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Abstract

In traditional confocal microscopy, there is a tradeoff between the spatial resolu-
tion and the field of view due to the limitations of the objective lenses. To solve
this problem, diffractive optical elements (DOEs) are used to generate illumination
spots with high NA in a large area simultaneously. However, such DOE:s in current
research are only used as illuminators. In this work, the idea of superposition is
utilized in DOE:s to have flexible functionality and replace high-NA objectives for
confocal measurement. To design the DOEs, different numerical simulation meth-
ods for light propagation are investigated and compared. Rayleigh-Sommerfeld
integral is chosen to simulate the DOEs to get accurate results. Two kinds of
DOE:s are designed and simulated for 3D confocal surface measurements.

1 Introduction

Confocal microscopy has long become the golden standard in life sciences and
other fields [VBR™15]. In a simple single-spot laser scanning confocal micro-
scope, a very focused spot is produced by an objective to illuminate a tiny part
of the object. The bright spot on the object is again imaged by the objective onto
the image sensor. A pinhole is used to block out-of-focus light scattered by the
object to have a sharper image of the spot on the object. In this way, much better
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Figure 1.1: Optical configuration of a spinning disk microscope [DSST09].

axial resolution than wide-field microscopy can be achieved and 3D images of the
object can be obtained through layer-by-layer scanning. Furthermore, a multi-spot
array can be used to increase the scanning speed. For example, Fig. 1.1 shows a
Nipkow spinning disk which produces multiple spots to faster scan the sample.

One of the key components in a confocal microscope is the objective. The
resolution of the microscope is directly related to the produced spot size, and the
spot size is determined by the numerical aperture of the objective. The numerical
aperture is defined as in Eq. (1.1), where n is the refractive index of the medium
in which the objective works and 6 is the half angle of the light cone which the
objective can collect.

NA =nsinf (L.1)

High-NA objectives provide better resolution. However, high-NA objectives with
large diameters, e.g. lithography lenses, are very difficult and expensive to design
and produce, which makes them impractical for microscopic applications [Zhe16].
Objectives need to get closer to the sample with the increase of NA. This leads to
a limited field of view, which means only a small portion of the sample can be
scanned at once. Besides, due to the complex structures of high-NA lenses, they
are also very expensive.
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Figure 1.2: Optical configuration of a multi-spot scanning microscope using a DOE [HVS12].

In order to solve these problems, using DOEs as array illuminators has been
proposed to scan large-area samples with comparable resolution to the standard
confocal microscopy [HVS12][LSB12][LB14].

Fig. 1.2 shows the principle of a multi-spot scanning microscope based on a
DOE illuminator. In this case, the DOE acts as an array of Fresnel lenses with
overlapping apertures. It focuses plane wave into tiny illumination spots. A
complete image of the sample is obtained by scanning it with the spot array.
The array is placed at an angle to the scanning direction which allows one-axis
scanning for a 2D plane.

However, such DOEs are not suitable for measuring 3D surfaces of opaque
samples, because the spots cannot be imaged from the same side through the
DOEs. So the imaging systems must be placed on the opposite sides of the DOEs
and only transparent or semi-transparent samples can be measured. In order to
avoid this limitation, we propose new kinds of DOEs which utilize superposition
of different field distributions to allow more flexible functionality.

In the following sections, the simulation and the design methods for the DOEs are
described. Two design concepts of DOEs are proposed which enable 3D surface
measurements for opaque samples. The functionality and limitation of the DOEs
are discussed based on the simulation results.
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2  Diffraction simulation methods

To design such DOEs, one follows the procedures shown in Fig. 2.1 [HVS12].
First, a target field distribution is created, which is a spot array in this case. Then
it propagates back through a certain working distance by simulation and the field
distribution on the working plane of the DOE is obtained. In this case, the DOE is
simply a piece of glass with micro structures etched on the surface. The structures
are micro peaks and valleys, and they can control the phase of light to form a
designed pattern. So only the phase of the field distribution is used, because
a DOE made of pure glass can only control the phase of the field. Moreover,
for manufacturing convenience, the phase is binarized because etching a binary
profile on the glass is the easiest. The binarized phase then represents the micro
peaks and valleys on the glass surface of the DOE. Finally, the binarized phase
propagates again through the designed working distance by simulation to examine
the produced spot array.

