
Interpretation of Behaviour Models at Runtime

Performance Benchmark and Case Studies

vorgelegt von
Diplom-Ingenieur

Edzard Höfig

aus Berlin

Von der Fakultät IV – Elektrotechnik und Informatik
der Technischen Universität Berlin

zur Erlangung des akademischen Grades

Doktor der Ingenieurwissenschaften
Dr.-Ing.

genehmigte Dissertation

Promotionsausschuss:

Vorsitzender: Prof. Dr. habil. Odej Kao
Berichterin: Prof. Dr.-Ing. Ina Schieferdecker
Berichter: Prof. John Strassner, Ph.D.

Tag der wissenschaftlichen Aussprache: 25.3.2011

Berlin, 2011

D 83

Interpretation of Behaviour Models at Runtime

Performance Benchmark and Case Studies

by Dipl.-Ing.

Edzard Höfig

Technical University of Berlin
Faculty IV – Electrical Engineering and Computer Science

A dissertation submitted in partial fulfilment
of the requirements for the degree of

Doctor of Engineering Science
Dr.-Ing.

Examination board:

Chairman: Prof. Dr. habil. Odej Kao
Technical University Berlin, Faculty of Electrical Engineering and Computer Science

Supervisor: Prof. Dr.-Ing. Ina Schieferdecker
Technical University Berlin, Faculty of Electrical Engineering and Computer Science

Supervisor: Prof. John Strassner, Ph.D.
Pohang University of Science and Technology, Division of IT Convergence

Defense date: 25th of March, 2011

Berlin, 2011

D 83

IV

Abstract

Modelling system behaviour by means of statechart-based formalisms, such as the
state machine formalism defined in the Unified Modeling Language, is an established
practice in software engineering. As part of a model-driven workflow, engineers
usually employ a code generation approach to create software components that
implement an intended runtime behaviour. Although this approach yields software
components with a good runtime performance, the resulting system behaviour is
static. Changes to the behaviour model necessarily provoke an iteration in the code
generation workflow and a re-deployment of the generated artefacts.

In the area of autonomic systems engineering, it is assumed that systems are
able to adapt their runtime behaviour in response to a changing context. Thus,
the constraints imposed by a code generation approach make runtime adaptation
difficult, if not impossible. We investigate a solution to this problem by employing
interpretation techniques for the runtime execution of behaviour models, enabling the
adaptability of a system’s runtime behaviour on the level of single model elements.
This is done by devising concepts for behaviour model interpretation, which are
then used in proof-of-concept implementations to demonstrate the feasibility of the
approach. It is insufficient to show only the general feasibility of behaviour model
interpretation, as the usefulness of this approach depends on the context the model
is used in, which is determined by a specific application domain. Therefore, an
assessment of the approach is carried out, using quantitative as well as qualitative
methods. For the quantitative evaluation, a novel benchmark is introduced, that
enables a performance comparison between the proof-of-concept implementations and
generated code. The qualitative assessment is based on use case studies conducted
in the area of network and systems management.

Behaviour model interpretation has a performance overhead when compared to
code generation. In the context of the network and systems management domain,
the performance of the approach is found to be adequate for the vast majority of
situations, except when dealing with high-throughput or delay-sensitive data.

V

VI

Zusammenfassung

Die Modellierung von Systemverhalten anhand von Zustandsdiagrammen, beispiels-
weise anhand der Unified Modeling Language, zählt inzwischen zu den etablierten
Vorgehensweisen bei der Erstellung von softwareintensiven Systemen. Um Soft-
warekomponenten mit einem gewünschten Verhalten herzustellen, wird innerhalb
eines modellgetriebenen Arbeitsflusses üblicherweise mit Ansätzen zur Kodeerzeu-
gung gearbeitet. Solch ein Ansatz ermöglicht zwar die Erzeugung eines effizienten
Laufzeitystems, allerdings ist das Systemverhalten dann durch die Artefakte des
Erzeugungsprozesses statisch festgelegt. Änderungen am Verhaltensmodell ziehen not-
wendigerweise eine erneute Erzeugung, Übersetzung und das wiederholte Aufspielen
der Anwendung nach sich.

Bei der Entwicklung autonomer Systeme gehen wir davon aus, dass Systeme ihr Ver-
halten zur Laufzeit an sich ändernde Umgebungsbedingungen anpassen können. Da
statische Artefakte kaum, oder nur sehr schwer, zur Laufzeit geändert werden können,
verbietet sich ein Einsatz von Kodeerzeugung für die Erstellung autonomer Systeme.
In dieser Arbeit untersuchen wir einen Lösungsansatz für dieses Problem. Anstelle
von statischer Kodeerzeugung verwenden wir Techniken der dynamischen Programm-
interpretation für die Ausführung von Verhaltensmodellen. Damit ermöglichen wir
die Änderung von Verhaltensmodellen auf der Ebene einzelner Modellelemente zur
Laufzeit. Wir erreichen dieses Ziel durch die Ausarbeitung grundlegender Konzepte
der Interpretation von Verhaltensmodellen und demonstrieren anhand von Implemen-
tierungen die Machbarkeit des Ansatzes. Wir erachten es nicht als ausreichend nur
die generelle Durchführbarkeit zu zeigen, da die Nützlichkeit des Ansatzes von dem
beabsichtigten Anwendungszweck eines Systems abhängt. Die Begutachtung unseres
Ansatzes erfolgt dabei sowohl durch quantitative als auch durch qualitative Methoden.
Zur quantitativen Betrachtung führen wir einen eigens entworfenen Benchmark-Test
ein, der den Vergleich der Laufzeitverhalten von erzeugtem und interpretiertem
Kode ermöglicht. Die qualitative Begutachtung stützt sich auf Fallstudien aus den
Bereichen der Netzwerk- und Systemverwaltung.

Wir stellen fest, dass die Interpretation von Verhaltensmodellen zur Laufzeit
etwa um einen Faktor 20 langsamer ist als die Verwendung von Kodeerzeugung.
Im Kontext der Netzwerk- und Systemverwaltung ist das allerdings unerheblich,
da die Ausführungsgeschwindigkeit ausreichend für typische Aufgaben in diesen
Gebieten ist. Eine Ausnahme davon bilden Anwendungen, die mit einem sehr
hohen Datendurchsatz arbeiten oder die anfällig für kleinste Verzögerungen beim
Datentransport sind.

VII

This thesis is dedicated to my parents.

VIII

Acknowledgements

I would like to acknowledge Prof. Ina Schieferdecker for her friendly advice and
constructive criticism. Over the course of the last six years she provided an environ-
ment that allowed me to work on theoretical research questions as well as practical
engineering tasks. I am certain that this combination improved both the quality of
my day-to-day work as well as the quality of this thesis and I am grateful for having
been given this opportunity. I would also like to acknowledge Prof. John Strassner
for providing fair, timely and thorough criticism on my ideas and course of action. I
admire his impressive knowledge, diligent work attitude and true personality.

The work on this thesis has been a long process and I am thankful that many of
my colleagues have contributed by offering comments. First and foremost Dr. Peter
H. Deussen did offer advice and guidance that helped me to structure my thoughts
in a way that eventually led to a sequential text. I am also thankful to Dr. Mikhail
Smirnow, who is the reason why I am at Fraunhofer FOKUS and who I find to always
be a source of inspiration. I am also grateful to Ranganai Chaparadza for his support.
Due to his deep understanding of networking technology, Hakan Coşkun’s comments
were very helpful for creation of the network management use case studies. As we
are sharing an office, he was the person that heard all of my ideas and thoughts first
and I am especially grateful that he always had an open ear to listen and comment
on every one of them. Dr. Sven van der Meer provided much appreciated advice
during the final stages of the thesis and generally pushed me in the right direction.
I would also like to acknowledge Andreas Hinnerichs for his contributions to the
TMPL runtime optimisation concepts and Carsten Jaekel for his support during
implementation of the MPU concepts and recording of the benchmarking results.
I would like to thank Joseph Bauer, Matthias Veit and Timmo Gierke, the aqua-
nauten, for being awesome. I profoundly enjoy our friendship and draw inspiration
from each of our technical discussions and tossing around of ideas. I am also deeply
grateful to Yvonne Rathmann, who offered her knowledge, skills and time to review
the final version of my thesis.
Finally, I would like to thank my wife Julia. Without her love and support this
endeavour would have been a much harder and far less joyful experience.
Thank you!

Edzard Höfig
Berlin, May 2011

IX

X

List of Publications

The text of this dissertation includes excerpts of the following previously published
material:

E. Höfig and P. H. Deussen. Model-based Integrated Management: Applying Autonomic
Systems Engineering to Network and Systems Management. Invited Article, Int. Journal of
Autonomous and Adaptive Communiations Systems, Vol. 4, No. 1, pages 100–118, January
2011.

L. Shi, A. Davy, D. Muldowney, S. Davy, E. Höfig and Xiaoming Fu. Intrinsic Monitor-
ing within an IPv6 Network: Mapping Node Information to Network Paths. Proc. 6th

Int. Conf. on Network and Service Management, pages 370–373, October 2010.

P. H. Deussen, E. Höfig, M. Baumgarten, M. Mulvenna, A. Manzalini and C. Moiso. Com-
ponent-ware for Autonomic Supervision Services – The CASCADAS Approach. Invited
Article, Int. Journal On Advances in Intelligent Systems, Vol. 3, No. 1 & 2, pages 87–105,
2010.

E. Höfig and H. Coşkun. Intrinsic Monitoring Using Behaviour Models in IPv6 Networks.
In Proc. 4th Int. Workshop on Modelling Autonomic Communication Environments, pages
86–99, October 2009.

E. Höfig, P. H. Deussen and H. Coşkun. Statechart Interpretation on Resource Constrained
Platforms: a Performance Analysis. In Proc. 4th Int. Workshop models@run.time, October
2009.

E. Höfig and P. H. Deussen. Document-Based Network and System Management: Utilizing
Autonomic Capabilities for Enterprise Management Integration. Proc. 2nd Int. Conference
on Autonomic Computing and Communication Systems, September 2008.

B. K. Benkő, N. Brgulja, E. Höfig and R. Kusber. Adaptive Services in a Distributed Envir-
onment. Proc. 8th Int. Workshop on Applications and Services in Wireless Networks, pages
66–75, May 2008.

P. H. Deussen and E. Höfig. Self-Organizing Service Supervision: Concept Demonstration.
Proc. 2nd Int. Conference on Bio-Inspired Models of Network, Information, and Computing
Systems, pages 245–246, December 2007.

XI

E. Höfig and H. Coşkun. Using Pattern Bound Policies to Construct Regulatory Mech-
anisms for Autonomic Systems. Proc. 10th Int. Conference on Quality Engineering in
Software Technology, pages 373–393, September 2007.

A. Hinnerichs and E. Höfig. An Efficient Mechanism for Matching Multiple Patterns on
XML Streams. Proc. of the IASTED Int. Conference on Software Engineering 2007, pages
164–170, February 2007.

E. Höfig, B. Wüst, B. K. Benkő, A. Manella, M. Mamei and E. Di Nitto. On Concepts
for Autonomic Communication Elements. Proc. 1st IEEE Int. Workshop on Modelling
Autonomic Communications Environments, pages 49–59, September 2006.

E. Höfig. Template Matching on XML Streams. Proc. of the IASTED Int. Conference on

Software Engineering 2006, pages 113–118, Februray 2006.

XII

Contents

1 Introduction 1
1.1 Subject of Research . 1

1.1.1 Problem Statement . 3
1.1.2 Research Hypothesis . 4

1.2 Methodology . 4
1.3 Scientific Contributions . 5
1.4 Document Structure . 6

2 Concepts 9
2.1 Modelling Runtime Behaviour . 9

2.1.1 States as Fundamental Building Blocks 10
2.1.2 Changing States: Transitions 11
2.1.3 Executing Actions . 14
2.1.4 Creating Structure by Composition 16
2.1.5 Manipulating the Control Flow Cardinality 17
2.1.6 Remembering Control Flow State 19

2.2 Interpretation of Behaviour Models 20
2.2.1 Initialisation from Model Specification 22
2.2.2 Event Processing . 23
2.2.3 Concurrency . 28
2.2.4 Expression and Action Evaluation 33
2.2.5 Functional Components . 35
2.2.6 Communication Mechanisms 40

2.3 Distributed Model Management . 44
2.4 Summary . 48

3 Related Work 51
3.1 State-Transition Systems . 52

3.1.1 Automata Theory . 52
3.1.2 Statecharts . 54

3.2 Behaviour Models . 56
3.2.1 Interpretation and Execution 56
3.2.2 Operations on Behaviour Models 58
3.2.3 Tool Support . 59

XIII

Contents

3.2.4 Alternatives for Behaviour Modelling and Execution 61
3.3 Autonomic Systems Engineering . 62

3.3.1 Dynamic System Adaptation 62
3.3.2 Communication Mechanisms 64
3.3.3 Frameworks . 65

3.4 Network and Systems Management 67
3.4.1 System Regulation . 67
3.4.2 Information and Data Models 68
3.4.3 Management in the Network 69
3.4.4 Towards Autonomic Network Management 69

