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Abstract— This paper presents a method for modeling and
control of a piezo-actuated high-dynamic compensation mech-
anism for usage together with an industrial robot during
a machining operation, such as milling in aluminium. The
machining spindle is attached to the compensation mechanism
and the robot holds the workpiece. Due to the inherent resonant
character of mechanical constructions of this type, and the
nonlinear phenomena appearing in piezo actuators, control
of the compensation mechanism is a challenging problem.
This paper presents models of the construction, experimentally
identified using subspace-based identification methods. A subse-
quent control scheme, based on the identified models, utilizing
state feedback for controlling the position of the spindle is
outlined. Experimental results performed on a prototype ofthe
compensation mechanism are also provided.

I. I NTRODUCTION

Due to the limited positioning accuracy and stiffness of
industrial robots, machining has traditionally been performed
using dedicated CNC machines, when accuracy higher than
0.1 mm is required. However, since industrial robots may
offer more flexible and cost-efficient machining solutions
than CNC machines, it is desirable to use industrial robots
for machining tasks, such as,e.g., milling in aluminium.

Within the EU/FP7-project COMET [1], the aim is to
develop solutions for machining with industrial robots with
accuracy greater than 50µm. For high-precision machining,
a high-dynamic mechanism for real-time compensation of
the remaining position errors of the robot is developed. This
unit is called a High-Dynamic Compensation Mechanism
(HDCM).

This paper presents modeling and control of a prototype
of the HDCM-unit. The construction of the unit has been
discussed in several earlier papers, see,e.g., [2], [3], and
therefore, the mechanical design is only briefly described
below. The focus of this paper will be on the dynamic
properties and how the subsequent control design should be
optimized for satisfactory milling results. It will be shown
how nonlinear effects in the HDCM can be handled and how
the mechanical vibrations in the construction can be reduced
by using appropriate control design methods.

This paper is organized as follows. Section II describes the
experimental setup of the industrial robot and the HDCM-
unit, as well as the corresponding environment for simulation
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Fig. 1. The experimental setup for real-time compensation of positioning
errors during machining operations, where the robot holds the workpiece
and the spindle holding the milling tool is mounted on the HDCM-unit. A
detail of the HDCM and the Cartesian axes, along which compensation is
possible, are also displayed.

and testing of the control design. Section III describes initial
experiments performed on the HDCM for dynamic charac-
terization. Based on the dynamic characterization, modeling
of the construction is discussed in Section IV and the subse-
quent model-based control design is described in Section V.
Experimental results are presented in Section VI and finally
conclusions and future work are given in Section VII.

II. EXPERIMENTAL SETUP

A prototype of the HDCM has earlier been developed
and reported in several publications, see,e.g., [2]. In the
experiments in this paper, the HDCM is to be used together
with a REIS RV40 industrial robot. The robot holds the
workpiece and the spindle is consequently attached to the
HDCM, see Fig. 1.

A. Construction

The construction of the HDCM is such that motion of the
spindle is possible in three Cartesian directions, hereafter
calledx, y andz, respectively, see Fig. 1. The three axes are
designed to be decoupled. The motion in each direction is
achieved by the forces generated by three individual piezo
actuators. The extensions of the piezo actuators are translated
to a corresponding translational movement of the spindlevia
a flexure mechanism. The flexure mechanism is constructed
such that the gear ratio of the displacement of the spindle
and the extension of the piezo actuator is approximately five
in each direction. This realizes a compensation range for
the machining spindle of approximately 0.5–1 mm in each
Cartesian direction.



B. Actuation and sensors

The extension of the piezo actuators is changed by apply-
ing a voltage, and the extensions are measured using strain
gauges, attached to the actuators. The Cartesian displacement
of the spindle is measured with capacitive sensors, one in
each direction.

C. Interface to the HDCM

In order to develop the control structure for the HDCM-
unit, all sensors and actuators are integrated using a dSPACE
system of model DS1103 [4]. Using the software Control-
Desk, the user can implement new control strategies in a sim-
ple manner as well as develop graphical user interfaces. The
control design described in this paper has been implemented
in MATLAB Simulink, then generated to C–code using the
Real-Time Workshoptoolbox [5]. The compiled C-code is
installed in the dSPACE system and executed at a sampling
frequency of 10 kHz.

