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Abstract

Over the last decade, a rapid rise in deaths due to liver disease has been observed especially amongst young people. Nowadays
liver disease accounts for approximately 2 million deaths per year worldwide: 1 million due to complications of cirrhosis and 1

million due to viral hepatitis and hepatocellular carcinoma. Besides primary liver malignancies, almost all solid tumours are
capable to spread metastases to the liver, in particular, gastrointestinal cancers, breast and genitourinary cancers, lung cancer,

melanomas and sarcomas. A big portion of liver malignancies undergo palliative care. To this end, the paradigm of the palliative
care in the liver cancer management is evolving from “just end of the life” care to careful evaluation of all aspects relevant for the
survivorship. In the presented study, an evidence-based approach has been taken to target molecular pathways and subcellular
components for modelling most optimal conditions with the longest survival rates for patients diagnosed with advanced liver
malignancies who underwent palliative treatments. We developed an unsupervised machine learning (UML) approach to ro-
bustly identify patient subgroups based on estimated survival curves for each individual patient and each individual potential
biomarker. UML using consensus hierarchical clustering of biomarker derived risk profiles resulted into 3 stable patient sub-
groups. There were no significant differences in age, gender, therapy, diagnosis or comorbidities across clusters. Survival times
across clusters differed significantly. Furthermore, several of the biomarkers demonstrated highly significant pairwise differences
between clusters after correction for multiple testing, namely, “comet assay” patterns of classes I, I1I, IV and expression rates of
calgranulin A (S100), SOD2 and profilin—all measured ex vivo in circulating leucocytes. Considering worst, intermediate and
best survival curves with regard to identified clusters and corresponding patterns of parameters measured, clear differences were
found for “comet assay” and S100 expression patterns. In conclusion, multi-faceted cancer control within the palliative care of
liver malignancies is crucial for improved disease outcomes including individualised patient profiling, predictive models and
implementation of corresponding cost-effective risks mitigating measures detailed in the paper. The “proof-of-principle” model
is presented.
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Introduction

Multi-factorial liver disease—healthcare and eco-
nomic burden

Detoxification function by the liver is central for all physio-
logical processes in humans. Chronic liver pathologies are
life-threatening conditions with a highly heterogeneous clini-
cal picture and large spectrum of potential consequences.
Viral infections, fat liver, liver cirrhosis and primary liver
malignancies altogether create a considerable subpopulation
of chronically diseased people. A reciprocal relationship be-
tween infection disorders and liver pathologies has been dem-
onstrated as follows: Hepatitis B and C is the frequent cause of
inflammatory liver diseases on one hand, and on the other
hand, liver dysfunction-related biomarkers may indicate, for
example, poor outcomes for Covid-19 infected individuals
due to a reactivation of the liver disease [1]. Furthermore, a
reciprocal interrelation between liver diseases and infection by
Covid-19 is proposed by several research groups as an sever-
ity level of both; hypoxia-, inflammation- and detoxification-
related local and systemic impairments are involved in the
pathogenesis [2-5].

Since 2009, a rapid rise in deaths due to liver diseases has
been recorded in the USA especially amongst young people.
Deaths due to cirrhosis increased by 65% and deaths due to
liver cancer doubled in years 1999 to 2016 [6]. This trend
carries a global character. For example, for South Korea, lung
and liver cancers are predicted to be the most common malig-
nancies which people will die from 2020 onwards [7].

Nowadays, liver disease accounts for approximately 2 mil-
lion deaths per year worldwide: 1 million due to complications
of cirrhosis and 1 million due to viral hepatitis and hepatocel-
lular carcinoma [8]. The corresponding economic burden im-
posed on societies is enormous: Just non-alcoholic fatty liver
disease alone affects roughly 100 million Americans and costs
the United States healthcare system $32 billion annually [9].

Worldwide, more than half a million new cases of hepato-
cellular carcinoma (HCC) are diagnosed annually. Disease
prognosis remains poor, with a 5-year survival rate across all
disease stages estimated between 10% and 20%, and 3% for
those diagnosed with distant disease [10]. The economic and
healthcare burden of HCC is substantial. Patients need more
effective therapeutic modalities prolonging survival and in-
creasing the quality of life (QOL). Healthcare payers need to
balance the cost-efficacy and QOL implication. To this end,
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additional research is needed to gain understanding of all as-
pects related to HCC management [10].