To make a DOE which can produce the same pattern as designed, the key in
the above-mentioned procedures is to accurately calculate the field distribution
after it propagates a certain distance. This is also the central problem for a
diffraction simulation as Fig. 2.2 shows, where we want to calculate the field
distribution u(z, y, z) after the initial field at z = 0 propagates a certain distance
through a medium with the refractive index n. Traditional geometrical optics
methods like ray tracing are not able to simulate the diffraction phenomenon.
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Figure 2.1: Design procedures of the DOE [HVS12]. The patterns are only for demonstration purpose
and they are not generated by a real simulation.
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Figure 2.2: Calculating the field distribution after propagating a certain distance.

Meanwhile, full-wave solvers like FDTD or FEM can provide most accurate
results by spatially discretizing Maxwell’s equations in the computational domain.
However, due to the huge size of the discretized grid for our 3D simulation
scale in the millimeter range and the wavelength in the near-infrared spectrum,
these methods would take months or years for a single run on normal servers
even with GPU acceleration, which makes it inefficient for iterative design and
optimization. So the classical diffraction theory in Fourier optics which uses
scalar approximation for the Maxwell’s equations is the suitable choice and now
becomes the cornerstone for analysis of diffraction in wave optics [Voel 1].

Generally, the propagation of light, which is identified as electromagnetic
wave [Max65], is governed by Maxwell’s equations:

oD

7=z o
5 V x H,
0B

- - _ B
o1 V xE,
vV-B = 0,
v-D = 0.

With time-harmonic field and scalar approximation, Maxwell’s equations are
simplified into scalar Helmholtz’s Equation [GooO5][KH14]:

Au(r,w) + ku(r,w) = 0, 2.1
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where wu is the scalar field of light which replaces E and H since they both
satisfy the above equation, r = (x,y, 2) is the coordinate, w is the angular
frequency of the light which we drop afterwards for simplicity since the frequency
dependency is implicitly assumed, k = 27n/\ is the wave number where n is
the refractive index of the medium and A is the wavelength. The accuracy of the
scalar approximation in diffraction is discussed in [Sil62][Lin72][BGG98]. They
have shown that the scalar theory can yield sufficiently accurate results when the
diffracting aperture size and observation distance from the aperture are both large
compared to the wavelength, which is applicable in our case with the aperture size
and the working distance in millimeter range.

Under the scalar approximation, there are two exact solutions for the scalar
Helmholtz Equation (2.1) with the boundary condition on an opaque screen with
finite apertures:

’UJ(ZC, Y, O) = Up (ZC, y)a (223)
and the Sommerfeld radiation condition:
, du(r) . )
lim |r —tku(r) | =0, 2.2b
Jim o] (% it (2.20)

which implies that the wave should decay when propagating to the infinity and no
wave should be radiated back from the infinity.

With the boundary condition (2.2a) and (2.2b), one solution is known as the
Rayleigh-Sommerfeld integral [Som96][SomO04]:

u L”/‘zdx,d / (2.3)
O _ r/|2 y ? °

where 3 denotes the surface on the boundary, i.e. the aperture plane and the
semi-infinite sphere behind it, ' = (2, ¢/, 2’) is the coordinate on X..