3.5 Performance Benchmarking . 70
3.6 Summary . 72

4 Implementations 75
4.1 An Interpreter for Behaviour Models 76

4.1.1 Fundamental Behaviour Model Features 77
4.1.2 Generic Interpreter Architecture 78

4.2 The TMPL Engine . 81
4.2.1 Architecture and Operation 81
4.2.2 Major Challenges and Key Results 84

4.3 The ACE Toolkit . 87
4.3.1 Architecture and Operation 88
4.3.2 Major Challenges and Key Results 90

4.4 The UML State Machine Interpreter 93
4.4.1 Architecture and Operation 94
4.4.2 Major Challenges and Key Results 98

4.5 The Model Processing Unit . 103
4.5.1 Architecture and Operation 105
4.5.2 Major Challenges and Key Results 108

4.6 Summary . 109

5 Use Case Studies 111
5.1 Service Supervision with ACEs . 111

5.1.1 Dynamic Reconfiguration Scenario 114
5.2 Management in the Network . 116

5.2.1 Performance Troubleshooting Scenario 120
5.2.2 Monitoring Router-Load Using MBIM 125

5.3 Intrinsic Monitoring . 127
5.3.1 Execution of Monitoring Behaviour 129

5.4 An Application to Embedded Systems 131
5.5 Summary . 138

XIV

Contents

6 Performance Benchmark 141
6.1 The Benchmark Suite . 141

6.1.1 SIZE Scenario . 144
6.1.2 ALTERNATIVE Scenario . 147
6.1.3 EPSILON Scenario . 148
6.1.4 EVENT Scenario . 150
6.1.5 GUARD Scenario . 152
6.1.6 COMPOUND Scenario . 154
6.1.7 EXPRESSION Scenario . 157
6.1.8 CONCURRENT Scenario . 160
6.1.9 CONFIG Scenario . 163
6.1.10 LIFECYCLE Scenario . 164
6.1.11 The General Benchmark Process 167
6.1.12 Comparing the Results . 170

6.2 Execution Platform Mappings . 171
6.2.1 Mapping to the UML Adaptive Systems Profile and Ecore . . 171
6.2.2 Mapping to State Chart XML and JEXL 172
6.2.3 Mapping to UML and Generated C++ 174

6.3 Quantitative Assessment of the Approach 176
6.3.1 Performance of the UML Interpreter 176
6.3.2 Performance of the Model Processing Unit 182
6.3.3 Determination of Baseline Performance 187

6.4 Summary . 192

7 Conclusion 195
7.1 Feasibility of the Approach . 197
7.2 Encountered Challenges and Lessons Learned 198

7.2.1 BM Interpretation . 199
7.2.2 Platform Integration . 201
7.2.3 The Benchmark . 203

7.3 Relevance of the Results . 205
7.4 Future Work . 206

Appendices 209
A UML State Machines . 209
B State Chart XML . 215
C ACElandic . 219
D Values from Benchmark Measurements 230
E Self-Models for the Dynamic Reconfiguration Scenario 233
F Behaviour Models for the Management in the Network Scenario . . . 240
G Behaviour Models for the Intrinsic Monitoring Scenario 248

XV

Contents

Glossary 251

List of Abbreviations 253

Bibliography 257

Technical References 271

XVI

1 Introduction

If it ain’t from the heart then it can’t be art

If you ain’t got proof then it can’t be truth

If it ain’t got legs then it cannot run

If it ain’t never started then it can’t be done

Everlast

Autonomic Systems Engineering research is concerned with the creation, assessment
and maintenance of Autonomic Systems (AS). Such systems are regarded as technical
entities that are able to execute management decisions without direct human control.

Our work in this field was mainly inspired by the idea of Autonomic Communic-
ation, as outlined in [180]; Autonomic Communication aims at applying a set of
computing principles, originally developed by IBM [112], to the management of com-
munication networks and services. The idea is to delegate the execution management
processes from human administrators to devices operating in the network with the
goal of reducing the administration complexity and consequently the operational
expenditures, as well as to enable the evolvability of systems.

Designing a system for evolvability implies that it does not only scale in terms of
resource utilisation, but also in terms of functionality. For achieving such functional
scalability, it is necessary to design a system in such a way that it is able to continue
to operate, without human intervention, in the face of changes in its environment.
We denote such an ability with the term homeostasis, in reference to the concept
introduced by cyberneticist W.R. Ashby [8, chapter 5/3]. The major challenge of
functional scalability is to enable AS to adapt to environmental changes that are
unknown at the design time of a system.

1.1 Subject of Research

Homeostasis requires that a system is able to modify its own behaviour by extending
or re-shaping its functionality to suit a changing operational environment. From
a software engineering perspective, this requires employing a suitable format for
behaviour representation (corresponds to a program) and an adequate mechanism
that executes the behaviour, while allowing for a modification of the underlying
representation (corresponds to a runtime system). For the former we propose to use
models. Thus, such a behaviour representation format is called a Behaviour Model
(BM). For the latter we propose to use interpretation mechanisms, which are referred

1

1 Introduction

to as BM interpreters, or just as interpreters . By interpretation we refer to the direct
evaluation of a BM at runtime, which also includes the ability to dynamically modify
the BM.

Depending on the formalism that is used to express the runtime behaviour of a
system, an adaptation of the BM can be easy or more difficult. We restrict ourselves
to the study of BMs that are defined by state-transition systems, which are also
known as automata. Automata can be used as models to describe the behaviour of
a system in the simple language of states and transitions. They have already been
employed in this function at least since the doctoral thesis of D. Huffman [111]. In
this thesis, we will not use the original formalism, but investigate models using a
modern formalism, more precisely the statechart formalism invented by D. Harel
[88, 90]. For this approach to work, we require that changes in the environment of a
system are communicated to the system using discrete messages (referred to as input
events). This is a standard engineering approach for reactive systems and we will
not discuss it in more detail.

One of the most valuable properties of state-transition systems is that they are
reactive. On receiving an input event, a BM will be interpreted until all consequential
actions, in reaction to the input event, have been processed (this is called a processing
step). The BM is inactive after this, which allows us to safely modify the BM without
needing to worry about consistency problems.

It is noteworthy to point out that our use of statecharts for representation of BMs
is substantially different to current software engineering practice. In a conventional
Model Driven Architecture (MDA) workflow [256], an automata-based BM (such as
a set of state machines) would typically be executed for simulation or model checking
purposes at pre-deployment time. Once system design comes to an end, engineers
would utilise code generation to create appropriate runtime execution systems based
on the specified BMs. This approach is able to produce system components with
a decent execution performance, but which also rely on the generation of static
executable artefacts that determine the system’s runtime behaviour (e. g. source code
and application binaries). An approach that is based on code-generation cannot be
used for engineering AS, as it would prevent modification of the BM at runtime. The
problem is that, although there are techniques that enable a dynamic modification
of already deployed functionality (i. e. Just In Time (JIT) compilation or dynamic
binding), the traceability between the model and the generated binary code artefacts
is not given. Therefore, after the code generation step has concluded, it is not
possible to identify which parts of the generated code corresponded to a certain
element in the original model. When using interpretation, it is much easier to trace
the connections between the BM and a given execution representation (referred to
as a BM instance).

Within the thesis, we study the practical applicability of interpretation of BMs,
restricted to the network and systems management domains. The general feasibility
of the approach in other domains remains interesting; however, the focus is on

2

1.1 Subject of Research

exploring how BM interpretation can be beneficial to these specific application
areas, which allows us to conduct an assessment of our work in regard to their
specific requirements. Network and systems management are well established fields,
concerned with the monitoring and administration of networked computer systems
[40, 93]. While network management concentrates on the management of the devices
that make up a network (e. g. routers, gateways, etc.), systems management also
takes into account the computer systems that are connected by the network (e. g.
servers, end-user devices, etc.). We are considering BM interpretation as applicable
in both areas of management.

1.1.1 Problem Statement

Utilising models for representation of system behaviour is a good approach for
implementing self-regulating systems. This has been shown for cases where the
system behaviour can be modelled numerically and where only a small number of
variables need to be considered, e. g. in hardware systems that regulate mechanical
processes based on control theory, like a brake assistance system in a car. We think
that the general idea of using BMs for the formalisation of runtime behaviour is also
applicable to AS, although there are a number of considerable differences.

For example, a numerical modelling of self-regulating systems based on control
theory uses a closed-world assumption: the complete parameter space of a system
behaviour is supposed to be known at design time. Therefore, a BM using this
approach has to be considered static at runtime, it cannot be modified to react
to hitherto unknown input events. In AS, due to the homeostatic property, an
open-world assumption has to be made: systems are part of a changing environment
and need to be able to change themselves to react to previously unknown events. This
requires the ability to dynamically modify the BM at runtime, which is something
that has not been thoroughly investigated before.

Another important difference regarding AS lies in the large number of input events
that they need to react to. BMs for this type of software-intensive systems are far
too complex to be representable with only a small number of variables. Dealing
with such a complexity is a problem that is very well known in software engineering.
Therefore, formalisms used for modelling system behaviour in established software
design methodologies, e. g. statecharts, are more appropriate.

Runtime modification of behaviour that is modelled using statecharts is not a
well researched topic. There is little research done on the feasibility and properties
of mechanisms that enable the modification of autonomic systems that rely on
models for the specification of behaviour. Such mechanisms are a prerequisite for
implementing any form of runtime behaviour optimisation for systems, which are
designed with an open-world assumption in mind.

3

1 Introduction

1.1.2 Research Hypothesis

We assume that it is viable to execute statechart-based BMs by interpretation at
runtime instead of using a BM to generate code in a programming language, which
would then be compiled and executed. It has only been shown very recently that
BM interpretation is practicable at all [16] and there is no substantial information
on the performance or implementation of such mechanisms.

Experience dictates that it is computationally more expensive to employ an
interpretation mechanism than to rely on compilation techniques; thus, we believe
that a performance penalty is incurred by following the interpretation approach. We
suppose that an interpretation mechanism’s performance can be measured using its
runtime execution speed and memory consumption characteristics; by comparing
these values to the execution characteristics of a mechanism based on compilation,
we will be able to accurately determine the performance differences between the two
approaches. Such a comparison is only possible when based on a common platform
and we will use a standardised performance benchmark to achieve this.

Furthermore, we hypothesise that the performance penalty incurred by such an
approach is small enough to allow a utilisation of this technique in the system
and network management domains. We also believe that the innovative benefits,
offered by an approach that relies on the interpretation of BMs, clearly outweighs its
performance disadvantages. To support this argument, a number of use case studies
are employed.

1.2 Methodology

Our goal is to to assess the practical usefulness of the approach. As it is generally
possible to interpret statechart-based BMs, we are interested in the implementation
details of mechanisms that supports a modification of the BM at runtime, with the
resulting behaviour changes immediately observable. As a tool for experimenting
with different facets of such mechanisms we are constructing a proof-of-concept
implementation of a BM Interpreter that supports the complete feature set of
Unified Modeling Language (UML) Behavioral State Machines [255, Section 15].
This interpreter is from now on referred to as the UML interpreter. The UML has
been chosen because of its widespread use and the feature richness of the UML
State Machines formalism. We found little published work on the subject of BM
interpretation in general and even less on the interpretation of statechart-based BMs.
Therefore, for creating a working implementation, we will need to create algorithms
and discover solutions to key aspects arising when designing and implementing such
a kind of interpretation mechanism. As the UML interpreter is mainly an academic
tool for demonstrating the runtime interpretation of the widest range of possible BM
features, it is not the best solution for a practical application. We therefore create a

4

1.3 Scientific Contributions

number of additional prototypes that each have a more restricted set of BM features,
but that fit better to the requirements for a certain platform and purpose.

After we created suitable implementations of the concepts, we carry out an
assessment of the usefulness of the approach by following two methods. The first
method is a qualitative assessment that employs four use case studies from the
domains of network and systems management. The second method is a quantitative
assessment of the approach’s performance that is conducted by comparing the speed
and consumed memory of two proof-of-concept implementations with generated code.
To ensure the comparability between the different platforms and technologies, we
will need to define a novel performance benchmark suite. The reason for this is
the lack of existing instruments for performance comparison of statechart execution
mechanisms. By using the results from the quantitative and qualitative assessment
steps, we can discuss their impact on the practical usefulness of the approach and
can come to a conclusion on the tradeoffs between performance and the provided
benefits of BM interpretation at runtime.

1.3 Scientific Contributions

The following four items are considered the main scientific contributions of this
thesis.

A performance benchmark suite Comprising ten measurement scenarios that
collect an overall of 100 performance indicators, we introduce a comprehensive
performance benchmarking suite for assessment of statechart-based BM execution
mechanisms. The benchmark is validated by application to three different imple-
mentations. As it is designed in a platform-independent way, there is only a minimal
effort necessary to adapt the benchmark suite to a new technology. This is a useful
instrument for an objective performance comparison of statechart execution mechan-
isms. The performance benchmark suite is novel work and we are not aware of the
existence of other benchmarks for measuring BM runtime execution.

Verified concepts for the interpretation of BMs We demonstrate that the inter-
pretation of statechart-based BMs, with support for modification during execution,
is possible at runtime. This result supports very recent research results. To arrive at
this goal, we devise a number of concepts, algorithms and guidelines for implementing
statechart-based BM interpreters. These concepts can be considered mature, as
they are backed up by a number of implementations, which where each validated
in regard to applicability. The research community can benefit from the insight
into the technical intricacies of such mechanisms which is provided by this thesis.
Furthermore, for the UML interpreter we implement a wide range of advanced
concepts (for example storing and re-establishing of a deep state history, dealing with

5

1 Introduction

deferred events or processing compound transitions). All of these have been tested
and are practically proven to work. As there is very limited research material at hand
regarding these topics, the lessons learned during the implementation process are
useful as a best-practice reference for other implementors of graph- or automata-based
runtime model interpreters.

Studies on interpretation performance We conduct a quantitative assessment
of the performance of the BM interpretation approach for a number of different
implementations. The result data paint a clear picture of the performance that the
BM runtime interpretation approach has. Due to the detailed specification of the
benchmark, it is also possible to investigate specific aspects in more depth, e. g. the
evaluation speed of conditional expressions of a certain complexity or the memory
consumption in relation to BM size. These results provide empirical values that can
serve well for impact assessment purposes, for example for software engineers who
plan to integrate BM execution facilities into their projects.

Framework for an application to the network and systems management do-
mains A qualitative assessment of the BM interpretation approach is investigated
by employing four use case scenarios in the context of the network and systems
management domains. These scenarios demonstrate the practical relevance of the
approach by giving concrete examples of applications of the approach. This is useful
for understanding the benefits of the BM interpretation approach, such as BM
optimisation at runtime or the reduction of effort for managing code artefacts that
encode system behaviour. It is also useful for network researchers or engineers as a
blueprint for engineering future management infrastructures.