III. D YNAMIC CHARACTERIZATION OF THE

CONSTRUCTION

Due to the inherent resonant character of mechanical sys-
tems and the nonlinear effects that appear in piezo actuators,
accurate positioning control of the HDCM without vibrations
is a challenging control problem. A model-based solution is
here pursued in order to control the tool position.

A. Nonlinear phenomena in the piezo actuators

Experiments have been performed on the HDCM in order
to determine the effect of the nonlinear phenomena in the
piezo actuators. The experiments indicated that the main
nonlinearities that need to be handled are hysteresis and
the creep phenomenon. Results from experiments where the
voltage to the piezo actuators are alternatingly increasing
and decreasing are shown in Fig. 2. It is obvious that
the hysteresis needs to be handled actively for accurate
positioning. It is also noted that the hysteresis is both rate
and amplitude dependent. On the other hand, experiments
showed that the nonlinear creep phenomenon in the actuator
is a much slower process, and thus easier to handle.

Although different in nature, both of these nonlinear
effects can be handled using high-gain feedback. The control
design will be described in Section V.

B. Frequency characterization of the mechanical construc-
tion

In order to characterize the frequency properties of the
mechanical construction, several frequency response experi-
ments have been performed. The frequency spectra in the
different directions, displayed in Fig. 3, were estimated
using the periodogram method. An important property of
the system is the location of the first natural eigenfrequency.
It is noted that the characteristics are quite different in
the three Cartesian directions. In particular, two natural
eigenfrequencies are visible in thex- and z-axes, whereas
only one is visible in they-direction. The first eigenfrequency
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Fig. 2. Extension of the piezo actuator as function of the input for a
triangular wave with varying amplitude as input.
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Fig. 3. Estimated frequency spectra in the Cartesian directions.

appears in the frequency range 33–47 Hz in all of the three
axes.

The locations of the eigenfrequencies are important since
they limit the achievable bandwidth,i.e., the velocity of
the control loop, in the final closed-loop control system.
Increasing the bandwidth beyond the resonance frequency
requires a lot of control actuation and the sensitivity to model
errors becomes significant.

IV. M ODELING OF THE MECHANICAL CONSTRUCTION

In order to design control algorithms, it is advantageous to
perform modeling of the HDCM prior to the design. Two dif-
ferent methods for modeling can be chosen. Firstly, modeling
based on mechanical relations can be established, where
the construction specific parameters are either analytically



calculated or experimentally determined.
The other approach is to consider black-box input-output

models without investigating the internal mechanical con-
struction. This is a common approach in model-based con-
trol, which results in satisfactory control performance given
that the model captures the essential dynamics of the system.
This approach is investigated in this paper for modeling of
the HDCM.

A. Identification based on black-box models

Using system identification methods [6], mathematical
models describing the HDCM can be determined. The axes
can be assumed to be decoupled, conditioned that the me-
chanical design is made such that the motions of the different
directions are independent. This assumption is made in this
paper. Consequently, each axis is considered as a system with
one input and one output. Identification of the models was
done in the System Identification Toolbox [7] in MATLAB

and the State space Model Identification (SMI) toolbox [8]
for identification of state-space models.

Accordingly, consider discrete-time state-space models of
the innovation form

xk+1 = Φxk + Γuk + vk (1)

yk = Cxk + Duk + ek (2)

whereuk ∈ R
m is the input,xk ∈ R

n is the state vector,
yk ∈ R

p is the output andvk and ek are noise sequences.
The matrices{Φ, Γ, C, D} in the state-space representation
are identified using one of the available implementations of
subspace-based identification methods, such as the N4SID-
method [9] and the MOESP algorithm [10]. During the
identification of the models, a Kalman gain vector for a
minimum variance estimate of the states in the model is also
determined, based on the noise properties.

