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energy level separation of carbon. While the Brenner hydrocarbon potential exhibits
several deficiencies in the description of amorphous hydrocarbon films, the extended
ABOP model comes closer to results of accurate nonorthogonal tight-binding cal-
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1 Introduction

Carbon, after H, He and O the most abundant element of the universe, ex-
hibits an outstanding flexibility in its bonding behavior. The ability to form
sp, sp2 and sp3 hybridized electronic states gives rise to a variety of different
phases which often show extraordinary properties. The hardness of diamond
and fullerene-derived materials [1], the superlubricity of graphite [2], the sta-
bility of fullerenes [3], the tensile strength of carbon nanotubes [4], or the
ultrasmoothness of diamond-like carbon films [5] are representative examples
of extreme material properties. Consequently, there is a strong scientific and
technological interest in the understanding of existing carbon and hydrocar-
bon based materials as well as in the prediction of novel phases and nanoscale
structural composites.

In general, material properties originate from the interplay of valence elec-
trons and ionic cores, and therefore a faithful theoretical description requires
a quantum-mechanical treatment of the electronic system as well as a classi-
cal atomistic treatment of the atomic nuclei. Present computational resources
in combination with an efficient mean-field treatment of the electronic many-
body problem (for instance using first-principles density functional theory [6,7]
or semi-empirical tight-binding methods [8–10]) allow for the investigation of
static structural and short-time dynamical properties of C systems consisting
of up to several thousand atoms. However, large unit cells, extended nanos-
tructures and long-time dynamical processes are still out of reach of these
powerful computational tools.

Traditionally, larger carbon systems have been treated with empirical inter-
atomic potentials avoiding the order(N3) bottleneck (N: number of electrons)
of the electronic-structure methods caused by the exact diagonalization of the
Schrödinger equation. In his pioneering work, Abell [11] introduced bond or-
der concepts into the description of interatomic forces. Tersoff [12] applied
and extended Abell’s formalism to the semi-empirical atomistic treatment of
pure carbon phases. Brenner [13] continued along this line by generalizing
Tersoff’s ansatz to develop the interatomic potential for the hydrocarbon sys-
tem. Although Abell-Tersoff-Brenner type potentials have been frequently and
successfully used in large-scale molecular dynamics simulations of C and C–H
systems, predictions of these methods should be interpreted with caution. The
mixture of theoretically justified concepts with ad hoc ansatz functions com-
bined with ambiguous fits to experimental quantities often results in a limited
transferability. Needless to say, that the aforementioned bonding flexibility of
carbon aggravates this problem even further.

Presumably it was the unease with the nonphysical functional forms and cum-
bersome parameter fitting, which inspired David Pettifor and his coworkers
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to break with the tradition of empirical concepts, and to develop the the-
ory of bond-order potentials (BOPs) [14] which can be applied for a rigorous
derivation of classical interatomic potentials. This was demonstrated during
the development of the so-called analytic bond-order potentials (ABOPs) for
the sp-valent systems [15–19], which are based on a well controlled chain of ap-
proximations starting from a given quantum-mechanical tight-binding Hamil-
tonian. In spite of the fact that the ABOP for the C–H system has been
developed and published several years ago [17–19], applications and critical
evaluations of this promising potential are still missing in the literature. The
present article intends to close this gap.

The paper is organized in the following way. First, the simulation of film
growth is posed as a practical problem and as an additional motivation for
the need of more accurate interatomic potentials in Section 2. Thereafter the
basic ABOP theory is reviewed in Section 3. This section also presents an
important extension of the σ bond order expression which accounts for the
non-negligible sp atomic energy level separation of carbon. In Section 4 we
evaluate the ABOP model for the hydrocarbon system and elucidate which
conditions have to be fulfilled in order to obtain results that are close to
those of the underlying orthogonal tight-binding model. In Section 5, first
applications of ABOP to realistic large-scale molecular-dynamics studies are
reported. The paper ends with a conclusion on the directions for the future
development of ABOPs.

2 Multiscale simulations of diamond-like carbon film growth

Diamond-like carbon (DLC), also known as tetrahedral amorphous carbon
(ta-C), is an amorphous carbon phase with a high fraction of sp3 bonds and a
density close to that of diamond [20]. DLC films have widespread applications
as protective coatings, for instance on magnetic and optical storage disks, op-
tical windows, bearings, and in biomedical as well as micro-electro-mechanical
systems. The combination of diamond-like properties and extreme smoothness
is the key factor for the technological importance of these films.

Recently, we succeeded to explain the extreme smoothness of ta-C coatings by
an atomistic/continuum multiscale model [5]. The deposition of carbon with
100 eV kinetic energy on an initially rough ta-C film (see Fig. 1) was simu-
lated employing the modified Brenner potential [21]. Surprisingly, the initial
roughness was quenched already after the impact of 4000 atoms (Fig. 1). We
showed that the observed smoothing occurred due to impact induced downhill
currents in the top layer of the sloped parts of the growing film and a conse-
quent erosion of hills into neighboring hollows. The strength of these currents
was calculated using independent molecular dynamics simulations and formed
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Fig. 1. Illustration of surface smoothing of a DLC film. The rough film in the
foreground (yellow atoms) was bombarded by 4000 carbon atoms (red) with 100
eV impact energy. The final film (red and blue atoms in the background) shows a
significant smoothing of the initial roughness.

the crucial input for a continuum-scale description of the film profile evolution.
The corresponding continuum model predicted a surface evolution which was
in excellent agreement with atomic force microscopy measurements from the
Cambridge DLC group (see Ref. [5]).

An application of empirical potentials in complex studies, such as the growth of
amorphous films, is unavoidable due to extensive lengthscales and timescales
involved. At the same time the complexity and variability of the underly-
ing processes (e.g. chemical reactions, stress relaxations, thermal treatments)
places extremely high demands on the quality of interatomic potentials which
have to remain accurate under equilibrium as well as non-equilibrium condi-
tions. Simulations of ta-C films represent an important example which reveals
the limited transferability of the classical potentials of Tersoff and Brenner.
For this material class, both potentials fail to describe the correct fraction of
sp3 hybridized atoms and its dependence on the density [22] which are cru-
cial material characteristics of DLC films. Jäger and Albe showed that it is
possible to improve results of the Brenner potential for higher densities by
simply increasing the interaction range of the potential [21]. Although this
approach might be justified from a practitioner’s point of view, in our opin-
ion it is unsatisfactory and even quite uncomfortable. In our studies of film
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smoothing, additional tight-binding simulations had to be performed to verify
the results of the modified Brenner potential. Such higher-level calculations
are very computational demanding and time consuming. Fortunately, a rough
agreement between the strength of the currents of both methods was observed
but even this conclusion cannot guarantee a general transferability of the mod-
ified scheme. It will become evident in the next sections that the reasonable
performance of the modified Brenner potential for the ta-C films is rather
fortuitous and related to the high density of the ta-C phase. When both orig-
inal and modified Brenner potentials are applied to studies of hydrogenated
amorphous carbon (a-C:H), both potentials show severe limitations and favor
graphitic structures for the characteristic densities observed in the growth ex-
periments. It is therefore highly desirable to have a more accurate interatomic
potential for the C and C–H system which could be applied safely and with-
out limitations in future growth studies of the technologically most important
hydrogenated DLC films.