1.4 Document Structure

The thesis is structured in seven chapters, plus an appendix. Each chapter contains a
summary at its end, except for the introduction chapter and the conclusion chapter,
which start with a summary of the complete thesis. The chapters are:

1. Introduction The current chapter, which explains the chosen research subject
and the motivation for the thesis. We state the research problem, formulate
a research hypothesis, summarise the key scientific contributions of our work
and describe the employed methodology.

2. Concepts The chapter aims at creating a common understanding of BM spec-
ification by explaining the basic principles involved. We investigate novel
concepts, algorithms and general guidelines used for the interpretation of BM
at runtime. The chapter also contains studies on integrating BM interpreters

6

1.4 Document Structure

with an underlying platform and explores the management of BMs within a
larger IT infrastructure.

3. Related Work The chapter contains a survey of the relevant state of the art,
structured by research field. There are five fields: state-transition systems,
BMs, systems engineering, network and systems management and performance
benchmarking.

4. Implementations We describe our understanding of a BM interpreter and sub-
sequently introduce four implementations of the concepts, each having different
characteristics and its own motivation. The four implementations are: an
engine for the Template Matching Processor Language (TMPL), which employs
interpreted state machines for pattern matching on eXtensible Markup Lan-
guage (XML) data streams; the Autonomic Communication Element (ACE)
toolkit, a component-based framework for creating autonomic applications
using interpreted state machines; a BM interpreter for UML State Machines;
and finally a BM execution platform that uses a State Chart XML (SCXML)
engine.

5. Use Case Studies In this chapter, we are using four use case scenarios to assess
our approach from a qualitative perspective. The service supervision scenario
demonstrates how the ACE toolkit can be used to create a supervision infra-
structure that is able to reconfigure in response to failing system components.
In a management in the network use case, we present a scenario that describes
the use of BM interpretation as part of a troubleshooting process within the
system and network management domains. A part of the scenario (monitoring
a network element) is demonstrated using the SCXML execution platform.
The intrinsic monitoring use case describes how BM interpretation can be used
to implement a novel paradigm for monitoring paths in a network using the
Internet Protocol, version 6 (IPv6). The last use case scenario investigates the
feasibility of our approach for embedded systems by presenting an experimental
implementation of a BM interpreter on a resource-limited platform, along with
a documentation of the system performance.

6. Performance Benchmark We specify a benchmark suite for evaluating the per-
formance of a BM execution engine in regard to speed and memory consumption,
based on the generic platform. Subsequently, we specify mappings of the generic
benchmark suite to three specific target technologies: Java [266], C++ [271]
and the Rational Rhapsody tool (see page 3.2.3). We then compare the per-
formance of the UML interpreter and the SCXML execution platform with the
performance of generated C++ code using the previously defined benchmark.

7. Conclusion At the beginning of the chapter, we give a summary of the thesis
and describe its potential impact on the research field. We critically discuss

7

1 Introduction

the results of our work and describe the lessons learned. The chapter concludes
with an outlook on future work.

Appendices The appendix is also a useful part of the thesis. It contains short
descriptions of the features of the three main languages used to describe BMs
(UML, SCXML, ACElandic). This helps readers that are unfamiliar with
a particular formalism or feature. We also describe the BMs used within
the employed use case scenarios and provide a listing of the complete data
values acquired by application of the benchmark as part of the performance
comparison in chapter 6.

8

2 Concepts

As the builders say, the larger stones

do not lie well without the lesser.

Plato

This chapter describes the foundational concepts of our work, divided into three
sections. The first section is dedicated to explaining the modelling of a system’s
runtime behaviour using state-transition systems. It is oriented along the basic
concepts of UML State Machines: states, transitions, transition labels, state compos-
ition, partial BMs, regions and the history feature. The second section is concerned
with introducing and discussing issues that arise when implementing runtime sys-
tems for interpretation of BMs that follow the principles outlined in Section 2.1.
It encompasses the following principles: the stepwise processing of a BM using
Run-To-Completion (RTC) semantics and the determination of active transitions1, a
discussion about the problems associated with concurrent control flows in a single
BM, expression evaluation, the invocation of FCs and an investigation of scalability
aspects of message-based communication paradigms. In the third section, we will
propose a theoretical infrastructure for BM interpreters. Even though it is possible
to use BM interpreters in a standalone scenario, we believe that it is more beneficial
to employ a number of distributed interpreters. This serves also as a blueprint for the
infrastructure employed within most of the use case studies in Chapter 5. Thus, the
topics discussed in the third section are about the management and maintenance of a
collective of interpreters. In addition to the concepts discussed here, an introduction
to state-transition systems can be found in the description of related work in Section
3.1.

2.1 Modelling Runtime Behaviour

State machines in one form or another will be familiar for most people with a
computer science background. This section serves both as an introduction to readers
unfamiliar with the subject and as a general overview. It contains a discussion
of state machine principles (based on UML Behavioral State Machines) and their
relation to BM interpretation.

1Including an identification of the correct entry and exit actions during firing of a transition as
well as their invocation order

9

2 Concepts

2.1.1 States as Fundamental Building Blocks

The most significant concept is the notion of “state” itself. In the following chapters,
we will only refer to state in the context of BMs, but for now, it is sensible to
understand the word in a broader context: as a distinct, abstract condition of a
system.

Figure 2.1 shows that a wine-filled chalice can be modelled using three system
states: Full, Half-Full and Empty. Note the abstraction that takes place: although
wine contained in the chalice could take a wide range of different volumes, only one
out of three discrete symbols is used at a given time to represent the system state.

Full

Empty

Half-Full

Figure 2.1: An optimistic model of a wine-filled chalice

The design of an appropriate set of states for modelling a given system requires
a thorough understanding of both the system itself and of the purpose the model
is created for. This type of captured expertise enables us (humans) to deal with
the behaviour of very complex systems in a reasonable time2, and we think that an
application of this principle could also be an advantage for automated processing. In
general, states are reflecting a situation with a valid invariant [28, p. 170] in either a
static way (“the chalice is empty”) or as a dynamic process or activity (“someone is
drinking from the chalice”).

Over its lifetime, a system would usually go through a sequence of states. For
example, a chalice would be taken empty from a cupboard, filled with wine and
subsequently depleted by a thirsty congregation. It is useful to distinguish two
special states concerning the lifetime of a system. Initial states are the states that a
system starts in. For the physical world, concrete manifestations of such initial states
seldom exist3, but when interpreting a BM, it is necessary to completely define the
initial conditions that a system starts from. The same is true for final states, which
are states that denote that a system has finished its operation. In the case of the
wine-filled chalice, an apt choice would be to use the Empty state as both the initial
and final state of the system. This is reflected in a typical scenario where a chalice is

2Humans are relying on mental models to cope with the complexity of their environment. This
argument is supported by the “Theory of Mind” of cognitive neuroscience, see [21].

3What is the initial state of a door? Open or closed?

10

2.1 Modelling Runtime Behaviour

taken empty from a cupboard, used and cleaned before being returned to the storage
shelf. The initial state is often referred to as being a pseudostate. Pseudostates are
transient – they are processed during interpretation, but a system does not remain
in them. Commonly, the initial state merely references a state as the first one that
the model occupies when interpretation commences.

2.1.2 Changing States: Transitions

To describe a series of state changes, we use transitions that connect states with
each other. Possible successor states to a given system state are determined using
transitions that lead from one state to another. We call all transitions that leave
a given state outgoing and all transitions that arrive at a given state incoming .
Transitions that connect a state with itself are called self-referencing . Sometimes
transitions are also termed edges, as the generated state-transition structure forms a
directed graph consisting of nodes and edges.

One of the major tasks that all execution mechanisms for state-transition systems
need to solve is the selection of active transitions, also called transition matching .
The result of transition matching is the determination of a successor for the current
system state. Figure 2.2 shows the problem using the familiar wine-filled chalice.

Full Half-Full Empty
Someone

drinks

Someone drinks

Someone
drinks

Model starts here Model ends here

Figure 2.2: Transitions specify a series of system states

Initially, the model dictates that the chalice is Full. After the first sip (indicated
by the Someone drinks label under the transition), the chalice is considered Half-Full.
This state is maintained while further drinking takes place until someone takes the
last gulp. Afterwards the chalice is considered Empty, which is the final model state.
A problem appears at the Half-Full state: it is obvious, that using only the given
information (Someone drinks), we are not able to figure out if the successor state
should be Half-Full or Empty. Such a model is referred to as a non-deterministic
model. In addition to an event label, it is therefore common to further annotate
transitions with a conditional statement, often referred to as a guard condition, to
allow a deterministic selection of a transition.

2.1.2.1 Events

State-transition systems are called reactive in the sense that they are reacting to
events observed in the environment. The process of observation is usually conducted

11

2 Concepts

by mechanisms external to the BM — the model contains only a reference to a
standardised notification message that signals the occurrence of a certain event.
Due to this close relation between the event and the notification message, we also
refer to them as events. For practical reasons, events are supplied in a sequential
manner and typically stored using a suitable buffering mechanism (queueing or
pooling) before being matched with the outgoing transitions from a current state.
The event message itself is consumed during the matching operation. Events may
carry additional information (referred to as the payload of the event), which is often
used in communication between a state machine and its environment.

Event labels are used to determine which transitions are becoming active in
reaction to the events provided as input to the BM. Usually, only one event is
used for determination of the active transition, but there are formalisms (e. g. UML
State Machines) that also allow the usage of more than one event as a transition
trigger. Events are not only used as input to the system, but can also be send to
the environment from the BM or can be used for system-internal triggers. There
are many different types of events that might occur in a state-transition system,
and the following classification collects major types of events in use (compiled from
[120][255]):

Signal An event that declares an asynchronous, one-way communication signal.

Call Events that are used to imitate (a)synchronous operations. These events include
triggering an invocation of a function and delivery of the operation’s result (a
return value).

Timed It is common to reference an absolute or relative point in time as an event
(e. g. after 1 minute). If used in a relative way, this refers to the time of entry
in the state that the transition is leaving.

Deferred In some state-transition systems, events are allowed to be deferred, meaning
that they remain stored when they cannot be handled in the current state.
They are then reconsidered for transition matching upon state changes.

Change This type of event is raised each time that a previously established condition
becomes true. A change event might be revoked if the condition changes to
false before the event is consumed.

Completion Such events are raised once any activities defined as part of a state are
completed.

Failure An event type that represents a system failure. It can be beneficial to
differentiate failure events from regular events, as failure events may need to
be handled very differently (depending on the employed fallback strategy of a
system).

12

2.1 Modelling Runtime Behaviour

Input Events that are used for matching transitions.

Output Events that are generated by the state transition system. If an output
event is dispatched internally to the system, it will become an input event.
This distinction in terminology will become more clear when regarding event
transmission mechanisms in detail.

Internal Events that are used only within the state-transition system. Such events
will not be transmitted to the environment.

External These events are used to communicate with the environment.

Epsilon Notationally denoted as ε (also referred to as λ or null), such a transition
label does not specify a concrete event, but rather a successful transition
match without consuming any of the input events, given the case that no other
transition matches. Transitions that are labelled with this kind of event will
activate if no input event is available to the system.

The presented classification of events is not a strictly disjoint taxonomy (e. g. a signal
might also be an input event at the same time).

2.1.2.2 Context

For theoretical purposes, it is usually sufficient to define the model state space purely
through the model structure. In practice, this is seldom done. Execution mechanisms
use a separate data space that holds additional variables along with other information,
such as the current input event. We refer to this data space as context or session
data. It is possible to transform a context into a model structure by representing
every potential configuration of a context within the structure, but such an approach
is unsuitable for behaviour modelling. For example, a context containing a single 32
bit-wide integer value could be represented as a model containing 232 states. Clearly,
such a state explosion is impractical, hence the separation of context and structure4.

The context structure is defined by the underlying data model of an applica-
tion domain. It can range from simple, untyped {key, value} pairs to full-fledged
implementations of object-oriented (OO) information models.

As explained before, a single event label might not be sufficient to unambiguously
select the active transitions. A boolean expression can be attached to any transition,
which further affects the matching behaviour through the evaluation of context
conditions.

4On a side note: The decision for state separation impacts a possible application of pre-deployment
model-checking techniques, as the context is unavailable before execution and any context
references are therefore opaque to an evaluation.

13

2 Concepts

2.1.2.3 Guard Conditions

Once a transition has been preselected due to an event label that conforms to the
current input event supplied to the system, an optional guard condition might be
evaluated. Depending on the outcome of the conditional test, the transition is
selected (when the outcome is true) or rejected (when the outcome is false), in
which case the transition matching process continues. The syntax and semantics of
guard condition expressions are not fixed; they are prescribed through the language
that is chosen, based on the application domain. Among popular languages for
specification of conditional expressions are the Java Expression Language (JEXL)
[217], ECMA Script [231], OCL for Execution (OCL4X) [242] and the XML Path
Language (XPath) [288].

Expression languages have very different capabilities, but despite their variety,
the usual programming language constructs are supported by most of them. The
supported features include: literals, comparison operations, arithmetic operations,
boolean operations, context references and structured data types. Some languages
even employ OO principles or allow for the execution of method invocations within
an expression. It is also not uncommon to have looping constructs and branching
statements, making an expression language Turing-complete. This is due to the
fact that such languages often have a heritage of general programmability, with the
formulation of conditional expressions being only a part of it.

2.1.3 Executing Actions

If one would capture every detail of system behaviour on a model level, it would
hardly be justified to refer to models as an abstraction of the actual behaviour. In
such a case, BMs would become glorified programs, detailing the computational
algorithms employed. We want to hide the extensive programmatic details needed to
encode system behaviour on a platform within a Functional Components (FC) and
to trigger the FCs from behaviour logic encoded in the model. This is accomplished
through the use of actions (sometimes also called effects). Actions are attached to a
transition and execute once the transition successfully matches. Most BM formalisms
support specifying actions that are not executed when a transition fires, but when
entering, exiting or while staying in a state.

