possibility to check the counting
result afterwards. In order to reduce the necessary staff, an automated solution is preferred. As output of an
automated counting system, the number of people as well as their positions are required in order to be able to
check the result for plausibility. We previously designed a semi-automatic system meeting these requirements1 .
However, major user interaction is included to generate a foreground segmentation. The main concept of this
contribution is to use the crowd density for counting and localizing the persons in the crowd in order to avoid
the manual segmentation.

Many existing image-based methods either count persons or estimate the density for image areas. Junior et
al.2 give a good summary of counting and density estimation approaches for crowds. They distinguish three
categories: object-, pixel- and texture-based approaches. Object-based ones work with a person model and are
mainly used for counting people. A person model could either be for the whole body3,4 or just the head5,6 .
Pixel-based methods use special pixels like foreground7,8 , edge7,8 or corner pixels9 to draw conclusions about
the number of persons. Technically, the number of such pixels is determined and converted to the number of
people by a linear function or a pre-trained regression method. Density estimation techniques primarily use
texture-based approaches. Even though texture-based methods are sometimes used to estimate the number of
people10 , this category includes predominantly density estimation methods. Marana et al.11 systematically
tested several established methods from texture analysis for crowd density estimation purposes. Using the gray
level dependence matrix, straight line segments, the Fourier spectrum and the fractal dimension, similar results
for each method were reported. Rahmalan et al.12 got slightly improved results for illumination variant scenarios
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Figure 1. About 13,000 people taking part in a large demonstration in Stuttgart, Germany. Two images taken from a
helicopter. Courtesy of Polizeipraesidium Stuttgart†.

using Chebyshev moments. But both approaches just estimate the crowd density for the whole image. Local
density for larger crowds is estimated by Hinz13 using a Laws-ss-filter under the assumption that a known scene
model can be used to remove background patches like buildings. Combining density estimation and people
counting is quite a new approach in crowd analysis used by Lempitsky et al.14 . In this case a feature vector
based on the SIFT descriptor15 is used. A linear transformation maps the feature vector to a density. The
number of persons is then estimated as the integral over the density.

Despite the variety of existing approaches, none of them fully meets our requirements. While object-based
methods provide number and positions of people, they are rather limited with respect to the maximum crowd
size. They are principally designed for images with less than 20 people and rather good image resolution. Existing
texture-based density estimation techniques are good at basic crowd analysis. But they either do not estimate
the number of people at all, or if so, do not give the positions of people. Not being able to determine the positions
is also the problem with the pixel-based approaches.

We propose a novel system that gives the number and positions of people by using a density estimation. It is
especially designed to process images of large crowds containing at least several hundred persons as shown in
Fig. 1. We consider the same scenarios and challenges as in our previous semi-automatic system1 . Briefly, this
means single images with arbitrary crowd densities, differing person size and large numbers of people. Usually the
scene is outdoors and not known previously. We made the assumption for the input image to be an approximate
vertical view of the crowd ensuring a homogeneous person size of the crowd in the image.

2. SYSTEM DESIGN

Density estimationDensity estimation

Preprocessing Feature calculation Regression Counting

Figure 2. Steps in the counting system.

We use a system design with three major steps as shown in Fig. 2. Basically, it consists of a texture-based
density estimation step and an object-based step to count and localize the persons. We avoid the limitations

†http://org.polizei-bwl.de/ppstuttgart/PublishingImages/s21/Luftaufnahmen/DSC 8621.JPG
and http://org.polizei-bwl.de/ppstuttgart/PublishingImages/s21/Luftaufnahmen/DSC 8612.JPG
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Figure 3. (a) Input image, (b) high-pass filtered image Ihp and (c) high-pass feature fhp.

of object-based approaches in crowd size by using a simple person model. It detects the persons in the crowd
density map instead of the original image. Additionally, a preprocessing step at the beginning prepares the
input images. Preprocessing includes conversion to grayscale and person size normalization. As the person size
varies heavily from image to image we need to eliminate scale effects. To achieve this, we scale each image with
different factors for width and height according to the specific person size. After the preprocessing step, the
person size is fixed to a predefined size. We found a normalized person size of 16 × 16 pixel to be the best
trade-off between performance and computational effort. The preprocessed, normalized image In serves as input
image to the following steps.