3 Theory of ABOPs

The analytic bond-order potential for the hydrocarbon system has been de-
rived recently by Pettifor and Oleinik. The developments of the potential and
basic tests are presented in three subsequent papers [17–19]. The theory of
ABOPs has been extended to a general multicomponent sp-valent system in
Ref. [23]. This section reviews the basic physical foundations on which the
ABOPs are built, and provides the major steps which lead to analytic ex-
pressions for the bond order. For more details of the derivations the reader is
refered to the paper of Drautz et al. in this volume and original papers and
references therein.

3.1 The orthogonal tight-binding model

The derivation of ABOPs starts from the two-center, orthogonal tight-binding
(OTB) model which can be regarded as one of the simplest models that im-
plicitly contain the electronic structure [24]. An important advantage of the
OTB model is that due to its simplicity it also provides a clear insight into
the nature of bonding in terms of the chemical view of saturated and unsat-
urated atomic bonds. The model is thus an appropriate starting point for a
rigorous derivation of interatomic potentials which are based on the intuitive
concept of chemical bonds but at the same time have a sound physical root
in quantum-mechanical concepts of electronic states.

The relation between the OTB model and the Kohn-Sham formulation of
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the density functional theory of the electron gas [6,7] has been elaborated by
Sutton et al. [25], and by Foulkes and Haydock [26]. These authors have also
reformulated the classical TB band model into the TB bond model according
to which the total binding energy of a non-magnetic system is given as

EB = Erep + Eprom + Ebond. (1)

A more detailed discussion of this equation is given by Finnis in the intro-
ductory paper and in Ref. [27]. The first energy term accounts for the electro-
static repulsion of the ionic cores and the short-range repulsion of overlapping
orbitals due to Pauli’s principle. It is usually written as a sum of pairwise
interactions

Erep =
1

2

∑

i6=j

φij. (2)

The pairwise form of the repulsive term has no rigorous justification [27] and
it is used mainly for convenience. It has been shown [8,28,29] that a more
complicated form of the repulsive potential including many-body interactions
can lead to a more realistic and transferable model.

The second term in Eq. (1) is also repulsive and represents the penalty of pro-
moting a certain amount of electrons into higher-energy orbitals when atoms
bond together. In the case of the hydrocarbon system, this promotion energy
reflects the change of the hybridization state of the sp orbitals on carbon atoms
with respect to the atomic s2p2 ground state, and it is given by

Eprom =
∑

i

(ǫC
p − ǫC

s )(∆Np)
C
i . (3)

(ǫC
p − ǫC

s ) is the energy difference between atomic valence s and p energy
levels of carbon which is assumed to be independent of the environment and
therefore constant.

The third term in Eq. (1) is the attractive covalent bond energy which de-
scribes the cohesion of atoms. It is equal to the sum of the covalent energies
of individual bonds between orbitals on different atoms

Ebond =
∑

iα6=jβ

Θjβ,iαHiα,jβ (4)

where Hiα,jβ are the Hamiltonian matrix elements and Θjβ,iα the bond order
matrix elements between the orbitals |iα〉 and |jβ〉. Using the two-center repre-
sentation of Slater and Koster [30], the inter-site Hamiltonian matrix elements
can be expressed directly in terms of distance-dependent two-center integrals,
which are known as bond or hopping integrals, and appropriate functions of
directional cosines.

The bond order is defined as one half of the difference between the number of
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electrons in the bonding, 1√
2
(|iα〉 + |jβ〉), and anti-bonding, 1√

2
(|iα〉 − |jβ〉),

states and thus can be regarded as a measure of the strength of the bond
between the orbitals |iα〉 and |jβ〉. It attains its maximum value of unity
when the bonding state is totally occupied by two electrons with opposite
spins and the anti-bonding state remains empty (for example, in the hydrogen
dimer). In more complex molecules or in solids, however, bonds are usually
unsaturated due to the influence of the surrounding atoms, and as a result,
their bond orders are less than unity. It is also important to note that the
bond order is not a pairwise quantity but it is dependent on the environment
of atoms i and j.

Eq. (4) is the defining equation of the bond-order potential formalism. It
expresses the strength of each bond in a simple way as a product of the bond
order and the bond integral. In the standard TB approach the binding (i.e.
band) energy, and therefore indirectly also the bond orders, are calculated by
solving the Schrödinger equation in a minimal-basis-set matrix representation.
The essential achievement in the ABOP development is to express the bond
orders in the form of analytic functions of bond lengths and bond angles. In
practice this is done by a many-body expansion of the bond order described
in the following section.

3.2 The analytic bond orders

The starting equation for the evaluation of the bond order is its expression in
terms of the elements of the Hamiltonian Green’s function matrix [14]

Θiα,jβ = −2

π
lim
η→0

Im

{∫ EF

−∞
Giα,jβ (E + iη) dE

}
. (5)

To obtain the inter-site Green’s function matrix elements in an accurate and
efficient way is not a simple matter, and it requires several necessary ingredi-
ents. To describe these properly would require a separate section for each of
them. We therefore refer the reader to papers by Finnis, by Aoki et al. and
by Drautz et al. in this volume which give detailed discussions of this process,
and we restrict ourselves to merely naming the fundamental ideas necessary
for the understanding.

The first key ingredient on the way to the bond order is the recursion method [31].
The basis of the recursion method is the Lanczos algorithm [32] for tri-
diagonalization of sparse matrices. When applied to the Hamiltonian, this
algorithm enables to write the diagonal elements of the single-particle Green’s
function explicitly in terms of the elements of the tridiagonalized Hamiltonian,
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commonly called the recursion coefficients, as a continued fraction

G00(E) =
1

E − a0 −
(b1)

2

E − a1 −
(b2)

2

E − a2 −
(b3)

2

. . .