Almost all solid tumours are capable to spread
metastases to the liver

Besides primary liver malignancies, almost all solid tumours
are capable to spread metastases to the liver, in particular
gastrointestinal cancers, breast and genitourinary cancers,
lung cancer, melanomas and sarcomas [11]. Therefore, the
local liver-specific architecture as well as systemic effects
such as ischemic-hypoxic niches and chronic inflammation
characteristic even for young individuals with disturbed mi-
crocirculation (e.g. Flammer syndrome phenotype, amongst
others) may play a crucial role in creating a “fertile” microen-
vironment which is highly supportive for metastatic spread to
the liver [12, 13]. In turn, the properties of this microenviron-
ment strongly depend on specific features of local and system-
ic molecular alterations which could be particularly opportune
for primary and secondary tumour progression such as mito-
chondrial dysfunction, low energy supply, “Warburg” effect
and chronic inflammation, amongst others [14].

As reported recently [15], systemic molecular set-up de-
tected by the liquid biopsy approach might be highly indica-
tive for individual outcomes under the palliative treatment of
liver malignancies.

Multiparametric set-up to model predictive and
prognostic approach under the palliative treatment of
liver malignancies

As detailed above, several million people currently suffer
from primary and secondary liver malignancies—many of
them undergo a palliative treatment due to the advanced stage
of'the disease. In order to improve individual outcomes as well
as the cost-efficacy of the medical care, as precise as possible,
stratification of patients is needed. Liquid biopsy is a promis-
ing approach to evaluate systemic effects and to provide com-
prehensive information for multiparametric analysis [16].
Furthermore, specific multi-omic patterns have been demon-
strated to play a crucial role in cancer research and clinically
relevant outcomes [17, 18]. For complex clinical situations,
multiparametric disease modelling is essential to maximise the
predictive power of diagnostic tools as demonstrated for
multi-factorial diseases such as premenopausal breast cancer
with high metastatic potential [19, 20].
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Working hypothesis

An evidence-based approach has been taken to target molecular
pathways and subcellular components for modelling most op-
timal conditions with the longest survival rates for patients di-
agnosed with advanced liver malignancies who underwent pal-
liative treatments. The following multitude diagnostic levels
and pathways have been considered for the current study:

—  Comprehensive patients’ data including the type of liver
malignancy, treatment (SIRT versus TACE) and survival
period of time after the treatment

—  Systemic effects reflected in subcellular and molecular
patterns of circulating leucocytes and blood serum

—  Health status of leucocytes by “comet assay” imaging

—  Expression patterns of SOD-2 and catalase—key-en-
zymes of the detoxification pathway

—  Expression patterns of thioredoxin—the natural scaven-
ger essential for any living organism

— Activities of metalloproteinases 2 and 9—key enzymes in
tissue remodelling

—  Expression patterns of calgranulin A (S100), GTPase
Rho A and profilin 1—the tumour progression relevant
proteins

To verify this hypothesis, Unsupervised Machine Learning
approach has been applied.

Materials and methods

Recruitment of patients with primary hepatocellular
carcinoma (HCC) and secondary hepatic metastases

This study was designed as a “pilot study” for the identi-
fication of a multi-level biomarker screening panel for
patients with primary and metastatic liver malignancies
who would be undergoing selective internal radiation
therapy (SIRT) or transarterial chemoembolisation
(TACE). Therefore, a wide range of malignancies of dif-
ferent types were incorporated in the study. The blood
tests for the screening panels were performed prior to
SIRT or TACE.
In total, 108 patients were considered for the study.