The other solution is the angular spectrum method [BRS50] as the following
equation shows, which is also the simulation method used in [HVS12]:

= / / Us (e, B)e~ (@ B)ze=i0+BY) do g3, (2.4)

where Uy (v, ) = (277) // (z,y)e Z(az+ﬁy)dadﬁ
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is the Fourier transform of the initial field distribution at z = 0. «, 5 and v(c, 8)
are called spatial frequencies which satisfy the relation k? = o2 + 32 4+ ~2.
Equ. (2.4) implies that u(r) = u(x,y, z), which is the field distribution after
uo(x,y) = u(x,y,0) propagating a distance z, equals to the inverse Fourier
transform of the product of Up(c, 3) and e ~*7(®:A)z,

Both solutions can solve the distribution of a field after propagating a defined
distance as Fig. 2.2 shows. The angular spectrum method is in spatial frequency
domain and the Rayleigh-Sommerfeld integral in real spatial domain. Analyti-
cally, they are equivalent and will provide the same simulation results. However,
numerically they show different behaviour and are therefore suitable for solving
different problems.

The reason is due to the sampling of these two integrals. Knowing the initial
field distribution ug(x, y), we want to calculate the new field u(z, y, z). Because
analytic solutions of them are not known, they are calculated numerically. The
first step is to discretize the initial field ug(z, y) as Fig. 2.2 shows.

For the Rayleigh-Sommerfeld integral in Eq. (2.3), the sampling is straightforward.
If the initial field uy is discretized into smaller pieces, the sampling interval dx’
and dy’ also becomes smaller and the product inside the integral has a higher
sampling rate. Generally, when the computational pixel size is smaller than a half
of the wavelength, the integral is sufficiently well sampled [SWO06].

However, for the angular spectrum method, the sampling is different due to the
Fourier transform. As Eq. (2.4) shows, the angular spectrum method is the inverse
Fourier transform of the product of Up(c, 8) and an oscillating phase e~ (@f)z,
This product has to be sampled sufficiently. On the one hand, Uy(c, ) is the
Fourier transform of ug(z,y). So dz and dy need to be small enough to avoid
aliasing in the frequency domain. On the other hand, e~*7(®-%)* will be sufficiently
sampled when the phase of the oscillating term varies by less than 7 in each
sampling step. This means that the sampling interval da and df also has to be
small enough to have a small variation step of y(a, 3). The size of da and df3 is
proportional to 1/L,, and 1/L,, in Fig. 2.2. This requires a computational window
size which should be large enough to resolve v(«, 3). Besides, the propagation
distance z should also be short enough.
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Figure 2.3: Simulation of the field distribution after a 1D slit by different methods.

These restrictions require a large computational window and small pixels simulta-
neously in certain cases. In our simulation scale, we have found that the angular
spectrum method needs large zero padding which will lead to a large number of
total computational pixels and a longer runtime.

Moreover, the angular spectrum method will have an implicit assumption of a
periodic boundary condition due to the property of the discrete Fourier transform
which needs to be treated carefully. The Rayleigh-Sommerfeld integral assumes
zero boundary conditions which is easier to handle.

Fig. 2.3 shows the field distribution of a 100 um 1D slit after propagating a
distance of 1 mm, which is a 2D simulation. The wavelength is 1 um. The total
simulation length is 300 um. In such a simulation scale, we can see that the
Rayleigh-Sommerfeld integral fits better with the theoretical result, while the
angular spectrum method shows more oscillations and deviations. The detailed
numerical implementation for the Rayleigh-Sommerfeld integral can be found
in [SWO06], and that for the angular spectrum method is almost identical to the
common Fresnel diffraction implementation in [Voel1].

By the Rayleigh-Sommerfeld integral, we made a simulation with the computa-
tional window size L, = L, = 2.4 mm, the pixel size dx = dy = 0.4 um and the
propagation distance z = 1 mm. The runtime for a single propagation is around
17s, which is sufficiently short for iterative design and optimization. Thus the
Rayleigh-Sommerfeld integral is chosen as the simulation method in this work.
All the DOE design in the following chapter is simulated by it.
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Figure 3.1: The DOE generates spot array with overlapping apertures. The patterns are only for
demonstration purpose and they are not generated by a real simulation.

