
A publication by Fraunhofer IESE

Rules of Thumb for Developing Secure Soft-
ware

Analyzing and consolidating two proposed sets
of rules

Author:
Holger Peine

IESE-Report No. 038.04/E
Version 1.0
April 2004

Fraunhofer Institut
Experimentelles

IESE

Software Engineering

Fraunhofer IESE is an institute of the Fraun-
hofer Gesellschaft.
The institute transfers innovative software
development techniques, methods and tools
into industrial practice, assists companies in
building software competencies customized
to their needs, and helps them to establish a
competetive market position.

Fraunhofer IESE is directed by
Prof. Dr. Dieter Rombach (Executive Director)
Prof. Dr. Peter Liggesmeyer (Director)
Sauerwiesen 6
D-67661 Kaiserslautern

Executive Summary

This article presents guidelines to develop secure applications in the form of
"Do’s and Don’ts" applying mostly to the software design level, but also to the
implementation level. It builds on two collections of similar rules published in
two seminal books in the area of secure software development, criticizes and
improves those earlier rules and extends them by several new ones, arriving
finally at a consolidated set of rules for developing secure software.

Keywords: D.2.10.a Design concepts, D.2.0.a Protection mechanisms
vCopyright © Fraunhofer IESE 2004

vi Copyright © Fraunhofer IESE 2004

An email client executing script code of unknown origin with full access to your
files, a privileged program letting itself be tricked into misusing its privileges by
feeding it unexpected parameter values, a system program leaving traces of
secret information in an unprotected temporary disk file — all these are examples
of computer security breaches caused by careless programming. Such software
security blunders are the root cause of a large share of computer security failures
(the other two major causes being configuration errors — such as leaving
network services open for global, unauthenticated access — and usage errors
such as blindly clicking on links in unsolicited email messages).

Software security blunders abound because security knowledge is not very wide-
spread among software developers — not to mention the all too-common
attitude of "let’s get the features first, we’ll add security later (well, if there’s
some time left then...)". University courses on computer security usually cover
abstract security goals, encryption techniques, network security, and maybe
some security management procedures. However, software security knowledge,
that is, how to develop software that cannot be tricked into performing any
insecure function, has been largely ignored until fairly recently.

Fortunately, this has begun to change with the publication of two ground-
breaking books on secure software development: "Building Secure Software" by
John Viega and Gary McGraw [1] and "Writing Secure Code" by Michael Howard
and David LeBlanc [2]. Both books contain highly useful information on software
security at the general, conceptual level as well as concrete coding tips at the
implementation level, without actually overlapping too much after all1. Another
commonality is that both books try to condense their advice into 10 (resp. 13)
easily remembered rules, a sort of "10 commandments of secure programming".
These two sets of nicely succinct rules (see the resepective sidebars) have been
publicized widely, and serious scientific work has started to build on them.

However, I find both sets of rules profiting from a closer analysis and an overhaul
that weeds out irrelevant aspects, directs the formulations towards concrete
advice, and recognizes duplicates. In particular, I deem it important to intercept
advice which is perfectly sensible for good software development in general, but
not specific to secure software development — the danger with such general
advice is that a superficial reader might get the impression "I’ve heard all this
before so many times, I don’t need to read further". Additionally, I suggest to add
a few new rules to the consolidated set, arriving at a set of 20 rules after all,
which I would like to propose as an improved and unified version of all the rules
proposed so far. This article will proceed now to criticize the two referenced rule
sets rule by rule, and then present the suggested consolidated set, elaborating a
bit further on the new rules.

1 Not to the least because [1] focuses on Unix software, while [2] does the same for Windows.
1Copyright © Fraunhofer IESE 2004

Rules proposed by Viega and

McGraw
Rules proposed by Viega and McGraw

Turning first to the rule set proposed in "Building Secure Software", I find
nothing wrong in principle with rules VM1 to VM4; however, I suggest spending
a few more words on rule VM1 "Secure the weakest link" by adding "... not the
easiest or most obvious one", which points out the most common error this rule
is intended to guard against. Rule VM2, "Practice defense in depth" could be
rephrased as "Use several layers of defence", which expresses the same intention
more clearly, and VM3 "Fail securely" as "Stay secure in case of failures" for the
same reason. The advice of VM4 "Follow the principle of least privilege" can be
impr"... and no longer than necessary".