Inclusion criteria

—  Primary hepatocellular carcinoma (38 patients)
—  Metastases to the liver (70 patients)

—  Treatment by SIRT (86 patients)

—  Treatment by TACE (22 patients)

Exclusion criteria

—  Pregnancy

— Acute infections (but not chronic hepatitis)

—  Alcohol abuse

—  Geneticdisorders and disorders with premature ageing (Down
Syndrome, Werner Syndrome, Alzheimer’s disease, others)

All the patients were informed about the purposes of the
study and consequently have signed their “consent of the pa-
tient”. All investigations conformed to the principles outlined
in the Declaration of Helsinki and were performed with per-
mission by the responsible Ethics Committee of the Medical
Faculty, Rheinische Friedrich-Wilhelms-Universitdt Bonn.
Corresponding reference number is 283/10.

Liquid biopsy: Blood samples collection, biobanking
and biopreservation

Blood samples (20 ml) anti-coagulated with heparin were col-
lected from the patients prior to any treatment application.

Biobanking Both peripheral leukocytes and blood serum were
separated and stored for all follow-up analyses.

Peripheral leukocytes were isolated using Ficoll-histopaque
gradients (Histopaque 1077, Sigma, USA) as described else-
where [21]. Briefly, blood samples were diluted with equal vol-
umes of physiological buffer solution (PBS, Biochrom AG,
Germany). Then, 2 ml of histopaque were placed into 10-ml
sterile centrifuge tubes and 5 ml of diluted blood samples were
carefully layered onto each histopaque gradient. Gradients were
centrifuged at 475 g and 20 °C for 15 min. The leukocytes bands
were removed from the interface between the plasma and
histopaque layers of each tube and collected into one 50-ml tube.
The total volume was brought to 50 ml with cold Dulbecco’s
Modified Eagle Medium (DMEM, Gibco, USA). The cell sus-
pension was washed three times with PBS and the total number
of cells was determined.

Blood serum (500 p1l) was separated by centrifugation fromeach
blood samples not later than within 1 h after individual blood draw.

Biopreservation Blood serum was frozen and stored at — 80 °C
directly after each individual blood sample centrifugation.
Separated peripheral leukocytes were finally re-suspended in
PBS-DMSO solution, aliquoted into Eppendorf tubes and
stored at — 80 °C until molecular profiling has been performed.
Multi-omic analysis

Protein expression analysis by Western blotting

All analyses were performed two times for each sample
utilising the standardised procedure described elsewhere
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[22]. Primary antibody incubation was performed at room
temperature using a 1:200 dilution of the specific antibodies to

—  Human calgranulin A, a goat polyclonal antibody (C-19)
raised against a peptide mapping at the C-terminus of
calgranulin A of human origin, sc-8/12, Santa Cruz,
USA

— Human catalase, a goat polyclonal antibody (S-20) raised
against a peptide mapping an internal region of catalase of
human origin, sc-34282, Santa Cruz, USA)

— Human profilin 1, a goat polyclonal antibody (C-15)
raised against a peptide mapping at the C-terminus of
profilin 1 of human origin, sc-30522, Santa Cruz, USA

— Human RhoA, a mouse monoclonal antibody (26C4)
raised against an epitope corresponding to amino acids
120-150 of RhoA of human origin, sc-418, Santa Cruz,
USA

—  Human superoxide-dismutase (SOD-2), a goat polyclonal
antibody (N-20) raised against a peptide mapping near the
N-terminus of SOD-2 of human origin, sc-18503, Santa
Cruz, USA

—  Human thioredoxin (Trx), a mouse monoclonal antibody
(D-4) specific for an epitope mapping between amino
acids 1-34 at the N-terminus of Trx of human origin,
sc-271281, Santa Cruz, USA.

—  The house-keeping protein—human actin, a goat poly-
clonal IgG (I-19), epitope mapping at the C-terminus of
actin of human origin, recommended for detection of a
broad range of actin isoforms of human origin, sc-1616,
Santa Cruz, USA.

The protein-specific signals were measured densitometrically
using the Quantity One® imaging system (Bio-Rad, USA).