3 DOE Design for surface measurements

3.1 Overlapping apertures and multi-functional DOEs

To use the DOEs to replace high-NA objectives for fast scanning with high
resolution, they need to be able to produce dense spot arrays with high-NA. This
is achieved by the concept of overlapping apertures. As shown in Fig. 2.1, the spot
array is produced by the DOE which is composed of periodic unit cells. However,
a single spot in the array is not only produced by the unit cell right above it. It
also receives contributions from all unit cells around the spot [HVS12]. This is
equivalently explained by the design procedures in Fig. 3.1. The spot propagates
back and forms a spherical-wave-like field distribution. In order to construct a
spot array, this field is duplicated and overlapped with a certain pitch. Then the
overlapping field is binarized and propagates back to verify the spot array which
will be actually produced. In this case, the spot is not solely produced by the
small unit cell above it, but it will be produced by the original spherical-wave-like
field which is already overlapped with the adjacent ones. Thus, the NA of the
spot is not limited by the pitch anymore. A dense spot array with high NA can be
generated in this way.

However, as described in Section 1, such DOEs are not capable of measuring
opaque objects. To improve the measurement capability of such DOEs in the
current research, the key idea is the superposition of different field distributions.
By simply adding different fields generated from different target light distributions,
all the target patterns can be generated with one single DOE [DZXL03]. Such
kind of DOEs is known as the multi-functional DOEs.
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Figure 3.2: Design procedures for multi-functional DOEs.

For example, if one DOE can generate a circle and another one can generate a
cross, the combined DOE of the previous two DOEs can generate a circle and a
cross at the same time. Fig. 3.2 demonstrates the design procedures and simulation
results for this DOE. w4041 and ugpes2 are the field distributions of a circle and a
cross. up; and upo are the field distributions on the the working plane after wpo¢1
and u,po2 propagate back a certain working distance respectively. Then they are
simply added together with a weight factor W and form a new field distribution:

UD(%?J) :UD1($>?J)+WUD2($>?J)- (31)

Afterwards, the phase of up is extracted and binarized into ¢ p with a binarization
factor B [HVS12]:

ép(z,y) = mod Qarg[u[’(x’y)] +BJ ,2) . (3.2)

™

Finally, with plane-wave illumination, the binary DOE forms a field distribution
e?D and it propagates to the focal plane to show the actual pattern Uyewspots
which in this case is the superposition of a circle and a cross. With this method,
a single piece of a DOE can have a more flexible functionality. In the following
sections, two DOE designs will be introduced to overcome the shortcomings of
the previous DOE:s in Fig. 2.1 for confocal microscopy. These designs utilize the
idea of superposition to realize see-through and direct-imaging functions and are
both able to measure opaque surfaces.



Application of DOEs in confocal microscopy 35

See-through DOE Beam Splitter Image Plane

Sample Laser Beam Lens

Figure 3.3: See-through configuration of a DOE-based confocal surface measurement system.

3.2 See-through DOE design

In order to illuminate and image the sample on the same side for confocal surface
measurements, the spots need be able to be seen through the DOE without too
much disturbance.

Fig. 3.3 shows a DOE-based multi-spot scanning confocal microscope for surface
measurements. The dashed blue lines represent the illumination light and the
solid red lines represent the light refelcted from the sample. The DOE generates
high-NA spots which are imaged by a low-NA objective lens. In this way, although
the low-NA lens will produce large spots on the image plane, the lateral resolu-
tion is still governed by the high-NA illumination spots, which is similar to the
principle of super-resolution microscopy like STED or PALM [HW94][BPS106].
Meanwhile, a low-NA lens can offer a large field of view. Thus high resolution
and large-area scanning can be achieved at the same time.

Fig. 3.4 shows a section of the simulated image for a 21 x 21 spot array with a
pitch of 20 um, which is generated by a DOE with an NA of 0.7 and imaged by a
lens with an NA of 0.2. The wavelength for the simulation is 785 nm The DOE
multi-spot illuminator is designed in the similarly to the procedures described in
[HVS12].

It is obvious that the spots are severely disturbed when they are imaged through
the DOE. We are going to define an intensity contrast factor (ICF). The definition
of it is going to be the ratio between the intensity of the central pixel on the image
and the average intensity of the following unit cell:

I
ICF = center )

mean
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(a) 3 x 3 grid section in a 21 x 21 spot array.
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Figure 3.4: Simulation of spots generated and imaged through a pure DOE illuminator.