3. DENSITY ESTIMATION

The main contribution of this work is the estimation of the crowd density. The basic idea is a feature-based
approach as it is used by Lempitsky et al.14 . Out of a set of local features, the crowd density is estimated for
each pixel by some regression method. Thus, for each pixel a set of features which indicates the density needs to
be determined. The challenges in finding useful features are on the one hand the discrimination between persons
and background and on the other hand the quantification of crowd density itself if persons are residing at the
relevant spot. As we said before, all calculations of features will be performed on the normalized input image.
However, for the sake of visibility and clarity, the aspect ratio of the example images in the shown figures is not
normalized.

3.1 Features

The first feature is based on the high-pass filtered image. Due to people’s different clothing, increasing crowd
density leads to a denser color pattern in the image. In contrast to background areas like streets or lawn, these
color patterns have a higher spatial frequency from a signal theoretic point of view. By applying a high-pass
filter on the normalized input image In we get:

Ihp = HP{In} . (1)

The filtered image Ihp mostly indicates edges as they induce high spatial frequencies (Fig. 3). But crowd density
should not be rated highest at the edge of a person, but at its center. To achieve this, we apply a low-pass filter
on the already filtered image Ihp. This leads to an appropriate feature fhp for each position x = (x, y)T in the
image (we indicate vectors with bold and scalar values with regular symbols):

fhp(x) = TP{Ihp}(x) . (2)

Fig. 3 shows the output of the several steps in the processing chain. The example scene includes a large variety
of difficulties our system has to cope with: structured background, stairs with persons on the left side, umbrellas,
bikes, chairs and variable crowd density. However, very inhomogeneous backgrounds are not distinguishable from
crowds with this feature.
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Figure 4. (a) 16 × 16 neighborhood of a pixel q with the four subareas. The upper right subarea shows the colors used to
indicate the different edge orientations. (b) Input image. (c) Colored illustration of the edge orientation feature fe. The
color/pattern indicates the edge orientation fes,1, the intensity indicates the strength fes,2.

Lempitsky et al.14 mainly use the SIFT descriptor15 for density estimation. The descriptor describes the neigh-
borhood Nq of a pixel q with a 128-dimensional vector. But using this many dimensions is disadvantageous in our
context, as the descriptor is designed for unique identification of image points. If not the unique identification of a
point is necessary, but just the determination of the crowd density, the high dimensionality does not make sense.
The reduction to 16 dimensions uses the following structure: the descriptor covers an area of a normalized person
with 16 × 16 pixels and is divided in 2 × 2 subareas. Each subarea contains 8 × 8 pixels and is analyzed for edge
orientations. Collecting the edge orientations and intensities in histograms hi, i = 1, ..., 4 using 4 orientation-
bins (horizontal, vertical and both diagonal directions) leads to 4 subareas × 4 orientations = 16 dimensions
(see Fig. 4a). The feature vector fe is based on the descriptor and contains the bin values of all 4 histograms
hi = (hi,1, hi,2, hi,3, hi,4)T :

fe =


h1,1
h1,2

...
h4,4

 . (3)

We use this edge orientation feature especially for discrimination between people and artificial background.
Buildings or streets lead to long and strong edges while crowds generate more randomly oriented edges. For
display purposes we use the simplification fes = (fes,1, fes,2)T of fe:

fes,1 = arg max
i
hall,i and fes,2 =

hall,fes,1∑
i

hall,i
, with hall =

4∑
i=1

hi . (4)

The simplification fes contains the main edge orientation fes,1 of the whole descriptor area and the relative
intensity fes,2 of this orientation. Fig. 4c shows that the feature distinguishes between the strong edges of the
umbrellas and the softer and more random ones in the crowd as expected.