The syntax for specification of actions depends on the application domain. In
the simplest case, they take the form of procedure call statements known from
imperative programming languages, e. g. function(1st parameter, 2nd parameter,

...), with the parameters supplied as literals or context references. To allow for
passing of return values from an FC back to the calling mechanism, it is common
to provide context assignment statements that can handle the return value, i. e.
var := function(...). For convenience, it is possible to allow for more complex
expressions, either as parameters for a call to an FC or as the action itself. The

14

2.1 Modelling Runtime Behaviour

exact nature of interaction between actions and FC depends on the technology used
for implementing FCs (e. g. by using a dynamically bound library, remote service
invocation, method call on an object, stored database query, etc.). Figure 2.3 shows
an example for a BM that counts to ten using the invocation of an increment function
with a reference to context variable a.

Count to 10

count [a < 10] / increment(a)

a is 0 a is 10
[a = 10]

Figure 2.3: Example for a simple counter

Note the syntax structure for the label on the self-referencing transition: the event
name comes first, followed by the guard condition in square brackets and the action
statement after a separating forward slash. Basic actions like the incrementation of a
are commonly specified directly using the expression language, which then serves as
glue-code between FCs and the model structure. The final transition in the example
is an ε-transition, triggering as soon as a has reached a value of 10.

If not mentioned otherwise, we consider a single action trigger as executing
synchronously with the calling mechanism. In the case of an FC execution, it is
required that no context is shared with the model, except through parameter and
return value passing. The functionality called by the action is regarded as a black
box; it is opaque to the triggering mechanism.

One of the most basic actions is the sending of one or more output events. In fact,
this action can be generic enough to be used for execution of arbitrary functionality
through the dispatching of suitable command events. Such an approach relinquishes
all “procedure-call” characteristics in favour of a pure message-based communication
approach and can be beneficial in environments that strictly de-couple FCs and BMs;
for example, in cases where the underlying hardware supplies several concurrent
functional execution units.

The concept of a transition that is selected by an event, activates at a positive
condition evaluation and executes an action as a result is one of the most basic
building blocks not only for state machines, but for event driven architectures in
general. In the wider field, this concept is known under the term Event-Condition-
Action (ECA), with applications in Policy-Based Management (PBM) [32, 122],
Active Databases [60] and Rule-Based Programming [211]. State Machines add an
additional level of structure by enabling the composition of ECA structures, for
example by aggregation or parallelisation.

15

2 Concepts

2.1.4 Creating Structure by Composition

As previously established, state machines can be used to break down complexity by
creating a model that defines triggers on a set of FCs. Although this makes it possible
to greatly reduce the effort involved in understanding a system behaviour, a single
abstraction step might not be enough to allow individuals to comprehend and manage
a system’s behaviour. In addition to conventional automata theory, statecharts
introduce two further features, which can be employed to reduce complexity in a
model: composition and parallelism.

A compound state consists of a set of states, which is combined under a single
symbol. This process is also commonly referred to as composition, nesting or
aggregation of states. Applying composition to a BM defines a hierarchy of states,
where the most abstract state is at the root and the most concrete ones are at the
leaves of a tree. Figure 2.4 shows an example of state composition using a structural
model for a door.

Open

Door

Locked Unlocked

Closed

Door
Closed

Open Locked

Unlocked

Figure 2.4: Composition of states: two views of a structural model for a door

Shown is a hierarchical view of states (left) and a containment view (right). The
root state Door is composed of two substates Open and Closed. The Closed state
is composed of two substates Locked and Un-locked. In this figure, the compound
states are emphasised using a dashed outline. It is common to specifically mark
compound states to differentiate them from atomic, non-compound states5. Both
views are equivalent.

By representing a BM as a black-box that can be entered and exited like a state,
a sub BM can be integrated within another (super) BM. To re-use common BMs, it
is possible to specify partial models that can serve as building blocks and that can
be integrated with other models. The idea is simple: a suitable subset of states is
selected (a partial model) and all transitions that leave or enter this set are identified.
The state set can then be re-used in another model by re-connecting these transitions.

5This is mostly important when using graphical tools for description of BMs, as visual clues are
necessary to tell atomic states apart from compound states with hidden substates.

16

2.1 Modelling Runtime Behaviour

It is also necessary to determine which part of the context and which events are used
by the partial model to later re-instantiate these in the context of the new model.
To mark the transitions that leave or enter a partial model, two new pseudostates
are introduced.

Door
Closed

Open

Locked

Un-locked

Broken

close

open

opened
by force

lock

unlock

Closed Door

Locked

Un-locked

open

opened by
 force

lock

unlock

Closing

Opening

Burglary

Figure 2.5: Example for breaking-out a partial model using entry and exit points

When breaking-out a partial model from an existing behaviour, the transitions
that are leaving the partial model are assigned new destinations; these are referred
to as the exit points of the partial model. In a similar fashion, incoming transitions
to the partial model are assigned new source states, the entry points of the partial
model. As partial models can have many entry and exit points, it is common to
identify these by names. Figure 2.5 exemplifies the breaking out of a partial model
(on the right side) from an existing BM (shown on the left side). This example
is an extension of the door model with an additional state Broken that is entered
when a locked door is opened by force. The partial model state set consists of the
Closed compound state and its substates. When breaking-out a compound state, it
is only possible to select complete trees of the composition hierarchy for a partial
model. Entry pseudostates are usually depicted using a circular symbol, while exit
pseudostates are marked by a circle with a cross. Both carry symbol names that
help to identify the state change that the transition implies. The Closed Door
partial model can be re-used by inserting it into a different BM and by connecting
transitions with all of the entry and exit points.

2.1.5 Manipulating the Control Flow Cardinality

Statecharts enable the specification of more than one control flow where a control
flow is understood as an independent series of state changes. Concurrently executing
control flows are enabled through Parallel Regions (also referred to as Orthogonal

17

2 Concepts

Regions, Parallel Components or Concurrent Regions). We differentiate between
active and dormant parallel regions. A system is in a number of concurrent states
equal to the number of active parallel regions at any given time. Parallel regions are
dormant by default; they are activated when entered by the control flow and dormant
when the control flow leaves the component. Parallel regions are always grouped by
a mutually shared superstate, but if the superstate is left, then all contained parallel
regions are dormant. There are a number of features in the form of pseudostates
that enable the description of concurrent control flows with parallel regions.

A terminal pseudostate forces all control flows of a BM to an end once it is reached
and terminates all activities that are currently executing. It is semantically similar
to a BM reaching the final state configuration, but in a less coordinated fashion as
other control flows are not allowed to finish properly. A fork pseudostate enables
splitting a single control flow into two or more concurrent ones. It is used as the last
state before entering a number of parallel regions. The counterpart of fork is the
join pseudostate, which is used to combine multiple control flows into a single one.

An example, employing both join and fork constructs, is shown in Figure 2.6. It
models the behaviour of a person counting and dancing at the same time using a
superstate called Active.

Active

Counting

count / a := a+1

Dance Pose

after 10 min.

Fork

 / a:= 0
Bored Happy

Join

[a >= 1000]

Figure 2.6: Example for parallel behaviour

A fork pseudostate splits the control flow into two orthogonal behaviours: counting
and dancing. Note that only the single incoming transition to the fork pseudostate
carries a label. Once this transition activates, the Active state (and all contained
parallel regions of the Active state) are entered. Exiting the Active state is done via
the join construct, as long as 10 minutes of dancing are completed and the person
did count to at least 1000. The fork pseudostate is also restricted, as only the single
outgoing transition can be labelled. The outgoing transition is only activated when
the system is in each of the source states of the incoming transitions. In our example,
the system needs to be in the states Counting and Pose at the same time for the
transition to be selected. If in this case the variable a is also greater or equal to 1000,
then the transition will be activated and the states will be left.

18

2.1 Modelling Runtime Behaviour

2.1.6 Remembering Control Flow State

The last feature that we will discuss concerns the history pseudostate. This feature
can be used in conjunction with compound states to store an active state configuration
when leaving a compound state. Figure 2.7 shows a BM for a person reading an
article while eating a sandwich. In case that the person finished reading the article,
the model goes from state Reading Article to state Article Read. In a similar fashion,
an empty plate signals the model to change from Eating Sandwich to the Sandwich
Gone state. Once both activities are complete, the model is left via the join transition.
At any time during the execution, the model can be in one of three combinations
defined by the innermost states (Reading Article and Eating Sandwich; Article Read
and Eating Sandwich; Reading Article and Sandwich Gone). During the BM execution,
the state Reading & Eating can also be left through a transition that fires on the
reception of a phone rings event. In this case the person stops the current activities
and answers the phone. On hanging up the phone, the person resumes the activities
that were carried out beforehand.

Reading & Eating

Reading
Article

Eating
Sandwich

article
finished

plate
empty

Article
Read

Sandwich
Gone

Bored &
Hungry

Educated
& Full

Answering
PhoneH

phone rings

hangs
 up

Figure 2.7: An example for remembering state configurations

The model describes this behaviour by entering the Reading & Eating state
through a history pseudostate (denoted by a circle enclosing the letter H). The
history state establishes the control flows as well as the state configuration that was
in effect at the time that the superstate was left.

History pseudostates need to be taken with a pinch of salt: as they only restore
the control flow state, it is up to the modeller to make sure that there are no
side-effects regarding interaction with the context or with FCs when re-entering a
state configuration.

19

2 Concepts

2.2 Interpretation of Behaviour Models

We already stated before that the interpretation of BMs at runtime is fundamentally
different from BM execution that employs code generation. With code generation,
a traceable relationship between the executable representation (e. g. parts of an
application binary) and the original model elements, which were used to generate
the executable artefacts, is not given. Therefore, it is difficult to adapt the system at
runtime. Often the only solution is to stop the currently running system instance and
to restart the system with a different binary executable. With BM interpretation, the
runtime format of the executable model is kept, and changes can be applied directly
to the model at runtime. To demonstrate the differences between the two approaches,
we are employing Figure 2.8, that shows the diverse formats and artefacts employed
during BM execution, together with the relations between them.

R
ep

re
se

nt
at

io
n

Pe
rs

is
te

nc
y

R
un

tim
e

XMI
Files

UML
Diagrams

Ecore

Model

GUI
Elements

Configuration
Files

Platform
Bindings

Execution
Specification

*.java
Files

Java
Source Code

Java
Classes

Source Code

Hexdump

*.class
Files

Bytecode

Binary
Executable

+

Figure 2.8: Formats and exemplary artefacts used with BM execution

The diagram is structured horizontally and vertically. While the three, grey-shaded,
horizontal boxes represent the three different classes of employed formats, the four
vertical boxes, depicted using dashed lines, represent the four different types of
artefacts. For each combination of artefact type and format class, we are providing a

20

2.2 Interpretation of Behaviour Models

concrete, exemplary artefact format, e. g. a typical Source Code Persistency format
are *.java Files. The three different classes of formats are listed below.

Representation Formats solely exist in a human-readable form and are used for
creation, visualisation and modification of system behaviour.

Runtime Formats are in-memory formats: they are used to hold the necessary
information that allows runtime mechanisms to operate on a behaviour specifi-
cation.

Persistency Formats are conventions on how to persistently store system behaviour
information on mass storage media.

When using BM execution, the system behaviour goes through a number of
phases from specification to execution and each phase employs specific artefact types.
Artefact types of a single phase are kept closely synchronised. A change in one of
them will trigger corresponding changes for artefacts of the two other format classes.
For representation formats this happens implicitly, for example through the signalling
in a Model View Controller (MVC) [75, p. 300] architecture, whereas for persistency
artefacts it is common to explicitly trigger the alignment as part of the conversion
process, e. g. during load or save operations of a BM. The four different artefact
types are listed below.

Model Artefacts describe the behaviour encoded by a BM, without specifying
how the behaviour relates to an execution platform. An example are UML
Behavioral State Machines that are represented as UML diagrams to a user,
stored in the Ecore in-memory format of the Eclipse Modelling Framework
(EMF)[278] and serialised for storage using the XML Metadata Interchange
(XMI) format.

Execution Specification Artefacts provide the necessary information to bind a BM
to a concrete execution platform. For example, these could be Graphical User
Interface (GUI) elements that allow a user to specify and configure the employed
FCs. The Execution Specification artefacts complements the Model artefacts
and together they carry sufficient information6 to interpret a BM at runtime.

Source Code Artefacts are created using code generation with the platform inde-
pendent Model and the platform dependent Execution Specification as input
to the transformation mechanism. They are a representation of the BM in a
programming language, e. g. Java [266].

6This fact is highlighted by the bolder outlines of the corresponding artefacts in the diagram.

21

2 Concepts

Binary Executable Artefacts are necessary for executing the transformed BM on a
target platform. The Source Codes are compiled to a format that is native to
the execution platform. For example, Java source code is compiled into Java
Bytecode [247, Chapter 4], which can be executed by a Virtual Machine (VM).

The Interpretation of BMs uses two Runtime formats: Model and Execution
Specification. This approach maintains the model structure during execution. In
contrast, BM execution that is based on code generation introduces a number of
additional artefacts. The code generation process first transforms the model into
Source Code, which is then compiled into Binary Executable artefacts. Although
these transformations result in an execution mechanism that performs better, due to
closer bindings to the execution platform, they effectively prevent model adaptation
at runtime. Should a modification of the model or the execution specification take
place, the code generation transformations need to be re-applied and the resulting
Binary Executable artefacts would need to be re-deployed, necessitating a system
restart. The benefit of BM interpretation is that it only relies on the closely linked
Model and Execution Specification artefacts and modifications can thus be directly
applied to the executing model during the runtime of the system, without the need
for transformations or generation of further artefacts.

2.2.1 Initialisation from Model Specification

At the start of a BM interpretation process, BM specifications are usually provided
in a Model Persistency format to the interpreter. The interpreter has to first parse
the given format in order to construct a runtime representation of the BM, which
is a task that is normally accomplished through libraries, provided as part of the
Runtime or Persistency format implementations. At this stage, a check of the BM’s
syntax is employed, to make sure that a BM conforms to the declared Runtime
format.

After successfully creating an in-memory, Runtime representation of the model,
an interpreter has to make sure that all dependencies of the model are met. This
includes satisfaction of dependencies regarding any required resources (such as FC)
as well as parametrisation of the model and setting up of support for the expression
language used in guard conditions and action statements.