In the ideal case, when a perfect spot array is imaged by such a configuration, the
ideal ICF = 116.38. For the simulation in Fig. 3.4, we get the ICF = 1.97. As
clearly shown in the very noisy picture, such DOEs are not capable for surface
measurements when illumination and imaging systems are on the same side of the
sample.

To reduce the disturbance added by the DOE itself, a plane-wave component is
added to the original DOE. This is simply done as described in Section 3.1 by
putting up2(x,y) = 1 as plane wave into Eq. (3.1):

UD(%Z/) = UDl(x,y) + W7

where u p; is the field distribution to produce a spot array like Fig. 2.1. In this way,
the new DOE can not only generate a spot array, but also act as a transparent piece
of glass which lets the low-NA objective to image the spots through it without too
much disturbance. The simulation results of such a DOE is shown in Fig. 3.5 for a
spot array with the same wavelength, spot number, pitch and NA as Fig. 3.4. The
DOE is optimized iteratively with the working distance z = 1.095 mm, the weight
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Figure 3.5: Simulation of spots generated and imaged through a see-through DOE with a plane-wave
component.

factor W = 18 and the binarization factor B = 0.497 in Eq. (3.2) to achieve the
highest intensities in the spot centers. Compared to the image simulation of the
previous DOE, it is obvious that the spots are much less disturbed and can be
clearly imaged by the low-NA objective with a highly improved ICF = 48.25.

Such DOE:s can realize the concept of combining high-NA illumination and low-
NA imaging for confocal surface measurements, which achieves high lateral
resolution and large-area scanning. However, such configuration cannot signifi-
cantly improve the axial resolution for 3D surface measurements. The reason can
be derived from the image formation theory of scanning microscopes in Fig. 3.6.
The field distribution U(z2, y2) on the image plane according to the scanning

position can be represented as:

U(z2,y2; s, Ys) (3.3)
oo .
= // hi(xo,y0)t(xo — s, Yo — Ys)ha (MQ — To, i—; - yo) dzodyo,
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Figure 3.6: Optical configuration for a scanning microscope [WS84].

where (g, yo) is the object coordinate, (2, y2) is the image coordinate, (z, ys)
is the scanning position, hy(xs, ys) is the illumination point spread function (PSF),
ha(xs,ys) is the imaging PSF, and ¢(x, yo) is the object transparency as shown
in Fig. 3.6.

For a point object, the object transparency is t(zq, yo) = d(zo, yo), and Eq. (3.3)
can be simplified into:

U(‘,I“Qv y2;x57y8) (34)
o T
= // hi(zo,y0)0(xo — Zs, Yo — Ys)ho (ﬁ — To, y_]\; - yo) dzodyo
x
= hl(xsvys)hQ (M2 — T, y_]\; - ys) .

For a plane object, e.g. a mirror, the object transparency is equivalent to
t(x,y) = 1, and Eq. (3.3) can be simplified into:

U($27y2;$s»ys) (35)
>~ T Y2
= hi(xo,yo0)he (== — xo, == — Yo ) dxodyo
//_ . (M M )

= h1(22,y2) * ha(z2,Y2).
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Figure 3.7: Axial intensity responses of confocal systems for a plane object.

From Eq. (3.4) and Eq. (3.5), it is clearly shown that for a point object the response
on the image plane is the product of the illumination and the imaging PSFs, while
for a plane object the image is the convolution of the two PSFs. In our optical
configuration with high-NA illumination and low-NA imaging, this means that for
a point object, the response on the image plane will be governed by the high-NA
PSF; for a plane object, it will be governed by the low-NA PSF. Thus for the
3D surface measurement, which is similar to a plane, the axial resolution cannot
benefit from the high-NA illumination.