(6)

The recursion coefficients an and bn are related to the moments of the local
density of states µp. Another powerful identity [33,34] states that the p-th
moment of the density of states projected onto the orbital |iα〉 equals to the
p-th moment of the Hamiltonian projected onto the same orbital

µ
(p)
iα =

∫
Ep niα(E) dE = 〈iα|Ĥp|iα〉 (7)

which can be rewritten as

µ
(p)
iα =

∑

j1β1...jp−1βp−1

Hiα,j1β1
Hj1β1,j2β2

. . .Hjp−1βp−1,iα. (8)

Here the p-th moment is given as the sum over all bonding paths of length p
that start and finish on the same atom i and orbital |iα〉. We can also interpret
this equation as a process of hopping on the lattice along closed paths of length
p, where Hiα,jβ describes the hop between orbital |iα〉 and orbital |jβ〉. The
first moment consists of hops on a single site, the second of hops to the nearest
neighbors and back, and so on. This is the key point since it shows a simple
connection between the local bonding of an atom and its electronic structure,
and provides thus an insight into the nature of cohesion and the structural
stability.

Another crucial advancement in the work of Pettifor and Aoki [35,36] was
the evaluation of the inter-site Green’s function matrix elements in terms of
the derivatives of the on-site Green’s function matrix elements with respect
to the moments. The most important result of this derivation is that these
derivatives can be expressed entirely in terms of the recursion coefficients ai

and bi. This leads to the final general formula for the bond order in the form
of a multi-atom expansion which depends in a well defined way on the local
environment about atoms.

σ bond order

For the derivation of the analytic formula for the σ bond order in the case of
sp-valent systems with half full bands Pettifor and Oleinik [17] have taken the
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BOP theory to four recursion levels in Eq. (6). In this way the true eigenspec-
trum is approximated by four poles or delta functions with non-zero recursion
coefficients in Eq. (6) for n < 4. Furthermore, under the assumption that there
are no odd-membered rings of atoms present, all odd moments are zero and,
consequently, an = 0 for all n. The resultant formula for the bond order for a
half-filled eigenspectrum in this so-called symmetric four-level approximation
is then given by

Θ
(4Z)
ij,σ =





1 +
b̂2
2 − (b̂2

1 − 1) −ℜij
4σ

(b̂1 + b̂3)b̂3√√√√1 +
b̂2
2

(b̂1 + b̂3)2





1

b̂1

(9)

where b̂n = bn/|βσ| for n = 1, 2, 3 are the Lanczos recursion coefficients nor-
malized by the βσ bond integral (see Sec. 3.3) of the i− j bond. The ring term
ℜij

4σ has been included later in the numerator [19] to account for four-member
ring contributions which are important in close-packed structures.

The recursion coefficients b̂1 and b̂2 can be written explicitly in terms of the
hopping paths of lengths two and four within the local atomic environment
around the bond [37,15]:

b̂2
1 = 1 + Φ2σ (10)

b̂2
1b̂

2
2 = (b̂2

1 − 1) − (b̂2
1 − 1)2 + Φ4σ + ℜ4σ. (11)

The recursion coefficient b̂3 is too complicated to be evaluated in an efficient
way, and it is necessary to explore simplifying approximations. Pettifor and
Oleinik have found a simplifying procedure by constraining the poles of the
off-diagonal Green’s function to be the same as those of the diagonal Green’s
function. This requirement allows for a derivation of an expression for b̂3 in
terms of b̂1, b̂2 and additional ring terms, and it leads to the following expres-
sion for the constrained value of b̂3:

b̂2
3 = [(b̂2

2 − ℜij
4σ) − (Φ2σ − Φi

2σΦj
2σ) + ∆ℜij ]/Φ2σ (12)

The second-moment two-hop contribution Φi
2σ, the fourth-moment four-hop

contribution Φi
4σ and the interference three-hop contribution ℜij

4σ in the above
equations are schematically shown in Fig. 2. Mathematically these contribu-
tions are given by

Φi
2σ =

∑

k 6=i,j

[gσ(θjik)]
2β̂2

σ(Rik) (13)
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Fig. 2. Schematic diagrams of hopping paths of length 2, 3 and 4 which determine
the σ bond order of the i − j bond.

Φi
4σ =

∑

k 6=i,j

[gσ(θjik)]
2β̂4

σ(Rik)

+
∑

k,k′ 6=i,j
k 6=k′

gσ(θjik)gσ(θkik′)gσ(θk′ij)β̂
2
σ(Rik)β̂

2
σ(Rik′) (14)

+
∑

k,k′ 6=i,j
k 6=k′

[gσ(θjik)gσ(θikk′)]2β̂2
σ(Rik)β̂

2
σ(Rkk′)

ℜij
4σ =

∑

k,k′ 6=i,j
k 6=k′

gσ(θjik)gσ(θikk′)gσ(θkk′j)gσ(θk′ji)

× β̂σ(Rik)β̂σ(Rkk′)β̂σ(Rk′j) (15)

with the normalized bond integrals β̂σ(Rkk′) = βσ(Rkk′)/βσ(Rij) and Φnσ =
1
2
(Φi

nσ + Φj
nσ). The angular function gσ(θjik) depends on the angle θjik sub-

tended between the bonds ij and ik as well as on the type of the atom i. It is
given by gH

σ (θ) = 1 for hydrogen, and gC
σ (θ) = [(1− pσ) + pσ cos θ] for carbon,

where pσ = ppσ/(|ssσ| + ppσ) is the ratio of C–C bond integrals (see next
section for details).

Substituting Eqs. (10), (11) and (12) into Eq. (9) and neglecting some higher
order terms leads to an expression for the bond order derived in Ref. [19],
namely

Θ
(BOP )
ij,σ =

1√√√√1 +
2Φ2σ + ℜij

4σ + Φ̃i
2σΦ̃j

2σ(2 + ∆̃Φ4σ)

(1 + ∆̃Φ
2

4σ)2

(16)
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where

Φ̃i
2σΦ̃j

2σ = Φi
2σΦj

2σ/
√

∆Φ4σ + Φi
2σΦj

2σ (17)

∆̃Φ
2

4σ = ∆Φ4σ/
√

∆Φ4σ + Φi
2σΦj

2σ (18)

with

∆Φ4σ =
Φ4σ − 1

2
[(Φi

2σ)2 + (Φj
2σ)2]

Φ2σ
. (19)

It has been shown [19] that Eq. (16) gives excellent results for both open and
close-packed carbon phases under the assumption that the valence s and p
electrons take identical on-site energy levels. However, in the case of carbon
where the atomic sp energy level separation, δC = (ǫC

p −ǫC
s ) = 6.7 eV, is rather

large, it is necessary to account for this non-negligible difference. Following
Ref. [18] we therefore modified Eq. (16) to a form

Θ
(BOP )
ij,σ =

1√√√√1 +
2Φ2σ + δ̂2

2 + ℜij
4σ + Φ̃i

2σΦ̃j
2σ(2 + ∆̃Φ4σ)