B. Collection of input-output data

The collection of experimental input-output data is per-
formed in such a way that the inputuk is considered to be a
scaled version of the input voltage to the actuator, whereas
the outputyk is defined to be the position of the spindle as
measured by the capacitive sensor.

When performing system identification, an appropriate
input signal has to be chosen, such that the system is
excited properly. In this paper a chirp-signal is chosen—i.e.,
a sinusoid with constant amplitude and linearly increasing
frequency—as input, since this signal gives excitation in a
well-defined frequency range. Consequently, the start and
end frequencies in the chirp-signal have to be chosen based
on the frequency range of interest. Given the frequency
spectra displayed in Fig. 3, a reasonable range of excitation
is 10–60 Hz.

C. Model-order selection and preprocessing of the data

When performing identification of the state-space models,
a model order has to be chosen. To this purpose, the singular
values calculated during the identification procedure using
the N4SID or MOESP algorithms are utilized. By plotting

these singular values, the gap between the model and the
noise level is identified. Based on this information, a suitable
model order can be chosen.

Prior to the identification, the input-output data is pro-
cessed, such that the mean and the linear trend are removed.
Also, the data, which is acquired at 1 kHz, is decimated to
a sample rate of 1000/6≈ 167 Hz, which is suitable given
the location of the eigenfrequencies in the different axes.

D. Identified models

Experimentally identified discrete-time state-space models
on the form (1)–(2) of thex, y and z-directions in the
open-loop system were estimated. All models are of the
same format. However, the model-orders vary in different
directions, reflecting the number of natural eigenfrequencies,
cf. the frequency spectra in Fig. 3. The model orders are
4, 2 and 5 in thex-, y- and z-directions, respectively. The
model order selection was based on the singular values
analysis during the identification procedure. As an example,
the model obtained using the SMI toolbox in they-direction
is

xk+1 =

[

−0.1846 1.071
−0.8762 −0.1588

]

xk +

[

−1.029
−0.06196

]

uk (3)

yk =
[

−0.4567 −0.03502
]

xk + 0.3321uk (4)

The frequency spectra of the identified models are shown in
Fig. 4. It is noted that there is good correspondence with
the estimated periodograms in Fig. 3. A measure of the fit
of the models to the data, are thevariance accounted for
(VAF) values. These numbers are 92.5, 99.5 and 97.1 for the
identified models in thex-, y- andz-directions, respectively.
This indicates that the models capture the essential dynamics
of the system.

V. POSITION CONTROL OF THEHDCM

The control problem of the HDCM can be divided into
two parts. Firstly, the nonlinear effects of the piezo actuators
need to be reduced. Secondly, the oscillatory mechanical
construction needs to be accurately position controlled. The
control structure chosen in this paper is described below.

A. Inner piezo actuator control loop

Nonlinear systems can be controlled by both model-
based feedforward control and with feedback control. Several
approaches to modeling the hysteresis and subsequent model-
based control design have been presented in literature, such
as the Prandtl-Ishlinskii model and the Preisach model,e.g.,
[11], [12], [13]. However, as the extensions of the piezo
actuators in the HDCM are available for measurement with
the strain gauges, a more straightforward solution is chosen,
where an inner feedback loop is closed around the nonlinear
actuator. The controller is a linear PID controller, whose
continuous time transfer functionGC(s) can be written as

GC(s) = Kp +
Ki

s
+

sKd

1 + sKd/N
(5)

whereKp, Ki andKd are controller parameters. It is noted
that the derivative part in the controller is lowpass filtered,
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Fig. 4. Bode magnitude of the discrete-time state-space models identified
using subspace identification, in thex-, y- andz-directions, respectively.

in order to reduce the amplification of high-frequency noise
contaminating the measured signal from the strain gauge.
The cutoff frequency in the lowpass filter is determined
by the parameterN . The PID controller also has to be
accompanied by an anti-windup scheme, to handle the case
when the controller saturate the actuators. Discretization of
this continuous time controller for implementation in the
dSPACE system is straightforward, see,e.g., [14].

