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Dr. Rüdiger Klein

Adaptive Reflective Teams Group, Fraunhofer-Institut IAIS

First Examiner:
Prof. Dr.-Ing. Christian Bauckhage

Visual & Social Media Group, Fraunhofer-Institut IAIS
B-IT Center for Information Technology

Second Examiner:
Prof. Dr. Sören Auer
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Abstract

In the era of digital world and WWW, most of the human activities have slowly started
to be tightly coupled to the Internet. Like all other forms of multimedia web content,
the amount of video content on the web has increased drastically over the past decade,
reinforcing the need for Recommender Systems to help users reach relevant and interesting
content. In an attempt to extend the research in the field of Recommender Systems
by introducing cutting edge technologies, this thesis proposes a new recommendation
approach in which Bayesian Networks are used for semantic aware reasoning about users
interests. The theoretical proposal is accompanied by an illustrative implementation
which is evaluated to verify the applicability of this approach. The results show that the
proposed approach shows a very promising potential in practical applications with some
limitations that could be further investigated for improvement.

vii





Contents

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Background 5

2.1 Recommender Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Recommendation Approaches . . . . . . . . . . . . . . . . . . . . 6

2.1.2 Recommendation Techniques . . . . . . . . . . . . . . . . . . . . 8

2.1.3 Recommendation Considerations . . . . . . . . . . . . . . . . . . 8

2.2 Semantics and Semantic Web . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.1 How to Represent Semantics? . . . . . . . . . . . . . . . . . . . . 10

2.2.2 Semantic Web Stack . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.3 Linked Open Data (LoD) . . . . . . . . . . . . . . . . . . . . . . 14

2.2.4 Named Entity Recognition . . . . . . . . . . . . . . . . . . . . . . 15

2.3 Bayesian Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3.1 Bayesian Network Structure . . . . . . . . . . . . . . . . . . . . . 16

2.3.2 Reasoning Patterns in Bayesian Networks . . . . . . . . . . . . . 17

2.3.3 Inference Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3.4 Dynamic Bayesian Networks . . . . . . . . . . . . . . . . . . . . . 20

2.4 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.4.1 State of the Art Recommender Systems . . . . . . . . . . . . . . . 21

2.4.2 Motivation of a New System . . . . . . . . . . . . . . . . . . . . . 23

3 Approach 25

3.1 The LinkedTV Recommender System . . . . . . . . . . . . . . . . . . . . 25

3.1.1 LinkedTV Knowledge Base . . . . . . . . . . . . . . . . . . . . . . 26

3.1.2 Semantic Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.1.3 Limitations in Personal Recommender . . . . . . . . . . . . . . . 30

3.2 The New Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2.1 Knowledge Modeling . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2.2 Learning and Recommendation . . . . . . . . . . . . . . . . . . . 34

3.2.3 Advantages and Limitations . . . . . . . . . . . . . . . . . . . . . 35

ix



x CONTENTS

4 Implementation 37
4.1 Baseline System Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.1.1 Bayesian Network Construction . . . . . . . . . . . . . . . . . . . 39
4.1.2 Learning and Recommendation . . . . . . . . . . . . . . . . . . . 41

4.2 Additional Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.2.1 Contextualization . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.2.2 Using External User Models . . . . . . . . . . . . . . . . . . . . . 43
4.2.3 Group Recommendations . . . . . . . . . . . . . . . . . . . . . . . 44

5 Evaluation 45
5.1 Recommendation Quality Evaluation . . . . . . . . . . . . . . . . . . . . 45

5.1.1 Quality Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.1.2 Test Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.1.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.2 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.2.1 Theoretical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.2.2 Test Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.2.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . 52

6 Conclusion 53
6.1 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

Bibliography 57

A Data Layer 63
A.1 Knowledge Database Schema . . . . . . . . . . . . . . . . . . . . . . . . 63
A.2 Video Database Schema . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
A.3 User Database Schema . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

B Application In Action 65
B.1 Web Application Features . . . . . . . . . . . . . . . . . . . . . . . . . . 65
B.2 Recommendation Examples . . . . . . . . . . . . . . . . . . . . . . . . . 67



List of Figures

2.1 The high level data flow in a content-based RS [54] . . . . . . . . . . . . 7
2.2 Knowledge representation in the form of a Semantic Net . . . . . . . . . 10
2.3 The Semantic Web data stack [26] . . . . . . . . . . . . . . . . . . . . . . 12
2.4 Simple RDF Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.5 Linked Open Data cloud [18] . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.6 An illustration of a simple Bayesian Network . . . . . . . . . . . . . . . . 16
2.7 Illustrations for the different Bayesian inference patterns . . . . . . . . . 17
2.8 Example of an unfolded Dynamic Bayesian Network . . . . . . . . . . . . 20
2.9 A Bayesian Network model for a hybrid RS [22] . . . . . . . . . . . . . . 22

3.1 LinkedTV Architecture [15] . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2 Workflow in the personalization component in LinkedTV . . . . . . . . . 27
3.3 Steps for semantic enrichment . . . . . . . . . . . . . . . . . . . . . . . . 29
3.4 Example for modeling the user interests in terms of a BN . . . . . . . . . 32
3.5 Example for adding VB nodes to the UM BN . . . . . . . . . . . . . . . 33
3.6 An example for CPT construction . . . . . . . . . . . . . . . . . . . . . 34
3.7 Illustration of evidence propagation in KB-based BN . . . . . . . . . . . 35

4.1 Architecture of the BayRec System . . . . . . . . . . . . . . . . . . . . . 38
4.2 The steps of the recommendation generation process in the BayRec system 39
4.3 The structure of a BN for modeling group interests . . . . . . . . . . . . 44

5.1 The factors which contribute to IR metrics . . . . . . . . . . . . . . . . . 46
5.2 Average precision, recall and accuracy values for Top-N method . . . . . 48
5.3 Average precision, recall and accuracy values for threshold method . . . . 49
5.4 Average precision values obtained using different inference algorithms . . 49
5.5 Effect of inference algorithm on recommendations diversity . . . . . . . . 50
5.6 VB scaling effect on the runtime performance . . . . . . . . . . . . . . . 52

B.1 Login page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
B.2 User homepage showing recommendations and suggestions overview . . . 66
B.3 Video Search by title, topic, summary or annotation . . . . . . . . . . . . 67
B.4 Controlling recommendation preferences . . . . . . . . . . . . . . . . . . 68
B.5 Recommendations for a group . . . . . . . . . . . . . . . . . . . . . . . . 68
B.6 Some of the BayRec system features . . . . . . . . . . . . . . . . . . . . 69

xi



xii LIST OF FIGURES

B.7 The initial recommendations before showing interest in any topics or videos 69
B.8 The initial interests before showing interest in any topics or videos . . . . 69
B.9 The recommendations after showing interest in some videos . . . . . . . . 70
B.10 The interests after showing interest in a some videos . . . . . . . . . . . . 71



Chapter 1

Introduction

In the era of digital world and WWW, most of the human activities have slowly started
to be tightly coupled to the Internet. Nowadays, most of the people watch TV, read
books and even do their shopping online. Recommender Systems (RSs) are software
engines which help Internet users find items like products, articles, videos or books that
fit their interests by providing suggestions [54]. With the massive increase in the amount
of products and web content, Internet users have started to heavily rely on RSs to reach
whatever items they are looking for. Furthermore, the RSs became to some extent in
control of what information or products the user will be able to find, since it is becoming
the only window for users to reach such items. Realizing the importance of the role
played by the RSs, companies have decided to invest in the research of RSs as their
future marketing window.

1.1 Motivation

Like all other forms of web content, the amount of multimedia content on the web has
increased drastically over the past decade. For example, according to a recent study,
the US internet users watched around 49 billion videos online in January 2014 alone
[40]. Facing this huge amount of multimedia content, the users face the question “What
should I watch/read next?”. Efficient multimedia recommendation technologies serving
the purposes of information surfing or entertainment answer this question. Multimedia
item recommendations would direct the users towards other items that they have not yet
watched or read, and that could be of interest to them. For example for a user who likes
football, interesting recommendations could be videos showing the best trending football
matches that this user has not yet watched or the latest news articles about this user’s
favorite team. Several RSs were developed to address the problem of suggesting relevant
multimedia items.

Studying the behavior of current RSs, it was noticed that very few of them actually
consider the content of the item, or try to understand what the user’s interests really are.
Instead, they focus on finding the users with the closest feedback history, and recommend
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2 CHAPTER 1. INTRODUCTION

whatever items these users liked regardless of what the contents of the items are. For
example, if two users A and B like some common videos, it is assumed that A and B are
similar users and therefore, whatever other videos that A liked are recommended to B
regardless of what these other videos show. The problem with this approach is that the
similarity assumption may not be very accurate. For example it can happen that, despite
that A and B both liked some common videos, A’s interests are football and politics in
general. Whereas, B is only interested in German football and is not at all interested in
politics. The only way to realize this difference is to dig deeper into the contents of the
videos that each user liked, and try to find the patterns which best describe the interests
of each user individually.

As a workaround to this limitation, another direction in RSs development emerged in
which each item is represented as a set of annotations, which approximate the contents
of this item. Items are then recommended based on their contents rather than on user
history similarities. For example a video showing a match between FC Bayern Munich
versus FC Barcelona in the UEFA League would be annotated with the set of tags FC
Bayern Munich, FC Barcelona, UEFA. It was noticed however that the implementations
of the RSs following this approach use the annotations only as keywords and convert
the problem into a trivial keyword search, losing information about the semantics of
the content. For example, the information that FC Bayern Munich and FC Barcelona
are German and Spanish teams respectively is lost. In that manner, it is not possible to
detect specific interest patterns. For example, for a user who watches only videos showing
matches involving FC Bayern Munich, BVB Dortumnd and Schalke, it is not possible
to realize the pattern that they are German football teams. As a result to this missing
link caused by ignoring semantics, the user’s interest cannot be accurately inferred. Most
recently, some RSs started considering semantics in their recommendations. However,
they use a set of complex static heuristic rules which require expert knowledge to develop.

1.2 Objective

With the emergence of Semantic Web technologies, the information on the WWW is
becoming more structured, and related information about almost anything can be rela-
tively easily fetched from Linked Open Data (LoD) Knowledge Bases. This consequently
opens the door for utilizing such technologies in enhancing and extending applications
that involve human reasoning simulation tasks, like the one addressed in this thesis. On
the other side, the development of system intelligence is rapidly switching from the era of
soft coded statements, where the developers transform their knowledge into a set of static
rules, towards the era of dynamic learning, where the machines independently learn such
rules. Studying the nature of the RSs problem, it was found that it resembles machine
learning problems where given some training user feedback about some items, the system
is required to predict the user feedback for unobserved items. It was also found that the
nature of this problem is full of uncertainty, whether in terms of feedback confidence or
annotations accuracy.
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This thesis proposes, exploits and evaluates a new approach for detecting interest pat-
terns for users, through content-based analysis of the users’ watch histories in order to
learn the user preferences, and accordingly generate multimedia item recommendations,
with specific focus on video recommendations. The proposed approach overcomes the
limitations and shortcomings of the state of the art RSs, by merging the advanced tech-
nologies of semantic web and machine learning into a new system. The system models
semantic relations between video contents in the form of a Bayesian Network (BN). The
BN in turn is trained through evidence propagation to find interest peaks in the users
watch history, utilizing the ability of BNs to handle probabilistic uncertainty. The work
towards this thesis was performed as part of the EU project LinkedTV 1, whose goal is
to personalize the TV experience for users, not only by directing them to content that
is of interest to them, but also by smartly enriching their experience through attaching
relevant information about the content played to a second screen.

This thesis is divided into 6 chapters. Chapter 2, introduces each of the three corners of
this approach; RS, Semantics and Bayesian Networks, following that with a more detailed
study of the related work in this field and a more generous motivation for the new ap-
proach based on the introduced knowledge. Afterwards in Chapter 3, the workflow in the
tightly coupled project LinkedTV is presented, highlighting the older system’s limitations
and theoretically elaborating the proposed approach. Chapter 4 gives an overview of the
implementation details of the new RS that uses the previously proposed approach. Fol-
lowing that, the means and results of the system evaluation are presented in Chapter 5.
Finally, Chapter 6 concludes the thesis by highlighting the positive findings as well as the
challenges of the experiments performed throughout this project and offers suggestions
for possible future work.

1www.linkedtv.eu
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Chapter 2

Background

This chapter is divided mainly into four sections. Section 2.1 sheds light on Recommender
Systems and the different approaches and techniques developed for this purpose. Section
2.2 addresses the topic of Semantic Web and its underlying concepts. In Section 2.3,
the key concepts of Bayesian Networks and inference algorithms are presented. Finally,
Section 2.4 reviews, given the knowledge presented in the previous sections, the currently
available Recommender Systems and justifies the need for a new system.