(1 + ∆̃Φ
2

4σ)2

(20)

where δ̂2
2 is defined as

δ̂2
2 = (1 + Φ2σ)δ̂2 (21)

with

δ̂2 = 1
2
[(δi)2 + (δj)2][4pσ(1 − pσ)]/[βσ(Rij)]

2. (22)

δi and δj are the sp energy splittings of atoms i and j, respectively (i.e. δH = 0
and δC = 6.7 eV). Eq. (22) has been derived in earlier papers of Pettifor and
coworkers [15,38] and the delta term δ̂2 has been included in the bond order
expression in Ref. [18]. The origin of this term can be traced back to the
recursion coefficient b̂1. The explicit form of b̂1 for non-zero sp splitting has
been derived in Ref. [15] as

b̂2
1 = 1 + Φ2σ + δ̂2. (23)

A rigorous derivation of the σ bond order with this expression leads unfortu-
nately to a too complicated formula and we therefore retained only a simplified
form of δ̂2

2 with a second order term which incorporates the environmental de-
pendence via the second-moment term Φ2σ. The inclusion of the δ̂2

2 term in
Eq. (20) is a very important generalization. Through this term the bond order
depends explicitly on the sp splitting and provides thus a correct description
of the loss of covalent bonding due to the difference in the s and p on-site
energies. In the case of the carbon dimer it reduces to the correct limit of

1/
√

1 + δ̂2 and not to the value of unity which would result from Eq. (16).

Eq. (20) has been used in all calculations of the σ bond order in the current
paper. It will be shown in the next section that the presence of the δ̂2

2 term
in the bond order formula is essential for a correct description of bonding
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under non-equilibrium conditions such as during chemical reactions or within
amorphous structures.

π bond order

The incorporation of the π bond description in the ABOP formalism is an
important improvement over the Tersoff-Brenner potentials, since neither of
these potentials includes an appropriate π bond contribution. The neglect of
π bonding leads to several problems such as overbinding of radicals, incorrect
treatment of conjugacy and underestimation of rotation barriers.

For the derivation of the π bond order the BOP theory has been taken to
two levels of recursion in the continued fraction (Eq. (6)). Furthermore, by

constraining the poles of Gij a constrained value of b̂2 =
√

b̂2
1 − 1 is obtained

within the three-level recursion formalism [19]. This approximation thus de-
scribes exactly saturated π bonds in two-level C2, C2H2 and C2H4 molecules,
and predicts values for the conjugate bond orders in graphite and benzene
within 10% of the OTB values. The analytic expression for the π bond order
then takes the form

Θ
(BOP )
ij,π =

1√
1 + Φ2π + Φ

1/2
4π

+
1√

1 + Φ2π − Φ
1/2
4π

(24)

where the two-hop contribution is given as

Φi
2π =

∑

k 6=i,j

{ sin2 θjik pσ[β̂Cκ
σ (Rik)]

2

+ (1 + cos2 θjik)[β̂
CC
π (Rik)]

2δκC}, (25)

and the four-hop contribution as

Φi
4π = 1

2

∑

k,k′ 6=i,j

(sin2 θjik sin2 θjik′ + sin2 θjik sin2 θijk′)

β̃2
ikβ̃

2
ik′ cos 2(φk − φk′) (26)

with

β̃2
ik = pσ[β̂

Cκ
σ (Rik)]

2 − [β̂CC
π (Rik)]

2δκC . (27)

In the above formulas the capped integrals have been normalized by the π
bond integral βCC

π (Rij) and not by the σ bond integral as in the case of the
σ bond order (cf text following Eq. (15) above). The superscript κ refers to
the nature of atomic species (i.e. H or C) and the Kronecker delta δκC ensures
that there are no π bond contributions for C–H bonds.
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3.3 OTB parameterization

There is one further approximation to be mentioned when going from the
OTB model to ABOP for the hydrocarbon system. The C–C σ bond in the
conventional two-center OTB model is described by three bond integrals: ssσ,
spσ and ppσ [30]. Consequently, there is not a single bond order which char-
acterizes this bond but three separate quantities. In order to obtain a single
scalar bond order Θσ it is convenient to restrict the spσ bond integral to be the
geometric mean of |ssσ| and ppσ [37]. The three OTB bond integrals are thus
reduced to two quantities: a single ABOP bond integral βσ and a parameter
pσ which gives the relative amount of s and p orbitals in the bonding hybrid
orbital [39]. The relations between the TB and ABOP bond integrals for the
C–C bond can be then written as

ssσCC

spσCC

ppσCC





=

−(1 − pσ)
√

pσ(1 − pσ)

pσ





βCC
σ (R). (28)

Similarly, the C–H bond integrals can be written in the form

ssσCH

spσCH





=
−√

1 − pσ

√
pσ





βCH
σ (R) (29)

where it was assumed that (spσ/|ssσ|)CH = (spσ/|ssσ|)CC =
√

pσ/(1 − pσ). It

was shown in Ref. [40] that the constraint equations (28) and (29) are excel-
lent approximations for the hydrocarbon system within the well known and
widely used OTB parameterization of Xu et al. [41] and Davidson and Pick-
ett [42]. This orthogonal TB model has provided many valuable results but,
unfortunately, it also suffers from several weaknesses. It is rather short ranged
and with the cut-off distance for C–C interactions of only 2.6 Å it cannot, for
example, describe correctly the interlayer graphite spacing, diamond-graphite
phase transformation, or some dissociation reactions. The parameterization
also underestimates the magnitude of the π bond integral. This leads to a
prediction of the wrong electronic ground-state configuration for the carbon
dimer as well as unsatisfactory electronic band structures of closed packed
bulk phases. Furthermore, it was shown recently [22] that this model under-
estimates the sp3 fraction in amorphous carbon films.

In the current work we do not aim at the improvement of the original OTB
parameterization. 1 Instead, we use this extensively tested model and compare
it to its coarse-grained offspring – the ABOP. It is important to stress that

1 The OTB parameterization used in this work is summarized in Ref. [43]. We were
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within the reduced OTB model (Eqs. (28) and (29)) the OTB and ABOP
parameterizations are fully equivalent and, ideally, the ABOP and OTB results
should coincide. The differences between predictions of these two models are
therefore solely due to the approximations implemented during the coarse-
graining process. How ABOP holds its grounds is the subject of the following
section.