Measures based on Fourier spectrum may serve as further feature. The spatial frequency has already proved to
be useful for estimating the person density11 . A denser crowd leads to a finer texture in the image. As a result,
the energy in the Fourier spectrum moves to higher frequencies. A spectrum analysis should particularly be able
to discriminate between a crowd and optically similar structures like trees or bushes. This discrimination is not
trivial at all, as both situations produce irregular statistical textures in the image (Fig. 5). Inspired by Marana et
al.11 two characteristics of the frequency spectrum are used: distribution over frequency ffreq and isotropy f iso.
In contrast to the approach from Marana et al., we need a local estimation for crowd density instead of a global
one for the whole image region. By windowing a 16 × 16 neighborhood Nq of each pixel q with w(r) = e−lr

2

, we
are able to perform a local Fourier analysis for each pixel. As we use a Gaussian function as window function
this leads to a Gabor transform of the whole image. The radius r of the window function denotes the distance of
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Figure 5. Selection of scenarios and their corresponding Fourier features: (a) uniform background, (b) roadside, (c) loose
crowd, (d) dense crowd and (e) dense bushes. (f)-(j) Windowed and grayscale regions, (k)-(o) Fourier spectrum, (p)-
(t) frequency feature ffreq and (u)-(y) isotropy feature f iso.
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Figure 6. (a) Input image and (b) colored illustration of the feature ffreq by the weighted mean µ. Warm/Bright colors
(red, yellow) denote low frequencies, cold/dark colors (cyan, blue) high frequencies.

a neighborhood pixel to the central pixel of the neighborhood, while l denotes a constant parameter regulating
the window intensity. After locally performing the Fourier transform F{Nq} on the windowed neighborhood Nq,
the magnitude spectrum Sq = |F{Nq}| is used as it contains the information about the periodical structures.
By transformation of the local spectrum to the polar coordinate system, the features ffreq and f iso result from
the projections:

Sq(r) =

π∫
0

Sq(r, ϕ)dϕ , Sq(ϕ) =

R∫
0

Sq(r, ϕ)dr , (5)

where R denotes the maximum radius. By division in n frequency and m orientation bins the k-th components
of the features are:

ffreq,k =

kRn∫
(k−1)Rn

Sq(r)dr , fiso,k =

k πm∫
(k−1) πm

Sq(ϕ)dϕ . (6)

We divided the frequency in n = 6 and the orientation in m = 4 bins. Fig. 5 shows examples for the features
in different scenarios. An illustration of ffreq for our example scene is shown in Fig. 6b. We used the weighted
mean µ of the bin indices for a colored representation:

µ =
1

n

n∑
k=1

ffreq,k · k . (7)

3.2 Regression

Based on the defined features we can generate a density map D, where D : Q → [0,∞) and Q is the set of all
image pixels. If no persons are around, the density is zero. Otherwise the value of D increases with the crowd
density. For specifying the ground truth density Dgt we use kernel density estimation. This method creates a
continuous density out of point annotations. Each person in the training set of images needs to be annotated
with its center point pi, then the density is given by

Dgt(x) =

nt∑
i=1

ϕ(x− pi) , (8)

where ϕ is a kernel function and nt the number of persons. We use a two-dimensional Gaussian function as
kernel function

ϕw,h(x) = Gw,h(x) =
1

2πσ(w)σ(h)
e
− 1

2

(
x2

σ(w)2
+ y2

σ(h)2

)
. (9)
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Figure 7. (a) Kernel function - two-dimensional Gaussian function, (b) original image, (c) ground truth density Dgt,
(d) high-pass feature fhp, (e) regression result Dreg - calculated for all pixels for illustration purposes and (f) final density
map D.

The size of the Gaussian function is given by σ(w) and σ(h), which depend on the person size s = (w, h)T in
the image. We used σ(l) = 3

5 l + 1
2 . The resulting ground truth density Dgt can be seen in Fig. 7c.

The ordinary solution to estimate D out of the features would be to put all of them into a combined feature
vector f̃ = (fThp,f

T
e ,f

T
freq,f

T
iso)

T and train a regression method with the help of the ground truth density.