2.1 Recommender Systems

Nowadays in the everyday life, people heavily rely, even without them explicitly noticing,
on RSs to guide them through the massive amount of multimedia content available on
the Internet be it YouTube to watch videos, Amazon to buy products or Netflix to watch
movies. The first standalone RS was presented in a Patent by J.B. Hey in the early 1990s
[34]. Ever since, RSs have joined the trendy research areas which until these days have
not lost its position as a hot research topic due to its great role regarding helping users
through the massive amount of information [2].

A RS is simply a system which given some information about a user within larger groups
of users, manages to decide how relevant certain contents could be for this user and
accordingly generate recommendations to the user about which content to consider [54].
This problem can be mathematically formulated as follows: Given a set of users U in
which each user is defined by a profile and a set of content items C in which each item is
defined by some content characteristics, the task is to first compute the relevance function
f of each content in C to each user in U, f : U × C → F where F is an ordered set of
real numbers within a certain range. Then the best item c′ ∈ C is generated as

∀u ∈ U , c′u = arg max
c ∈ C

f(u, c)

The user profile describes the user either simply through holding personal information
about the user like age, gender, ...etc or in a more fine grained manner through information
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6 CHAPTER 2. BACKGROUND

regarding how much this user rated some other content previously. On the other hand,
the content characteristics describe the content itself usually by the meta-data supported
by the content author [2].

There is a variety of approaches to generate recommendations. The following section
describes some of these approaches.

2.1.1 Recommendation Approaches

As explained above, the main functionality of a RS is to match the user’s interests with
the available multimedia content and accordingly recommend to the users what would be
relevant for them. The process of computing the relevance function for some content to
some user differs according to the approach being used. In general, RSs can be classified
into 3 major classes based on the recommendation approach; collaborative, content-based
and hybrid RSs. [2].

Collaborative Recommendation

The early RSs that emerged in the mid 1990s like Tapestry [29] and GroupLens [53], used
the collaborative recommendation (also referred to as collaborative filtering) approach.
The general idea in this approach is to direct the user towards content that other users
with similar interests were found to like. The recommendation problem then becomes,
how to find the users which have similar interests as the user currently considered, given
the ratings these users gave to other content.

There are two methods to generate collaborative recommendations; model-based and
neighborhood methods [54]. In model-based methods, the idea is to use the ratings
provided by users to train a model of user classes and categories of items, that is, to
cluster users based on the ratings they give to the contents, and then later use this model
to predict new weights. The neighborhood methods, on the other hand, use the given
ratings directly to compute similarity values, like for example, the root mean square of
the difference between the ratings of the same items.

Collaborative filtering has the advantage that it does not require descriptors to the content
items because the recommendations are solely generated based on the ratings given by
other users. It however fails to generate recommendations for content that has not been
rated by the “similar” users [54]. Many of the famous recommendation systems like
Youtube[20] and Amazon[41] use this approach for recommendations. A more detailed
discussion of these systems will follow in Section 2.4.1.

Content-based Recommendation

Content-based recommendations which are the focus of this thesis first appeared in the
mid 1990s in systems like Newsweeder [38]. The general idea in this approach is to find
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Figure 2.1: The high level data flow in a content-based RS [54]

out what is the common content between the items in which the user previously showed
interest and recommend other items which contain the same content.

A basic content-based RS consists of three main modules as shown in Figure 2.1; a content
analysis module, an interest learning module and a filtering module [54]. The need for
the content analyzer is to extract the contents from the watched items either from meta-
data or using some advanced technology to automatically annotate the contents of an
item. Up to this day, no suitable methods to accurately represent the video contents are
available. Therefore, the content analyzers only generate annotations that approximate
the contents of the video by pointing out the main aspects of the video, for example, the
people, places, objects and events in the video. The output of this module is then passed
to the interest learning module in which a user profile is created with the interesting topics
for the user. In the end, the filtering component filters out the items whose contents do
not match the learned profile.

Content-based RSs can generate good recommendations in contrast to collaborative RSs
in the cases when not many users have overlapping interests and in the situations when
no ratings are available for a content item. On the other hand, they still also face the cold
start problem like the collaborative filters in case of new users without enough history
ratings. In addition, the problem of content analysis is still not solved. As a result, this
approach suffers the drawback of being sensitive to bad or sparse analysis data. Content-
based RSs in general also suffer from the over-specialization problem [2], which is the
problem of restricting the users only to the items that are similar to what they have
already showed interest in, without getting any recommendations to other new possible
interests.

Hybrid Recommendation

The third class of recommendation approaches is the hybrid recommendation approach
which is, as the name implies, a hybrid of the collaborative and content-based approaches.
This approach was introduced in systems like Fab [7] in the late 1990s. There are different
methods for combining both content-based and collaborative RSs.



8 CHAPTER 2. BACKGROUND

One method is to perform collaborative filtering on content-based filtered items. First,
a content-based system is used to choose the items whose general topic matches the
general interest topics of the user. In this case, the content analysis only needs to be
coarse grained on the general topic level, and the same for the interest learning. Then
the filtered items go through a collaborative system to re-rank the items based on similar
users’ feedback. Another method could be to use each system separately and in the
end combine the results of both systems using a linear combination function, a voting
algorithm, or simply by switching between the results of both systems.

Combining the two previously explained systems avoids some of the limitations imposed
by each of them like the problem of the new item in case of collaborative systems or the
problem of hard content analysis in case of content-based systems. It still however faces
the same cold start problems that the other systems face.

2.1.2 Recommendation Techniques

Another classification of RSs considers the techniques in which the recommendations
are generated. From this perspective, RSs can be classified into rule-based systems and
model-based systems [2].

In rule-based RSs, also referred to in literature as heuristic systems, a set of rules prede-
fined by some domain experts are used to compute the rankings for the content items.
For example, computing the relevance of an item for some user as the sum or average
relevance of the same item for a set of similar users.

Contrarily, model-based systems are, as the name implies, based on a model which is
trained using some evidence information to draw conclusions or predictions about unob-
served items. Examples for model-based RSs are systems which use probabilistic graphical
models like Bayesian Networks which will be explained generously later in Section 2.3.

It is hard to argue which technique is better. Rule-based RSs are able to model user
interests in a fine-grained manner. However, they have limited reasoning abilities, and
they rely on the overhead effort of experts to build the heuristic measures and tweak it
to work in practice. On the other hand, the model-based systems are powerful reasoning
tools but they do not cover user interests in a fine-grained manner especially in cases of
probabilistic models.

2.1.3 Recommendation Considerations

Studying the natural human behavior, researchers have found that the human interests
are not simply just static lists of likes and dislikes, but they tend more to be dynamic
topic clouds that increase and decrease depending on some variables. In order to give
the maximum flexibility and accuracy to RSs, some features need to be added in order
to capture these considerations.
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One of the considerations in this regard is context-aware recommendation. A context
in this sense captures the variables that could affect the interests of a user and adds
this information into the recommendation models. Examples for variables that could
affect users interests include time of the day; one’s interests in mornings are not as
likely to divert to entertainment purposes as in the evenings, mood; when somebody is
in celebration mood they are not likely to watch a drama or generally sad movies, or
company; a user’s interests with work colleagues differ than those with friends or those
with children.

Examples for Context Aware RSs (CARS) are the ones presented by Adomavicius and
Tuzhilin in [3] and Abbar et. al in [1] where the general and extremely simple approach
is to add a third dimension to the problem. That is, the problem formulation changes
from 2.1 to 2.2

users× content→ rating (2.1)

users× content× context→ rating (2.2)

Another field of ongoing research to extend the functionality of RSs is generating recom-
mendations for groups (GRS). Most of the RSs focus their attention on improving the
quality of recommendations for individuals either through enhancing the models which
capture the user interests or through improving the matching functions which clustering
users into groups with similar taste. However, sometimes it is needed to exploit the notion
of generating recommendations for a group of users together, that is, finding the items
whose content would be relevant to all individuals within a group at the same time as a
compromise even when this group consists of users of different interests. For example, for
a group of two users A and B, where A is interested in Technology and B is interested in
Football, a GRS would recommend an item about the new goal detection technologies.

One of the leading research projects in this regard is the PolyLens project [46] where the
system recommends movies to groups of users.

2.2 Semantics and Semantic Web

In the past few decades, the amount of information on the Internet has increased horren-
dously. Being a highly available, low cost alternative to books, it has gradually become
the main source of knowledge transfer in the world. It’s pages hold information about
almost anything that can come up on one’s mind.

With the massive increase in the amount of information, the efforts that users needed to
do in order to find the required information increased accordingly. In an attempt to solve
this problem, machine engines currently known as Search Engines have been introduced
to help users find the pages which may hold the information they are searching for. Users
enter the keywords they are looking for, and the engine directs them to the pages in which
these keywords exist. This solved a huge part of the problem. However, sometimes users
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Figure 2.2: Knowledge representation in the form of a Semantic Net

are searching for something more specific, more semantic, where keywords no longer serve
their deeds.

At this point, researchers realized that what is really needed is to automatically pro-
cess the available information on webpages and directly serve answers to the users. But,
there they faced further problems; the majority of available information is presented in
a natural language, unstructured, human-readable format which machines cannot read,
and even if it is machine readable, conclusions cannot be implicitly drawn out of such
information because machines lack the ability to do reasoning.

In the late 1990s and early 2000s, Tim Berners Lee, the inventor of the Web, introduced
a potential solution; Semantic Web. An extension to the current Web back then in which
the target is to form a Web of machine understandable networks of connected data rather
than the existing network of connected text documents [13]. The World Wide Web Con-
sortium (W3C) is now organizing the research towards Semantic Web in a worldwide
collaborative project. Quoting the W3C in describing Semantic Web, they say: “The
Semantic Web provides a common framework that allows data to be shared and reused
across application, enterprise, and community boundaries” [16].

2.2.1 How to Represent Semantics?

The notion of semantics and semantic meaning started long before the idea of Seman-
tic Web in the fields of Psychology, Philosophy and Linguistics. The main objective of
research in this field was to provide a structural way of representing knowledge and con-
sequently being able to automatically reason about it. In general, there are two types of
knowledge; Intensional Knowledge and Extensional Knowledge. Intensional Knowledge
is usually the factual knowledge that defines and describes static information about the
problem domain. This information usually holds for all instances of time and does not
change, for example, tigers are animals. On the other hand, the Extensional Knowledge
represents temporary knowledge specific to the problem, for example, Josh is a tiger [6].
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One of the earliest structures introduced for the purpose of organizing knowledge is the
Semantic Network structure. A Semantic Net as described by Sowa [58] is knowledge
represented in the form of a graphical structure which holds patterns of nodes and arcs.
Normally nodes would represent concepts and arcs would represent the relations connect-
ing the concepts to each other as shown in Figure 2.2. Having developed a structure for
representing knowledge, rose the importance of finding a way to formalize this knowl-
edge. Description Logics (DL) is one of the formalisms developed to represent structural
knowledge [6]. In DL, two components were developed to model both types of knowledge
explained above; the T-Box and A-Box respectively. The T-Box offers means to declare
taxonomic facts either by simple inclusion axioms like

Tiger v Animal

or by more complex axioms including intersections or unions of concepts like for example

Lioness ≡ Lion u Female

In this case, only single definitions of axioms are allowed and no recursion is allowed in
the definitions i.e. an axiom cannot be defined by itself [6]. On the other hand, the A-Box
offers means to make assertions about individuals like membership to a certain concept
for example

Tiger (Josh)

Combining T-box declarations with A-Box assertions allows for simple reasoning tasks
like for example inferring that if a tiger is an animal and Josh is a tiger then Josh is an
animal without explicitly having an axiom stating this information. Nowadays, most of
the applications involving artificial intelligence rely in a sense on DL for decision problems.
The idea of Semantic Web builds on such concepts, organizes and motivates the use of
semantics in applications.

2.2.2 Semantic Web Stack

In order to organize the protocols of communication and to unify the used conventions,
the W3C presented the Semantic Web stack of technologies shown in Figure 2.3. The
following sections briefly introduce some of the building block technologies in this stack.

RDF

The Resource Description Framework (RDF) [43] is a framework introduced by the W3C
to standardize and unify the interchange of data on the Web. It is simply, as the name
implies, a language for describing and providing information about the resources available
on the World Wide Web.

In RDF, resources, previously referred to as concepts, are represented by Uniform Re-
source Identifiers (URIs), and are described through properties and property values.
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Figure 2.3: The Semantic Web data stack [26]

Property values can either be other resources or simply literals of primitive data types like
Integers or Strings. By describing multiple resources, RDF produces graphs of knowledge
where nodes are the resources and links are the properties connecting these resources to
each other. In this manner, the description of a resource is structured is a way that
can be used to easily retrieve useful information. Figure 2.4 shows a simple RDF graph.
Notice the resource URIs which define each entity.