4 ABOP vs. OTB

Unlimited transferability of empirical potentials is the holy grail of atom-
istic simulations. With potentials like Tersoff [12], Brenner [13], EDIP [44] or
ReaxFF [45], which are to a greater or lesser extent based on empirical rather
than on quantum-mechanical concepts, there is always a significant risk of fail-
ure when these models are applied to situations far from their proven fitting
pools. When problems appear there is unfortunately only a limited number of
possible cures. Obvious ones are the extension of the fitting database to in-
clude the problematic area and modification of model parameters, or perhaps,
an addition of further terms to correct for the discrepancy. The bond-order
approach however enables a general and systematic derivation of the inter-
atomic potential based on the topology of bonding and quantum mechanical
concepts of chemical bonds. Not only is it extremely appealing to have the
interatomic potential rigorously derived from higher-level theory, but it also
becomes much easier to trace back the origins of eventual problems to approx-
imations made during derivation. Furthermore, since ABOPs are based on the
OTB model, fitting may not be necessary if there is a reliable OTB parame-
terization available. Even if a new parameterization is needed, the only input
parameters for the crucial bonding part of the potential are the Slater-Koster
bond integrals which have a physically transparent interpretation. This is in
a sharp contrast to some of the methods mentioned above which require close
to hundred parameters and elaborate fitting strategies.

In the following we present calculations for crystalline and amorphous bulk
phases as well as for molecules and small clusters studied in parallel by the
reduced OTB model and ABOP. The main focus of these test calculations
is on the key quantity – the bond order – since it immediately reveals the
strengths as well as the limitations of ABOP.
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Fig. 3. Comparison of OTB and ABOP results of the σ (using both Eq. (20) and
Eq. (16)) and π bond order (using Eq. (24)) for graphite, diamond, sc and fcc
structures as a function of C–C interatomic distance. (There are two sets of TB
data for the graphite structure due to two inequivalent atoms.)

4.1 Crystalline carbon phases

For atomistic simulations of solids the first requirement is a correct description
of equilibrium as well as alternative crystalline phases. We calculated energy
versus volume curves for graphite, diamond, simple cubic, body-centered cubic
(bcc) and face-centered cubic (fcc) structures. The coordination number in
these structures increases from 3 to 12, and thus these calculation provide
information about the bonding variation from fully saturated covalent bonds
in graphite and diamond to unsaturated bonds in close-packed structures.
Instead of showing the usual dependence of the total energy as a function of
volume we focus in our analysis on the change of the σ and π bond orders.
The results are shown in Fig. 3. As we stressed in the previous section, the
non-negligible difference in the carbon s and p on-site energies has a profound
influence on the behavior of the σ bond order. This is clearly visible from
the data in Fig. 3 which include σ bond order values calculated both by
Eq. (20) and by Eq. (16) which does not contain the δ̂2

2 term. While Eq. (20)

forced to refit the repulsive terms in order to avoid nonphysical attractions at very
short distancies of the original many-body repulsive functional forms.
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Fig. 4. Change of bond orders for the rotation around the central C=C bond in
ethylene (a) and around the central C–C bond in 1,3-butadiene.

reproduces very well both the magnitude and the decay of Θσ with increasing
C–C bond length, the neglect of the sp splitting in the bond order expression
leads to a constant value of the σ bond order. The error introduced in this way
increases with increasing bond length and leads to an overestimation of the
σ bond order by Eq. (16) for longer bonds. Even though the absolute error
in the bond energy is damped down by decreasing bond integrals, we will
demonstrate in the following that the neglect of the δ̂2

2 term leads to incorrect
configurations of small carbon clusters and to a significant overcoordination
of atoms in amorphous structures. In the case of the π bond order the OTB
model predicts only a weak dependence on the bond length which justifies the
neglect of the sp splitting in the ABOP π bond order.

4.2 Molecules and clusters

Results of ABOP and OTB calculations for various hydrocarbon molecules
in their ground-state geometries have been compared already in the original
papers of Pettifor and Oleinik [40,18]. It has been shown that ABOP repro-
duces the OTB values excellently except for extreme cases such as CH and
CH2 radicals where spin polarization has to be taken into account. ABOP also
handles correctly the radical formation. The ethyl radical (C2H5) remains to
be essentially single bonded after H abstraction from ethane, unlike in the
Tersoff potential which predicts the carbon bond to be an average of the sin-
gle and double bond. We have performed additional tests for a wider class
of molecules containing single, double, triple and conjugated bonds in differ-
ent local arrangements to extend the testing. The average root mean square
errors in our calculations for different classes of molecules did not exceed
0.15 eV/atom. Details of these tests will be presented elsewhere.

In addition to the dependence of the bond order on the bond stretching another
important property is the resistance of double, triple and conjugated bonds
to rotations. In a typical example of ethylene the conventional saturated π
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(a) (b) (c)

Fig. 5. Configurations of the C7 cluster relaxed with ABOP using (a) Θδ0
σ , (b) Θδ1

σ

and (c) Θδ2
σ bond orders.

bond is broken under rotation which requires an energy of about 3 eV. ABOP
and OTB give barrier heights of 3.4 eV and 3.6 eV, respectively, which are in
a good agreement with DFT calculations [17].

A more interesting case of a rotation barrier can be found in the class of conju-
gated dienes such as 1,3-butadiene. This molecule contains two carbon double
bonds separated by a single bond. In such an arrangement the π electrons
of the two double bonds lower their energy by delocalization along the car-
bon chain and form a conjugated bond. As a result the single bond between
the two conjugated double bonds is strengthened and also shortened due to
the acquired π character. Since neither Tersoff nor original Brenner potentials
contain appropriate descriptions of double and conjugated bonds they predict
no rotation barrier around the central C–C bond in 1,3-butadiene or, in gen-
eral, for any conjugated bond. The variation of bond orders during twisting
of ethylene and 1,3-butadiene is shown in Fig. 4. In both cases the OTB and
ABOP σ bond orders agree almost perfectly and remain constant while the
π bond orders decrease significantly as the molecules are twisted. For 1,3-
butadiene there are two sets of values for the π bond order corresponding to
the double conjugated bond with Θπ ≈ 1.05 and the single conjugated bond
with Θπ ≈ 0.45. At the rotation angle of 90◦ the conjugation is essentially
removed and the central C–C bond becomes an ordinary single bond.

Since our ultimate goal is the simulation of amorphous films grown by depo-
sition of molecules on surfaces, it is crucial to verify that the ABOP potential
describes well also non-equilibrium configurations. The amorphous a-C or a-
C:H films are usually prepared by plasma deposition of various hydrocarbon
molecules. The local atomic structure of the films is determined by breaking,
stretching and twisting of bonds induced by the impacting molecules. Our
initial simulations of a-C:H film growth using original expressions for the σ
and π bond orders from Ref. [19] showed promising results but at the same
time we observed an nonphysical accumulation of overcoordinated atoms with
increasing deposition time. In order to determine the origin of this discrep-
ancy we attempted to reduce the complexity of the problem and to analyze
first several simple amorphous structures. This was done by picking up ran-
dom configurations of small carbon clusters out of an amorphous network and
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comparing the OTB and ABOP results for their equilibrium geometries.