A rule that clearly profits from some elaboration is VM5, "Compartmentalize".
This formulation only evokes a vague conception that there should be compo-
nents in an application that are somehow isolated. This could refer to information
hiding, or to controlling the data flow, or to different levels of privilege. Since
information hiding is a general software engineering principle not specific to
security, and since data flow control will be treated by its own rule (C4/HL7, see
below), I suggest to concentrate on the privilege aspect, as this is what isolation
with respect to security ultimately boils down to. Accordingly, rephrase VM5 as
"Make components with differing privileges", a formulation that tells how the
components should be ultimately different in the technical respect.

I find some problems with rule VM6 "Keep it simple", too. Certainly simplicity is
a worthy goal for any software design; however, there is no specific relevance to
security when expressed in such a general form — complexity invites errors in any
respect, be it functional errors or security errors. Therefore I suggest to refine this
rule into three rules calling for simplicity in function, data interface, and user
interface, each one with respect to security: "Don't be more general than
necessary" (a new rule C10),"Minimize your attack surface" (one of Howard/

The 10 rules by Viega and McGraw

VM1 Secure the weakest link
VM2 Practice defense in depth
VM3 Fail securely
VM4 Follow the principle of least privilege
VM5 Compartmentalize
VM6 Keep it simple
VM7 Promote privacy
VM8 Remember that hiding secrets is hard
VM9 Be reluctant to trust
VM10Use your community resources
2 Copyright © Fraunhofer IESE 2004

Rules proposed by Viega and

McGraw
LeBlanc’s rules, see HL2 below), and "Make the secure way the easy way"
(another new rule C13). (The rationale of all newly introduced rules will be
explained in the respective section below.)

I find rule VM7, "Promote privacy" not optimally clear since, as it becomes
apparent in its discussion in [1], it refers to both personal information about
humans and to guarding information about systems which could help launching
attacks on those systems. However, these two issues are rather different in their
level of abstraction, practical implications, and technical treatment. The latter
issue of caution in publicizing system information is quite adequately covered by
a specific rule C18 "Don't reveal more than necessary" applying to systems only.
In contrast to that, privacy — that is, the confidentiality of personal information
— is a much more abstract and comprehensive issue with manifold implications
(e.g. legal ones). However, at the technical level we are dealing with here, there
is no difference regarding the software measures used to protect personal infor-
mation compared to protecting other confidential data such as passwords.
Accordingly, I don’t see a specific rule for privacy in this context.

Rule VM8 "Remember that hiding secrets is hard" again mixes two unrelated
aspects when discussed in [1]: That of hiding secrets buried in a piece of software
from the users of that software trying to reverse-engineer it, and that of insider
attacks, in particular on networks. The latter aspect has little to do with software
security, and I therefore suggest to concentrate on the first aspect only, expressed
more clearly as rule C12, "Be careful when storing secrets".

Rule VM9 "Be reluctant to trust" again mixes two aspects of which only one
refers to building software: On the one hand, reluctance to trust other software
components, such as components of a distributed application running on
untrusted machines, or third-party software whose security properties cannot be
verified; on the other hand, reluctance to trust other people’s claims. The former
aspect, however, is already covered by C4 (HL7) "Validate all data from lower-
privileged sources".

Rule VM10, "Use your community resources"is certainly good advice, but does
not seem to exhibit any aspects specific to building secure software.
3Copyright © Fraunhofer IESE 2004

Rules proposed by Howard and

LeBlanc
Rules proposed by Howard and LeBlanc

The first rule proposed in "Writing Secure Code", "Learn from mistakes", is very
widely applicable, far beyond secure software development, and although the
authors elaborate somewhat on useful instantiations of this rule in development,
I still find the advised procedures very useful (such as determining the root cause
of an error and adding a test to prevent any future incarnation of the same error),
but not really specific to security errors, and so my suggestion is once more to
leave out such general advice.