Fig. 3.7 shows simulations of axial intensity responses of confocal microscope
systems for a plane object with both low-NA illumination and imaging, and with
high-NA illumination and low-NA imaging respectively. The simulation setup
is very simple. A spot on a mirror which is produced by an illumination lens is
imaged by an imaging lens. Then the mirror is gradually moved away from the
focal point and the intensity of the central pixel in the image is recorded. For both
low-NA illumination and imaging, the axial half width half maximum (HWHM)
is 36 um. And with a high-NA illumination, the axial HWHM is around 30 pm.
Although there is an improvement, it is not very significant and impressive.

In conclusion, such configuration in Fig. 3.3 can improve the lateral resolution
by the high-NA spots produced by the DOE. However, the axial resolution is still
strongly restricted by the low-NA objective. Thus it is not very suitable for 3D
surface measurements.
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Figure 3.8: Direct-imaging configuration of a DOE-based confocal surface measurement system.

3.3 Direct-imaging DOE design

In order to increase the axial resolution and make the DOE suitable for 3D surface
measurements, the optical configuration for the direct-imaging DOE design is
proposed as Fig. 3.8. In this case, the DOE is the superposition of two kinds of
lenses with overlapping apertures. One acts as an illumination lens which converts
an incident plane wave into a spot array. The other one acts as the imaging
lenses which directly image the spots onto the imaging sensor. The two lenses are
overlapped as Fig. 3.1 shows. The field distribution for the new DOE is calculated
again according to Eq. (3.1):

UD = Ulensl + Wulen52~

In this way the illumination and the imaging are both high-NA and the system can
have the same performance as a high-NA confocal microscope.

Fig. 3.10 shows the simulation results with the setup in Fig. 3.8. The dashed blue
lines represent the illumination light and the solid red lines represent the light
refelcted from the sample. The spots are generated by the direct-imaging DOE
and again imaged by itself onto the image plane. It is again optimized iteratively
to achieve the highest intensities in the spot centers with the working distance
z = 1.11 mm, the distance from the DOE to the image sensor d = 21.262 mm, the
weighting factor W = (0.045 and the binarization factor B = 0.977 in Eq. (3.2).
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Figure 3.9: Side effects which cause irregular interference patterns.

The pitch is 100 pm and the simulation wavelength is 785 nm. Different numbers
of spots are created for the simulation. For a perfect spot on the image plane in this
configuration, we calculate an ICF = 267.79. Fig. 3.10 shows a 5 x 5 spot array.
The spots can still be seen with an ICF = 38.86. However, irregular interference
patterns can already be observed in the image. When the number of spots further
increases, the interference patterns will become more and more significant as in
Fig. 3.10 with ICF = 19.72 and Fig. 3.10 with ICF = 5.08. The ICF drops with
the increase of spot numbers. Eventually, the spots are covered by the interference
patterns and they cannot be distinguished any more on the image.

These interference patterns are mainly caused by the side effects of superposition
of different DOEs and overlapping apertures. As mentioned previously, the DOE
is composed of two components which are generally two kinds of lenses with
different focal lengths. They act as the illumination lenses and imaging lenses
respectively. However, they will not work separately as we want for illumination
and imaging. They will always take effect at the same time. When projecting the
illumination spots, the imaging lenses will also produce a blurred spot around the
spot we need, which is shown as Fig. 3.9.

Besides, on the imaging side, due to the overlapping apertures, one spot will
not only pass the designed lens to form a spot on the image sensor, but also it
will go through the adjacent lenses to form other blurred spots which add some
disturbances to the image, which is shown in Fig. 3.9. As the number of spots
increases, the image quality will reduce.
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Figure 3.10: Simulation of the field intensity on the image plane for the direct-imaging DOE design.

500 1
0s
400
08
or
200
06
E
3 0 05
-
04
200
03
02
400
01
600
600 400 200 0 200 400 600
% (um)

(a) 5 x 5 spot array on the image.

800 1
09
400
08
or
-200
06
E
3 0 05
=~
04
200
03
02
400
0.1
600
-600 -400 -200 0 200 400 600
x (um)

(c) 9 x 9 spot array on the image.

