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Abstract: - Multiple description (MD) codes have been proposed as a mechanism to provide robustness against loss of 
data in the context of packet based networks. Therefore correlation is inserted between the descriptions produced by the 
MD code. In this paper the focus is on the transmission of multiple descriptions over noisy channels. We investigate 
the usability of  the correlation between the descriptions to combat channel impairments. A MD transform coder 
(MDTC) is combined with an a priori/a posteriori soft-output Viterbi algorithm (APRI-SOVA) which uses the 
correlation generated by the MDTC for better decoding. We demonstrate that the correlation between the descriptions 
can be used for improved decoding at the receiver. Hence multiple description codes may also be viewed as joint 
source channel codes. 
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1 Introduction 
Multiple Description Coding (MDC) is a source coding 
method, which is used to produce multiple descriptions 
of a source. In the initial problem formulation two 
descriptions have to be transmitted over two different 
channels to three receivers (Fig. 1). The design of the 
descriptions should be in a way such that if only one 
channel works, the information is sufficient to guarantee 
a minimum reconstruction fidelity. However, should 
both channels work, the information from both channels 
can be combined to get a better quality of reconstruction. 
This can be achieved by introducing some correlation 
between both descriptions. Several theoretical 
investigations can be found [5] , and practical code 
designs appear in [2] , [7]. In the majority of recent work, 
the focus is on transmitting the descriptions on packet 
networks. 
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Fig. 1: Basic scenario for multiple description source 
coding 
 
 In [3], Srinivasan demonstrated that the correlation, 
which is introduced by MDC, can be used effectively on 

noisy channels. He showed, that the correlation between 
the descriptions can be used to overcome channel 
impairments. 
In this work we propose a combination of a Multiple 
Description source coder with an APRI-SOVA [1] and 
demonstrate that the correlation introduced by the MD 
source coder can be utilized to improve channel 
decoding. The rest of the paper is organized as follows. 
In section 2, a short overview of the APRI-SOVA is 
given. In section 3 a survey on MDC and the pratical 
MD code used in the proposed system is given. The 
proposed approach for combining MDTC and APRI-
SOVA is specified in section 4. In section 5 selected 
simulation are presented illustrating the results of the 
proposed approach. Concluding remarks are given in 
section 6. 
 
 
2 The APRI-SOVA 
We consider the transmission system in Fig. 2 consisting 
of a source encoder, channel coder, AWGN channel, 
channel decoder and source decoder. A source decoder 
delivers a source bitstream to the channel coder which 
encodes the bitstream to protect it from transmission 
errors. After transmission over a AWGN channel, the 
channel decoder tries to correct possible transmission 
errors. The channel decoder used in our system is a Soft-
Output Viterbi Algorithm (SOVA), introduced in 1989 
by Hagenauer and Hoeher [10]. The SOVA allows to 
obtain reliability information ( )uL ˆ  about the decoded 

information bits û . A further extension of the SOVA 
was proposed by Hagenauer [1] in 1995. With a slight 
modification of the metric of the Viterbi Algorithm, 



Hagenauer incorporates a priori information ( )uL  about 
the probability of the source bits u  into the Viterbi 
Algorithm. 
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Fig. 2: Model of the transmission system 

The metric of the m-th path at time index k of the APRI-
SOVA is given by [1] 
 

( )( )∑
=

− ⋅+⋅⋅+=
N

n
k

m
nknkc

m
nk

m
k

m
k uLuyLxMM

nk
1

)(
,,

)(
,

)(
1

)(
,

. (1) 

 
The value nkc yL

nk ,,
 in (1) is the so called soft-output of 

the channel, where for the AWGN channel 
nkcL

,
 (the 

reliability value of the channel) is [1] 
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In [1], it is described how the Viterbi Algorithm will use 
the a priori information ( )uL . If the channel is very good 

nkcL
,

 is larger than ( )uL  and decoding relies on the 

received channel values. If the channel is very bad, 
decoding relies on the a priori information ( )uL  of the 
source. This circumstance is pictured in Fig. 3. 
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Fig. 3: Weighting property of the APRI-SOVA 

 
This a priori information about the source bits leads to a 
significantly decreasing bit error rate in the Viterbi 
Algorithm, especially in a low signal-to-noise 
environment [1]. 
We mentioned in section 1, that MDC introduces 
correlation between the generated descriptions. 