Although this would work, there is a more efficient way to perform this task: by applying a threshold to the
high-pass feature, the remaining features need to be calculated only for a reduces number of positions. If we
compare fhp to the ground truth density Dgt, we see that they are very similar at positions with persons (Fig. 7c
and 7d). But as there are also further positions without persons where fhp shows values bigger than zero, we
can just use the assumption

fhp(x) ≤ Tfhp ⇒ Dgt(x) = 0 , (10)

where Tfhp denotes a threshold. By using the fast to calculate high-pass feature fhp and a threshold Tfhp , only
the positions in the image where fhp exceeds Tfhp need further inspection. This reduces the computational effort
for the more complex features and supports the training of the regression method, as irrelevant data does not
need to be considered. For estimating the density D, the threshold Tfhp is applied:

fhp(x) =

{
fhp(x) , if fhp(x) > Tfhp
0 , otherwise

. (11)

For all positions u ∈ U with
U =

{
u | fhp(u) 6= 0

}
, (12)

the further features fe,ffreq,f iso or a reasonable subset of them are combined to a feature vector f(u). Leaving
one feature out might be useful in the case of fe or f iso, as they both contain similar information. For regression
we use gradient boosted trees to get the density Dreg(u) (Fig. 7e). The final density D results the following way:

D(x) =

{
fhp(x) ·Dreg(x) , if x ∈ U
0 , otherwise

. (13)

A resulting density map D can be seen in Fig. 7f.

4. PEOPLE COUNTING

For counting and locating the people, we use a similar approach as in our previous system1 . We changed the
rectangular person model to the Gaussian model used for ground truth generation in the section before. For the
iterative subtraction of the person model P = Gw,h(x) from the density D we just need a measure MP (D,x0)
that indicates how well the model fits at a specific position x0 = (x0, y0)T . Defining the basic measure MP (D,x0)
as integral over the absolute difference between an adapted person model P and the density D has the advantage



(a) (b) (c) (d)

Figure 8. (a) Calculated density D, (b) detected persons based on density D (white circles), (c) illustration of the
66 counted person positions in the input image and (d) illustration of the manually annotated 72 persons.

of a certain tolerance towards errors in the density D:

MP (D,x0) =

x0+
w
2∫

x0−w
2

y0+
h
2∫

y0−h
2

|D(x)− lx0
· P (x− x0)| dxdy . (14)

The scaling factor lx0
is chosen in a way that the central value P (0) of the model is adjusted to the density D(x0):

lx0
=
D(x0)

P (0)
. (15)

Further T1 and T2 are two thresholds with T1 < lx0
< T2. If this condition is not met, the value MP (D,x0) is

not valid. The lower threshold avoids a best possible result if the density at x0 and in its neighborhood is 0. The
upper threshold avoids wrong person detections at positions with a dense crowd where multiple persons occlude
each other. Finally, the measure is defined as:

MP (D,x0) =

{
MP (D,x0) , if T1 < lx0 < T2
∞ , otherwise

. (16)

In this way MP (D,x0) measures the distance between P and D. The best accordance for P and D is determined
by:

xb = argmin
x0

MP (D,x0) . (17)

Using this approach leads to the counting result shown in Fig. 8 for our example scene.

5. RESULTS

We evaluate our system in two steps. First the performance of the density estimation and afterwards the counting
performance will be presented. The test data set contains 16 images, 14 of them are annotated with the person
positions. The number of people ranges from 2 to 12,000 in the images and most of them contain about one
hundred people.

5.1 Density estimation

The 14 annotated images consist of about 2 million pixel together, for which a density estimation is possible.
Some border pixels drop out as most features work with a 16 × 16 region that has to lie on the inside of the
image. A random set of one percent of the pixels is used for training, so that about 20,000 feature vectors are
available for training. All other feature vectors are used as test data. The quality of the estimated density is
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Figure 10. Counting difference d in dependency of the number of persons na in the image. Compared between manual
(boxes), semi-automatic counting (circles) and density-based counting (crosses).

measured by the Pearson’s correlation coefficient r between the ground truth density Dgt and the estimated
density D for all N test samples :

r =

N∑
i=1

(Dgt,i −Dgt)(Di −D)√
N∑
i=1

(Dgt,i −Dgt)2
N∑
i=1

(Di −D)2

. (18)