500 1
o9
400
08
or
-200
06
E
3 o 05
=
04
200
03
02
400
0.1
600
-400 -200 0 200 400 600
x (um)

(e) 11 x 11 spot array on the image.

Normalized Intensity {a.u.)
e
@

0.8
07
06
0.4
03
02
" LA A
-100 -50 0 50 100

)
150 150

X (um)

(b) Cross section at y = 0 in the
5 X b spot array.

09
08
07
0.6
04
03
02
el e N Ll
0
100 -50 0 50 100
x (um)

Normalized Intensity (a.u.)
°
@

150 A

(d) Cross section at y = 0 in the
9 X 9 spot array.

Normalized Intensity (a.u.)

x (um)

(f) Cross section at y = 0 in the
11 x 11 spot array.



Application of DOEs in confocal microscopy 43

00 300 200 100 o 100 200 20 100
X (um)

(a) The central 9 spots in a line with 21 spots on the
image plane.

‘ Mw‘ M’IMWJLMI\M Lt sl L bbbl dd 5
(

Intensity (a.u.)
s 5

©

0
00 300 400

*(um)

(b) Cross section of intensity profile of the line at y = 0.

Figure 3.11: Simulation of a spot line produced by the direct-imaging DOE.

The reason behind these side effects is too much overlapping of the elements. The
overlapping can be reduced by decreasing the working distance, decreasing the
NA, or increasing the pitch of the elements. However, none of these is desirable
for 3D measurement. Because larger working distance, higher NA and smaller
pitch are required for faster and more accurate measurement.

One possible solution could be using a line of spots instead of a 2D array to reduce
the overlapping. In this case, there is no longer interference from the top and
bottom spots. Meanwhile, one spot will receive less disturbances from the spots
farther away. Thus the overall disturbances for a single spot can be reduced to an
acceptable level and the line of spots can be extended infinitely. Fig. 3.11 shows
a line of 21 spots with the working distance z = 1.11 mm, the distance from
the DOE to the image sensor d = 21.262 mm, the weighting factor W = 0.065
and the binarization factor B = 0.977 in Eq. (3.2). The pitch is 100 um and
the simulation wavelength is 785 nm. As shown in the picture, the center spot
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receives the most disturbances from other spots but it is still clearly visible with
an ICF = 32.53. And even with the increase of the spots, the central spot will
receive less disturbance from the unit cells which is far away , which implies that
the concept works theoretically in the simulation.

In conclusion, two DOE design concepts are proposed in this chapter. They
can both produce illumination spots with an NA of 0.7 by simulation. The first
see-through DOE design provides better intensity contrast with an ICF = 48.25
compared to an ideal ICF = 116.38, but it is only capable of 2D measurements.
The second direct-imaging design is able to measure 3D surfaces but the number
of spots is highly limited due to severe interference caused by overlapping of the
components. A line scanner could be a potential solution to control the interference
to an acceptable level with an ICF = 32.53 compared to an ICF = 267.79 in the
ideal configuration.

4  Summary

In the current research, DOEs are used to replace high NA objectives in confocal
microscopy. However, they can only measure semi-transparent samples. In this
work, the ideal of superposition are proposed to overcome this limit and to enable
the application of DOE for opaque surface measurements. Different methods to
simulate light diffraction are compared for design the DOE. Two different DOE
design concepts are simulated and investigated. Both concepts can produce an
illumination spot array with an NA of 0.7. The first see-through design has a
good intensity contrast on the image but it cannot provide good axial resolution.
The second direct-imaging design has the same depth discerning capability as the
traditional confocal microscopy. However, it suffers from low intensity contrast
due to overlapping of different wave component. 1D arrangement of the spots as a
line is proposed to reduce the interference and it has the potential in real industrial
application.

The first piece of DOE prototype is already produced and ready for testing. In the
future, experiments with the prototype will be performed to verify the simulation
results, and new possibilities to use structured illumination and interference with
DOE:s will be investigated for 3D measurement.
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