An example of one such calculation for a C7 cluster is shown in Fig. 5. The
three displayed structures have been relaxed from the same starting configu-
ration using ABOP with three different approximations for the σ bond order.
For clarity we will designate in the following these three σ bond orders with the
acronyms Θδ0

σ , Θδ1
σ and Θδ2

σ according to evaluation of the δ̂2
2 term in Eq. (21)

which reflects the sp splitting of the on-site energies. The bond orders were
calculated as

for Θδ0
σ : δ̂2

2 = 0 (30)

for Θδ1
σ : δ̂2

2 = δ̂2 (31)

for Θδ2
σ : δ̂2

2 = δ̂2 + Φ2σ δ̂2. (32)

Eq. (30) corresponds to a neglect of the sp splitting in the σ bond order
expression and Θδ0

σ is therefore equivalent to the σ bond order of Pettifor and
Oleinik in Ref. [19] (i.e. Eq. (16)). This expression, which was also used in our
initial film growth simulations, leads to the equilibrium structure of the C7

cluster shown in Fig. 5(a). Eq. (31) includes the sp splitting in the simplest
possible way via the simple δ̂2 term [18]. Using this approximation the C7

cluster relaxes to the structure in Fig. 5(b). Finally, the symmetric tri-star
configuration in Fig. 5(c) is the equilibrium structure obtained by ABOP with
the Θδ2

σ bond order evaluated according to Eq. (32) which includes the second
order contribution Φ2σ δ̂2. The star geometry is also the equilibrium structure
predicted by OTB. The three structures in Fig. 5 are clearly related and the
configuration (b) can be viewed as an intermediate state between (a) and (c).
The analysis of individual bonds in the three structures in terms of the σ bond
order reveals how sensitive is the final configuration to the correct description
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of the sp splitting in the bond order expression. The comparison of OTB
bond orders with Θδ0

σ , Θδ1
σ and Θδ2

σ bond orders for all bonds in the molecules
from Fig. 5 is shown in Fig. 6. The Θδ0

σ , Θδ1
σ and Θδ2

σ values are marked by
diamonds, triangles and circles, respectively. The calculations show that the
“equilibrium” C–C bonds with bond lengths up to 1.5 Å are described correctly
by all three ABOP bond orders, reaching values close to one in agreement with
OTB. This is an expected result established already in the original papers as
well as in our additional studies of hydrocarbon molecules in their ground-
state geometries. However, for longer bonds of about 2.0 Å, which correspond
to interactions between the long linear chain and the carbon dimer in Fig. 5(a)
and (b), the agreement between OTB and ABOP improves dramatically as the
description of the sp splitting improves from Eq. (30) via Eq. (31) to Eq. (32).
In the case of inter-chain bonds in the intermediate structure in Fig. 6(b), the
Θδ2

σ bond order coincides almost perfectly with the OTB value while Θδ0
σ and

Θδ1
σ give values more than twice as large. Such large errors in bond orders lead

to an absolute increase of the bond energy for these inter-chain bonds and
to an nonphysical stabilization of structures in Fig. 6(a) and (b) when Θδ0

σ

and Θδ1
σ bond orders are used. We have found similar nonphysical behavior in

other small carbon clusters as well as in larger amorphous structures shown in
the next section. In general, the errors in bond orders and bond energies with
Θδ0

σ and Θδ1
σ bond orders reach a maximum for bonds with lengths between 1.8

and 2.0 Å. The insufficient treatment of the sp splitting in these σ bond orders
is therefore directly responsible for overcoordinations in amorphous structures
which will be discussed next.

4.3 Amorphous phases

Amorphous structures present one of the most stringent tests for interatomic
potentials. To investigate the behavior of ABOP for amorphous environments
we performed liquid-quench simulations for a pure carbon system. Same calcu-
lations have been performed with the non-orthogonal tight-binding (NOTB)
and OTB models as well as with two variations of Brenner potentials with
different values of cut-off radii. Furthermore, we compared our results with
data from a recent theoretical study of Marks et al. [22].

The amorphous carbon structure was prepared in an often used manner, by
melting an unstable simple cubic lattice containing 125 atoms with a density
of 2.9 g/cm3. After spontaneous melting the structure was equilibrated at 5000
K for 1 ps with a time step of 0.05 fs. The radial distribution function (RDF)
of the resulting liquid is plotted in Fig. 7(a). In this picture we compare
again results obtained with Θδ0

σ , Θδ1
σ and Θδ2

σ bond orders. The difference
between RDF curves computed with different bond orders is striking. Both
Θδ0

σ and Θδ1
σ yield completely wrong structures of the liquid and only Θδ2

σ
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σ bond orders and (b)
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σ ), OTB and CPMD from Ref. [22].

is able to reproduce correctly the liquid behavior. This result is consistent
with the previous findings but the deficiencies of the Θδ0

σ and Θδ1
σ bond orders

are most pronounced here. The tendency of Θδ0
σ and Θδ1

σ to overcoordination
due to overestimated bond orders in longer bonds leads to the nonphysical
liquid structure dominated by bonds of lengths 1.8-2.0 Å. The description of
the liquid state therefore strongly correlates with the description of the sp
splitting. Fig. 7(b) shows a comparison of RDF curves from ABOP and OTB
with the Car-Parinello first-principles molecular dynamics (CPMD) results of
Marks et al. [46]. ABOP with the Θδ2

σ bond order agrees well with the TB
distribution but both methods show a small offset in the position of the first
peak with respect to CPMD. The reasons for this discrepancy are discussed
below.

After equilibration, the carbon liquid was cooled down to room temperature
during 14 ps. Three cooling regimes with the cooling rates of 1000 K/ps,
250 K/ps and 100 K/ps were used in temperature intervals 5000-2000 K,
2000-1000 K and 1000-300 K, respectively. Comparison of reduced radial dis-
tribution functions of the quenched samples with those of other methods of
Ref. [22] is displayed in Fig. 8(a). ABOP (Θδ2

σ ) again agrees well with OTB but
both methods as well as the original Brenner potential underestimate signifi-
cantly the sp3 fraction compared to CPMD and experiment. It was suggested
by Marks et al. [22] that the reason for this behavior is the short range of
the C–C interactions in these potentials which leads to high-density graphitic
structures. The modified Brenner potential of Jäger and Albe [21] predicts the
sp3 fractions greater than 80%, but this improvement occurs at the expense
of a large number of nonphysical metastable distances intermediate between
the first and second neighbors (spurious peaks above 2 Å in the lowest panel
of Fig. 8(a)) and an increase of five-fold coordinated atoms. The EDIP model
which was specifically constructed for simulations of amorphous carbon gives
a good overall agreement with CPMD and NOTB and seem to be currently
the most reliable empirical scheme for description of a-C networks.
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Fig. 8. Comparison of reduced radial distribution functions produced by different
methods for (a) a-C sample with the density of 2.9 g/cm3 and (b) a-C:H sample
with the density of 2.5 g/cm3.