Analysis of metalloproteinase activity by zymography

For determination of gelatinase activity of MMP-2 and MMP-
9 in blood serum “Ready-Gelatin-Gels” (Bio-Rad, USA) were
used according to the instructions of the manufacturer and as
published earlier [22]. Two microliters from individual serum
samples were electrophoresed under non-reducing conditions
using Criterion™ Precast Gel System (Bio-Rad, USA). After
electrophoresis, each gel was incubated at room temperature
in 2% Triton X-100 for 2 X 30 min in order to remove the
traces of sodium dodecyl sulphate, and then incubated over-
night at 37 °C in buffer (150-mM NaCl, 50-mM Tris-HCI,
pH 7.6, containing 5-mM CaCl, and 0.02% NaNs;).
Afterwards a staining with 0.5% Coomassie blue G-250
(Sigma, USA) was performed for each gel. The proteolytic
activity of each gelatinase (A and B) was identified as a clear
band on a blue background according to the correspondent
molecular weight of each gelatinase (A and B that corresponds
to the metallproteinase-2 and -9, respectively). Gels were
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dried between cellophane sheets with a GelAir™ drying sys-
tem (Bio-Rad, USA) and then scanned with a yellow filter
using Adobe Photoshop (Adobe System, USA) in grey-scale
mode. Densitometric analysis of zymographic lysis zones at
66 and 86 kDa for gelatinases A and B, respectively, was
performed using Quantity One imaging system (Bio-Rad,
USA).

Subcellular imaging: “comet assay” analysis of DNA
fragmentation

In order to evaluate DNA quality (DNA damage), the subcel-
lular imaging by “comet assay” (Trevigen, Inc., Cat. No.
4250-050-K, USA) analysis has been used. ™The single cell
gel electrophoresis assay is based upon the ability of DNA
fragments to migrate out of the peripheral leukocytes in the
electric field applied, whereas undamaged chromosomal
DNA does not migrate into the agarose gel. DNA fragmenta-
tion assessment has been performed by evaluation of the DNA
“comet” tail shape and specific migration patterns. Peripheral
leukocytes have been immobilised in a bed of low melting
point agarose, on a Trevigen CometSlide™. The alkaline elec-
trophoresis is very sensitive and detects small amounts of
damage. Therefore, after cell lysis, samples have been treated
with alkali to denature the DNA and hydrolyse sites of dam-
age. After electrophoretic separation, staining with a fluores-
cent DNA intercalating dye (SYBR® Green I) has been per-
formed. The shape of individual “comets” has been visualised
by epifluorescence microscopy. The evaluation system devel-
oped by the authors and published earlier [15] has been ap-
plied for the qualification and quantification of the DNA frag-
mentation/damage.

Unsupervised machine learning (UML)

A Cox regression model was fitted independently for each
biomarker while correcting for the confounders age, gender,
therapy and primary tumour. An interaction effect of biomark-
er with therapy and primary tumour was included. A step-wise
regression was used for model selection via the Akaike
Information Criterion. The Cox proportional hazard assump-
tion was tested in every case [23] and was never rejected. The
entire analysis was carried out via R-package “survival”.

In a second step, linear predictors of each Cox model were
concatenated for every patient, resulting into an individual’s
risk profile. Consensus hierarchical clustering (R-package
“ConsensusClusterPlus”) was applied with 100 repeats for
k=2, 3, 4, 5 clusters (see Fig. 1). The optimal number of
clusters was identified via the delta area under curve method
[24]. The robustness of the clustering was checked via the
consensus matrix.

The association of clusters with the confounders gender,
therapy, disease and comorbidities was tested via a x>-test.
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Differences of age across clusters were tested via an ANOVA
F-test.

Pairwise differences of biomarkers between clusters were
assessed via Wilcoxon’s rank test. P values were corrected for
multiple testing via the Benjamini-Hochberg method [25].

Results

We developed an unsupervised machine learning (UML) ap-
proach to robustly identify patient subgroups based on esti-
mated survival curves for each individual patient and each
individual potential biomarker. Since we investigated a panel
of candidate biomarkers, each patient was effectively repre-
sented by a risk profile, and this risk profile was statistically
corrected for confounding factors such as age, gender, therapy
and primary tumour. In a second step, we then clustered

consensus matrix k=2

consensus matrix k=4

BEEODO

Fig. 1 Heatmaps of consensus matrices for k =2,3,4,5; rows and columns
of consensus matrices correspond to individual patients involved into the
study; consensus values range from 0 (white = not clustered together) to 1

patients based on their corrected risk profiles. This was done
via consensus hierarchical clustering [24], which relies on
repeatedly resampling and re-clustering patients to ensure a
robust and stable grouping. Patient subgroups were subse-
quently once more investigated for confounders and for dif-
ferences in each of the tested biomarkers.