Therefore it seems natural to ask if the correlation in the 
source signal can be used by the APRI-SOVA to 
improve the channel decoding process. Hence, we focus 
in the following section on the properties of MDC. 
 
 
3 Multiple Description Coding 
3.1 Principle 
Multiple Description Coding (MDC) refers to the 
scenario depicted in Fig. 1. An encoder is given a source 
sequence to communicate to three receivers over two 
error-free channels [2]. 
The encoder generates two distinct yet correlated 
descriptions and sends both over each channel. The 
transmission rate over channel i  is denoted by 

1,2, =iRi . Decoder 0 receives the information which is 
sent over both channels while the remaining receivers 
(decoder 1/2) receive only the information over their 
respective channels. If both channels work, decoder 0 
produces a reconstruction sequence with distortion 0D , 
the central distortion. If one of the channels fail, decoder 
1/2 reconstructs the original information with distortion 

2/1D , the side distortion. 
The central theoretical problem is to determine the set of 
achievable values for the quintuple ( )21021 ,,,, DDDRR , 
the multiple description rate distortion region. It should 
be noted, that the MD rate distortion region is 
completely known only for memoryless Gaussian 
sources and the squared error distortions measures. For a 
memoryless Gaussian source with unit variance the MD 
region is described by [5] 
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with ( )( )21 11 DD −−=Π  and ( )212
21 2 RRDD +−−=∆ . 

 
There have been many contributions [5] consider the 
theoretical bounds on the performance of MD codes. 
Among the practical codes which have been proposed, 
there are two main approaches: Multiple Description 
Scalar Quantizer (MDSQ) and Multiple Description 
Transform Coding (MDTC). MDSQ first introduced by 
Vaishampayan [7] can be seen as the use of a pair of 
independent scalar quantizers to give two descriptions of 
a scalar source sample. A different approach to MDC is 
MDTC [8] where the multiple description character is 
achieved by a linear transform that introduces correlation 
between a pair of random variables. If one of the random 
variables is lost, the correlation between the variables 
can be used to estimate the lost one. In this work the 
second approach to produce correlated descriptions is 
used. Hence we will take a closer look at MDTC. 



 
3.2 Multiple Description Transform Coding 
Consider two independent Gaussian random variables 

1X  and 2X  with variances 21 σσ > . In the MDC case a 
transform is used to introduce correlations between the 
random variables transmitted over different channels, so 
that if one channel is corrupted the lost random variable 
can be estimated by the one received. The correlated 
random variables [ ]TYY 21 are given by 
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In [8] the transformation used is given by 
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For single-description source coding the mean square-
error distortion per component at R  Bits per sample 
would be given by1 [2] 
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The average distortion D  using [ ] TXX 21  when one 
channel is lost assuming that each channel is equally 
likely to fail can be calculated by 
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The central distortion achieved by using 
[ ] TYY 21 instead of [ ] TXX 21  is 
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At side decoder 1 2Y  has to be estimated from 1Y  by 

using the optimal MSE estimator. Therefore 
′

D  is 
approximately [2] 
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Comparing the equations (6) and (8), (7) and (9) one can 
recognized that the second central distortion is worse 

                                                 
1  Assuming high-rate entropy-coded 
uniform quantization. 

than the central distortion without using the transform by 
a constant factor of 
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On the other hand the average side distortion is reduced 
by a factor of 2γ  using the transform. This shows that 
MDTC improves the side distrotion while it degrades the 
central distortion. 
In [2] a general and detailed analysis of sending a two-
tuple over two channels was done. The tranforms 
considered were given by 
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In the following we summarize the results obtained in 
[2] to show how the correlation or redundancy is 
controlled by the transform T . The minimum average 
rate to transmit the random variables 1X  and 2X  is 
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where the approximated entropy of a Gaussian random 
variable with variance 2σ  quantized with a bin width ∆  
is [10] 
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The random variables [ ]TYY 21 in (4) using the 

transformation in (11) have variances 2
2

22
1

2 σσ ba +  and 
2
2

22
1

2 σσ dc + . Thus we have rate estimates 
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The difference between 
2

21 RR
R

+=  and *R  is called 

redundancy ϕ  in [2]. It is the rate added to improve the 
side distortions and is 
 

( )( )







 ++
=

=−=

2
2

2
1

2
2

22
1

22
2

22
1

2

2

*

log
4
1

σσ
σσσσ

ϕ

dcba

RR

K

K

. (15) 



 
In [2] different transforms were considered to minimize 
the average distortion for fixed and nonnegative 
redundancy ϕ . In the case of balanced rates2 the 
elements of T  in (11) are 
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As one can see in (16) the transform T  is defined by ϕ  
an therefore the correlation introduced by the transform 
can be controlled by the parameter ϕ . In the later the 
transform defined by (16) will be used. 
Since now it is clear how the correlation between 
descriptions can be controlled, we consider now, how 
this redundancy can be incorporate into the APRI-
SOVA. 
 