In order to save this knowledge in a machine readable format, some formats have been
introduced. RDF/XML [28], an XML-based Syntax is one of such formats where RDF
graphs are transformed to XML tags. Another format is the Terse RDF Triple Lan-
guage (Turtle) [9] where the object, property and value triples are directly listed. RDF
information can be retrieved using SPARQL [52], the RDF query language.

RDF-S

The RDF Schema (RDF-S) [12] is considered the schematic semantic extension of RDF.
In other words, it defines how data modeled in RDF graphs could be structured in a way
that is usable for reasoning. RDF-S introduces the notion of a class which is a resource
grouping a group of resources which share the same properties. The resources that are
members in the group are called the instances of the class. Classes themselves can be
grouped into more general classes. For example, consider a knowledge graph to model
scientists. The resources Albert Einstein and Isaac Newton would be instances of the
class Scientist, which is a subclass of the more general class Person. RDF-S can support
defining this information using properties like rdfs:subClassOf to denote the class in-
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Figure 2.4: Simple RDF Graph

heritance and rdf:type to denote membership to a class.

In RDF-S, semantic structuring of the domains and ranges of properties using rdfs:domain

and rdfs:range as well as property inheritance through rdfs:subPropertyOf is also pos-
sible which adds semantic value to the information inserted. In addition, RDF-S allows
differentiating between different types of containers like rdf:Bag, rdf:Seq and rdf:Alt

which indicate whether the listed set of resources is unordered, ordered or optional re-
spectively. This is also another form of adding semantics to data.

Following a schema, information can be implicitly deduced from the RDF graph because
information is structured in a semantic manner. For example, in the scientists models
introduced above, information like “Albert Einstein and Isaac Newton are Persons” can
be directly inferred. This means that knowledge does not have to be explicitly stated.
However, through reasoning it can be easily retrieved.

OWL

The term Ontology comes from a philosophical origin with the meaning “The science of
being”. In the field of Computer Science an Ontology is the structural representation of
knowledge in a certain domain [30]. The main limitation of the traditional Web, which
is addressed through Semantic Web, is the inability of machines to process data and
draw conclusions out of it. In Semantic Web and with the help of RDF, data is stored
as a graph of interrelated resources whose relations are structured semantically based
on a schema (RDF-S). As a result, implicit information could be implicitly retrieved.
However, the semantics offered by RDF-S are sometimes not expressive enough to be
used for reasoning in real-life applications. Therefore, the W3C introduced the Web
Ontology Language (OWL) [44] for extended semantic expressiveness.

There are three different versions of OWL with different levels of expressiveness; OWL

http://semantic_web.example.org#Professor
http://semantic_web.example.org#John_Smith
http://semantic_web.example.org#Uni_Bonn
http://semantic_web.example.org#Bonn
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Figure 2.5: Linked Open Data cloud [18]

Lite, OWL DL and OWL Full. In each version, the expressiveness is addressed by posing a
certain level of constraints and restrictions on the definition of classes and properties. The
difference in allowed expressions between the different versions affects the computational
runtime for the reasoning tasks. Using OWL is not necessary in all applications. Some
applications, like the one presented in this thesis, do not require the advanced forms of
expressiveness offered by OWL. In these cases, using RDF-S is sufficient.

Recently, the W3C has released the second and modified version of OWL, namely the
OWL2 [8]. OWL2 comprises three profiles; EL, QL and RL using different reasoning
technologies to provide computation time guarantees. OWL2 EL guarantees performing
the reasoning in polynomial time. OWL2 QL uses database technologies to perform the
reasoning guaranteeing a LogSpace complexity. OWL2 RL operates directly on RDF
triples giving polynomial time responses.

2.2.3 Linked Open Data (LoD)

Following the Semantic Web conventions, many linked datasets, also referred to as Knowl-
edge Bases, capturing knowledge from various domains were built in collaborative efforts
like DBPedia[5], Yago[59] and Freebase[11].

In an effort to govern and evaluate the linked datasets, Tim Berners-Lee introduced a “5
Stars” scale for LoD [10] rating datasets on a scale from 1 to 5 according to the level of
their usability. The first star is awarded for datasets whose data is open for public use.
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The second star is awarded when the open data is structured in some machine-readable
manner. If the structure follows a format e.g. CSV, the dataset is awarded a third star.
The fourth star is awarded for datasets which in addition to the previous uses Semantic
Web standards e.g. RDF and SPARQL and finally the fifth star goes for datasets which
have links to other knowledge sets in order to provide context.

The latest number of datasets following the Open Data Principles is estimated to be
around 295 and a diagram of these datasets and their interconnections is presented in
Figure 2.5.

2.2.4 Named Entity Recognition

With the vast amounts of web content and resources whether documents, audio clips or
video files, accurately describing such content becomes an important task in order for web
users to easily find it. However, the metadata extracted from web content is restricted
to keywords or labels which have no semantics. Without semantics, keywords could be
misleading due to the presence of multiple semantic entities which share the same label.
To elaborate with an example, consider the label “Apple”. In a sentence like “Apple has
announced the release of the new iPhone 6”, the label “Apple” refers to Apple Inc. the
American electronics corporation. On the other hand, in a sentence like “Fred has an
Apple in his lunch box”, the label “Apple” refers to the fruit. As the example suggests,
defining web content through plain keywords only is not enough.

Named Entity Recognition (NER) or also called Entity Extraction is the process of map-
ping keywords or labels to the semantic entities they refer to from the context in which
these keywords lie. From a Semantic Web and LoD perspective, NER links keywords
in a sentence to KB classes and instances which accordingly provides more information
about this keyword from KB knowledge. This process is of great importance because
it provides means to enrich unstructured natural language web content with structured
semantic keywords allowing better understanding and easier access [45].

NER tools use mainly Machine Learning techniques for detecting contexts and accord-
ingly finding the respective semantic entities. Examples for such tools are the KIM tool
introduced by Popov et. al in 2003 [51] and the NERD tool introduced by Rizzo and
Troncy in 2012 [55].

2.3 Bayesian Networks

Bayesian Networks (also referred to as Belief or Causal Networks) are probabilistic graph-
ical models which are most commonly used for uncertainty modeling. Their initial ap-
pearance was in the late 1970s motivated by the need to form coherent interpretation
from the semantic expectations and perceptual evidence [50]. It first emerged in the field
of medical decision systems [19] however its use has later widely spread to include various
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Figure 2.6: An illustration of a simple Bayesian Network

other fields.

2.3.1 Bayesian Network Structure

A Bayesian Network (BN) takes the form of a Directed Acyclic Graph (DAG) in which
nodes represent random variables and directed edges represent the degree and direction
of dependency/influence between the connected nodes. In that sense BNs provide both
a qualitative representation of the domain problem through the structure of the network
and a quantitative representation through the distributions describing the nodes and
edges [21].

Figure 2.6 shows an example of a simple BN modeling the causal dependencies between
Fred’s happiness and the activities he did that day like Playing Tennis or Playing Piano.
Knowing that playing Tennis requires some prerequisites which for simplicity in this
illustration are limited to, whether the weather is good and whether Fred’s partner is free
to play. Such dependencies are visualized through the edges connecting for example the
node “Fred plays Tennis” to the nodes which have a direct influence on it like “Weather
is good” and “Partner is free”.

In a BN, the probability of each node Xi given its parents

P(Xi | par(Xi))

is expressed through a Conditional Probability Table (CPT) attached to this node, mak-
ing the joint probability of the BN as a whole

P(X1, ..., Xn) =
n∏

i=1

P(Xi | par(Xi))

The difference between BNs and other reasoning models is that in BNs, world knowledge
and relationships are captured from real world, and represented in the model as abstract
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Figure 2.7: Illustrations for the different Bayesian inference patterns

and straightforward conditional dependencies as they are in reality, and the model is not
affected at all by the reasoning process like in the other reasoning models [50]. It also
considers only the known dependencies between variables making the reasoning process
more efficient and flexible [17].

2.3.2 Reasoning Patterns in Bayesian Networks

Human reasoning is known to use the most complex reasoning patterns to make inferences
and predictions out of the evidences available in real world. BNs support a set of various
reasoning patterns resembling the human reasoning patterns. This section discusses some
of these patterns.

Causal Reasoning

Causal reasoning also known as the prediction reasoning follows a top-down propagation
of evidence [36]. That is, if the parent node has been observed, then the probability of the
children of this node increases accordingly. For example in Figure 2.7b, having observed
that Fred’s partner is free (now marked in red) means that there is a higher chance that
Fred plays Tennis which consequently means that there is a higher chance that Fred is
happy. Or on the other hand, having observed that Fred’s partner is not free means that
there is a lower chance that Fred plays Tennis and so on. In this case, the observation of
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the parents propagates to affect the probabilities of the children which in turn propagate
these changes to further children (if any).

Evidential Reasoning

Evidential Reasoning or the so called explanation reasoning follows, in contrast to the
Causal Reasoning, a bottom-up propagation of evidence [36]. This implies that, when
a node is observed, the probabilities of the parents of this node increase in some sort
of an explanation why the children have been observed. In other words, the parents
are inferred. Figure 2.7c shows an example for Evidential Reasoning. In this case, it is
observed that Fred is happy. As an inference to this observation, the probability that he
played Tennis or Piano increases. Consequently, also the probabilities that the weather
is good and that the partner is free increases.

Intercausal Reasoning

Intercausal reasoning is a reasoning pattern where independent nodes sharing the same
children become dependent [36]. One form of the intercausal reasoning is when having
some strong evidence about one parent causes the probability of other unobserved parents
to decrease. This reasoning pattern is a very common form of human reasoning and is
called Explaining Away [36] and this form is usually complex to model using the rule
based models [50]. For example in Figure 2.7d, observing that Fred is happy and that
Fred plays Tennis together causes the probability of Fred playing Piano to decrease since
the explanation to Fred is happy has already been observed to be Fred playing Tennis.
This hypothesis does not refute the fact that Fred may indeed have played both Tennis
and Piano. However, it just assumes that a valid explanation for the observation has
already been found thus reducing the probability of other possible explanations.

2.3.3 Inference Algorithms

Cooper described in his paper about the computational complexity of inference in BNs
[17] two classes of BNs; singly and multiply connected BNs. Singly connected BNs are
networks where each pair of nodes has a maximum of one path between them, whereas in
multiply connected BNs, more than one path can exist between a pair of nodes. Usually
for complex domains, multiply connected BNs are used.

Inference in BNs means computing the probability of the variable denoted by a certain
node having one of its possible values given some observations about other related vari-
ables. Following are the inferences examined by the patterns in Figures 2.7b, 2.7c and
2.7d respectively.

P(Fred plays Tennis = T | Partner is free = T ) (2.3)

P(Fred plays Tennis = T | Fred is happy = T ) (2.4)
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P(Fred plays Piano = T | Fred plays Tennis = T,Fred is happy = T ) (2.5)

In [17], Cooper stated that the inference computation problem is solvable for singly con-
nected BNs. Some algorithms exist which solve the inference for singly BNs in polynomial
time [19]. Cooper proved however, that computing such inferences for the whole BNs in
case of a multiply connected BN is NP-Hard. Following is a brief compilation of some of
the most common Bayesian Network inference algorithms and approximations.

Message Passing Algorithm (1986)

Inspired by the human reasoning paradigms characterized by short term memory and
narrow focus, Pearl [49] realized that humans tend to reason about things in a local
manner first then gradually progress with reasoning along given relations. Therefore, he
suggested a message passing algorithm in which he considers nodes to act as processors
which hold belief values and communicate with neighboring nodes, and edges to act as
pathways that control the flow of belief data. The inference problem is then approximated
when each node passes the changes upon the newly given evidences to its neighbors until
the whole network reaches an equilibrium.

One of the major advantages for such message passing paradigms is that they give a
chance for tracking the flow of evidential data through the network and allows revising
the intermediate steps.

Lauritzen and Spiegelhalter Algorithm (1988)

The Lauritzen and Spiegelhalter algorithm [39, 37] utilizes the fact that the inference
problem is solvable for the singly connected BNs which can also be visualized as trees.
The general idea is to convert the multiply connected BN into a tree of local clusters and
handling the inferences first generally on the level of the clusters, which should be now
easy given the tree structure, then locally within the clusters.

The clustering step is carried out first by connecting parents sharing the same child and
dropping the edge directions. This step ensures placing the nodes with their parents
within the same clusters. The resulting graph is then triangulated, that is, forcing the
cycles in the graph to be of maximum 3 nodes by adding edges for cycles with more nodes.
From the triangulated graph, the ranks of nodes are computed through a maximum
cardinality search and clusters are formed such that each cluster forms a clique. The
ranking of the nodes is used to manage the hierarchy of the tree of cliques. After the BN
has been successfully transformed, the evidence is first propagated over the clique tree
and then the single node belief is computed within the clique distribution. In [37], Kozlof
and Singh suggest methods to parallelize this process in multiple points which makes it
even faster and more efficient.
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Figure 2.8: Example of an unfolded Dynamic Bayesian Network

Stochastic Algorithms (1988, 1990)

Another family of inference algorithms is the family of Stochastic algorithms in which the
probabilities of observing certain values for variables are estimated from the frequency of
observing them in simulation trials. Stochastic algorithms use approximations in contrast
to the previously presented algorithms.