I suggest only minor formulation improvements, if any, for rules HL2 to HL6,
which should be obvious when comparing them with the consolidated rules
formulations. HL2 recommends to limit the number of different means of inter-
action with an application. HL6 refers to the problem of retaining vulnerabilities
from earlier versions of an application in newer ones for the sake of compatibility.

I find the advice of HL7 "Assume external systems are insecure" should be more
comprehensive and should be expressed in a constructive form: Avoid the
conception evoked by the word "external system" that only input coming from
foreign code is suspect, since data from your own code executing on a foreign
machine is equally suspect. Actually, all data flowing from a lower-privileged to
a higher-privileged component must be validated, whether as input data (e.g.,
parameters) or as output data (e.g. return values, replies). Finally, to include the
human user in the set of untrusted "components" (a word strongly associated

The 13 rules by Howard and LeBlanc

 HL1 Learn from mistakes
 HL2 Minimize your attack surface
 HL3 Use defense in depth
 HL4 Use least privilege
 HL5 Employ secure defaults
 HL6 Remember that backward compatibility

 will always give you grief
 HL7 Assume external systems are insecure
 HL8 Plan on failure
 HL9 Fail to a secure mode
 HL10 Remember that security features

 != secure features
 HL11 Never depend on security through

 obscurity alone
 HL12 Don’t mix code and data
 HL13 Fix security issues correctly
4 Copyright © Fraunhofer IESE 2004

Rules proposed by Howard and

LeBlanc
with software or hardware), "source" rather than "component" is used in the
final formulation of rule C4: "Validate all data from lower-privileged sources".

Rule HL8, "Plan on failure" is another instance of sensible, but not security-
specific advice — any software should catch and handle failures. Rules HL9,
HL11, HL12 are basically fine as they are and go into the consolidated set
unchanged, again except for some reformulations I find clearer. HL11 warns
against the fallacy that secret application designs will remain secret (a hope that
was disappointed many times in history). The reasoning behind HL12 is that code
can be much easier abused for attacks than "passive" data, so reduced security
must be weighted against the increased versatility of code.

Rule HL10 "Remember that security features != secure features" means that one
should not get a false feeling of security only from unspecifically adding some
"security features" such as encryption to the target application. On closer
analysis, it turns out that this rule is nothing but a negative formulation of rule
VM1 "Secure the weakest link" (meaning that security measures should be
applied at places where most needed, not where easiest to apply) which appears
as C2 in the consolidated rule set. Rule HL13 "Fix security issues correctly" is a
final instance of a very sensible advice which is, however, not specific to security
and therefore omitted from the consolidated rule set.
5Copyright © Fraunhofer IESE 2004

The consolidated rule set
The consolidated rule set

The consolidated rule set consists of rules from [1] and [2], often rephrased as
discussed above, plus some additional rules I would like to suggest. Only those
additional suggestions will be explained any further now. None of the advice
contained in the two earlier rule sets should be completely new to a seasoned
professional, and the same holds for the additional rules suggested next.
However, it seems useful to summarize all rules in an explicit, constructive, strictly
relevant, and non-redundant form.

The ordering of the consolidated rules is roughly from the more general or
abstract to the more specific and concrete advice — that is, the ordering does not
imply any temporal sequence of application, or any ranking of importance.