 
4 Combining MDTC and APRI-SOVA 
In order to combine MDTC with the APRI-SOVA, the 
correlation between the descriptions , which are 
generated by the transform T , has to be used to estimate 
the a priori information ( )uL  from the soft output value 

( )uL ˆ . 
Let us assume that the two output random variables 

[ ]TYY 21 of a MDTC are each coded by a bit vector of 
length N 
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The bit vectors are BPSK modulated and then grouped in 
frames before transmitted over the AWGN channel. Fig. 
4 shows the bits Njiy ji ,,;,,, K121 ==  in such a frame. 
After transmission the bit sequence is passed to the 
APRI-SOVA. Form the APRI-SOVA we obtain the soft 
output values ( )jyL ,1  for the bits of vector 1Y  from the 

APRI-SOVA. The value ( )jyL ,1  corresponds to the soft 

output value ( )uL ˆ . Since the random variables 1Y  and 

2Y  are correlated, we assume that the bits of the 
corresponding bit vectors are also correlated. Therefore 
we use the ( )jyL ,1  to calculate the new reliability values 

                                                 
2 Balanced rates means 21 RR = . 

( )jyL ,2  of 2Y , which are then used as a priori 

information (corresponding to ( )uL ) in (1) for the APRI-
SOVA. 
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Fig. 4: Framed transmission of the bit vectors 

 
The problem is, how to obtain ( )jyL ,2  from ( )jyL ,1 . Let 

( )1,2/1 ±=jyP  be the probability that bit jy ,2/1  is equal to 

1±  and ( )jj yyP ,1,2  the conditional probabilities that for 

example the bit 0,2 =jy  if 0,1 =jy . Then the 

( )1,2 ±=kyP  are given by 
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After the soft output have been computed by the APRI-
SOVA, the corresponding bit probabilities ( )1,1 ±=kyP  
can be computed by 
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The conditional probabilities in (18) , which are 
depending on the transform T  of the MDTC, are 
obtained during a training phase. With (18) , the 
reliability information for ky ,2  required in (1) is then 
given by 
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The L-value calculated according to (20) is then passed 
to the APRI-SOVA as a priori information about the 
source bit. 
 
 
5 Simulation Results 
In this section, some simulation results are presented to 
illustrate the performance of the proposed approach in 
section 4. In the simulation setup we considered two 
zero mean Gaussian sources. The sources have 
independent components with variances 11 =σ  and 



5.02 =σ . The generated source samples are coded by a 
MD transform coder with transform T . The elements of 
the T  are calculates according to (16) with parameter 

{ }3,2∈ϕ . After natural binary encoding of the 
transformed components with 5=N , the resulting 
bitstreams are BPSK modulated and transmitted over the 
AWGN channel. The AWGN channel is characterized 

by 
0N

Eb . 

The two cases which are simulated, are compared 
against a reference system which uses a standard Viterbi 
Algorithm. In the following figures, the results of the 
reference system are marked as “no a priori information” 
in contrast to “a priori information” for the proposed 
system. 
Fig. 5 shows the bit error rate performance of the 
proposed approach for 3=ϕ . One can see that for bad 
channel conditions the gain is up to 1 dB in Eb/N0. As 
Eb/N0 is increased the gain is decreasing. In reducing the 
correla tion generated by MDTC, the gains through using 
the redundancy for channel decoding decrease 
considerably. In Fig. 6 where the redundancy ϕ  is equal 
to 2, the gain is only marginal.  
Results for the central distortion 0D  for 3=ϕ  and 

2=ϕ  are presented in Fig. 7 and Fig. 8. To determine 

0D  we have used a mean squared-error measure. As one 
can see in Fig. 7, the gain in terms of distortion is up to 
0.5 dB for bad channel conditions and vanishes if Eb/N0 
is increased. The gain in Eb/N0 is up to 0.5 dB. If the 
redundancy is decreased ( 2=ϕ , Fig. 8) the gain in 
terms of distortion is only small, as already observed by 
the bit error rate performance in Fig. 6. 
 