D and Dgt are the means of D and Dgt. Fig. 9 shows the results for different feature vectors and a comparison
of the ordinary regression to our proposed thresholding method based on the high-pass feature. Besides testing
each feature for itself, three different combinations of features are tested. In addition to the full feature vector
f1, we test leaving out each one of the orientation based features fe and f iso. The results show that leaving one
of them out does not have a major impact on the performance. Not using f iso even increases the performance
by a small amount. Furthermore, our proposed thresholding method reaches the performance of the ordinary
regression, and it is the preferred method as it reduces the computational effort by a large amount. Hence, we



Table 1. Mean computation times for the individual processing steps. Given as mean time to count one person.

Processing step Time per person in ms
ordinary regression thresholding method

Normalization 0,07 0,07
High-pass feature fhp 0,03 0,03
Edge orientation feature fe 5,47 2,90
Fourier features ffreq, f iso 28,62 14,98
Regression 5,23 2,88
Counting 15,08 15,08
Overall 54,49 35,94
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Figure 11. Effort per person in dependency of the number of persons na in the image. Compared between manual counting
(boxes), semi-automatic counting (circles) and density-based counting (crosses): (a) overall effort to = tu + tc, (b) user
effort tu and (c) computational effort tc.

use f2 = (fTe ,f
T
freq)

T as feature combination with the thresholding method for the further tests.

5.2 Counting

The counting performance is evaluated with respect to user effort, computational effort and accuracy. The system
is compared to our previous semi-automatic system and a manual counting of the people in each category. We
performed the same test scenarios as for our previous system, so that the results can be compared. For this test,
we use the whole dataset of 16 images. If we denote the actual number of people in the image as na and the
counted number as nc, the accuracy can be given as relative difference d:

d =
nc − na
na

· 100% . (19)

The algebraic sign indicates if the number of persons is over- (positive sign) or underestimated (negative sign).
Our proposed system reaches a mean absolute difference of 29 percent. The previous system achieved 24 percent,
while manual counting with 4 percent difference yields the best results. Fig. 10 shows the detailed distribution
over the test set. Although we observe a slight decrease in counting performance, our new system has the
advantage of heavily reduced user effort. Using the user effort tu and the computational effort tc, normalized
versions are defined:

t̄u =
tu
na

, t̄c =
tc
na

. (20)

The normalization with respect to the actual number of persons na allows to compare times between different
images. The time measurement results in Fig. 11 clearly show the reduced effort. The new system is considerably



faster for all images. Overall, an average reduction by 75 percent compared to the previous system can be
achieved. We have some remaining user effort as we account for manual person size determination in the
normalization step. Using camera calibration information, if available, would clearly eliminate this part.

The computational effort of our new system is distributed as shown in Table 1. Normalization and high-pass
feature hardly contribute to the entire effort. Most of the time is used for the Fourier-based features. Their
computation time can not be separated in a reasonable way as the Fourier transformation takes most of the
time and can be used for both. Using the threshold approach leads to half of the original effort in the feature
calculation steps.

6. CONCLUSION

By using a density estimation approach, we reached a considerable decrease in processing effort for counting and
locating people in crowds. Removing the manual segmentation step is the beneficial key to this solution. The
feature based method allows a local density estimation which implicitly contains a segmentation of the image.
This makes the previously manual segmentation step unnecessary. The usage of the person model for counting
has the benefit of extracting the positions of the people and not only the number. This makes it superior to
a simple integration over the density. The counting accuracy remains with 29 percent difference at almost the
same level as before, while we achieve a four times faster processing speed.

The modular system design enables further applications which use just the density estimation. It might be useful
to detect dangerous crowd densities and prevent damage to persons by enabling appropriate countermeasures.
An adaption to infrared images seems possible with a minor effort of retraining and possibly other composition
of the feature vector. Although new features might need to be designed to get useful results for different target
objects, the extension to other counting scenarios instead of persons in a crowd seems possible as well.
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