The baseline idea for this approach, logical sampling, has been introduced by Max Hen-
rion in 1988 [32]. First, some values for the root nodes are randomly sampled based
on the probability of their occurrence. Then recursively for each of the children, some
value is randomly sampled weighted by the probability of this value given the parents.
The sampling process is repeated till convergence. This approach however faces some
problems when evidences are present since the samples that do not match the evidence
are considered invalid and they get discarded. This increases the convergence time espe-
cially with increasing number of evidences. In the algorithm by Fung and Chang [27],
they propose an extended stochastic probabilistic logical sampling approach which uses
evidence weighting to overcome the evidences problem of the Henrion’s logical sampling
algorithm.

2.3.4 Dynamic Bayesian Networks

In a BN, it is assumed that given the same evidence and structure, the probabilities of
variables represented by nodes is constant over time. This assumption is however not
always true. Temporal reasoning has been introduced in 1988 by T. Dean [23] where he
addressed the incapability of BNs of reasoning change over time and developed the so
called Dynamic Bayesian Network (DBN).

A DBN is simply a BN, whose node probabilities at time t differ than that at time t+ 1.
An exemplary structure of what an unfolded DBN may look like is the one shown in
Figure 2.8. The major structural difference between BNs and DBNs is that each node
in the DBN at time t has an extra dependency on itself or another node at time t − 1
in contrast to the BNs whose dependencies all lie within the same time slice. DBNs are
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used in applications which require dynamic reasoning over time under uncertainty, for
example, Robotics.

2.4 Related Work

2.4.1 State of the Art Recommender Systems

Internet users use RSs while browsing and surfing the Web almost everyday. One of the
leading RSs is the YouTube RS [20]. In the YouTube environment, the objective is to
provide a diverse set of recent videos that are relevant based on the latest user activity.
The YouTube recommender is considered a collaborative filtering RS. It uses the history
of the user watching sessions to count for each pair of videos the number of times they
were both watched in the same session. This way, for each video, the videos with high
co-visitation count are considered related videos. Using this information gathered from
other users, the set of recommended videos for a certain user is a subset of the union of
the sets of videos related to the ones in the user’s recent watch history. The ranking of
the videos is generated based on video popularity and quality in a manner that ensures
diversity.

Another very high traffic RS is the Amazon products RS [41]. Similar to the YouTube
system, Amazon uses a collaborative filtering RS which performs an item-to-item similar
tables based on the number of times both items were purchased together or within a
short period of time. The product recommendations hence are just the aggregated set of
items similar to the ones most recently purchased sorted by the degree of correlation or
similarity.

Using Semantics

In the recent years, researchers in the RSs field decided to make use of the emerging
technology of Semantic Web especially in content-based RSs where describing the con-
tent of items and building a model out of them plays an important role in contrast to the
collaborative RSs where the content of the items plays almost no role. Using semantics
instead of plain keywords for finding commonalities between items increases the chances
of better understanding the user interests and consequently finding “similar” items to the
ones which received a positive feedback.

Di Noia et. al addressed this in their LoD supported RS[25] where they transform content
items into vectors of properties. The similarity between a pair of items is computed as
the cosine of the angle between the two vectors and the relevance of an item is computed
through heuristic functions in order to generate the final recommendations list. The re-
sults of their research showed good precision and recall values.

In 2009, Schopman et. al [56] introduced NoTube, a new system whose idea is to person-
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Figure 2.9: A Bayesian Network model for a hybrid RS [22]

alize TV experience through web services which use Semantic Web technologies to find
relations between user interests captured from social networks like Facebook and Twitter,
and TV programs. The authors however focused more on the conceptual aspect of the
system and did not discuss much about the technical approaches they use for realizing
these concepts.

Following the general concept of NoTube, the LinkedTV project 1 was launched in 2012.
LinkedTV uses a content-based RS based on semantics to realize the personalization goal.
Unique about the LinkedTV RS is that it uses its own Ontology; LinkedTV User Mod-
eling Ontology (LUMO) to capture the content in the videos and uses it to model the
user interests. Recommendations are generated first by filtering the videos which contain
any of the entities in the user model or something semantically related to it. The filtered
videos are then ranked using a heuristic function to compute the relevance of each video
from its contents. The LinkedTV RS will be discussed extensively later in Section 3.1.

Using Probabilistic Models

Artificial Intelligence researchers have also realized the significance of using probabilistic
models in problems that include high levels of uncertainty, like the problem of recom-
mending content by guessing one’s interests. In 2010, De Campos et. al [22] introduced
a hybrid recommender system which uses a BN structure as the one shown in Figure 2.9
to infer the relevance value for an item depending on both its features and the feedback
that similar users gave about it.

Chen et. al [14] have also introduced a RS for a digital library that uses BNs to realize re-
lations between different books and accordingly direct the readers towards similar books.

1www.linkedtv.eu

www.linkedtv.eu
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The authors however did not clearly explain whether their system uses a content-based
or a hybrid approach nor how the Bayesian network is created and on what basis the
relations are established. But in general, the results reported in this paper were very
promising.

2.4.2 Motivation of a New System

In this thesis, the objective is to develop a personalization component which recommends
TV material for users according to their interests with major focus on news and talks.
In this case, most of the items to be recommended are new items which have recently
joined the system’s library.

Collaborative filtering approaches like the ones used in YouTube [20] and Amazon [41]
would not perform well in this case since the collaborative filters have the limitation of
not being able to generate recommendations for new items which have a shallow history.
Using a hybrid recommender in this case would be as well useless since it partially uses a
collaborative filter. For this reason, it was decided to use a pure content-based approach
to solve this problem.

The BN approaches presented in [22, 14] lack any semantic consideration about the items
and their features. This means that really understanding the interests of a user through
these systems is not possible and only keyword based recommendation is supported. The
systems presented in LinkedTV and in [25], use content-based approaches and additionally
use semantics allowing for more complex modeling of users interests. However, these
systems use only heuristic models to generate the relevance values of items. Given that
the user modeling problem comprises a huge amount of uncertainty, the heuristic approach
in this case would be inferior to other more advanced learning approaches like BNs.

TV RSs are generally different than movie, music and book RSs. When recommending
a movie or a book, parameters like movie actor or book genre plays the biggest role in
choosing the item whereas the actual content plays a minor role. On the other hand, in
case of news and talks, the content tends to be of more significance to the user. Therefore,
available movie, music and book RSs are generally out of scope for this problem.

Trying to overcome the limitations discussed above within the scope of the targeted
problem, this thesis proposes a semantically aware content-based RS that uses BNs for
understanding users’ interests and generating recommendations for them accordingly.
The most related work known is the work presented in [4]. The system introduced in
that paper however is not a RS, it is rather an interest discovery system that tries to
capture the users’ interests in a set of predefined topics. The interests are captured
by semantically analyzing their social media content and reasoning under uncertainty
in a BN. The work presented in this dissertation on the other hand does not involve
recommending any items based on what was learned and the learning only supports a
static set of predefined topics.
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Chapter 3

Approach

In Fraunhofer IAIS, a RS has been developed as a part of the LinkedTV project. However,
limitations have been observed in this system. This thesis introduces an alternative
system that overcomes the limitations of the latter.

In this chapter, Section 3.1 covers the current implementation of the LinkedTV RS and
points out its limitations. Section 3.2 introduces theoretically the proposed system and
illustrates how it manages to overcome the limitations of the former system.

3.1 The LinkedTV Recommender System

LinkedTV as previously mentioned is an EU project which aims at changing the future
of smart TV experience for users by tailoring the TV to users’ interests and needs. The
work in LinkedTV is divided among a set of components that interact with each other
to deliver the full system functionality. Figure 3.1 shows the architecture of the full
LinkedTV system.

In general the work flow starts by analyzing the videos added to the digital library through
image and speech recognition techniques and annotating the videos by weighted semantic
keywords extracted through named entity recognition as explained earlier in Section 2.2.4.
This way, each video is annotated by a set of weighted Video Annotations (VA) which
reflect the content of this video in terms of semantic entities i.e. classes and instances
not just verbal keywords. Based on the VAs, more information related to the contents of
the videos are imported.

On the other side of the system, the behavior of the users towards the content is analyzed,
and according to the degree of attention observed as well as the explicit feedback given
from the user, the degree of the user’s interest in the content of the video is inferred.
This information is modeled in the User Model (UM) also as a set of weighted semantic
entities.

25
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Figure 3.1: LinkedTV Architecture [15]

Given the information from both sides; the content analysis and the user behavior analy-
sis, the personalization and contextualization components perform context-aware content-
based filtering and recommends the videos that best match the user’s interests.

Here in Fraunhofer IAIS, we were responsible for the development of the personalization
and contextualization modules. The key feature of the personalization component was to
filter out and recommend content as well as tailored side information about the content
given a UM that defines the users’ interests and dislikes. Therefore, it was decided to de-
velop a content-based RS that uses semantic reasoning to filter and recommend content.
Figure 3.2 shows the general work flow within the personalization component.

3.1.1 LinkedTV Knowledge Base

The knowledge in the world is massive, however it is hard, almost impossible, to find an
ontology that models anything and everything in every possible domain. In a network
of interrelated videos, in order to really understand the user’s interests, the annotated
content as well as the inferred interests have to be defined using a uniform and compact
vocabulary. For this specific purpose, it was decided in LinkedTV to create a new domain
oriented ontology [35].

The LinkedTV User Model Ontology (LUMO) is a compact lightweight OWL knowledge
base (KB) that serves as the core for the services that LinkedTV provides. It encloses a
coarse grained taxonomy of classes aligned with other LoD KBs. LUMO is designed in a
manner that covers the general user interests and acts as the skeleton for the knowledge in
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Figure 3.2: Workflow in the personalization component in LinkedTV

LinkedTV. The expressiveness of LUMO is restricted for simplicity to typeof relations to
denote membership of an instance to a class, subClassOf relations to model the hierarchy
of classes and a set of relations that are designed to connect the instances of these classes
to each other. The weight of the relation symbolizes the significance of the relation to the
subject and object entities. Examples for such relations for person instances are bornAt,
hasProfession, or for location instances isContainedIn, isBirthPlaceOf or for topic
instances isSubTopicOf, isTreatedBy ...etc.

LUMOPedia, the LinkedTV KB is based on the core ontology LUMO with additional
instances imported incrementally and semi-automatically from LoD KBs like DBPedia
[5] and Freebase [11]. The incremental import of instances allows controlled growth in
the amount of information within the KB. The import is designed in a manner such that
the instances expand with the new videos added to the digital library. That way, all
the semantic annotations extracted from the videos are covered in LUMOPedia. On the
other hand, the process is up to this point performed in a semi-automatic manner, the
imported data is reviewed before being added to the KB. This ensures the quality of
imported knowledge, since LoD KBs suffer sometimes from low quality information, due
to the fact that they result from user driven efforts. The quality of user driven LoD KBs
have been subject to the recent research project DBPedia Data Quality (DBPediaDQ)
in 2013 [60].

Having defined the content of the videos in terms of LUMOPedia, the system can utilize
the knowledge hierarchy to understand that if for example a user is interested in the
general class Politician, a video about Angela Merkel or Barack Obama would be of
interest to this user given the knowledge that Chancellors and Presidents are Politicians.
Moreover the relations between instances allow the system to for example understand
that if a user is interested in the English Premier Football League, a video about Chelsea
and Manchester United would be of interest to this user because Chelsea and Manchester
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United are teams which compete in the League. Worth to mention in this point that the
expressiveness of the LUMOPedia ontology allows the users to formulate their interests
in the form of semantic entities constrained by some relations for example Politicians
bornIn Germany or American Presidents.

3.1.2 Semantic Filtering

The LinkedTV RS, namely the Personal Recommender, is an in-database Postgres system
where the LUMOPedia is stored in the form of relational database tables. The functions
processing this data are also entirely coded in the form of database scripts. The per-
sonal recommender performs the semantic content filtering and accordingly generates it’s
recommendations to the user in two major steps. First, the list of VAs within a video
is extended by including the entities that are semantically related to these VAs in the
KB. Then, a relevance value is computed for each video by matching the result of the
semantically enriched VAs with the UM. The following sections describe each step in
more detail.

Semantic Enrichment

Since dealing with the complete LUMOPedia KB when matching the set of VAs to the
UM is relatively complex due to the huge amount of facts in the KB, one way to simplify
the matching process is to extract only the relevant pieces of semantic information needed
for the matching by capturing a subset of the ontology that is related to the VAs and
dropping the rest of the unused facts. In that manner, the matching process becomes
more controllable.