 
6 Conclusions 
In this paper we have considered a scenario where 
multiple descriptions are transmitted over bit error 
channels. In order to reduce the bit error rate of the 
channel decoder, we propose a system which combines 
Multiple Description Transform Codes with the APRI-
SOVA. A approach was introduced that utilizes the 
correlation introduced by MDTC in combination with 
the soft output of the APRI-SOVA to determine a priori 
information for the decoding process. Hereby we were 
able to show, that the correlation can be used to improve 
channel decoding.  
 

 

Fig. 5: Bit error rate performance for 3=ϕ  

 
 
 

 

Fig. 6: Bit error rate performance for 2=ϕ  
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Fig. 7: Central Distortion 0D  in dB (mean square error – 
MSE) for 3=ϕ  

 
 

 

Fig. 8: Central Distortion 0D  in dB (mean square error – 
MSE) for 2=ϕ  

 
 
 
References: 
 
[1] J. Hagenauer, „Source-Controlled Channel 

Decoding“, IEEE Transactions on 
Communcations, vol. 43, no. 9, pp. 2449-2457, 
September 1995. 

[2] V. K. Goyal and J. Kovacevic, „Generalized 
Multiple Description Coding with Correlating 
Transforms“, IEEE Transactions on Information 
Theory, vol. 47, no. 6, pp. 2199-2224, September. 
2001. 

[3] M. Srinivasan, „Iterative Decoding of Multiple 
Descriptions“, in Proc. IEEE Data Compression 

Conference, pp. 463-472, Snowbird, Utah, March 
1999. 

[4] S. Emami and S. L. Miller, „DPCM Picture 
Transmission over noisy Channels with the Aid of 
a Markov Model“, IEEE Transactions on Image 
Processing, vol. 4, no. 11, November 1995. 

[5] L. Ozarow, „On a source-coding problem with two 
channels and three receivers“, Bell Systems 
Technical Journal, vol. 59, no. 10, pp. 1909-1921, 
December 1980. 

[6] A. A. Gamal and T. M. Cover, „Achievable rates 
for multiple descriptions“, IEEE Transactions on 
Information Theory, vol. 28, no. 6, pp. 851-857, 
November 1982. 

[7] V.A. Vaishampayan, „Design of Multiple 
Description Scalar Quantizers“, IEEE Transactions 
on Information Theory, vol. 39, no. 3, pp. 821-834, 
May 1993. 

[8] Y. Wang, M.T: Orchard and A.R. Reibmann, 
“Multiple description image coding for noisy 
channels by pairing transform coefficients”, in 
Proc. IEEE Workshop on Multimedia Signal 
Processing, pp. 419-424, Princeton, New York, 
June 1997. 

[9] M.T. Orchard, Y. Wang, V. Vaishampayan, A.R: 
Reibman, “Redundancy Rate-Distortion Analysis 
of Multiple Description Coding Using Pairwise 
Correlating Transforms”, in Proc. IEEE 
Internatinal Conference on Image Processing, vol. 
1, pp. 608-611, Santa Barbara, CA, October 1997. 

[10] T.M. Cover, J.A. Thomas, “Elements of 
Information Theory”, John Wiley & Sons, Inc., 
New York, 1991. 

[11] J. Hagenauer, P. Hoeher, „A Viterbi Algortihm with 
Soft-Decision Outputs and its Applications”, in 
Proc. of IEEE Globecom`89, pp. 47.1.1-47.1.7, 
November 1989. 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-10

-9

-8

-7

-6

-5

-4

-3

-2

-1
no a priori information
a priori information

Eb/N0 in dB

D
0

in
 d

B
 (

M
SE

)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-10

-9

-8

-7

-6

-5

-4

-3

-2

-1
no a priori information
a priori information

Eb/N0 in dB

D
0

in
 d

B
 (

M
SE

)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-14

-12

-10

-8

-6

-4

-2

0
no a priori information
a priori information

Eb/N0 in dB

D
0

in
 d

B
 (M

SE
)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-14

-12

-10

-8

-6

-4

-2

0
no a priori information
a priori information

Eb/N0 in dB

D
0

in
 d

B
 (M

SE
)