To determine the resource dependencies of the model, an interpreter has to analyse
the transition labels found in the BM for use of platform resources in the guard
condition or action expressions. The interpreter can also make sure that these
resources are available, i. e. that all necessary FCs have been instantiated from
storage. An alternative way for dependency resolution is to explicitly provide the
dependencies as part of the BM specification within the Persistency format. An
example of this technique is the use of the UML ElementImport feature to define
the platform bindings. In this case, the interfaces to the platform and of all of the

22

2.2 Interpretation of Behaviour Models

utilised FCs need to be modelled within the UML, as well. If the dependencies
are gathered implicitly from the transition labels, a suitable query language for
the Model Runtime or Model Persistency formats provides an advantage here.
For EMF, there is an in-memory query language provided under the name Model
Query. For the Persistency format, an XPath statement could be used to isolate
the necessary statements. Once the transition labels have been isolated, they need
to be analysed within the context of the employed expression language to identify
statements that rely on platform bindings, e. g. the invocation of an FC.

Resolution of the required platform dependencies is only a part of the initialisation
process. BMs might also require the manual specification of model parameters. For
example, if a BM is used to query a remote service that requires user credentials
for authentication, these credentials need to be provided to the BM interpreter
as parameters at initialisation time. The result of the initialisation process is a
Runtime Model with a matching Execution Specification that specifies the resource
bindings to the execution platform, along with a binding of values to required BM
parameters. Before commencing interpretation, an interpreter has to prepare the
runtime system by creating a BM instance. The interpreter needs to allocate and
initialise context data objects, hook up communication channels for internal and
external event transmission, create message queues for buffering events, create the
bindings to instances of FCs and set up the runtime data structures for managing
the active and historical BM state configuration.

2.2.2 Event Processing

Once an Execution Specification has been provided and the BM has been instanti-
ated, processing of the BM can start. Interpretation of the model occurs step wise,
with the model returning the control flow to the interpreter after each step. A single
step is triggered by an external event and processed completely, including all raised
internal events, before the next external event is retrieved — this is known as the
RTC semantics [255, p. 565] [289, Appendix B]. The following text describes event
processing in detail, but leaves out the specifics of event dispatching and transmission,
which are covered later (in Section 2.2.6).

RTC Semantics A general algorithm for processing events using RTC is given
as pseudo code below (Algorithm 1 describes the RTC step and Algorithm 2 the
selection of an enabled transition), note that ∅ marks the null element.

At the beginning of each RTC step, an event is received from the environment and
added to the tail of the event queue (line 2). The getNextExternalEvent() operation
does not return until an external event is available and interpretation of the BM is
suspended until then. Once an event is available, the interpreter will continue to
process all events in the queue (lines 3–13). In each iteration, an event is removed
from the queue and stored in a local variable (line 4); the algorithm then proceeds to

23

2 Concepts

Algorithm 1 Stepwise processing of events with RTC semantics

1: loop
2: eventQueue← getNextExternalEvent()
3: while eventQueue.size() > 0 do
4: event← eventQueue.removeHead()
5: for all activeState : ActiveStateConfiguration do
6: transition← selectEnabled(activeState, event)
7: if transition 6= ∅ then
8: exitStates(transition)
9: execute(transition)

10: enterStates(transition)
11: end if
12: end for
13: end while
14: end loop

determine transitions that are enabled by the given event. When a runtime model
contains active parallel regions, the active state configuration will consist of one
state per active parallel region. Transitions can be enabled for each of these active
states; therefore the interpreter processes each of the active states separately (lines
5–12). For every active state, the interpreter selects up to one enabled outgoing
transition. The algorithm for selecting an enabled transition is given as Algorithm 2
and explained below.

Once the interpreter is able to determine an enabled transition, the transition
is triggered and will be fired (lines 8–10). Firing a transition consists of exiting a
number of states, execution of optional transition behaviours and entering a number
of states. It is important to realise that a large number of states can be exited
and/or entered with one transition. When exiting a leaf state in a BM instance, an
interpreter might need to exit a number of super states, as well as enter into nested
states within a hierarchy of new states, e. g. when the transition leads to a disjunct
part of the composition hierarchy of states. There are also some specific pseudostates
(e. g. History) that require a number of subsequent states to be entered within a
single transition. Entering and exiting states can be complex operations and their
functionality depends on the set of features available to the BMs. Usually, these
operations execute an optional behaviour and update the active state configuration.
Exactly which states are exited or entered depends on the source and target states
of a transition and their position in the composition hierarchy of the BM. This will
be explained after detailing the selection algorithm of the selectEnabled() function.

The algorithm for selection of an enabled transition goes through all of the outgoing
transitions of a given state (lines 2–6), in an order that is determined implicitly by
the in-memory storage format of the BM. Each transition is checked to see if it is

24

2.2 Interpretation of Behaviour Models

Algorithm 2 Selection of an enabled transition

Require: state, event
1: while state 6= ∅ do
2: for all transition : state.getOutgoingTransitions() do
3: if transition.isEnabled(event) then
4: return transition
5: end if
6: end for
7: state = state.getParent()
8: end while
9: return ∅

enabled by the current input event. Again, this test depends on the features of the
implementation and can be quite complex. As a minimum, an interpreter would
check if the transition is triggered by the given event and evaluate an optional guard
condition. Once an enabled transition has been found, it is returned to the caller
(lines 3–4). If there is no outgoing transition enabled for a given event, we are not
finished with processing: outgoing transitions of superstates might also be enabled.
The algorithm therefore needs to re-iterate through the tests for every superstate
found from the initially given state, up to the composition hierarchy root (lines
1–8, with the modification of the current state in line 7). In case that no enabled
transition is found, the null element is returned. Processing semantics prescribe that
a single active state can have at most one active outgoing transition. Algorithm
2 uses an implicit prioritisation based on the definition order of transitions in the
in-memory storage format, together with a bottom-up traversal in the composition
hierarchy to solve the issue of conflicting transition.

A Note on ε-Transition Loops Line 3 of Algorithm 1 decides on the termination
of the inner loop, which processes a single, internal step of the BM. In the case of
transitions triggered by completion events, it is possible that a cycle of ε-transitions
is entered and the step function would never return. Imagine a state A left by an
ε-transition to State B. State B has an outgoing ε-transition leading back to the
state A. As soon as one of these states is entered, it will add a new completion event
to the event queue, which keeps the internal loop running and the BM oscillating
between the two states A and B. This is called a “life-lock”, as the while loop will
continuously be executed without termination. Life-locks can be avoided by means
of model construction, but we also found an engineering solution by introducing a
second queue for outgoing internal events, which is drained to the event queue after
each step is completed. One also needs some additional logic to determine if both of
the queues are empty when making the potentially blocking call in line 2.

25

2 Concepts

Determination of Entered and Exited States The state-transition paradigm
seems to be simple, but when combined with state composition, it can become
complicated to determinate the set of entered and exited states. Figure 2.9 depicts
the major variants of transitions between states embedded in a composition hierarchy.

A

B F

G

C

D

E

1

2

3

13

14

6

7

8 9 10

11

12

4

5

15

16

Figure 2.9: Variants of transitions between compound states

The Diagram displays a single active state C, within a composition hierarchy.
Although the syntax is UML, we abstain from showing any pseudostates that regulate
the entering of control flows within compound states (e. g. initial). For our conclusions,
it is only necessary to be aware of the position of source and target states within the
composition hierarchy. That being said, it is good to keep in mind that the set of
entered and exited states might be modified during transition execution, depending
on encountering certain pseudostates.

When determining the sets of exited and entered states, both an identification of
the state itself is needed as well as an ordering between states needs to be established.
During exit, states that are located nearer to the composition tree leaves (lower in
the hierarchy) are exited first. During entry, states that are located nearer to the
composition tree root will be called before the ones nearer to the leaves. Table 2.1
shows the source (SRC) and destination (DST) states for the 16 transitions of Figure
2.9, together with the exited and entered states in correct execution order.

26

2.2 Interpretation of Behaviour Models

No. SRC → DST Exited States Entered States

1 C → D C D
2 C → E C D, E
3 C → C C C
4 C → F C, B F
5 C → G C, B F, G
6 C → B C, B B
7 C → A C, B, A A
8 B → A C, B, A A
9 B → E C, B B, D, E
10 B → B C, B B
11 B → F C, B F
12 B → G C, B F, G
13 A → B C, B, A A, B
14 A → C C, B, A A, B, C
15 B → C C, B B, C
16 B → D C, B B, D

Table 2.1: Entered and exited states for the transitions in Figure 2.9

All of the transitions shown are considered external transitions (see pages 210 ff. in
Appendix A). Internal transitions neither exit nor enter states. Local transitions
exit and enter states in a similar fashion as external transitions, but do not consider
the direct SRC or DST state depending on its position in the composition hierarchy.
When trying to classify the different transitions, we can identify three different
groups, as detailed below. We discovered, that within these groups, we can determine
the execution order of the entered and exited states solely by calculating a range
of states along a single path between two nodes in the composition hierarchy. For
calculation of these ranges we will also need the notion of the current (CUR) active
state, which in our example is always C and the concept of a least common ancestor
(LCA). The LCA is the lowest node in the composition hierarchy, which is parent to
both SRC and DST.

Source state is a superstate of destination or both states are the same This
constraint is valid for transitions 3, 9, 10, 13, 14, 15 and 16. The exited states are
then given by the range [CUR, SRC] — whereas each state is only allowed to be
included once into this list. For example, if CUR := C and DST := C, then exited
states = [C]. The entered states are given by the range [SRC, DST].

Destination state is a superstate of source This constraint is valid for transitions
6, 7 and 8. The exited states are calculated using the range [CUR, DST]. The entered

27

2 Concepts

state is always only a single element [DST] and any further nodes would need to be
added according to the various pseudostates that regulate the initial entry to a state.

Source and destination states are in disjoint parts of the hierarchy This con-
straint is valid for transitions 1, 2, 4, 5, 11 and 12. For the calculation of the range,
one needs to first determine the LCA, which is B for transitions 1 and 2; and A for
transitions 4, 5, 11 and 12. The exited states are then given by the range [CUR,
LCA[and the entered states are calculated by]LCA, DST] — the reversed brace
symbol is used to indicate that the LCA is excluded from the calculated range.

2.2.3 Concurrency

Concurrency aspects in BM interpretation can be distinguished in two distinctly
different classes: the parallel interpretation of multiple BMs and the concurrent
execution of control flows within a single model.

Behaviour Model Parallelism Depending on the use case, a single program might
be applied to interpret multiple BMs in parallel. Concurrency issues within this kind
of approach can be solved with mechanisms for conventional multi-threaded program-
ming. For an introduction, see the section on thread synchronisation in the “Advanced
Programming in the UNIX Environment” book [181, Section 11.6] and the concur-
rency and synchronisation patterns from the 2nd volume of the “Pattern-Oriented
Software Architecture” (POSA) series [169]. An example of such mechanisms has
already been encountered within Section 2.2.2: the blocking getNextExternalEvent()
operation in Algorithm 1, used to separate a synchronous process (the RTC step loop)
from an asynchronous one (receiving an external event). In reactive event systems,
queues are typical data structures for this kind of task. Event dispatching between
environment and BMs constitutes one of the situations that calls for synchronisation
between threads of otherwise unrestrained parallel execution. An implementation of
synchronisation mechanisms might also be needed when accessing shared resources,
such as global variables in the BM context or mutually utilised FCs.

Generally speaking, the interpretation of BMs is a task that is well suited to
parallelisation, due to the low and well-defined number of synchronisation points
between models, although there are constraints regarding the event dispatching
mechanism. The dispatcher usually executes in a single thread. Should the overall
time for dispatching the event to the separate execution threads take longer than
the time that it takes a single thread to execute a RTC step, then this dispatching
thread will determine the overall speed of execution, independent of the number of
concurrent threads that will process the BMs. Such a situation might occur when a
larger number of BMs are supplied with the same external event. We cannot devise
a one-size-fits-all concept for efficient parallel interpretation of behaviour models, as

28

2.2 Interpretation of Behaviour Models

there are too many factors influencing the performance, e. g. the underlying hardware
architecture, the feature set of the interpreted BM formalism, the BM structure, the
frequency of dispatched events, etc. Some of these factors will be explored in the
following chapters in the context of concrete interpreter implementations and use
case studies.

Concurrent Control Flows Within a Single Model The second form of parallelism
that we discuss concerns the execution of parallel regions in a single BM. Each active
region within a BM corresponds to one control flow with a single active state. One
might be tempted to also model control flows with a thread model to facilitate
the parallel processing capabilities of an underlying platform, but we found that
this approach fits badly to the reactive, RTC semantics used for state machine
execution. To reach a quiescent state of the system between each processing step, all
threads would need to be synchronised at the beginning and at the end of each step.
Furthermore, parallel control flows in a single model are much closer coupled than
concurrently executing BM instances, because they are relying on the same execution
specification. For example, they will access the same input event7 and use the same
context data. For these reasons, the processing of parallel control flows should be
done in a sequential manner. This course of action is feasible, as the execution order
of orthogonal control flows should be irrelevant, as long as model consistency is given
at the end of each interpretation step.

Maintaining a set of active control flows during model interpretation is a non-trivial
task, as BMs can include elements that explicitly or implicitly influence the set of
active control flows during a step. BM features that can influence the control flow
are the following ones:

Final states and terminal pseudostates Final states will trigger a termination of
a control flow on entering. Terminal pseudostates will trigger a termination of
all control flows within the current BM.

Fork constructs A fork node splits a single control flow into n parallel ones. The
current control flow continues in one of the forked target states and n+ 1 new
control flows are created. Alternatively, fork terminates the current control flow
and creates n new ones. We refer to the first option as having retained control
flow continuation semantics, whereas the second option exhibits separated
continuation semantics.

Join constructs Join nodes merge n control flows into a single one. One of the
control flows continues in the target state, while the other n− 1 are terminated
(retained continuation). Alternatively, all n control flows are terminated and a
single new one is created (separated continuation).