In order to reduce the nonlinear effects in the piezo actua-
tors, the proportional gainKp and the integral gainKi should
be increased as much as possible, without causing instability.
It will be shown by experimental results in Section VI, that
this approach—i.e., using a linear controller for reducing the
nonlinear effects in the piezo actuator—results in satisfactory
performance of the control of the piezo actuators.

B. Model-based feedback control of the HDCM

By utilizing the identified state-space models, a state
feedback control loop can be designed for each of the three
Cartesian directions of the HDCM. However, new models
need to be identified after closing the inner feedback loop
around the piezo actuators, where the reference signal to the
inner PID control loop is considered as the input instead.
Since the difference compared to the open loop models
presented in the previous section is small, the models with
the closed inner loop are not presented here.

State feedback is an appropriate structure, since damping
can be introduced in the construction by suitable control
design. The control law for state feedback control of the

system (1)–(2) can be stated as follows

uk = −Lxk + uff (6)

where the parameter vectorL is to be chosen anduff

is the feedforward control signal. The design procedure is
to determine theL-vector by linear-quadratic (LQ) optimal
control [14], i.e., such that the cost function

J(u) =

∞
∑

k=1

xT
k Qxk + uT

k Ruk (7)

where the matricesQ andR are user defined weights in the
optimization, is minimized.

Since all states in the state-space model of the HDCM
are not available for measurement, a Kalman filter is intro-
duced for estimation of the states, based on the measured
position signal and the identified model. The Kalman filter
is organized as [14]

x̂k+1 = Φx̂k + Γuk + K(yk − Cx̂k − Duk) (8)

ŷk = Cx̂k + Duk (9)

where the estimated stateŝxk and the estimated output̂yk

have been introduced. Since the identified model is based on
experimental data, where the mean are subtracted from the
real data, adisturbance stateis added to the observer,i.e., a
new, constant state

x̂e
k+1 = x̂e

k (10)

is introduced. By adding this state, the correct static gain
for the estimation is achieved [14]. The Kalman gainK is
determined by pole placement,i.e., such that the eigenval-
ues of the matrix(Φ − KC) are appropriate. The model
identification procedure provides the Kalman gain vector for
estimation of the states in the model. The corresponding
pole placement is used also in the Kalman filter with the
disturbance state, but with one additional pole corresponding
to the extra disturbance state.

The control law for the state feedback control is then based
on the estimated states,i.e., uk = −Lx̂k + uff . In order to
remove stationary errors in the position control loop, integral
action is introduced in the state feedback. This is done by
extending the state vector with the integral state

xi(t) =

∫ T

0

(r(t) − y(t)) dt (11)

where the reference signalr(t) has been introduced. Intro-
ducing this extra state also requires that the state feedback
vectorL is augmented with one element,i.e., Le =

[

L li
]

,
where li is the integral gain. Also, note that the integral
state needs to be discretized prior to implementation in the
dSPACE system.

Different approaches can be chosen to handle the feed
forward control signal. In the scheme presented in this paper,
the feed forward controluff is chosen as a direct term from
the reference signal,uff = lrr. The parameterlr determines
the gain of the closed-loop system and is experimentally
tuned by the user. The final control structure is summarized
in the block scheme in Fig. 5.



Fig. 5. Control structure for model-based control of the HDCM, where each Cartesian axis is considered separately.

VI. EXPERIMENTAL RESULTS

Several experiments were performed in order to evaluate
the performance of the control design. Firstly, the PID con-
trollers for the nonlinear piezo actuators are tuned, in order
to achieve as high performance as possible. In experiments it
is observed that the control is working satisfactory, despite
the nonlinearities in the piezo actuators. When applying a
triangular wave with a frequency of 3 Hz as input, the
control error is within approximately±1 µm. This provides
experimental evidence that the PID controller is sufficientfor
controlling the positions of the piezo actuators.