5 From a-C to to a-C:H

Going from simulations of pure a-C to simulations of hydrogenated amorphous
carbon is not a trivial step. Depending on preparation conditions and hydro-
gen concentration a-C:H materials can vary from soft, low-density phases with
polymer-like atomic structures to hard, diamond-like materials with a high
content of C–C sp3 bonds. Even though a-C:H films have important practical
applications due to their diverse properties [20] there has been only a handful
of theoretical studies of these systems [47–50]. Moreover, due to computational
costs all these attempts have been restricted to small system sizes and rather
unrealistic conditions and are therefore of limited practical use. The obvious
reason for the missing theoretical involvement is a lack of reliable interatomic
potentials. To our knowledge there are currently no other interatomic poten-
tials available for the hydrocarbon system than ABOP, ReaxFF [45], and the
Brenner potential and its extensions [51,52]. In this section we describe the
first application of ABOP for the a-C:H system. We again have to bear in
mind the limitations of the OTB parameterization which is used for ABOP
as well. The results of our studies should be therefore considered as qualita-
tive rather than quantitative and at this stage the calculations serve more as
another benchmark of ABOP.

As in the case of a-C, we have performed a series of simulations of bulk a-
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C:H samples at various densities. The calculations were done by four methods
– original Brenner potential, Brenner potential with an increased cut-off of
2.25 Å, ABOP/OTB and NOTB. For ABOP calculations reported in this sec-
tion we used only the Θδ2

σ bond order of Eq. (32) since the other two approx-
imations were certain to yield wrong results as we have demonstrated above.
The simulation blocks contained in all cases 215 atoms with 169 carbon and
46 hydrogen atoms. This corresponds to 21% hydrogen concentration which
is close to the range of experimentally observed values for tetrahedral a-C:H
thin films [20]. After an equilibration period of 1 ps at 5000 K the systems
were quenched to room temperature with a cooling rate of 1000 K/ps. The
properties of the a-C:H networks were then analyzed during a NVT molecular
dynamics run at room temperature for additional 0.5 ps. The results of the
analysis and the comparison with results of different methods are summarized
in Figs. 8(b) and 9.

The reduced radial distribution functions for the quenched a-C:H samples with
the density of 2.5 g/cm3 (which is the highest experimentally observed density
of a-C:H films [53]) are presented in Fig. 8(b). ABOP reproduces well OTB
results and the RDF curves of both methods agree reasonably well with those
of NOTB calculations but with a systematically lower sp3/sp2 ratio, similarly
as in the a-C case. RDFs obtained with both Brenner’s potentials deviate
from those obtaine with the other three methods, and the Brenner potentials
predict nearly pure graphitic structures. The influence of the cut-off radius on
the behavior of Brenner’s potentials is analyzed in detail below. RDFs for the
a-C:H structures can be also easily compared with those of the a-C structures
in Fig. 8(a). The most obvious difference between the a-C and a-C:H curves
are additional peaks corresponding to C–H bonds. The most pronounced peak
at 1.1 Å corresponds to first nearest neighbor C–H interactions. Other smaller
peaks between 1.7 and 2.2 Å belong to correlations in the second coordination
shell associated with H–C–H and C–C–H bonds. These small features are in
a a good agreement with experimental observations [54].

Fig. 9(a) shows the variation of the sp1, sp2 and sp3 content as a function
of density from ABOP simulations. For the lowest density of 2.0 g/cm3 the
amorphous structure does hardly contain any sp3 atoms and is composed
almost fully of graphitic-like networks with a small fraction of sp1 linear chains.
As the density increases the sp3/sp2 ratio increases linearly and the networks
at densities larger than 2.5 g/cm3 are only mixtures of sp2 and sp3 atoms.
Unlike in simulations with the original bond order expression (Eq. (16)), we
have not detected any atoms with coordination numbers higher then four in
these simulations.

Fig. 9(b) presents a comparison of sp3 fractions obtained by the four different
methods. The NOTB calculations yield a near-linear increase of the sp3 content
with the density in agreement with available experimental observations [53].
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Fig. 9. (a) Comparison of carbon bonding in a-C:H samples of different density
simulated by ABOP and (b) variation of sp3 content predicted by ABOP, NOTB
and two Brenner potentials with different cut-offs.

A similar linear correlation between the sp3 concentration and the density,
albeit with a lower sp3 content like in the a-C case, is also obtained by the
ABOP/OTB methods. In contrast, for Brenner potentials the sp3 fraction
is strongly dependent on the potential cut-off. The original parameterization
with Rcut = 2.0 Å produces a negligible sp3 content up to the density of
3.0 g/cm3. For the density of 3.5 g/cm3 the sp3 fraction sharply increases
to 60%. The Brenner potential with the cut-off radius increased to 2.25 Å
shows a similar behavior but the abrupt transition to higher sp3 content is
shifted to a lower density of approximately 2.6 g/cm3. This example clearly
shows the danger of ad hoc variation of parameters in semiempirical models.
By varying the interaction range of the potential (in this case the Brenner
potential but the same procedure done for the Tersoff potential has given
similar results [55]) one can achieve a better agreement with reality for a
specific configuration but predictions of the model remain unchanged in other
areas which were unaffected by the parameter modification (in this case the
lower density structures).

Film growth simulations

Process of film growth by implantation of energetic ions brings further chal-
lenges to molecular dynamics simulations. Simulation blocks have to contain
more than thousand atoms to avoid boundary effects during a cascade of
events after ion implantation, and simulation times usually exceed million of
steps to reach the steady-state growth. Thus the model describing interatomic
interactions in film growth simulations has to provide not only an excellent
transferability but also a good efficiency. Recently, Marks et al. [56] have per-
formed first simulations of a-C film growth using the EDIP model. These
calculations reproduced the dependence of the sp3 fraction on the energy of
deposited ions but the grown films contained a high sp3 content already for
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Fig. 10. Atomic structures of the simulated a-C:H films; (a) initial structure, (b)
and (c) final structures after deposition of 50 acetylene molecules with energies of
25 and 100 eV per carbon atom, respectively.

ion energies of less than 10 eV in disagreement with experiment. Furthermore,
the EDIP model is limited to simulations of single-component systems and
cannot be therefore applied to a-C:H studies.