7As long as one does not employ per-control-flow event queues with event duplication during
dispatch

29

2 Concepts

Transitions entering or exiting orthogonal states Such transitions trigger an im-
plicit creation, respectively termination of the control flows corresponding
to the parallel regions of the orthogonal state. BM formalisms that do not
have fork or join features solely rely on this for handling concurrent control
flows (e. g. SCXML). Fork or join constructs might also be mixed with implicit
control flow modifications (e. g. a fork that only enters two parallel regions of
an orthogonal state containing three regions — the third parallel region would
be entered implicitly via an initial pseudostate).

Shallow or deep history constructs Upon re-instantiation of previously captured
history information, a number of control flows might be created, leading to
different active states in the composition hierarchy. A precise semantics for
doing this is prescribed by the “temporal fork” concept of A. Derezińska and
R. Pilitowski [52], who propose to enter these active states as if through a
fork construct with outgoing transitions ending in each of the active states to
restore.

Apart from the calculation of the set of active control flows and the engineering task
of supporting the dynamic adaptability of this set during execution of a processing
step, there is another issue that needs to be considered when implementing model
interpreters that support control flow concurrency, which is the correct determination
of entered and exited states. Section 2.2.2 describes finding the correct number and
order of states to exit and enter for a transition leading from a single source state to
a single destination state. Unfortunately, with control flow concurrency, this is not
correct anymore. Transitions might leave multiple source states and might end at
multiple target states. The task to determine the number and order of entered and
exited states becomes more difficult, as it is not possible to determine the correct
solution merely by examining single transitions. Take, for example, Figure 2.10.

There are two transitions leading from States C and D to States F and G via join
and fork pseudostates. The calculation of exited states, when carried out for each
of the transitions separately, leads to the results C, B and D, B. This is wrong, as
State B should only be left once, even though this seems to be counterintuitive to
the diagram’s syntax. We found that a solution to this problem can be achieved by
following a divide-and-conquer approach. One starts by determining the active state
configuration Cactive, as well as the target state configuration Ctarget. We define a
state configuration as an N -ary tree with states as nodes.

The active states form the leaves and the LCA of all active states defines the
root of the tree. Cactive constitutes the state configuration before the current step,
whereas Ctarget reflects the state configuration after the current processing step
finishes. Figure 2.11 shows both the active as well as the target state configuration
for the example depicted in Figure 2.10.

After determination of the two state configurations, it is possible to establish
the overall exited and entered states by means of an exclusive or operation (we

30

2.2 Interpretation of Behaviour Models

A

E

F

G

B

C

D

H

Figure 2.10: Which states should be entered or exited?

use the symbol ⊕ to denote this) between the two trees; exited states are given by
Cexit := Cactive⊕Ctarget, entered states are calculated using Center := Ctarget⊕Cactive.
Cexit can be determined as the configuration depicted in the emphasised part (bold
outline) of the state configuration of Cactive in Figure 2.11 and Center is emphasised
in the Ctarget configuration, respectively.

A

B H

C D

A

E H

F G

Cactive Ctarget

Cexit Center

Figure 2.11: Active and target state configuration for Figure 2.10

31

2 Concepts

Algorithm 3 Calculating ⊕ for two state configurations

Require: OverlapStartNode,Result, F lag = false (global)
Require: FirstNode, SecondNode (local)

1: if FirstNode = SecondNode then {Conjunct part of the tree}
2: if FirstNode = OverlapStartNode then
3: Flag = true
4: end if
5: if Flag then
6: {Append current node to result tree and set as new leaf}
7: Result.children← shallowCopy(FirstNode)
8: Result← Result.getSimilarChild(FirstNode)
9: end if

10: {Continue with children of current node}
11: for all FirstChild : FirstNode.children do
12: if SecondNode.hasSimilar(FirstChild) then
13: {Node does exist at second node}
14: SecondChild← SecondNode.getSimilarChild(FirstChild)
15: Re-enter with FirstNode← FirstChild, SecondNode← SecondChild
16: else
17: {Subtree does not exist at second node}
18: Result.children← deepCopy(FirstChild)
19: end if
20: end for
21: else {Disjoint part of the tree}
22: Result.children← deepCopy(FirstNode)
23: end if

We implement the ⊕ operation according to the re-entrant Algorithm 3. The
required arguments need to be initialised as follows: The argument FirstNode holds
the root of the state configuration that is used as first operand, SecondNode references
the root of the second operand state configuration. Result needs to be initialised
with an empty node; it will contain the result of the operation upon completion of
the algorithm. The arguments OverlapStartNode and Flag are used to take care
of cases where a transition is self-referential within a composition hierarchy. With
compound states, a self-referencing transition is not only a transition that leads back
to the source state, but also each transition that leads to a superstate or substate of
the source state.

Generally, the algorithm performs a top-down traversal of the state configuration
tree, composing a new result tree consisting of the nodes of the first given tree, as
long as they are disjoint to nodes in the second tree. Thus, if OverlapStartNode is
not set, the algorithm discards all overlapping parts of the state configuration tree.

32

2.2 Interpretation of Behaviour Models

When the argument is initialised with a node, the algorithm includes overlapping
parts of the tree from the position of the OverlapStartNode downwards in the Result
state configuration. OverlapStartNode needs to be initialised with SRC when DST is
a substate of SRC, and to DST when SRC is a substate of DST.

By a subsequent partitioning of the two resulting state configurations Center and
Cexit into disjoint fragments that correspond to a single control flow each, one not
only obtains a set of paths that each begins and ends in a single state but has
also determined the control flows that need to terminate and the ones that need
to be created. The employed partitioning algorithms depend on the control flow
continuation semantics and can also take the form of a simple tree traversal. E.g.,
for a retained continuation semantics, we successfully used a depth-first traversal
strategy. Results for a control flow partitioning of the BM shown in Figure 2.10
could be the following:

Using separated continuation semantics An existing flow that exits C and termin-
ates; an existing flow that exits D and terminates; a newly created flow that
exits B, enters E and terminates; a newly created flow that enters F; and a
newly created flow that enters G.

Using retained continuation semantics An existing flow that exits C, exits B,
enters E, enters F; an existing flow that exits D; and a newly created flow that
enters G.

2.2.4 Expression and Action Evaluation

BMs use conditional expressions and action statements. When evaluating a condi-
tional expression, an interpretation process will need to return a boolean value and
is only allowed read access on the context. Contrary to this, the interpretation of
actions will usually change the runtime state and does not return values. Conditional
expressions are merely used for guard conditions, whereas actions can be used in
several places: when entering, staying in or exiting states, when firing a transition or
as part of an initialisation or shutdown behaviour.

The characteristics of languages that can be used to specify expressions and actions
within a BM are different from the characteristics of the languages used to express the
BM structure itself. Both language types have different focuses: the BM structure is
used to orchestrate functionality by defining the ordering and dependencies between
function invocations, whereas expressions and actions are used for calling functions
and performing arithmetic. A BM language does not only need to encompass these
two unlike aspects but will also need to integrate them with a given data model
and its particular type system. It would be possible for an interpreter to support
the usage of different combinations of languages and types systems but as pointed
out in Section 2.1.2.3, expression and action languages are usually prescribed by

33

2 Concepts

the application domain in which a BM will be used. The same applies for the data
model.

Automated expression evaluation is one of the core areas of computer science.
There is a large body of existing work regarding the design and implementation of
expression evaluators for a variety of language types and technological platforms.
We will therefore not investigate expression evaluation mechanisms any further in
this chapter, but will concentrate on the aspects of integrating them with a BM
interpreter. We mostly refer to the “dragon books” [3] when implementing evaluation
mechanisms.

One has to always keep in mind that conditional expressions might be evaluated
many times by the interpreter, while trying to determine an enabled transition. When
designed carelessly, these evaluations can drastically impact the runtime performance
of the overall BM. For example, the XPath language has features, which make it
easy to unintentionally construct expressions that will traverse large parts or even
the complete context, during each evaluation of the expression.

Although actions, as well as conditional expressions, could theoretically be complex
programs, we recommend keeping them concise. Once an expression starts to resemble
an algorithm, e. g. by using loops, rather than just a simple function call, test or
assignment, it should either be moved to a dedicated FC or split into several steps
and integrated with the BM structure. The choice for relocating a functionality to
an FC also depends on the aspired visibility of the statement; it would be hidden
from the model designer when integrated with an FC and otherwise visible (and
modifiable). Keeping the model free from complex expressions helps understanding
and visualising BMs.

The Role of the Native Interpreter Language From a performance point of
view it would be ideal to use the same language for expressions as the one used to
implement the interpreter, since actions could be directly bound and expressions
would be interpreted natively. But there are downsides to such an approach; from
a security perspective, there is a bigger potential vulnerability of the execution
platform. Unless expressions are executed in a sandbox environment without access
to the interpreter runtime, they would use the same local address space as the
interpreter and could easily crash or influence the program itself. Furthermore, the
native language syntax and semantics might not be well suited for BM designers,
who are working on a different abstraction level than application programmers.

Using the interpreter implementation language for expression evaluation is trivial
if the interpreter is programmed in such a language itself. The interpreter process
could then utilise appropriate language features to directly execute the particular
character sequences that make up expression statements. For example, both Ruby
[249] and Python [284] provide an eval(...) statement that evaluates a given string
as a conditional expression defined in the respective language.

34

2.2 Interpretation of Behaviour Models

For compiled languages, following such an approach is either very hard or not
possible at all, as linking is done statically, before the interpreter process begins
execution. This is different for languages that are using an intermediary representation
format, like Java bytecode or the Common Intermediate Language (CIL) [233,
Partition III]. As these technological platforms support late binding, it is possible to
compile and bind expressions at runtime.

2.2.5 Functional Components

FCs provide functions (sometimes called services) of a platform to BMs. When
regarding BMs as an abstraction, this is where one would “hide the details of what
is being abstracted”. FCs are not limited to certain types of functions, but typically
cater for technical concerns, like communication protocols, hardware control or data
conversion. Providing two places where behaviour can be defined (an FC and the
BM itself) also has administrative implications; FCs should only be created by
programmers familiar with the technical execution platform and they should pass
through the usual quality assurance processes before being deployed in the target
environment. We assume that this is different for BMs, since people with much less
technical insight could create these for carrying out customised tasks. There should
only be a fixed set of tested FCs available for binding with the BMs, thereby allowing
a wider audience control of a technical infrastructure, while minimising the risk for
abuse.

The creation of FCs might be carried out using any programming language or
development tools — it is only necessary to ensure that an interpreter’s implementa-
tion and an FC can interact via appropriate interfaces. We stipulate that the role of
an FC is to serve as “function libraries” for BMs, sharing the view of C. Szyperski
on the characteristic properties of components [193, p. 30]:

1. A component is a unit of independent deployment.

2. A component is a unit of third-party composition.

3. A component has no persistent state.

Characteristics 1 and 2 are central to the way that we propose BMs should be
developed; a BM designer orchestrates existing FCs, which are independently created
and maintained by system programmers. Characteristic 3 fits naturally to our
approach, as we explicitly maintain context, which could then be passed to FCs as
part of an invocation. Due to the tight coupling between an FC and the interpreter,
both should execute in the same address space. It is also possible to regard FCs
as independently executing services and some BM formalisms emphasise this by
supporting constructs for invoking remote services, but we will only examine local
communication within this thesis.

35

2 Concepts

2.2.5.1 Calling FCs Using Procedure Call Semantics

Synchronous procedure call semantics are similar to procedure calls or method
invocations as employed in higher-level programming languages. Figure 2.12 depicts
the synchronous invocation of a single function call with a number of input parameters
param 1, ..., param n from the step method of the interpreter, in UML sequence charts
syntax. The FC executes a function identified by the given procedure signature and
returns one or more output values. The interpreter’s BM step processing resumes
operation only after the return value(s) are received.

:Interpreter :Functional Component

call(param 1, ..., param n)

return value(s)

Figure 2.12: Calling a function using procedure call semantics

The thread used to execute this function is often the same as the one executing
the step function in the interpreter. Consequently, if the given function executes for
a long time, the complete BM execution will also be blocked for the whole duration.
On the plus side, it is often possible to directly map such function calls to the native
calling conventions of the underlying platform, making them fast and the integration
simple.

Synchronous calls can also be mimicked using a purely message-based communic-
ation paradigm. In this case, there are two threads involved: one thread executes
the step method within the interpreter, and the second thread executes the function
of the FC. Synchronisation between these threads can then be done according to
the strategy in Figure 2.13. After sending an initial command event 1 with the
parameters as payload to the FC, the interpreter thread needs to be blocked, e. g. by
entering a wait() statement. The FC thread would then receive the event, process it
and send a corresponding result event 2. Upon reception of event 2, the interpreter
thread would be unblocked and continue with processing of the results contained in
the response event.

Although such an approach provides simple means of achieving synchronicity, it
can easily end up in a deadlock situation, should the corresponding response event
not appear. In this case, the interpreter thread would wait forever. A timed guard
construct can ensure that a deadlock is circumvented and an error is raised but this
only helps to identify errors and does not remove the underlying complexity (due to
the multiple threads and matching of sent & received events).

36

2.2 Interpretation of Behaviour Models

:Interpreter :Functional Component

event 1

event 2

wait()

Figure 2.13: Using events to call a function with procedure call semantics

2.2.5.2 Asynchronous Communication Between FC and Interpreter

As communication within a BM is carried out using asynchronous event transmission,
using this mechanism for function invocation is a natural solution. In this case, a
service would be triggered using an event that carries the invocation parameters as
payload. BM processing continues directly after submission of an invocation event.
The FC would then receive the event and execute an appropriate function. During
execution, a number of events might be generated, which are handled in the following
interpreter steps, using the normal event processing mechanisms. Figure 2.14 depicts
this approach.