Rule C1 "Assess your threats" lays the ground for any security-aware devel-
opment — systematically determine the potential threats of the target appli-
cation. This is certainly not a new idea and is even somewhat out of line with the

The consolidated and extended rules

 C1 Assess your threats
 C2 Secure the weakest link,

 not the easiest or most obvious one
 C3 Make components with differing privileges
 C4 Validate all data from lower-privileged

 sources
 C5 Beware of components with

 conflicting security assumptions
 C6 Use several layers of defence
 C7 Minimize your attack surface
 C8 Use the least possible privilege

 and no longer than necessary
 C9 Stay secure in case of failures
 C10 Don't be more general than necessary
 C11 Employ secure defaults
 C12 Be careful when storing secrets
 C13 Make the secure way the easy way
 C14 Beware of backward compatibility
 C15 Don't depend on an attacker's ignorance
 C16 Recognize and answer attacks
 C17 Separate code and data
 C18 Don't reveal more than necessary
 C19 Use only publicly scrutinized cryptography
 C20 Use a truly random source to create secrets
6 Copyright © Fraunhofer IESE 2004

The consolidated rule set
other rules, which apply to the design and implementation phases of software
development, while "Assess your threats" applies to the analysis phase.
However, I find it so fundamental to secure software development that I cannot
help but include it in such a vademecum for the secure software developer. [2]
contains the best and most extensive discussion of such "threat modeling" I am
aware of.

Rule C5 "Beware of components with conflicting security assumptions" seems in
order because software components usually make (often unwittingly) some
assumptions about their context of use that would breach security if violated,
while the component is perfectly secure in the context it was intended for. If such
a component is later combined with another component with different implicit
assumptions, their combined effect may result in an unexpected security breach.
Here is a historic example of such an unfortunate combination: One component
is a generator for 32 bit random numbers that produces numbers with only the
upper 24 bits being truly random; the implicit assumption here seems that all 32
bits of output would be used, and that 24 bits of true randomness would be suffi-
cient in practice. The second component now uses the first one to generate
password strings of many bytes length by chaining the output of repeated calls
to the first components — unfortunately, it uses only the lower 8 bits of the
"random" output, since it is a little bit easier to generate byte strings of any
length this way:

for (i = 0; i < length; i++)
password[i] = random() & 0xFF;

The combined effect was thus that the generated password strings are not
random, but easily predictable1. It is a general problem with component-based
systems that the implicit assumptions of components are often not fully
documented, and this is especially true for security-relevant assumptions.

Rule C10, "Don't be more general than necessary"advises against offering more
general mechanisms than strictly required — the more and sharper tools you
carry with you, the easier they can be used against you. Examples include using
a full-fledged programming language to add a macro facility to a relatively simple
application, or starting a subprocess using the highly implicit and versatile
system() function on Unix systems. Such dangerous generality is often the result
of saving effort (if the general mechanism is already available, whereas a specific
one would need to be built from scratch), or of a good-faith effort of "provident
programming" incorporating functionality "just in case", or of striving for

1 This vulnerability was contained in the generation of "magic cookies" in the X-Window system
on older variants of Unix.
7Copyright © Fraunhofer IESE 2004

The consolidated rule set
simplicity, since the general mechanism may actually be the simpler one as well
(note that this aspect discerns rule C10 from the old "Keep it simple" advice).

Rule C13, "Make the secure way the easy way", is derived from the observation
that security mechanisms should be easy to use, or users will bypass them
(obviously, here is a conflict with C11 "Employ secure defaults"). For example,
the protected objects should be well-understandable to the users, and granting
and revoking privileges on objects should be explicit and (ideally) reversible.

Rule C16 "Recognize and answer attacks" advises not to give away the option
of recognizing obvious patterns of attacks and blocking them where possible —
the application could react on observations such as repeatedly failing access
attempts or overly long and strange input data by temporarily blocking accesses
from the suspicious source.

Rule C19 "Use only publicly scrutinized cryptography" seems in order when
considering the long history of faulty encryption algorithms and cryptographic
protocols. Since naive attempts at creating proprietary cryptography happen
again and again, an explicit advice against this does not appear redundant.