Figure 3.3 shows an illustration of how the semantic enrichment of a VA entity is per-
formed where classes are denoted by blue circles and instances are denoted by gray circles.
In Figure 3.3a, the yellow node shows the start point that is the VA entity to be enriched.
The first step of the enrichment shown in Figure 3.3b is to recursively extract all parent
classes of this entity. The second step shown in Figure 3.3c is to extract all instances
which have a relation connecting it to the VA entity within one hop in the graph.

The graph of extracted entities is used to form a list of weighted enriched video annota-
tions (EVAs). The EVAs are the seed entity as well as the extracted entities in addition
to constrained entities formed by making combinations of extracted parent classes with
extracted related instances. Constrained entities are extracted to be matched with the
ones formulated in the UM (if any). The weights of the enriched entities are determined
heuristically as the product of the weight of the VA entity within the video and the
weight of the relation connecting the enriched entity to the VA entity. Figure 3.3d shows
an elaboration of this step.
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Figure 3.3: Steps for semantic enrichment

Matching and Recommendation

Having simplified the problem in the previous step. The target of the Personal Recom-
mender in this step is that given a set of weighted user interests in the UM

UM = {(e1, w(e1)), (e2, w(e2)), ..., (en, w(en))}

and a set of videos in a video database (VB) {V1, V2, ..., Vk}, each of which is annotated
by enriched weighted entities

Vi = {(eva1, w(eva1)), (eva2, w(eva2)), ..., (evam, w(evam))}
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where w(x) is the weight of entity x, it is required to compute

recommendations(UM) = arg
k

max
i=1
{relevance(Vi,UM)} (3.1)

That is, the problem is narrowed down to computing the relevance function that matches
the set of enriched video annotations in the VB to the set of user interests in the UM.
A heuristic set of rules have been defined to compute the relevance function and are
summarized as follows:

relevance(V,UM) =
m∑
i=1

n
max
j=1
{eq(ei, evaj) · w(ei) · w(evaj)}︸ ︷︷ ︸

relevance of a single EVA to the UM

(3.2)

eq(a, b) =

{
1 if a = b

0 otherwise
(3.3)

In that manner, the videos annotated with the largest number of high weighted entities
related to the UM will stand out in comparison to other videos.

One of the very desirable features of the Personal Recommender is that it is a context-
aware RS. In the current version of the system, the user manually inputs the contexts in
which a certain interest is valid. In order to perform the recommendation within a certain
context, only the subset of the UM interests which is valid in this context is considered
for the matching process.

3.1.3 Limitations in Personal Recommender

Despite the good results obtained from the Personal Recommender of the LinkedTV sys-
tem, it suffers a number of conceptual limitations which would affect it’s performance for
the general application with real data.

The first limitation lies within the semantic enrichment step. In this step, a subset of
related entities is extracted from the ontology according to a set of rules. The extracted
entities are only the ones related directly to the entity to be enriched and all of its indi-
rect parents. However, this strategy imposes two challenges. First, the entities sharing
a parent with the entity to be enriched for example the instance I2 in Figure 3.3, or
entities more than one relation hop away for example the instance I5 are dropped from
the enrichment. The assumption that such entities are not relevant may not always be
accurate and may cause in some cases loss of information. Second, in an ontology, the
level of relevance and detail within the hierarchy and relations is not uniform. This means
that for some instances, the parents within 3 steps could be either still too detailed or
already too broad as well as in relations where the instances within 3 steps could be
totally irrelevant or very highly correlated. Therefore, controlling these aspects using
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static strategies limits the use of semantics in this system.

Another limitation lies within the matching step where the relevance is computed from
a set of formulas. In this step, the formulas shown in section 3.1.2 were chosen among a
set of potential formulas according to their performance in a set of test scenarios. That
means that the choice of the formulas was tailored on a specific narrow scope. This is
considered a limitation because these formulas could be overfitting the problem, i.e. too
specific for the matching problem and will not necessarily hold for other scenarios.

Observing the limitations above, a new approach was designed to overcome these limita-
tions. More about this approach is presented in the following section.

3.2 The New Approach

Observing the nature of the addressed problem, it was found that the given preference
learning and semantic filtering and recommendation problems are very analogous to pat-
tern recognition problems. That is, given a set of training data which is the set of
annotated content watched, as well as a set of semantic entities which represent how
interesting the user found the content. The target is to learn the user’s preferences i.e.
learn the pattern by generating some user model such that when a new annotated content
is given, the model can estimate how likely it is that the user will be interested in this
content. It was also found that, considering the complete semantics tree of the video an-
notations in an unlimited manner, whether in terms of relations between or hierarchies of
semantic entities, imposes an extra level of uncertainty to the problem addressed in this
system. Consequently, in this new system, it was decided to exploit the recommendation
problem using a learning approach to handle the uncertainty embedding semantics into
the learning model in order to avoid the limitations mentioned earlier. In this system,
the following assumptions are made

1. There is a VB in which each video is annotated by a set weighted concepts which
capture the contents of the video.

2. There is a KB that correctly describes the hierarchies and relations between the
annotation concepts.

3. The user interests are only content-related and are not affected by any other factors.

3.2.1 Knowledge Modeling

As explained earlier in Section 2.2, the semantic data within ontologies can be represented
as a graphical structure in which nodes are entities and edges are relations connecting
these entities together. With respect to LoD KBs, the nature of the inter-entity relations
involve some level of uncertainty due to the questionable quality of data. On the other
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Figure 3.4: Example for modeling the user interests in terms of a BN

hand, in Section 2.3, it was shown that BNs have strong capabilities regarding the prob-
abilistic graphical modeling especially under significant uncertainty. For the previous
reasons, BNs were found a suitable candidate for the task of semantically modeling the
user interests.

In general, humans tend to reason about interests in a structural topic oriented form
where there are general topics and more specific topics. The causal reasoning pattern
would infer that someone would be interested in a specific topic if this person has interest
for the general topic. The evidential reasoning pattern on the other hand would predict
that someone is interested in a general topic having observed that this person has interest
for some of the more specific topics.

Similarly, the UM within a RS can be expressed in the form of an ontology which is
transformed into a BN whose nodes represent the semantic entities denoting the interests
and the edges represent the relations between them as shown in Figure 3.4. In this BN,
each node has two states either “like” or “dislike” where the degree of belief of the node
represents the probability of “like” or simply the negation of “dislike”, and the depen-
dencies are directed from the more general entity to the more specific. The information
about which entity is more specific than the other can easily be extracted from the prop-
erty relating the two entities. For example, the objects of the typeof, isSubTopicOf,
isContainedIn and subClassOf relations are more general than the subjects since the
classes are more general than their subclasses or instances overall. On the other hand,
in the relations like contains and isBirthPlaceOf the objects of the relation are more
specific than the subjects.

Following the idea presented in [22], it can also be assumed that the probability that a
user likes a certain video depends on the degree of interest that this user has for whatever
the contents of this video are. Since the contents of all videos are represented in the form
of annotated semantic instances, the video nodes can be attached as leaves in the BN
graph where each node is connected as a child to every instance it is annotated with as
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Figure 3.5: Example for adding VB nodes to the UM BN

shown in Figure 3.5.

Having a BN structure of nodes, a Conditional Probability Table (CPT) needs to be
attached to each node as explained earlier in Section 2.3.1 to define the probability of
this node given its parents. Following the illustration in [42], having a node n which has
m parents, there are 2m+1 entries in the CPT of node n. Assuming that the m-dimension
vector p represents the set of parents such that p[i] denotes the status of the i-th parent,
and that vector r represents the relation probability between n and its parents such that
r[i] represents the weight of the relation connecting n to the i-th parent. The entries of
the CPT for all possible combinations of the vector p can be computed as follows where
η is the system confidence factor.

P (n = Dislike | p) = η ·
m∏
i=1

f(p[i]) (3.4)

P (n = Like | p) = 1− η ·
m∏
i=1

f(p[i]) (3.5)

where f(p[i]) =

{
1 p[i] = Dislike

1− (r[i] · σ(m)) p[i] = Like
(3.6)

and σ(m) = 0.5 + e−m (3.7)

Notice in Equation 3.6 that the weight of the relation between the parent and the child
is multiplied by a factor σ(m). This factor is called the parent penalty factor and is
introduced to sort of normalize the initial probability of nodes regardless of the number
of parents. In order to better elaborate how the CPT for a node is constructed, Figure 3.6a
shows an exemplary sample node in a BN (highlighted in yellow) whose CPT construction
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Figure 3.6: An example for CPT construction

is represented in the table in Figure 3.6b. Notice how the influence of the parent with
stronger relation is higher than that of the parent with a weaker relation.

3.2.2 Learning and Recommendation

The following step after building a KB-based BN is to actually use it for learning and
recommendation tasks. Recalling the nature of the learning problem, the given input is
some implicit or explicit feedback from the user to one or more videos and the required
output is to guess which are the topics or in other words semantic entities that the user
has the strongest interest in. In the domain of BNs, this given is called evidence. Setting
evidences in the BN, based on the user feedback, then recomputing the beliefs within the
network will stimulate evidential reasoning starting from the leaves of the network which
are the video nodes upwards towards the more general topics. Consequently with the
change in beliefs for high level nodes, causal reasoning will trigger evidence propagation
downwards towards other video nodes increasing the belief for these nodes relative to
their distance from the originally observed one.

As demonstrated in Figure 3.7, the BN managed to detect the common semantic entities
among the videos with positive feedback causing the belief in these entities to increase
significantly. Consequently, the belief values of the video nodes connected to the same
entities increase as well, as illustrated in Figure3.7b. Similarly, the belief values of the
semantic entity nodes and the video nodes connected to them which are common among
videos with negative feedback decrease significantly as shown in Figure 3.7d. This exam-
ple suggests that with sufficient user feedback, not only can an approximate picture of the
user interests be drawn through the evidence propagation within the network, but also
the BN will be able to provide relevance values for each of the not yet observed videos.
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Figure 3.7: Illustration of evidence propagation in KB-based BN

The example in Figure 3.7c also points out a very desirable behavior of the BN in this
application which is the explaining away phenomenon explained earlier in Section 2.3.2.
This behavior is desirable because it simulates how the real users think about video con-
tent. Usually, a user does not have to be interested in everything in a video to give it
a positive feedback. The explaining away behavior in this case takes this perspective
into account. Accordingly, once sufficient evidence is present for one of the parents of a
video node, the BN reduces the belief for the other parents of this video node until more
evidence is present for these parents.

In order to generate the recommendations for the user, simply the videos with the highest
belief value are suggested either through a threshold filter or through a top-N technique.

3.2.3 Advantages and Limitations

Studying the behavior of the proposed approach, several advantages can be pointed out.
First of all, it solves the limitations observed in the Personal Recommender system pre-
viously mentioned in 3.1.3. For example, the whole semantic tree is considered in this
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approach without losing any information neither within the learning nor during the rec-
ommendation phases. At the same time, the matching of the user model and the video
contents is not a complex matching task and it is no longer needed to develop a set of
heuristic rules since matching in this approach is done implicitly through the propaga-
tion of the interest probabilities through the network. Furthermore, using the BN in this
approach enables the system to perform complex reasoning patterns that are otherwise
not possible through simple heuristics.

On the other hand, this approach suffers from some limitations. The first problem is the
size of the KB. Since general purpose LoD ontologies are naturally very huge, it would
not be feasible to create a user model based on a full LoD KB. Therefore, in order to
be able to apply this approach, a concise domain oriented KB is needed to serve as the
skeleton of the UM. Another problem could be faced in case of the presence of symmet-
ric relations where both entities are within the same level of generality like for example
in the hasSpouse relation. Moreover, the expressiveness of this model is limited to the
level of the RDF-S. This means that complex OWL expressions as well as the relation
constrained entries explained in Section 3.1.2 are not immediately possible in this model.
Fortunately, some of these limitations can be ignored within the scope of the addressed
problem or can be easily solved through application workarounds that will be explained
in the following chapter.



Chapter 4

Implementation

In the previous chapter, the general architecture of the LinkedTV system was briefly out-
lined, the state of the art Personal Recommender of the LinkedTV system was presented
emphasizing its limitations and a new conceptual approach that is capable of overcom-
ing these limitations was suggested. In this chapter, an implementation of the proposed
approach is presented, namely, the Bayesian Recommender System (BayRec).

BayRec is a three-tier web-application that uses a semantic BN-based RS in its logic layer
and uses it’s presentation to collect feedback from users. Generally, the low-level layers of
the BayRec system is designed to fit within the general LinkedTV architecture presented
in the previous chapter. However for the sake of completeness, BayRec is implemented
as a standalone application to provide means to pass in input to the system and visualize
the output which facilitates the debugging and testing processes. The architecture of the
system is visualized in Figure 4.1.