:Interpreter :Functional Component

trigger

q:Queue

event 1

event 2

q:Queue

removeHead()

return event 1

removeHead()

return
some event

Figure 2.14: Asynchronously triggering a function

37

2 Concepts

Analogous to Algorithm 1, the event queue is modelled as a passive structure and
each interpreter step dequeues the first event stored in an external event queue (in
the example this is some non-relevant event). Subsequently, a trigger event is send
to an FC, e. g. as part of an action statement of a transition. The event carries
enough information to select and call the appropriate function, which enqueues
event 1 during its execution and event 2 at the end of it. With the next step of the
interpreter, a new event is retrieved from the queue and processed by the model. In
our example this would be event 1, which is the first of the events generated by the
FC. Using events for asynchronous function execution integrates well with the event
handling mechanism already in place, but demands more complex BMs, which need
to explicitly represent the communication between the model and FC. Interestingly,
by facilitating this approach the communication between model and FC and the
communication between distributed models can be treated in the same way.

There are also several variations of these schemes known in literature. For example,
the Common Object Request Broker Architecture (CORBA) specification defines
two additional approaches: Oneway and Deferred Synchronous [67, p. 181]. Oneway
refers to the special case, where a triggered function does not send any events in
response, at all. Deferred Synchronous is more complicated: a client triggers a
function and the control flow returns immediately. The function will now execute
in parallel and the client can retrieve the result (or inquire about the completion
status) with a subsequent event.

2.2.5.3 Key Aspects of FC

In addition to specific aspects dictated by the concrete technical foundation of a
system, we identified a number of general aspects that one has to consider when
creating FCs.

Introspectable Signatures FCs are employed as building blocks and composed
using BMs. As already known by small children, only matching building blocks can
be put together properly. To determine if an FC matches, one needs to at least
conduct a syntactical check on the signatures of the interfaces provided by the FCs.
One also has to keep in mind that even if a signature matches, there is no guarantee
that an FC fits to a model: there has to be a semantic correspondence, which is
usually established outside the interpreter, i. e. by convention.

Timely Execution FCs typically use external threads for execution of their func-
tionality, blocking the original caller during that time. For a synchronous call, this
would be the thread running the interpreter step method, and for asynchronous calls,
this would be a thread of an event dispatcher. The consequence of blocking any
of these is that the interpreter is not able to continue to operate during this time.
Therefore, it is mandatory that functions either finish fast or employ an internal

38

2.2 Interpretation of Behaviour Models

thread that allows for parallel execution of a function. Another solution would be to
introduce multi-threading on the level of the interpreter step method or the event
dispatcher.

Statelessness All state data that is used by FCs should be stored in the context
and passed to the FC as part of an invocation. The idea is to only have a single place
where state is stored. Having stateless components allows the system to relinquish
the handling of FC instances and helps with FC management; this concept can also
be found in server enterprise infrastructures, e. g. see the Session Component pattern
described by M. Völter, A. Schmid and E. Wolff [203, p. 56].

Dispatch Interface An FC needs a dispatch interface if it should be able to react
to incoming events. Dispatch interfaces are used to receive events that encode
commands and to trigger a corresponding, component-internal functionality. Code
that implements the dispatch interface also cares for type conversion between the
event format and the internal function.

2.2.5.4 Requirements on the Interpreter

FCs are part of an overall framework, and they are missing some basic functions that
need to be provided by the interpreter. The following is an overview of functions
that an interpreter needs to provide when executing FCs.

Caller Identification Identification of the originator of a function call is needed
if the function is triggered asynchronously. Broadcasting response events that are
carrying the result of the function execution might not be a feasible strategy: a direct
dispatching of the response event to the call originator using a suitable identifier
helps to reduce the number of transmitted events as well as better insulating one FC
from problems caused by other FCs.

Logging Application tracing or logging is an important administrative utility. As
part of a framework, FC should not use a custom logging framework, but access
logging functionality provided by the interpreter infrastructure. This also enables
the setup of different logs for different FCs.

Configuration There needs to be a way to handle FC configuration, either statically
as part of the FC packaging or as a service provided by the interpreter. It is also
possible that BMs would want to alter the configuration of an FC, in which case the
FC can provide a suitable configuration interface.

39

2 Concepts

Error Handling When utilising a direct-bound, synchronous procedure call ap-
proach for triggering functions, error handling can be done using the native constructs
of the platform, e. g. exception handling primitives. Otherwise, means need to be
established for the communication of errors. There should also be a clear specification
for the meaning of error codes/messages.

Providing Context Access during FC Invocations Already mentioned as a key
aspect for an FC, statelessness requires the interpreter to provide an FC with the
necessary context with each invocation. Alternatively, the FC could be provided
with direct access to the context and poll the context data on demand. It has to
be ensured that the context is either in exclusive use by one component or that
concurrent access cannot lead to inconsistent data.

Accepting Events To send events, an FC needs access to the event dispatching
mechanism of the interpreter. This can be done by providing a dispatch interface at
the interpreter side. The interpreter dispatch interface enqueues received events at
the input queue of a number of target BMs (e. g. selected by caller identification or
event type), where they are processed as normal external events.

2.2.6 Communication Mechanisms

All communication is supposed to follow a message-passing paradigm, as this fits best
to the interpreter event propagation semantics and to the reactive nature of BMs.
Should a streaming paradigm be needed, one could divide a stream into segments
that follow the underlying protocol granularity, e. g. packets, frames, requests, tokens,
blocks, et cetera and conduct the processing on these segments.

The mechanism for acceptance and delivery of events is a crucial part of any
interpreter implementation, and the task that such a mechanism has to fulfil is simple,
which is to transmit events from a single sender to potentially multiple receivers.
Usually a sender is unaware of the existence or number of receivers that an event will
have; we refer to this as sender-receiver decoupling . Full sender-receiver decoupling
allows the sender to relinquish addressing concerns: it can just initiate an event
without considering who will receive it. Such a strategy helps to reduce configuration
overhead and enables more dynamic system architectures, at the cost of additional
communication. An issue arising with cases where explicit addressing is necessary
concerns address resolution: addresses of distributed interpreters need to be known
prior to sending an event. One could use either a static configuration of addresses or
a discovery/directory mechanism, which allows to dynamically resolve interpreter
addresses. Implementing such a mechanism is unnecessary when employing the
sender-receiver decoupling strategy, but instead the key question becomes: how to
determine the set of receivers for a given event?

40

2.2 Interpretation of Behaviour Models

The most simple answer to this question is: Send to everyone! For a low number
of participants this is also a valid approach. However, for widely distributed or large
numbers of communication partners, there are inherent performance and scalability
limits. A solution to this problem consists of assigning a scope to certain events or
categories of events and to only dispatch events to receivers within that scope. For
example, typical scopes could be a single control flow, a BM instance, an interpreter,
a Computational Unit (CU), a network segment, a local network or an administrative
domain. Scopes might also be logical, in which case they do not refer to a concrete
topological or technical feature, but to a group of communication partners using a
common identifier (often called a topic). We will refer to this form of communication
as group communication.

2.2.6.1 Communication with Interpreter scope

There are several possibilities for implementing one-to-many event communication
with an internal interpreter scope, e. g. a shared message bus or the Observer pattern
[75, p. 287 ff.]. Performance-wise, internal event dispatching seldom forms a critical
part of an interpreter implementation, as message transfer times are small compared
to the time needed to process an event, which is usually the opposite in external
event communication. More important for internal communication is the format
used to represent the events.

Choice of Event Format In most aspects, the distribution of an event and the
format of the event data can be considered independent issues. Event formats depend
on the concrete cases that an interpreter is used in; they might range from the most
simple form, e. g. a single integer value, to rather complex data structures like the
Common Base Event (CBE) XML format [258]. Contrary to external events, which
might need to be compatible with various platforms and transmission protocols,
internal events are usually stored and handled in the format of data structures native
to an interpreter’s programming language due to performance reasons.

2.2.6.2 Communication with Host scope

When running multiple interpreters on a single host, one can possibly make use of
the mechanisms that operating systems provide for Inter-Process Communication
(IPC) [181, Section 15] or alternatively employ mechanisms that are intended for
larger scopes.

Each of the major operating platforms has its own proprietary message handling
mechanism, which can be used for event dispatching between interpreters running on
the same platform. We are deliberately using the term “platform”, as this is true for
operating systems as well as other platforms, e. g. Java 2 Enterprise Edition (J2EE)
technology [266] or web browsers. For operating systems, platform independent event

41

2 Concepts

dispatching mechanisms are often implemented using signals and shared memory .
Signals are used to notify running applications in an asynchronous fashion. This is
achieved by registering signal handlers, which are executed by the operating system
once a signal is raised by another process. Shared memory allows a number of
processes to use the same part of Random-Access Memory (RAM). The same RAM
region is mapped within the address space of each of the processes. When using
shared memory to communicate, care needs to be taken regarding the consistency of
the shared resource; usually, standard libraries are utilised that at least ensure that
writing to the resource is an atomic operation.

2.2.6.3 Communication with Local Network scope

We consider local network scope as being characterised by either the existence
of a single (logically) shared medium or the routing of multicast packets. These
requirements enable the facilitation of the underlying transport protocol and the
usage of hardware specific mechanisms for group communication. Being able to
reach all of the nodes within a network scope supports a flexible topology without
static Internet Protocol (IP) addresses by means of node discovery: the process of
determining potential partners which participate in the group communication.

Communication in Clusters Server machines are often grouped in clusters for
performance or robustness reasons. Cluster architectures often have dedicated
hardware that provide fast data transport between the cluster nodes, but with the
advent of fast IP networking it has also become common to create server clusters
without dedicated hardware, relying purely on standard hardware components, e. g.
Ethernet [241].

Event communication in cluster architectures is usually done in accordance with
the Message Passing Interface (MPI) specification [252]. MPI has its roots in high-
performance computing and it is the de facto standard Application Programming
Interface (API) for message passing in cluster architectures. For maintaining a
consistent state in clusters of J2EE application servers, it is common to employ
TCP [43, Chapter 25] based clustering protocols like JGroups [19], which provides
reliable group communication primitives. When using JGroups, one should be aware
of the inherent limitations in regard to scalability and bandwidth as identified by T.
Abdellatif, E. Cecchet and R. Lachaize [1].

2.2.6.4 Internet Wide Communication

Whereas in a Local Area Network (LAN) a shared communication medium and
homogenous networking technology is employed, this is not true for the internet.
These restrictions have an impact on the node discovery processes, which need
to be substituted with either previously known, static IP addresses or by look-up

42

2.2 Interpretation of Behaviour Models

mechanisms that employ service access points with static addresses, e. g. directory or
naming servers.

Event Services Event services are often used in large enterprise networks. They
exist in various forms, e. g. as specification for conventional distributed systems like
the CORBA Notification Service [257] or as a more modern variation in the form of
Message Oriented Middleware (MOM) [195, p. 108 ff.] or Enterprise Service Bus
(ESB) infrastructures [223]. Such systems serve as a central location for storage
and forwarding of messages and often add features like message persistence, access
permissions or content conversion. An important group communication paradigm
that has been shown to scale up to a large (but limited) number of participating
communication partners is Publish-Subscribe (PubSub) [68], in which event senders
publish events using a topic and event receivers process only events for topics that
they previously subscribed to. Although event services can be set up between domains
that are administrated by individual organisations, one often finds these types of
systems within uniformly administrated domains.

With Unknown Communication Partners Even when there is no previously es-
tablished scope, it is still possible to set up group communication infrastructures,
e. g. by means of peer-to-peer technologies like Distributed Hash Tables (DHT)
[15]. Besides bootstrapping8, the main issues then revolve around trust: since no
information is available on a communication partner, there are also no guarantees
that the node will play along in correctly interpreting BMs. Towards this end, we
applied the concept of contracts to group communication. Using contracts to ensure
interaction between components in software systems goes back to B. Meyer’s Design
by Contract [139] principle, although we are omitting parts of his concept, specifically
the specification of pre- and postconditions. In our case, a contract specifies the
number and roles of collaborating parties as well as an invariant. It is established
explicitly between all participants and will only be created if the necessary number
of roles can be filled. Once the contract is in place, a group communication scope is
formed, where role names can be used as message addresses. Violations of a contract
invariant are detected and lead to a cancelation of the contract and notification of
all collaborating parties. After a contract has been canceled, the role names cannot
be used for addressing anymore. The monitoring of a contract’s invariant requires
technical components that are able to supervise the operation of the nodes and that
can monitor the exchanged messages. We successfully tested this model using a
lifeliness invariant, which specifies that a contract is valid as long as participants are
accepting messages within a given timespan.

8Finding the first link to a DHT node

43

2 Concepts

2.3 Distributed Model Management

In addition to the specification and interpretation of BMs, we are introducing
processes for supporting the deployment of existent BMs. Deployment is not only
considered as copying a BM in a persistent model format from one place to another,
but we found that it is beneficial to adapt a given set of BMs, before supplying them
to some interpreters. The difference to the previous text is that we are now talking
about a number of collaborating BMs instead of a single BM executing at a single
CU. For most use cases, managing a collective of distributed, cooperating BMs is an
important aspect.

Activation

Mapping

Transmission

Collective

BMs (persistent format)

Management
Authority

FC
Repository

Maintenance using runtime
& environment information

Controls deployment
process

Supplies

Supplies
CU with

Interpreter

CU with
Interpreter

CU with
Interpreter

Selection BM
Repository

Figure 2.15: Entities involved in BM activation and maintenance

The deployment of BMs at a collective of CUs can be done in a multi-step process
as depicted in Figure 2.15. Based on the analysis of use case scenarios (see our
publications [56, 105, 106, 104] and Chapter 5), we identified four general components
for the management of a collective of distributed BMs.

Behaviour Model Repository The BM Repository stores BMs in a persistent re-
presentation format and provides facilities for inspection and retrieval of BMs.
Such an entity would also be a good place for versioning of the BMs and could
serve as the data backend for BM specification tools.

44

2.3 Distributed Model Management

Management Authority The Management Authority (MA) controls the overall
deployment process and serves as the central coordination authority for any
administrative operations or notifications in regard to the distributed CU
collective. It maintains a view of the current runtime state of the collective.
The MA is also a convenient place for evaluation of runtime environment data
— such information can be used to influence the deployment of BMs in response
to changes in the environment.