The consensus clustering method involves subsampling
from a subgroup of patients and determines clustering of spec-
ified number of clusters (k) (Fig. 1). Consensus hierarchical
clustering of biomarker-derived risk profiles resulted into
3 stable patient subgroups (Figs. 1, 2, and 3). There were
no significant differences in age, gender, therapy, diagno-
sis or comorbidities across clusters. Survival times across
clusters differed significantly (log-rank test, Fig. 3).
Furthermore, several of the biomarkers demonstrated high-
ly significant pairwise differences between clusters after
correction for multiple testing (Fig. 4), namely, “comet

consensus matrix k=3

consensus matrix k=5

bt

[} NERNEN

(dark blue = always clustered together); hierarchical clustering of
consensus matrices is depicted as dendrogram
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<« Fig. 2 a Consensus Cumulative Distribution Function (CDF) of entries
in the consensus matrix; the y-axis is the cumulative distribution function,
whereas the x-axis is the consensus value in the consensus matrix. b Delta
area plot highlighting the change of the area under the CDF curve; the
strongest increase in this area can be observed for k=3 clusters. ¢
Tracking plot showing the cluster assignment of patients indicated as
columns for different choice of number of clusters k (as rows); colours
indicate clusters; hatch marks below the plot indicate patients; thereby,
patients frequently changing colours within a column are indicative for
unstable cluster membership; herewith, no unstable membership can be
recognised in the presented plot. d Cluster consensus plot showing the
mean consensus value of patients assigned to a defined cluster; colours
are in agreement to the tracking plot; high values indicate high stability of
a given cluster; in contrast, low values indicate instability of a given
cluster: For k=3, all clusters demonstrate high stability. e Item-
consensus plot showing the mean consensus of all patients within k=3
clusters; consensus values are indicated by the heights of bar; they corre-
spond to the fraction of times that a dedicated patient shown on the x-axis
was assigned to a cluster indicated by its colour; the colouring scheme is
in agreement to the previous figures; asterisks on the top of each bar
indicate the consensus cluster for each patient; in summary, this plot
enables to recognise whether a patient is a “pure” member of a cluster
or whether it shares a high consensus to multiple other clusters (indicated
by multiple coloured bars of equal sizes); it can be observed, therefore,
that most of patients are “pure” members of one of the 3 clusters

assay” classes I, III and IV; calgranulin A; SOD2; and
profilin. Hence, these markers can be viewed as promising
candidates for predicting differences in the prognostic out-
come of patients. As next steps we thus recommend a
further retrospective validation in another study and finally
a prospective clinical trial to confirm the prognostic value
of our candidate biomarker signature. Provided that such a
validation is positive, the development of a diagnostic test
for clinical routine should be considered. This diagnostic
test would have to be approved by regulatory agencies,
such as the EMA in Europe and the FDA in the USA. In

Fig. 3 Kaplan-Meier curves 1004
(overall survival) of patients
stratified into 3 clusters by
consensus clustering; small
vertical tick-marks indicate right
censored survival times of indi- 075
vidual patients; log-rank test was
used to estimate the P value >
=
o
el
o
2. 0.50 -
©
=
el
=4
(7]
0.25
0.00-

that context, one has to judge the costs of the test in com-
parison with the actual added value for the patient.

Data interpretation, conclusions and expert
recommendations in the context of 3P medicine

The principle conclusion

In our model, the multiparametric profiles demonstrate a high-
ly significant (P =3e-04) difference between the gradients
characteristic for worst (Kaplan-Meier curve 1, Fig. 3) and
intermediate (Kaplan-Meier curve 2, Fig. 3) versus the best
(Kaplan-Meier curve 3, Fig. 3) survivals within 5 years of
observations after corresponding treatments. Thereby, a par-
ticularly strong difference between the survival profiles was
demonstrated for the first 30 months after treatments (Fig. 3).
Therefore, the principle conclusion made was that parameters
chosen for the analysis are highly relevant for predicting sur-
vivals under the study conditions.