The BayRec logic layer is developed as a separate Java module with a RESTful web-
services API. For building the BNs and running the inference algorithms, the jSMILE
library1 is used. The library supports all inference algorithms mentioned earlier in Section
2.3.3. The presentation layer is simply an HTML5 application built using the Angu-
larJS framework2. The main goal of the front-end within BayRec is to compile the input
needed and visualize the output produced by the back-end RS. Finally, the data layer
uses PostgreSQL3 to store the user history data, the semantically annotated video li-
brary and the domain oriented knowledge base. A set of procedural functions is specified
within the database for fast and efficient information retrieval.

For the implementation purposes, the RBB dataset for news videos was used. This

1A Java wrapper to the SMILE library developed by the Decision Systems Laboratory of the Univer-
sity of Pittsburgh and available on https://dslpitt.org/genie/

2An open source structural framework for dynamic web applications available on https://

angularjs.org/
3An open source relational database system available on http://www.postgresql.org/
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Figure 4.1: Architecture of the BayRec System

dataset was developed exclusively by RBB 4 for the LinkedTV project. It consists of
1024 videos whose annotations were automatically generated using the online TextRazor
API 5.

The focus of this chapter is to shed light on the implementation details within the logic
layer since it is the layer of interest within this system. First, the logic implementation
of the baseline system is discussed in Section 4.1. Afterwards, some of the extensions
applied to enhance the functionality of the system are presented in Section 4.2. The data
layer of the system is not discussed in this chapter since it is out of scope for this thesis,
but a briefing of the database schema is given in Appendix A. The front-end development
details are also not covered in this thesis however a snapshot demo of the application is
presented in Appendix B.

4.1 Baseline System Logic

Following the approach explained in the previous chapter, the functionality of the BayRec
system is divided into three major steps as shown in Figure 4.2; first, building a BN struc-
ture which captures the relations between different semantic entities that may appear in
the video contents from the LoD KB. The second step then is extending the BN with

4www.rbb-online.de
5https://www.textrazor.com/

www.rbb-online.de
https://www.textrazor.com/
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Figure 4.2: The steps of the recommendation generation process in the BayRec system

videos from the VB in a manner that reflects the general user’s interest pattern. Fi-
nally, setting the evidences on this structure from the feedback collected from the user
on some videos and updating the beliefs within the structure to generate recommenda-
tions. Observing that the KB rarely changes, an initial evidence-free BN structure can
be generated offline once for all the users and regenerated whenever a change in the KB
is required. Also noticing that the VB changes are not runtime changes, attaching the
videos to the BN structure can be done offline once every 24 hours. The task of learning
the user model and generating the recommendations would then be operated in runtime
for each user on demand by setting evidences in the offline-generated BN structure and
drawing conclusions out of the updated beliefs. The following sections demonstrates each
step in more detail.

4.1.1 Bayesian Network Construction

As outlined earlier in Figure 4.1, all KB information is stored in a database supported by
procedural functions to efficiently retrieve the data from the database tables. Therefore,
the BN construction step is simply a transformation of the KB from relational database
structure to a BN structure. This transformation is performed on two steps; first building
a simple BN structure reflecting the semantic information from the KB. Secondly, adding
and connecting the annotated videos in the VB to the outcome of the previous step.
Algorithms 1 and 2 show the Pseudo code realizing these steps respectively.

In Algorithm 1, first, a node is created in the BN for each entity in the KB. Afterwards,
for each of the created nodes, the parents are extracted from the KB and a corresponding
arc is inserted in the BN. For classes, a parent can only be a parent class whereas for
instances, a parent may be the class denoting the type of the instance or any other
instance connected to the one examined with a parenthood relation. After extracting all
parents, the CPT entries of each node are computed following Equations 3.4, 3.5 and 3.6.
The result of this step is a structure similar to the one shown earlier in Figure 3.4 and is
saved in a file to avoid the need for regenerating this structure when updating the VB.
Similarly in Algorithm 2, all videos are fetched from the VB and for each video a node is
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Algorithm 1 Building the BN-Structure from the KB

Create empty network BN
for all e where e ∈ KB entities do

Create node e in BN with 2 states “Like” and “Dislike”
end for
for all c where c ∈ KB classes do

for all p where (c subClassOf p) do
Create arc (p, c) in BN

end for
Generate the CPT for node c in BN

end for
for all i where i ∈ KB instances do

for all p where (i typeof p) or ((p rel i) and rel ∈ parenthood relations) do
Create arc (p, i) in BN

end for
Generate the CPT for node i in BN

end for
BN → kb.xdsl

Algorithm 2 Attaching Videos from the VB to the BN-Structure

BN ← kb.xdsl

for all v where v ∈ VB annotated videos do
Create node v in BN
for all a where a ∈ annotations(v) and a ∈ KB entities do

Create arc (a, v) in BN
end for
Generate CPT for node v in BN

end for
BN → vb.xdsl
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created and connected to the KB entities with which the video is annotated. The entries
of the CPT for each video are again computed following Equations 3.4 through 3.6. The
final outcome of these steps is a structure similar to the one shown in Figure 3.5 and is
afterwards written and saved in a file to be used in the following step.

4.1.2 Learning and Recommendation

Initially in the BN-structure, all videos have approximately 50% probability of being liked
for all users. Some videos have slightly more than 50% probability because they cover
multiple topics therefore there is a higher chance that the user likes them. The first step
in order to personalize the recommendations is to train the user model with the feedback
given from the user on some of the videos. Algorithm 3 shows the steps for updating the
user model. This process is performed in runtime for each user.

Algorithm 3 Learning the user’s interest model

H = {(v1, f1), (v2, f2), ..., (vn, fn)}
BN ← vb.xdsl

for all (v, f) ∈ H do
if f = Like then

Set PBN(v = Like) = 1
else

Set PBN(v = Dislike) = 1
end if

end for
Update beliefs in BN

After running Algorithm 3, the beliefs within the BN will reflect the interests of the
user in the form of the expected interest in each entity and video in the network. The
second step then is to generate the video recommendations for the user. The algorithm
proceeds in one of two forms (in BayRec specified by the user), either by suggesting the
videos having the top N belief values as in Algorithm 4 or by suggesting the videos whose
belief exceeds a certain value as in Algorithm 5. In a similar manner, the top N semantic
entities and the ones with interest exceeding a threshold τ can be extracted from the BN.

4.2 Additional Features

Up to this point in the implementation, the system serves as a simple content-based video
RS. However as explained earlier in Section 2.1.3, in real applications, users may require
more complicated features for the system to be of real benefit to them. Some of the
extensions mentioned are context aware recommendations and group recommendations.
In this section, the implementation of both concepts within the proposed approach is
presented.
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Algorithm 4 Generating the top N recommendations

Require: BN beliefs are updated with user’s feedback
R← [ ]
for all v ∈ video nodes in BN and v not watched by the user do

if R.size < N then
R← R ∪ v

else if ∃ v′ ∈ R where PBN(v = Like) > PBN(v′ = Like) then
R← R ∪ v \ v′

end if
end for
return R

Algorithm 5 Generating the above τ recommendations

Require: BN beliefs are updated with user’s feedback
R← [ ]
for all v ∈ video nodes in BN and v not watched by the user do

if PBN(v = Like) > τ then
R← R ∪ v

end if
end for
return R

4.2.1 Contextualization

In context-aware RSs, it is assumed that the interests of the user change according to the
context in which this user is currently in. Usually, contexts are not mutually exclusive,
that is, a user can have general interests which are valid in all contexts and some specific
interests which are valid in certain contexts only. For example, a user can be generally
interested in “Technology” but would rather be interested in “News” at home in the
morning. In this case, the system should combine information about the general interests
and context specific interests and recommend for example a video about “iPhone6 release
mania”. Contexts can be modeled in the form of a hierarchical structure to capture this
type of relations since it offers different levels of specificity and consequently enabling the
users to express their interests in an easier and more flexible manner. Allowing the users
to choose between different contexts gives them control over which interests they would
like to consider and which ones to ignore temporarily.

In order to add support for context aware recommendations following the proposed ap-
proach, the user model can be trained using only a subset of the videos which the user
gave feedback about, this is the set of videos which were watched within the same context
or a parent context, i.e. a more general one. In practice, this extension can be easily
realized by adding extra information to the user feedback which denotes the context in
which this feedback was given. While training the system, only feedbacks given within the
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contexts related to the current context are used. This slight modification to Algorithm 3
is shown in Algorithm 6. In this version of the implementation, the contexts hierarchy is
created manually by the user. Users are also expected to indicate in which context they
currently are. However, techniques for automatic detection of contexts can be developed
in future research.

Algorithm 6 Context Aware learning of the user’s interest model

cur ←current context
H = {(v1, f1, c1), (v2, f2, c2), ..., (vn, fn, cn)}
BN ← vb.xdsl

for all (v, f, c) ∈ H where c = cur or ∃parent(c, cur) do
if f = Like then

Set PBN(v = Like) = 1
else

Set PBN(v = Dislike) = 1
end if

end for
Update beliefs in BN

4.2.2 Using External User Models

The presented implementation assumes that the input given to the system only includes
the user’s feedback on a set of videos. This is however not always the case. In some RSs,
the users are able to specify their own UMs by explicitly setting certain topics or concepts
to be interesting alongside the video feedback. The input is even sometimes only the UM
without any video feedback like the case with the LinkedTV Personal Recommender.

Algorithm 7 Learning the user’s interest model

UM = {(e1, f1), (e2, f2), ..., (en, fn)}
BN ← vb.xdsl

for all (e, f) ∈ UM do
if f = Like then

Set PBN(e = Like) = 1
else

Set PBN(e = Dislike) = 1
end if

end for
Update beliefs in BN

The proposed approach can, with a simple modification to the learning algorithm, support
using external UMs as shown in Algorithm 7. This can be achieved by setting evidences
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in the higher level entity nodes according to the feedback of the user. However, in order to
be able to do so, first the UM needs to be formulated in terms of a set of tuples, where each
tuple represents an entity and the feedback to that entity. This modification, however,
does not support the complex formed UM entries which involve relation constrained
entities. On the other hand, this modification offers some sort of an integration point for
merging both the proposed approach and the LinkedTV Personal Recommender.

4.2.3 Group Recommendations

Another feature of RSs that has been under research in the recent years, is the system
ability to generate recommendations for a group, rather than for an individual user. In
this case, a simple accumulation of interests for all users may be too näıve to solve this
problem. Within the given approach, a simple extension can be added which provides
support for generating recommendations for a group given the individual models of each
group member as well as collective feedback from the group as a whole.

The extension relies on a slight addition to the user interests BN. First, the individual
user interest BN for each group member is generated. Then, the different networks are
connected together with an additional layer in the leaves of the network to represent the
overall group interest in videos as shown in Figure 4.3. In that sense, the group interest in
a certain video is depending on the interest of the individuals in this video which depends
on their individual interests. In the same manner, the group liking a video implies that
the individuals had some interest in the video which reflects on their individual user
model BNs.
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Evaluation

In the previous chapters, the concept of a new content-based RS that uses semantics and
BNs was proposed and the technicalities of an implementation of a RS which uses this
approach were demonstrated. In this chapter, an evaluation of output obtained from the
demonstrated implementation is presented. This chapter is divided into two sections. The
first section discusses the evaluation of the output from the perspective of the quality of
the recommendations. The second section focuses on evaluating the runtime performance
of the RS within its different components.

5.1 Recommendation Quality Evaluation

Evaluating the quality of the recommendations given by a recommender system has been a
research topic on its own in the past decade. Many papers such as [57, 33] discussed several
metrics by which a RS can be evaluated. Section 5.1.1 offers a general theoretical briefing
inspired from [57, 33] about the metrics that were chosen to evaluate the proposed RS
explaining the reasons why each metric was found relevant to the problem. Afterwards,
the setup of the testing experiments is explained in Section 5.1.2 and the results expressed
in terms of the previously explained metrics are presented in Section 5.1.3.

5.1.1 Quality Metrics

Given the Information Retrieval (IR) nature of the problem, the immediate metrics that
come to mind are Precision, Recall and Accuracy. Given the factors shown in Table
5.1, the Precision, Recall and Accuracy values can be expressed as follows.

Precision =
TP

TP + FP
(5.1)

Recall =
TP

TP + FN
(5.2)

Accuracy =
TP + TN

TP + FP + FN + TN
(5.3)
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Figure 5.1: The factors which contribute to IR metrics

In general, Precision is used to compute how many items are relevant within the returned
set of items whereas Recall represents how many items from the expected answers were
returned. Accuracy normally judges the system overall by computing the percentage
of correct decisions taken. In the context of the RS under test, the Precision plays a
more important role than the Recall because normally the aim is to return a concise set
of relevant videos rather than a huge set which covers all interesting and uninteresting
videos to the user. However, the Accuracy can give an indication about how well the
system is generally performing because it takes into consideration the size of the video
database from which the recommendations are chosen.