In the case of a-C:H, the complexity of processes governing the final film
properties is enormous. The crucial film quantities such as the density, residual
stresses and the sp3 content depend sensitively on the energy and the type
of the depositing molecules, the hydrogen concentration in the film, and the
temperature. In this ABOP study we have attempted to simulate the evolution
of an a-C:H film during deposition of 50 acetylene molecules. In order to
investigate the influence of the deposition energy on the film development, we
performed two simulation runs with incident acetylene energies of 25 and 100
eV per carbon atom. Before each impact, an acetylene molecule was placed
at a random position above the film surface and randomly oriented. Unlike in
the study of Marks et al. [56], who used the diamond crystal as a substrate,
we have chosen an amorphous substrate with a low density (about 1.7 g/cm3)
and with almost 100% of sp2 bonded atoms. In this way we were able to detect
already after deposition of only several tens of molecules whether the sp3 to
sp2 ratio in the film remains unchanged or whether it starts to increase.

The structure of the substrate prior the deposition is shown in Fig. 10(a). Ini-
tially, the film substrate contained 1345 atoms with 293 hydrogen atoms which
corresponds to 21.7% hydrogen concentration. The color coding in Fig. 10
shows the sp1 bonded atoms in cyan, the sp2 bonded atoms in yellow, the
sp3 bonded atoms in red, and hydrogens in dark blue. The thickness of the
substrate was about 30.0 Å with lateral dimensions of the block of 21.16 Å.
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Periodic boundary conditions were applied in directions parallel to the film
surface. The impact of the molecule leads to substantial heating of the film.
In the case of 25 eV energies the temperature in our sample increased upon
deposition to about 600 K, while for 100 eV it exceeded 1500 K. To remove the
excess energy before subsequent deposition the bottom part of the film with
the thickness of 10 Å acted as a thermostat and was kept at 10 K through-
out the whole simulation. In this way the heat can diffuse out of the system
and the setup leads to a rather natural cooling of the film without a need
to apply velocity rescaling algorithms for all particles. After each deposition
the system was let to evolve for 6 ps which was found to be a sufficient time
for a spontaneously cooling of the substrate below room temperature in both
simulations.

Even though the film growth after only 50 deposited molecules is far from
a steady-state, our calculations show both common features and clear differ-
ences between the final configurations of both simulation runs. In both cases
we observed a gradual increase of the sp3 content in the films during deposi-
tions. The initial sp3 concentration of 2.9% in the substrate increased to 6.9%
and 9.1% in the 25 eV and 100 eV simulations, respectively. The morphology
of the final films from the two runs is however markedly different. Fig. 10(b)
shows the final configuration of the 25 eV simulation. It is evident that the
increase of sp3 content is localized only in the surface region with the thickness
of few Å. The remaining film differs only slightly from the initial substrate.
Such behavior is easy to explain. The maximum penetration depth for acety-
lene molecules with kinetic energies of 25 eV per carbon is about 8 Å in our
substrate and the majority of deposited atoms are located 4–6 Å below the
film surface. The incoming acetylene molecules have therefore sufficient en-
ergy to transform directly only few Å of the film. In contrast, the sp3 bonded
atoms in the final structure from the 100 eV simulation, shown in Fig. 10(c),
are distributed uniformly throughout the whole film. The carbon atoms with
energies of 100 eV can penetrate up to 20 Å inside the film and generate thus
changes in the whole film volume. Furthermore, the upper region of the film is
changed dramatically. There are long carbon chains sticking out of the surface
and the surface region contains a significant proportion of sp1 bonded atoms.
The energetic impacts of acetylene molecules with 100 eV per carbon atom
cause also a formation of local craters and lead to a high number of sputtered
atoms. While in both simulations about two thirds of deposited atoms remain
in the film, almost 100 atoms were sputtered from the original substrate in
the 100 eV simulation. This is five times more than in the 25 eV simulation.

Our present simulations have provided only a limited insight into the mecha-
nisms of a-C:H film growth, and there is a clear need for a continuation and a
more detailed analysis. It appears that the ABOP in its current form is able to
describe the linear dependence of the sp3 content on the a-C:H density as well
as the influence of the energy of the deposited molecules on the structure of
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amorphous network in the growing film which is one of the key experimental
results. However, since the variability of a-C:H films is so diverse, a lot more
simulations is needed for the final verdict to be made. Finally, it should be
mentioned that even though the simulations lasted in real time only 300 ps,
the number of time steps exceeded 5 · 105. These calculations thus prove that
ABOPs are not only an accurate but also an efficient scheme.

6 Conclusions

In this paper we have presented the latest member of David Pettifor’s family
of bond order potentials – the ABOP. Our studies of the hydrocarbon system
demonstrate that ABOP is able to describe bonding in both solid-state and
molecular systems and reproduces to a great extent the TB results. Based on
the work of David Pettifor we have extended the σ bond order expression so
that it includes explicitly the dependence on the sp splitting of atomic on-
site energies which cannot be neglected in the case of carbon. It has been
shown that this extension is crucial for the correct description of σ bond
order scaling. Additionally, this modification cures the overcoordination in
amorphous structures and leads to a correct description of liquid behavior in
a close agreement with OTB results.

The accuracy and predictive power of ABOP is currently bound by the lim-
itations of the OTB model and its parameterization. In order to shift from
qualitative to quantitative predictions, the original hydrocarbon OTB param-
eterization has to be reconsidered. From the more fundamental point of view
further steps should also head for improvements and extensions of the OTB
model itself. The fundamental two-center σ and π bond integrals in two-center
OTB schemes are assumed to be simple continuous functions of interatomic
distance. In reality, however, these quantities are strongly dependent on the
environment [29,57,58]. In a recent study, Mathioudakis et al. [59] have em-
ployed the environmentally-dependent OTB model for simulations of amor-
phous carbon with similar predictive power as NOTB and DFT methods.
A rigorous connection between the NOTB and environmentally-dependent
OTB schemes has been found by inverting the non-orthogonality matrix using
the BOP theory [58]. This derivation leads to explicit analytic expressions
for the environmental dependence of the two-center bond integrals within
the OTB representation. An extension of the ABOP scheme to include the
environmentally-dependent bond integrals would further improve its trans-
ferability without sacrificing the models’ transparency. Such a robust scheme
would then approach the accuracy of NOTB methods at a fraction of their
computational costs.

In our simulations, ABOP is currently (without any dedicated optimization
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of computer codes) about an order of magnitude slower than the Brenner po-
tential. Apart from the film growth studies we have performed simulations of
C60 impact onto diamond with more than 50 000 atoms on a modern desktop
computer. With ever increasing computer power and employment of paral-
lel computers the performance of ABOPs therefore will not pose a serious
problem.

We believe that the future of ABOPs is very bright. With a sound theoretical
basis, reliable parameterization and improved efficiency the model can be ap-
plied to large-scale atomistic simulations of extreme complexity such as film
growth, tribological degradation and polymer physics.
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