Critical evaluation of contributing parameters in the model

From altogether 11 molecular and subcellular parameters used
for the study, six parameters demonstrated significant differ-
ences in corresponding values, when the worst and best sur-
vival curves are compared (Fig. 4), namely:

“Comet assay” patterns of class I, III and IV
Expression patterns of Calgranulin A (S100)
—  Expression patterns of SOD-2
—  Expression patterns of profilin

Strata

= cluster 1

= cluster 2
= cluster 3

10 20 30 40 50 60
Time (months)
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Groups stratified by Consensus Clustering

Fig. 4 Biomarker patterns recorded for stratified patient groups by the
consensus clustering method (see Fig. 3 for corresponding survival rates);
all biomarker values were normalised between 0 and 1; pairwise differ-
ences of biomarkers between clusters were assessed via Wilcoxon’s rank

Corresponding functions of the above-listed pathways rel-
evant for the tumour progression have been described else-
where. Therefore, a detailed discussion on the matter is turned
down with the reference to previous publications [15].

Considering worst, intermediate and best survival
curves (1, 2 and 3, respectively, in Fig. 3) with regard
to corresponding patterns of parameters measured (Fig.
4), the most convincing images are presented by “comet
assay” patterns of class I, III and IV and expression
patterns of S100. All four images in Fig. 4 demonstrate
clear gradients of corresponding parameter values for
the worst, intermediate and best survivals in the model.
With other words, these four parameters can be applied
as are for the clinical validation of the predictive diag-
nostic approach.

More complex is the situation when the remaining
five parameters (of altogether 11 parameters, see Fig.
4), are considered. In this context, we would like to
refer to our previously published article evaluating
GTPase Rho A and MMP-9 as potential biomarkers,
individually and in set, in breast cancer prediction.
This study has clearly demonstrated that only when both
biomarkers were applied in set, a detailed patient strat-
ification could be achieved [22, 26].
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test with correction for multiple testing via the Benjamini-Hochberg
method; patterns demonstrating high values of “comet assay” class 1
and low values of “comet assay” classes III and IV and
calgranulin expression correspond with best survival rates

Study limitations and a strong potential for the model’s
improvement

Certainly, the main limitation of the study is a small num-
ber of patients with highly heterogeneous individual pa-
tient profiles such as original malignancy diagnosed, gen-
der and the therapeutic approach (SIRT versus TACE).
Figure 5 illustrates this deficit on the example of six pa-
tients who were diagnosed with HCC and underwent
TACE being included into the group of best survivors
presented as cluster 3 in Fig. 3. Altogether, these are 22
patients in cluster 3 diagnosed either with HCC (9 patients
who underwent either SIRT or TACE) or colorectal cancer
(9 patients who underwent SIRT) and breast cancer (4
patients who underwent SIRT). For six patients originally
diagnosed with HCC and underwent TACE, it can be eas-
ily recognised that, although their biomarker patterns fol-
low general trends demonstrated for cluster 3 in Fig. 4,
there is a group-specific difference such as

Lower median value for MMP-9 activities
Higher median values for “comet assay” classes III and
1V, S100, RhoA and thioredoxin
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Fig. 5 Biomarker patterns recorded for the stratified group of six patients
belonging to the cluster 3 (altogether 22 patients) demonstrating the best
survival rates (see Fig. 3); these six patients were diagnosed with HCC and
underwent TACE; although biomarker patterns follow general trends

Consequently, more detailed patient stratification is
need in bigger patient groups including age, gender, de-
tailed description of collateral pathologies and treatments
applied. Further, clustering of biomarker sets is essential as
stated above on the example of GTPase Rho A and MMP-9
[22]. It is obvious that synergic and compensatory effects
may play a crucial role in the overall balance of systemic
effects and individual molecular pathways such as scaven-
ger activities (high level of thioredoxin expression), detox-
ification capacity (SOD-2 and Catalase interplay), immune
system capacity (intact leucocytes reflected in class I of the
“comet assay” patterns) and modulation of metastatic po-
tential, amongst others [12, 15, 20, 27].