Another factor that plays a great role in RSs is Diversity. In RSs, the Diversity metric
measures how variant the recommendations generated by a RS are. It is possible to return
a list of items all annotated with the exact same thing, Precision in this case would
be very high. This, however, does not give the user any chance to explore something
related but different, that is why the this metric is important in RSs. Diversity within
a recommendations list of size N can be computed following [24] as shown below where
sim(x, y) is a function which expresses how similar two items are on a scale of [0, 1] where
0 is unrelated and 1 is identical.

Diversity =
1

2

N∑
i=0

N∑
j=0

1− sim(i, j) (5.4)

Some RSs have huge VBs however only a few of them can be used for recommendations
due to some prerequisites which have to be present in a video in order for it to appear as
a potential recommended item. Such prerequisites can be a minimum number of views
to guarantee popularity or a minimum number of reviews in case of collaborative RSs.
The Catalogue Coverage metric computes the percentage of potentially recommended
items in the VB. Having a metric to evaluate this aspect is important because it gives an
indication of the flexibility of the RS.
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5.1.2 Test Setup

In order to evaluate the proposed RS against the previously mentioned metrics, the TED
dataset from April 2012 [47] later referred to as TED-1 and the one from September
2012 [48] later referred to as TED-2 were used as VBs with some slight modifications.
TED-1 consists of 1149 videos each annotated by a some tags out of 300 possible tags
while TED-2 consists of 1203 videos each annotated by some tags out of 300 possible
tags. The tags however were not weighted by their significance to the video therefore,
assumptions about the weights of the tags were added randomly to cover this missing
data. As a result, the user collected feedback was no longer usable since the assumed
values for tag weights were not truly reflecting the content of the video on which the user
gave the feedback.

For measuring the Precision, Recall and Accuracy, a KB with approximately 500 classes
and 400 instances was setup and a set of videos annotated with one of the tags was used
as observation. The reason for using a set rather than a single video was to avoid a
cold start and to cause a cluster of interest. The expected set of recommendations was
considered as the videos which are annotated with the same tag or one of its semantically
related tags. In each test, the system would take as input the set of observation videos
and return recommendations with different recommendation settings i.e. Top N and
threshold and using different inference algorithms namely the Lauritzen and the Logical
Sampling algorithms. The output of each run would then be compared to the expected
set to compute the values for the precision, accuracy and recall.

5.1.3 Results

In the first test, 300 runs, one for each of the possible tags, was performed using the
Lauritzen inference algorithm, generating the top N recommendations where N ranges
from 5 to 20 with a step size of 5. This test was repeated for each dataset, and the
precision, recall and accuracy values were computed for each of these runs. The aver-
age of the computed values per dataset are presented in Figure 5.2. The results of this
test show that the system achieved an almost constant accuracy of around 78% in the
TED-1 dataset and 95% in the TED-2 dataset. The precision values showed a decrease
as expected with the increase in the number of recommended items since the set becomes
less concise. However, considering the Top-5 and Top-10 methods in Figure 5.2a, they
achieve an average precision of 85% and 78% respectively. This means that almost 8 out
of every 10 videos recommended should “theoretically” be an interesting video.

In another test, the same procedure of the previous test was performed but using the
threshold method with threshold values ranging between 70 and 90 with a step size of 5
for generating the results instead of the Top-N method. The average values were com-
puted per dataset and are presented in Figure 5.3. Worth to mention at this point is
that the averages for the higher threshold values like 85% and 90% are computed only
in the cases when the recommendation list was not empty. This however was not a very
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Figure 5.2: Average precision, recall and accuracy values for Top-N method

common case because it was very rare that the recommendation value for some videos
exceeded these values, and when it did, then the precision value was 100% because it
was definitely an interesting video from a theoretical point of view. But in general, the
results of this test confirm the findings from the previous test that the larger the number
of recommended items in this case controlled by lowering the threshold value, the less
precise the set becomes but contrastingly the higher the recall value since more videos
can make it to the recommended list.

In a third test, the target was to compare the quality of the recommendations generated
by different Bayesian inference algorithms. Therefore, the same procedure of the previous
two tests was repeated using the Logical Sampling algorithm instead of the Lauritzen al-
gorithm used previously. The comparison of the results obtained from each algorithm is
shown in Figure 5.4. It is clear from the figures that the Lauritzen algorithm performed
better in both datasets than the Logical Sampling algorithm. A possible explanation for
this finding is that as discussed earlier in Section 2.3.3, the Logical Sampling algorithm
is a stochastic algorithm that approximates the belief values in contrast to the Lauritzen
algorithm which actually performs exact inference by some structural transformations.
Therefore, the inaccurate approximations could explain the inferior quality.

In addition, an extra test was performed to study the effect of the choice of the BN
inference algorithm on the diversity of the recommendations. Therefore, for each of the
runs of the previous tasks, the diversity of the recommended list was computed according
to Equation 5.4 where the similarity function counts the number of overlapping annota-
tions. Figure 5.5 shows the average diversity value achieved per method in each algorithm
against the precision. As shown in the figure, the diversity of the recommendations list
increases as the number of recommended items in the list increases which means that it
is inversely proportional to the precision value. It is clear also from the figure that the
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recommendations generated based on the beliefs computed by the Lauritzen algorithm
are more diverse than those by the Logical Sampling algorithm.

In general, the Catalogue Coverage of the proposed system is the number of videos in the
VB which have at least one annotation which describes the content of the video. In case
of the given datasets; TED-1 and TED-2, the Catalogue Coverage is 100% because there
are no constraints on recommending any of the videos if some related video is observed.

5.2 Performance Evaluation

In any system, judging an approach by its quality only is not enough. The runtime
performance is another critical side that is sometimes even more crucial than quality
especially in the cases of online systems which require real time results. In this section,
first a theoretical analysis of the runtime complexity for each process of the system
is analysed in Section 5.2.1. In Section 5.2.2, the setup of the runtime performance
experiments is elaborated and then Section 5.2.3 presents the results obtained from the
runtime performance experiments.

5.2.1 Theoretical Analysis

The first step of the process that was previously explained in Algorithm 1 is the construc-
tion of the BN which represents the KB. In this step, the time complexity of maximum
O(n2) in the worst case which is logically impossible that every node is having depen-
dency on every other node, and O(n) in the best case which is the trivial case that every
node is not having any parents where n is the number of entities in the KB. On average,
the time complexity of this step would be O(np) where p is the number of parents per
node which is usually small.
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After constructing the BN from the KB, the videos in the VB are added to the BN fol-
lowing the Algorithm 2. The time complexity of this step is again O(vn) in the worst case
scenario where each video is connected to all the nodes and O(v) in the best case when
every video has no parents where v is the number of videos. Also this step on average has
a complexity of O(vm) where m is the number of annotations per video and is normally
not very huge.

Afterwards, the major step in the process is the step of updating the beliefs in the BN
after setting the evidences observed from the user’s feedback using the BN inference. In
this step, the runtime complexity depends on the BN inference algorithm used. In the
case of using the Lauritzen algorithm, the runtime complexity is O(2n) where n is the
size of the largest clique in the transformed graph generated from the BN [31] whereas
in the case of using the Logical Sampling algorithm, the time complexity is independent
on the size of the BN due to its sampling nature as explained earlier in Section 2.3.3.
However in this implementation, the inference is performed as a black-box within the
SMILE library therefore these complexities are just theoretical.

Having updated the beliefs in the BN, the final step is to read the values of the updated
beliefs and generate recommendations according to the chosen method whether threshold
or Top-N method as elaborated earlier in Algorithms 4 and 5. In case of the threshold
method, the runtime complexity is O(n) where n is the number of nodes in the network.
However in case of the Top-N method, the complexity would be O(nN). Therefore, it
only makes sense to use the Top-N method for small N otherwise, the threshold method
would be more convenient.

5.2.2 Test Setup

In order to verify the previous complexity analysis, the runtime of each test was recorded
for different sizes of the VB, different sizes of the KB and different recommendation set-
tings. The VB was composed of the TED-1 [47], TED-2 [48] datasets in addition to the
RBB dataset together. The KB consisted of 500 classes and 400 instances. The possi-
ble inference algorithms were the Lauritzen and the Logical Sampling algorithms. The
runtime experiments were performed on an Intel(R) Core(TM) i5-3317U CPU @1.70GHz
processor accompanied by 4GBs of RAM.

In order to control the number of videos in the VB, only a subset of the actual VB was
considered when adding the videos to the BN while keeping the KB in its original state
which ensured that all the parents of the video nodes would be available in the BN. On
the other hand, it was not feasible to apply the same technique for controlling the size
of the KB due to the complex relations between the nodes. Therefore for simplicity, the
scalability tests for the KB were ruled out from this set of experiments.
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Figure 5.6: VB scaling effect on the runtime performance

5.2.3 Experimental Results

The focus of the performance experiments was to analyze the runtime behavior with re-
spect to the size of the VB while having the KB size constant and set to the maximum
size available. Therefore, in the first experiment, the average time in seconds needed for
constructing both the KB and the VB was computed from 10 runs for each of the VB
sizes ranging from 500 videos up to 4500 videos with a step size of 500. On the other
hand, the focus of the second experiment was to study the runtime behavior towards the
growth in the size of the VB in the step where the beliefs in the BN are updated based on
evidences under different Bayesian inference algorithms. The time consumed to generate
the recommendations for observation sets representing 5% and 10% of the total size of
the VB using both Lauritzen and Logical Sampling algorithms was recorded.

The results obtained from both experiments are shown in Figure 5.6 where Figure 5.6b
shows the running times recorded in the construction phase of the BN with respect to
the VB size and Figure 5.6a shows the average time in seconds needed to generate a
recommendation list with respect to the VB size.

The results in Figure 5.6a show a linear growth of runtime with the linear increase in VB
size. This result confirms the theoretical analysis of this process explained above. Given
that the construction of the VB is performed offline, this can be considered as an accept-
able runtime growth. Furthermore, the durations recorded in the second experiment show
an almost constant runtime for the belief updates regardless of the size of the VB and
the size of the evidences list t with respect to the VB size. Note however that the Logical
Sampling (LS) in this case performs almost four times faster than the Lauritzen (LAU)
algorithm. This behavior is explainable for the Logical Sampling algorithm as discussed
earlier in Section 5.2.1. The behavior of the Lauritzen algorithm can be justified that
the horizontal increase in the number of leaves in the BN does not affect the size of the
largest clique therefore not affecting the algorithm runtime.



Chapter 6

Conclusion

With the horrendous increase in the amount of multimedia content in the web, a cutting
edge solution was needed to enable end users to easily reach the multimedia content that
match their interests. For this purpose, RSs were developed to direct the users through
recommendations to what might be of interest to them. Focusing on video RSs, it was
found that some of the state of the art RSs like for example YouTube rely heavily on
finding similarities between users and accordingly recommending to them the videos that
similar users found interesting. This approach, however, does not take into account the
contents of the videos nor the actual interests of the users. Alternatively, RSs like the
LinkedTV PR tried to overcome this limitation by recommending videos whose content
match the user interests. Although the matching process was designed to use semantics
rather than just keywords for matching, the process was performed in a rule based man-
ner relying mainly on the interests explicitly specified by the user.

Examining the nature of the RS problem, it was immediately noticed that the problem is
a Machine Learning problem, which deals with various sources of uncertainty, especially
with respect to the semantic KB which defines the relations between the contents of the
videos. Therefore and in an attempt to further exploit this problem and extend the avail-
able RSs aiming to overcome their limitations, the concept of a new semantically aware
RS that uses BNs instead of heuristics was proposed, implemented and evaluated in this
thesis.

Built on the assumption that if a user is interested in some entity, then this user would
also be interested in a video that handles this entity, the proposal was to simply transform
the problem into a huge BN where the nodes of the network represent the degree of inter-
est of the user for some entity. The VB videos were used as leaf nodes where the parents
of each video node are the entities which describe this video. Finally the problem was
solved by setting evidences in the BN using the user feedback and performing reasoning
on the BN using inference algorithms to compute the degree of interest of the user for
the unobserved videos in the VB given the observed evidences.

Several tests have been carried out to verify the feasibility of the above mentioned ap-
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proach from the quality and the performance points of view. The quality tests have
shown an average accuracy of 75% up to 95% and an average precision between 60% and
80% depending on the Bayesian inference algorithm used. Considering the relatively high
accuracy and precision values, it can be concluded that the proposed approach performs
generally well for the addressed problem quality-wise. From a performance point of view,
it was proven by practical experiments that the system scales very well with respect to the
size of the VB with an overall runtime for the recommendation process of approximately
1 to 4 seconds for a compact KB also depending on the Bayesian inference algorithm
used. From this result, it can also be concluded that the above mentioned approach is
feasible for implementation in real life applications. Following the tradition, the inference
algorithm which performed better in terms of quality consumed more time following the
quality-performance trade-off.

Nevertheless, despite the good results that were reported, this approach has been ob-
served to have several limitations. Section 6.1 highlights the limitations and then ideas
about how to extend the work presented in this thesis are offered in Section 6.2.