Rule C20 "Use a truly random source to create secrets" may seem like a technical
detail at first glance. However, most computer security builds on cryptography,
and cryptographic keys and secrets ultimately depend on obtaining truly random
data. Therefore following this rule, while applying to only a tiny fraction of an
application’s code, is absolutely crucial. Nevertheless, history is full of examples
for badly chosen "random" numbers used to generate cryptographic keys.

Finally, I do not want to let it go unmentioned that before [1] and [2], there has
been a much earlier paper [3] by Saltzer and Schroeder, which both of the former
presumably have drawn upon. The latter had suggested eight "design principles"
of "information protection", most of which have found their way into the various
rule sets discussed so far: Economy of mechanism (asking for general simplicity,
like VM6), fail-safe defaults (HL9/C9 — not HL5/C11!), complete mediation (of
all accesses — goes without saying today), open design (C15), separation of
privilege (requiring two principals for a sensitive action, similar to the "four-eyes
principle": not C3, but an infrequent, special case of C6), least privilege (VM4/
HL4/C8), least common mechanism (C7/HL2, C10), and psychological accept-
ability (C13).
8 Copyright © Fraunhofer IESE 2004

Concluding remarks
Concluding remarks

The consolidated rule set presented here is most probably not the final word on
this issue — the author welcomes any comments and criticism. Obviously, such
rules are only guidelines to consider, but not recipes to follow in order to arrive
at a secure application. Some rules can contradict each other, and many rules
contradict other goals of software development such as performance, function-
ality, simplicity, usability, interoperability, and ease of development. While devel-
oping secure applications remains an engineering challenge and may even be
impossible depending on one’s definitions, such rules of thumb should never-
theless prevent most security programming errors. And compared to the
standard approach of checking against lists of known vulnerabilities from the
past, following general principles of secure software design will probably raise
the bar even for many attacks unknown today. What remains to be done,
however, is to develop more specific "rules" (or whatever form such advice
would take then) for specific APIs (e.g. operating systems, middleware), or for
specific application domains. The recent concept of "security patterns" [4] is a
first step in this direction, defining software building blocks to solve various
security requirements.

Biography

Holger Peine works at the Fraunhofer Institut Experimentelles Software
Engineering (IESE) in Kaiserslautern (Germany) in the IT security department,
developing tools for the security evaluation of IT systems and performing security
evaluations of software, systems and processes. He leads a newly-formed task
force researching techniques and tools for the development of secure software.
He holds a Ph.D. in computer science from Kaiserslautern University of
Technology, where he has earlier worked as a research assistant in the areas of
operating systems, distributed systems, and security.
9Copyright © Fraunhofer IESE 2004

Biography
References

[1] John Viega, Gary McGraw
Building Secure Software
492 pp., Addison-Wesley, 2002
http://www.buildingsecuresoftware.com

[2] Michael Howard, David LeBlanc
Writing Secure Code, 2nd ed.
770 pp., Microsoft Press, 2003
http://www.microsoft.com/mspress/books/toc/5957.asp#TableOf
Contents

[3] Jerome Saltzer, Michael Schroeder
The Protection of Information in Computer Systems
Proceedings of the IEEE, 63(9), pp. 1278-1308, September 1975.

[4] http://www.securitypatterns.org
A collections of links to many papers dealing with security patterns
10 Copyright © Fraunhofer IESE 2004

Copyright 2004, Fraunhofer IESE.
All rights reserved. No part of this publication may
be reproduced, stored in a retrieval system, or trans-
mitted, in any form or by any means including,
without limitation, photocopying, recording, or
otherwise, without the prior written permission of
the publisher. Written permission is not needed if
this publication is distributed for non-commercial
purposes.

Document Information

Title: Rules of Thumb for
Developing Secure Soft-
ware
Analyzing and consolida-
ting two proposed sets of
rules

Date: April 2004
Report: IESE-038.04/E
Status: Final
Distribution: Public

	Rules of Thumb for Developing Secure Software
	Executive Summary
	Rules proposed by Viega and McGraw
	Rules proposed by Howard and LeBlanc
	The consolidated rule set
	Concluding remarks
	Biography
	References