What is this model good for? Expert
recommendations in the context of 3P medicine

Immune system

Patterns of circulating leucocytes are the most relevant bio-
markers in our model. Obviously survival rates are directly
dependent on the DNA quality demonstrated by “comet as-
says” in leucocytes: more healthy cells—higher survival
chances in all patient subgroups involved. This result is highly
relevant for disease monitoring, disease prognosis and

demonstrated in Fig. 4, the group-specific difference is evident, demonstrating
lower median value for MMP-9 activities and higher median values for
“comet assay” classes III and IV, S100, RhoA and thioredoxin compared
with these of non-stratified 108 patients involved in the study

potential therapy modalities focused on the immune system
function.

Metastatic potential

Another highly relevant biomarker in our model is S100: Low
expression levels of S100 correlated with the best survival
rates. Noteworthy, in our model, S100 was measured in cir-
culating leucocytes that emphasises the systemic effects by
S100. S100 is known to be instrumental for cancer develop-
ment and progression. Contextually, it is highly recommended
to involve this biomarker into routine cancer-related predic-
tive diagnostics and disease monitoring.

Detoxification and scavenging activity

SOD-2 expression in circulating leucocytes was significantly in-
creased in patients with the best survival rates. SOD-2 function is
fundamental for detoxification pathways and scavenging activi-
ties in the human body. Therefore, it is highly recommended to
involve this biomarker into routine cancer-related predictive diag-
nostics and disease monitoring. Complementary information can
be received by measurements of thioredoxin levels (see Fig. 5)
known as a highly potent scavenger and redox-control-based reg-
ulator of central biological processes such as immune system
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functioning, stress response, DNA synthesis de novo, regulation
of transcriptome, and restoration of protein redox status with cor-
responding activities, amongst others. Overall scavenging activi-
ties in cancer management is an attractive topic to be consulted
with dietologists based on individualised patient profiling to rec-
ommend appropriate nutrients and dietary supplements. In partic-
ular, patient-adapted levels of scavenger activities should be taken
into consideration due to their genoprotective effects. However,
particularly in palliative care, the quantity and quality of the
genoprotective and scavenging dietary supplement should be
carefully considered distinguishing between the needs of function-
al tissue such as immune system on one hand and biological pro-
cess specific for progressing metastatic disease on the other hand
[14, 28]. To this end, cytotoxic effects suppressing specifically
circulating tumour cells and metastatic disease have been demon-
strated for some herbs and their constituent phytochemicals such
as Apigenin and natural polyphenol Calebin A which per evidence
suppress proliferation, invasion and metastatic spread [29, 30].
Corresponding mechanisms involve NF-«kB-related signalling
pathways, SOD-2 and thioredoxin system activities, and ROS-
inhibition with redox-based therapeutic effects [29, 31].

In conclusion, the paradigm of the palliative care in the liver
cancer management is evolving from “just end of the life” care to
careful evaluation of all aspects relevant for the survivorship [28].
In light of the above, a multi-faceted cancer control within palli-
ative care is crucial for improved disease outcomes including
individualised patient profiling, predictive modelling and corre-
sponding cost-effective risks mitigating measures. For this pur-
pose, a multi-omic approach is crucial for reliable prediction [17].

Our multiparametric approach for a detailed patient strati-
fication in palliative treatment of liver malignancies follows
concepts of cost-effective and patient-centred care [32].
Conclusions presented in this article conform with 3 PM prin-
ciples constituted by the European Association for Predictive,
Preventive and Personalised Medicine which provides a clear
benefit to the patient and healthcare as a whole [33]. At this
point, we would like to mention again that before implemen-
tation into clinical routine a prospective study for validation of
the stratification presented in this article would be required.
Provided that such a validation is positive, the development of
a diagnostic test for clinical routine should be considered. This
diagnostic test would have to be approved by regulatory agen-
cies, such as the EMA in Europe and the FDA in the USA.
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