6.1 Limitations

The conceptual limitations as discussed earlier in Section 3.2.3 can be summarized as
follows; first no symmetric relations within the KB can be modeled using a BN because
in such cases, it is not possible to identify whether the subject or the object is the parent
or the child. Second, the presented model is limited to the RDF-S expressiveness however
it is not immediately clear how to model more complex class definitions like the ones al-
lowed in OWL or how to model constrained interests like the ones allowed in LinkedTV.
Also, the proposed model does not take into consideration the temporal information nei-
ther about the observations nor about the videos themselves. This is a loss of precious
information because usually the temporal sequence of feedback can lead the system to
draw conclusions about the user’s interests which cannot otherwise be captured, and the
temporal information about the videos can sometimes be needed to form a bias towards
the more recent videos as potentially more interesting than older ones. Another essential
limitation is that the weights determining the strength of the dependency between two
nodes is currently static.

Furthermore, some limitations were discovered during the evaluation phase of the system.
One of which was that when a user has two major interests where the interest weight of
one of them exceeds the other, the recommender system will first try to find videos which
contain both interests together which is a desirable behavior. However, if such videos
are not available, the Top-N recommendations will be dominated by videos fitting the
interest with the higher weight causing the diversity of the recommended videos to be
very low. Such behavior is not very desirable in RSs since one of the objectives of the
RSs is to enable the user to explore new diverse content not to stay within the loop of a
single interest.
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Also, although not proven by results, the proposed approach is designed theoretically to
perform on concise semantic ontologies. Consequently, scaling the KB to the size of a
complete LoD KB like DBPedia or Freebase would not be feasible and the runtime would
not be acceptable at least not on an ordinary processor.

In addition, the implementation presented in this thesis suffers some technical limitations
which could be solved in future releases. First of those limitations is the complete de-
pendence on the SMILE library to perform the BN related tasks which leaves the system
with very little control over the BN and the inference algorithms. The second limitation
is that the context selection in this implementation is performed manually by the user.
More importantly, the evaluations presented in this thesis failed to test a lot of impor-
tant aspects due to lack of data needed for such tests. For example, the tests evaluated
whether the system performs what it theoretically should do, i.e. recommend videos that
are most related to the ones that were observed to have positive feedback from the user.
However, the tests failed to evaluate whether the recommendations really were interesting
to the user.

6.2 Future Work

Judging by the promising results obtained from the proposed approach, further devel-
opment of this idea may indeed lead to a very powerful RS. As a result, driven by its
limitations, the work presented in this thesis opens several rooms for improvement.

From a conceptual point of view, future research in this topic may address the different
methods to increase the expressiveness of the proposed model so that OWL ontologies
including relation constrained classes can be completely transformed into BNs without
losing any information. In that manner, the relations between the nodes of the BN would
be established in a better way, and consequently, the quality of the recommendations
would improve. In addition, Machine Learning techniques can also be applied to develop
methods, which automatically assign the weight of the dependencies between the nodes,
instead of the static approach that was used in this thesis.

Furthermore, the temporal aspect could be added to the model by introducing some tem-
poral decay of interests which weighs the older evidences with less weights than the more
recent ones. Or a possible alternative is to convert the simple BN model to a DBN in or-
der to fuse in the temporal information in the model without applying major conceptual
changes in the methodology. In the same sense, investigations about how to alter the
model to give bias to the more recent videos could be performed. Equally important, a
mechanism which automatically detects the context in which the user currently is either
by supervised training or by pattern disruption detection could be developed.

Additionally, the implementation could be improved by using a more flexible Bayesian in-
ference library or even developing a new one from scratch which will provide more control
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over the network and the inference algorithms and consequently performance trade-offs
can be performed. Also the implementation of the model can be further extended to
allow more values/states per node instead of just two. In that manner, the system can
function with ratings instead of just binary values.

An essential point in every system is testing and evaluation. Therefore, the proposed
approach needs to undergo a set of well designed user tests to evaluate how accurate the
interests of the user are captured and consequently enhance the approach and increase
its capabilities in generating more relevant recommendations. In order to be able carry
out this step fairly, techniques for accurately annotating the videos need to be further
developed to ensure that the input to the system is semantically correct with respect to
the quality of the annotations and the confidence in the weights.

Last but not least, more work can be directed towards adding extra features to the model
in order to offer more sophisticated results. Ideas for such features include, but are not
limited to, further development of the group recommendations model and adding the
support for recommendation diversification.
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Appendix A

Data Layer

A.1 Knowledge Database Schema

class

id INTEGER

name CHARACTERUVARYING

scoring INTEGER

description TEXT

freebase_id CHARACTERUVARYING

crelation

cls INTEGER

topic INTEGER

instance

id INTEGER

name CHARACTERUVARYING

ranking NUMERIC

scoring INTEGER

description TEXT

freebase_id CHARACTERUVARYING

notable_for CHARACTERUVARYING

fav_link TEXT

wiki_link TEXT

dbpedia_link TEXT

aligned BOOLEAN

domain

prop INTEGER

cls INTEGER

property

id INTEGER

name CHARACTERUVARYING

inverse INTEGER

type INTEGER

description TEXT

freebase_mapping CHARACTERUVARYING

weight NUMERIC

enrichment BOOLEAN

dbpedia_mapping CHARACTERUVARYING

recursive BOOLEAN

parent BOOLEAN

instanceof

cls INTEGER

inst INTEGER

range

prop INTEGER

cls INTEGER

relation

id INTEGER

inst INTEGER

prop INTEGER

value_string TEXT

vf TEXT

vt TEXT

value_int INTEGER

value_float DOUBLEUPRECISION

value_date DATE

value_object INTEGER

rule

cls INTEGER

object INTEGER

property INTEGER

value INTEGER

subclass

cls1 INTEGER

cls2 INTEGER

crelation_cls_fkey

crelation_topic_fkey

domain_cls_fkey domain_prop_fkey

instanceof_cls_fkey

instanceof_inst_fkey

range_cls_fkey range_prop_fkey

relation_inst_fkey
relation_value_object_fkey

relation_prop_fkey

rule_cls_fkey

rule_value_fkey

rule_property_fkey

subclass_cls1_fkey
subclass_cls2_fkey
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A.2 Video Database Schema

instance

id INTEGER

name CHARACTER_VARYING

ranking NUMERIC

scoring INTEGER

description TEXT

freebase_id CHARACTER_VARYING

notable_for CHARACTER_VARYING

fav_link TEXT

wiki_link TEXT

dbpedia_link TEXT

aligned BOOLEAN

video_annotations

video_id INTEGER

annotation INTEGER

weight DOUBLE_PRECISION

src INTEGER

video

id INTEGER

title CHARACTER_VARYING

summary TEXT

primary_topic CHARACTER_VARYING

url TEXT

thumbnail TEXT

duration TEXT

filename TEXT

src INTEGER

video_annotations_annotation_fkey video_annotations_video_id_fkey

A.3 User Database Schema

context

id INTEGER

name CHARACTERyVARYING

parent INTEGER

active BOOLEAN

user

id INTEGER

username CHARACTERyVARYING

password CHARACTERyVARYING

country CHARACTERyVARYING

dob DATE

name CHARACTERyVARYING

ctx INTEGER

user_entities

uid INTEGER

eid INTEGER

is_cls BOOLEAN

like BOOLEAN

timestamp TIME66)yWITHyTIMEyZONE

ctx INTEGER

user_preferences

uid INTEGER

use_threshold BOOLEAN

video_threshold INTEGER

interest_threshold INTEGER

n_video INTEGER

n_interest INTEGER

user_videos

uid INTEGER

vid INTEGER

like BOOLEAN

timestamp TIMESTAMP66)yWITHyTIMEyZONE

ctx INTEGER

video

id INTEGER

title CHARACTERyVARYING

summary TEXT

primary_topic CHARACTERyVARYING

url TEXT

thumbnail TEXT

duration TEXT

filename TEXT

src INTEGER

user_ctx_fkeyuser_entities_ctx_fkey

user_entities_uid_fkey user_preferences_uid_fkey

user_videos_ctx_fkey

user_videos_uid_fkey

user_videos_vid_fkey



Appendix B

Application In Action

B.1 Web Application Features

The BayRec system interface starts as usual with a login page, as shown in Figure B.1, in
which the users enter their credentials in order to load their data from the server. After
logging in, the user is directed to the home page shown in Figure B.2. In this home page,
highlights of the recommended videos and interests are shown.

Figure B.1: Login page

Using the interface shown in Figure B.3, the user can utilize the browsing feature to
search for videos. The available search options are the substring search in the title of the
video or the summary text, search by annotation or search by video topic.
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Figure B.2: User homepage showing recommendations and suggestions overview

From the preferences editor feature shown in Figure B.4, the user can control the mode in
which the recommendations are generated. The options available in the current version
are threshold recommendations and top-N recommendations where the user can control
the threshold and the N values.

In addition, users are able to generate recommendations for a group by entering the group
members credentials as shown in Figure B.5. The system would then load the user models
of each member and generate a group model merging them together and generate the
recommendations accordingly.

A key feature in the BayRec system is that users can create and switch between contexts.
This feature, shown in Figure B.6a enables the users to control the currently active
interests and accordingly improves the quality of the recommendations generated w.r.t.
the current time and place.

An additional feature available only in the admin account is the network visualization
feature. In this view shown in Figure B.6b, the BN graph is visualized using a force
directed graph creation library1. The video nodes are represented with orange nodes,
instances are represented by light blue nodes and classes by dark blue nodes. The main
reason why this feature was implemented is network creation and connection debugging.

1http://bl.ocks.org/mbostock/4062045

http://bl.ocks.org/mbostock/4062045
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Figure B.3: Video Search by title, topic, summary or annotation

B.2 Recommendation Examples

In this section, an example for the change in recommendations based on the watch history
is shown. The user Nina enters her username and password and logs in. Initially, the
video recommendations page looks as shown in Figure B.7. The videos have around 50%
interest range since no information about the user interests are available initially. The
same holds for the interests page shown in Figure B.8.

Using the browsing feature, the Nina starts searching for videos of interest to her. She
watches the list of videos whose annotations are shown in Table B.1 and gives positive
feedback about them. Studying the list of watched videos, it can be observed that Nina
seems to be interested in Measles and Cancer related events taking place in Germany.

Nina now decides to see what the system recommends for her to watch next. The results
of the updated recommendations and interests are shown in Figures B.9 and B.10 respec-
tively. Notice in Figure B.10 how the interests list is updated to all Medicine and Disease
related topics. Table B.2 shows the detailed annotations of the top-5 recommended videos
in the recommendations list. It can be observed that the videos annotated with topics
most similar to the ones already viewed are recommended first to Nina like the first three
videos. Also notice how the system smartly recommends other videos about Diseases
and Medicine although the annotations Disease and Medicine never explicitly appeared
in Nina’s watch list. However, using semantics, the system was able to learn that Nina
is for example interested in Disease topics since both Measles and Cancer are diseases.
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Figure B.4: Controlling recommendation preferences

Figure B.5: Recommendations for a group
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(a) Context Management Tree (b) Bayesian Network visualized as a graph

Figure B.6: Some of the BayRec system features

Figure B.7: The initial recommendations before showing interest in any topics or videos

Figure B.8: The initial interests before showing interest in any topics or videos
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Video Content Weight

Experten raten zu Masernimpfung

Measles 0.95

Berlin 0.77

Vaccination 0.76

Conjunctivitis 0.72

Pediatric 0.61

Immer mehr Masern-Erkrankungen

Measles 1.0

Conjunctivitis 0.87

Vaccination 0.84

Berlin 0.76

Infection 0.69

Bundesweites Krebsregister wird eingerichtet

Chemotherapy 1.0

Breast Cancer 0.94

German Democratic Republic 0.83

Cancer 0.82

Brandenburg 0.76

Krebskongress in Potsdam

Chemotherapy 1.0

Breast Cancer 0.99

Oncology 0.90

Brannenburg 0.88

Cancer 0.81

Table B.1: List of annotated videos watched with positive feedback

Figure B.9: The recommendations after showing interest in some videos
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Figure B.10: The interests after showing interest in a some videos

Video Content Weight

Masernwelle erreicht Brandenburg

Measles 1.0

Pneumonia 0.80

Vaccination 0.78

Tote nach Meningokokken-Infektion

Berlin 0.78

Infection 0.66

Vaccination 0.47

Immunity 0.45

Disease 0.43

ABC-Schützen können besser Deutsch

Measles 0.88

Berlin 0.77

Vaccination 0.61

Turkey 0.465

Internationaler Kongress für Gefäßmediziner

Prague 0.83

Leipzig 0.82

Medicine 0.64

Disease 0.32

Olympiade gegen Kinder-Speck

Berlin 0.73

Potsdam 0.72

Disease 0.51

Table B.2: The top-5 recommended videos (annotated)
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