A. Tuning of controller parameters

In order to determine the state feedback vectorL, the
weight matricesQ and R in the LQ design need to be
determined. Based on the identified model for the HDCM in
they-direction, the characteristics of the closed loop system
was investigated for different weight matrices. Especially, the
choice of theR-matrix determines the aggressiveness of the
controller. Bode plots of the closed loop system for different
choices ofR, where theQ-matrix has been chosen as the
identity matrix, can be seen in Fig. 6. The direct termlr
in the control law has been chosen such that the static gain
is one in all cases. It is noted that a lower weight results
in a more aggressive controller, where the resonance in the
system is well damped, at the cost of reduced bandwidth.
Hence, the controller needs to be tuned as a trade-off between
the attenuation of the poorly damped resonance in the system
and the aggressiveness of the controller. A too aggressive
controller may result in unsatisfactory control performance
or even instability when applied to the experimental setup,
due to noise in the measurement signals.

B. Evaluation of the control design

In order to evaluate the model-based control design on
the experimental setup, a reference signal was recorded as
the deflection of the robot during a milling operation in one
dimension, measured with a laser sensor. The recorded signal
corresponds to the deflection of the industrial robot in the
milling direction, which equals they-direction of the HDCM.

Experiments were performed on the real setup with vary-
ing weight matrices. Also, the integral state was added to
the state feedback, whose influence is determined by the
parameterli. The weightsQ = I andR = 2.5, whereI is
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Fig. 6. Bode diagram for the closed loop system forQ = I and different
choices of theR-matrix in the LQ-design. The choices ofR are 1.0, 2.0,
3.0 and 4.0 for the blue, red, green and black line, respectively.

the identity matrix, turned out to result in satisfactory control
performance.

The reference signal is filtered using a notch filter, where
the notch is located at the eigenfrequency of the HDCM in
the y-direction, as observed in the frequency spectrum in
Fig. 3. This is done in order not to excite the mechanical
resonance in the construction. Another option is to lowpass-
filter the reference signal. However, since the construction
itself is of lowpass-character, frequencies above the natural
eigenfrequency in the reference signal will be attenuated.

The recorded signal was applied as reference signal in
the y-direction of the HDCM. Fig. 7 shows the control
performance of the inner PID controller loop. It is noted
that the control error with this reference signal, which
contains high frequencies, is within approximately±3 µm.
This shows that the PID controller is a satisfactory control
structure, as the precision required in the inner control loop is
achieved. Fig. 8 shows the spindle position, as measured by
the capacitive sensor. Also this figure indicates good control
performance, with a control error of within approximately
±15 µm.

It is observed in Fig. 8 that the control error signal exhibits
periodic behavior of different frequencies. The frequency
spectrum of this signal is displayed in Fig. 9. Three peaks
at 9, 140 and 250 Hz are clearly visible. The first peak
corresponds to the eigenfrequency of the robot and the
higher frequencies are related to eigenfrequencies of the
piezo actuator, the rotation of the spindle and the impact
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Fig. 7. Control performance in the inner PID control loop in they-direction.
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Fig. 8. Performance of the model-based spindle positioningcontrol in the
y-direction.

of the milling tool on the workpiece. Further, it is noted that
the first significant eigenfrequency of the HDCM in they-
direction at 47 Hz is well damped as a result of the control
design.

VII. C ONCLUSIONS AND FUTURE WORK

This paper has investigated modeling and control of a
piezo-actuated high-dynamic compensation mechanism. The
developed control structure was realized in a discrete-time
implementation and experimentally verified on the prototype
of the HDCM. By tuning the state feedback controller
appropriately, damping was introduced in the mechanical
construction by control design. The resulting control error
for the reference signal recorded during a milling operation
was within approximately±15 µm, which by far achieves
the desired accuracy of50 µm for the complete milling task.

Based on the experimental results presented in this paper,
the model-based approach for control of the HDCM is
promising. However, the control scheme needs to be tested
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Fig. 9. Spectrum of the control error signal.

further during milling operations in order to take the process-
specific disturbances into account in the control scheme.
Disturbances are for example the spindle rotation and the
process-forces. To this purpose, the HDCM-unit and the
robot will be equipped with a 3D-accelerometer.
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