Functional Component Repository The FC Repository stores all FCs for a domain
in binary format and provides facilities for retrieval and inspection of FCs.
Similar to the BM Repository, the integration of versioning functionalities can
be a good idea.

Computational Unit with Interpreter The CU with interpreter represents an indi-
vidual instance of an interpreter running on a CU, which is able to exchange
information with interpreters on other CUs or with the environment.

While it makes sense to logically centralise the two repository entities, as well as the
MA, it is also possible to distribute these components, as long as content consistency
can be kept. Besides introducing the four entities, we also identified a number of
standard activities for deployment of BMs in a CU Collective. A typical deployment
process, as shown in Figure 2.15, consists of four sequential activities.

Selection consists of identifying a number of BMs in the BM Repository. This
step would be triggered by the MA. The trigger could be issued either by a
human operator or through an automated mechanism, for example a scheduling
process. The employed BMs should be formulated in a way that abstracts from
a concrete environmental situation, e. g. through the use of model parameters
instead of statically encoded identifiers, which is essential for the re-use of BMs.

Mapping assigns an interpreter to each of the selected BMs based on suitable cri-
teria, i. e. proximity to a certain entity, utilisation or technical compatibility.
Additionally, configuration parameters are mapped to concrete values, depend-
ing on information on the environment’s situation. We refer to this as static
configuration. The alternative is dynamic configuration, where configuration
is defered until the BM has been activated and then triggered using a start
event that contains the necessary configuration data. Although the mapping
step can be automated to a large degree (depending on the concrete use case
and availability of environmental data), the MA has to be consulted as a last
resort to resolve any arising ambiguities. Results of the mapping step are BMs,
ready to be interpreted in the context of a certain environmental situation and
on a single, specific interpreter.

45

2 Concepts

Transmission transfers the mapped BMs to the assigned interpreters, running in
the distributed CU collective. Before interpreting a BM it has to be ensured
that any necessary FC, which is used by a BM, is available at the responsibly
interpreter. An opportunity for this presents itself at the end of the transmission
phase, where an interpreter could analyse the model dependencies, retrieve
the required FCs from the FC Repository and subsequently install them.
Alternatives to this strategy are discussed subsequently.

Activation is the final activity, during which BM instances are created for the BMs
that have been transmitted to the respective interpreters. On completion of
this step, the collective is ready for operation. Operation usually commences
by triggering the collective using a start event. The removal of BMs from
the interpreters is not depicted in the process but could occur implicitly on
termination of the individual BM instances.

Dependency Resolution of FCs Before a BM can execute an action provided by
an FC, the FC needs to be available for the system. Activating the correct FC
within an interpreter is a multi-step process: firstly, an identifier for the required
FC needs to be determined. Then, the identifier needs to be resolved, which would
include a query and retrieval process at a repository. Subsequently, the retrieved FC
needs to be installed and started. It is also possible that FCs depend on other FCs,
additionally complicating this process.

There are several places where dependencies on an FC could be declared, and
there are several points in a BM lifecycle where dependencies could be resolved and
FCs loaded. Useful strategies for the specification of FCs can be:

Use convention Calling of FCs can be done by convention. For example, using a
previously agreed upon standard set of identifiers shared between execution
platform and model.

Declared by BM FC dependencies can be explicitly declared as part of the BM
persistent storage, in-memory or representation format.

Given by expression syntax The syntax for calling FCs can integrate an identifier
for the FC to be used.

The times for resolving dependencies and loading are independent of how or where
dependencies are specified, and the following points in time have been identified as
feasible.

Interpreter startup There is a fixed set of FCs loaded during startup of the inter-
preter and available over its whole lifetime.

46

2.3 Distributed Model Management

Model deployment time FCs are resolved at model deployment time and unloaded
once the model is removed from the interpreter. In case that an interpreter
shares FCs between executing BMs, an FC is unloaded once the last model
with dependencies on the FC is removed.

Model start time FCs are resolved just prior to the start of the model and removed
as soon as the model is stopped or when the last model, using the specific FC,
stops.

Lazy Initialisation An FC is resolved on the first call issued by the model. The FC
is unloaded after a certain time of inactiveness.

It might be beneficial to combine FC loading and unloading strategies. Using
deployment time dependency resolving together with a lazy, on-demand loading
and unloading approach can be suitable for models with a long running time. For
example, if a model runs for half a year, with a single action being executed shortly
before the model terminates, it does not make sense to keep the respective FC
in-memory for the whole time.

Maintaining the Collective Maintaining a collective of interpreters in a purely
decentralised manner is the approach advocated by the autonomic systems engineering
community, and we demonstrated the feasibility of this strategy [56]. Although this
scheme provides better support for dynamic network topologies, together with less
configuration overhead than approaches based on static configuration, it can be
beneficial to introduce centralised elements like the two repositories and the MA
depicted in Figure 2.15. As the functions provided by these entities are required in
either case, bringing them together in a common location might have operational
advantages within large ICT infrastructures, e. g. for enterprise production networks
or telecommunication operators.

In addition to discussing system architecture, we need to investigate how the
employed entities communicate. The requirements for the communication mechanisms
and protocols vary with the participating communication partners, e. g. they are
different when communication takes place between interpreters, or when it takes
place between an interpreter and a repository. In the following text, we characterise
the different requirements in regard to the underlying communication mechanisms
and protocols.

Between Interpreters BM instances are able to send external events to one another
as well as to receive external events from other instances. This message
exchange takes place between interpreters and requires a reliable message
passing protocol, as with some networking technologies events might be lost.
For scalability reasons, it might also be beneficial to choose a protocol that
supports addressing and/or multicast delivery.

47

2 Concepts

Between MA and Interpreter An MA can control various aspects of an interpreter’s
function. This encompasses the lifecycle of any interpreted BMs, activation of
new BMs, retrieval of runtime status information (e. g. utilisation, active state
configurations, deployed FCs, etc.) as well as interpreter lifecycle management
(e. g. termination or restart). Therefore, a management protocol for the inter-
preter collective has the characteristics of a control protocol, combined with
commands for runtime information retrieval.

Between Interpreter and BM Repository BMs need to be transmitted between
the BM Repository and the interpreter, prior to activation. Protocols used
between these two entities would typically fall into the category of file transfer
protocols, possibly with a focus on XML, as this is a usual encoding employed
for persistent storage formats of BMs. Using a dedicated file transfer protocol
guarantees that larger amounts of text can be transmitted reliably between
the entities.

Between Interpreter and FC Repository FCs are used by BMs during interpreta-
tion. They need to be deployed at the interpreter before being called. The
protocol between the interpreter and the FC Repository needs to support binary
file transfer as well as retrieval functions for FC identifiers and versions to
properly resolve binding issues. Furthermore, the protocol needs to guarantee
the correct transmission of large binary files.

Although we found four different kinds of communication mechanisms and each of
these types might have its own protocol, it might also be sensible to adopt a single,
universal communication infrastructure that fulfils all the necessary requirements. A
more concrete advice cannot be given, as there is a large choice of suitable middleware
products available and it all depends on the requirements of a specific use case. We
will therefore re-visit this topic during the discussion on the use cases in Chapter 5.

2.4 Summary

At the beginning of this chapter, we described the necessary principles for modelling
behaviour. We started by describing states and mention initial and final ones. Then
we discussed transitions and transition labels, which specify events and expressions
used for describing guard conditions as well as action specification. Building upon
these basic concepts, we introduced two composition principles: compound states
that enable the combination of multiple states in a superstate and partial models,
which allow us to re-use parts of a model. The discussion then continued with a
description of the parallel region principle that enables the specification of concurrent
control flows. The description of basic principles concludes with an introduction
of the history concept, which enables the storage and re-establishment of a state

48

2.4 Summary

configurations. Following the description of the basic principles, more concrete
aspects of BM interpretation have been investigated. This contains the novel part of
our conceptual work, broken down into two sections.

The first section looked at the interpretation of BMs, beginning with the involved
artefact types and formats, and continuing with an investigation of event processing
and the details of RTC semantics on a algorithmic level. After that, the surpris-
ingly complex mechanisms needed for determination of entered and exited states,
while incorporating aspects of concurrency and state containment, are described.
Subsequently, we discussed the evaluation of expressions and the role of the native
platform language, before continuing with a discussion on FC invocation and the
corresponding requirements on the BM interpreter. This section ended with a dis-
cussion of potential communication paradigms used for event transmission between
CUs.

The second section placed the interpreter in a wider context and discussed questions
of BM management. A high-level architecture for deployment of BMs is proposed and
four general entities have been described, along with a number of required activities
for BM deployment. The section closed with an investigation of the approaches for
dependency resolution of FCs and a study of the requirements for communication
protocols used to maintain a CU collective.

49

50

3 Related Work

Knowledge is of two kinds. We know a subject ourselves,

or we know where we can find information upon it.

Samuel Johnson

Efforts from various research areas inspire and impact this thesis, and the following
text contains a state of the art analysis of these topics, structured in five sections.

State-Transition Systems Discusses history and current use of formalisms for spec-
ification of state-transition systems. As we are employing statecharts as the
main formalism for specification of BMs, it is not only important to understand
the manifold developments that lead to the features found in the most current
incarnations of the formalism (e. g. UML Behavioral State Machines), but also
to understand related approaches that complement or extend the statechart
formalism. This section is mostly relevant for the discussion of concepts in
Chapter 2.

Behaviour Models A BM is more than just the formalism that specifies it. In this
section we study approaches for the execution of BMs (interpreted or otherwise)
and look at alternative means for modelling executable system behaviour. We
are also investigating approaches for transforming and validating models, which
is a necessary prerequisite for adaptation of BMs at runtime. This section is
relevant in conjunction with the description of concepts in Chapter 2 as well
as with Chapter 4, that discusses implementation issues.

Autonomic Systems Engineering Our goal is to support functional scalability by
enabling BM adaptation at runtime using interpretation. Although our ap-
proach is a promising one, it is only one idea amongst others. People are
working in AS engineering to solve the problem of system adaptability using a
number of different approaches and we are investigating the relevant ones in this
section. It is mostly relevant for the discussion of interpreter implementations
in Chapter 4.

Network and Systems Management The use case studies conducted as part of the
thesis are situated within the domains of network and systems management.
To realistically apply our approach within these domains, we study state of
the art management approaches, along with best-practices for modelling the

51

3 Related Work

system and network management domains. This section is mostly relevant for
the use case studies in Chapter 5.

Performance Benchmarking Within this thesis, we are proposing a benchmark for
the determination of the performance of BM execution mechanisms. Therefore,
we are investigating existing benchmarks in regard to their applicability for
our purposes and with the intention of using them as guiding examples. This
section is mostly relevant in conjunction with the description of the performance
benchmark contained in Chapter 6.

3.1 State-Transition Systems

In this section, we give an overview of state-transition systems, from the beginning
of automata theory to OO formalisms for statecharts. We shortly describe Petri
nets, as they are an important alternative formalism for describing state-transition
systems. By exploring the foundations of the employed formalism, the reader is able
to better place BM features in regard to their historic context and to develop an
understanding of the major application areas of the formalisms.

3.1.1 Automata Theory

The roots of all state-transition systems are in automata theory, which stems from
the field of switched circuit design. Based on the earlier works of A. Turing, C.
Shannon and G. Montgomerie, it was D. Huffman who pioneered this area as part
of his doctoral thesis [111] at the MIT in the early 1950s. There are many different
kinds of automata, but the most interesting for us are Deterministic Finite Automata
(DFA). These automata are called finite because they only have a limited number of
states, and they are called deterministic because the selection of active transitions is
done in a deterministic manner. In addition, there are probabilistic automata, Non-
deterministic Finite Automata (NFA), and a wide range of other machines/automata
that are outside the scope of this thesis. Often the term Finite State Machine (FSM)
is used for a certain class of finite automata. The canonical definition of a FSM
[109, p. 18] is given as a tuple 〈Q,Σ, δ, F 〉, where Q is a finite set of symbolic states
(including the initial state q0), Σ is the input alphabet, δ : Q×Σ→ Q is a transition
function and F a set of final states.

Building on FSMs, E. Moore and G. Mealy [144, 137] (both working under
supervision of C. Shannon at the Bell Telephone Laboratories) developed their
automaton concepts. Contrary to the FSMs that are known in formal language
theory as acceptors or recognizers , Moore and Mealy researched transducers : machines
that are able to transmit output information. Mealy’s automata generate an output
symbol solely depending on the state that they are in, whereas Moore’s automata
generate an output symbol based on the current system state and input symbol.

52

3.1 State-Transition Systems

Introduction of Concurrency According to J. Hopcroft [108], the foundation of
automata theory had already been laid in the 1960’s, and over the course of the
next decade a great deal of research emanated, focussing primarily on the areas of
language theory and computability. Research in the 1970’s was concentrating on the
analysis of algorithms, rather than on compilers or programming languages. From a
behavioural modelling perspective, the theoretical advances in these years gave rise
to understand, calculate and proof the properties of graph-based BMs. An important
development took place at the end of the 1970s, when people started to give thought
to the possibility of distributed and parallel processing in conjunction with automata
theory.

In 1978, C. Hoare wrote Communicating Sequential Processes (CSP)[99], in which
he introduced the concepts of input guards and parallel commands1, plus a mechanism
for pattern matching on input messages. C. Hoare defined parallel commands,
assuming communication between the processes via shared memory. Five years
later, the idea of communicating concurrent processes was adapted to FSMs by D.
Brand and P. Zafiropulo [33]. They were modelling the operation of communication
protocols using communicating FSMs. This approach remains successful and is in
wide-spread use today, for example for the specification and test of communication
protocols using the Specification and Description Language (SDL).

Input/Output Automata Created as a tool for modelling concurrent, distributed
systems, Input/Output (I/O) automata had been devised by N. Lynch and M. Tuttle
in the late 1980s [130]. By providing means for specification of actions, automata
composition and fairness considerations for execution of concurrent automata, the
I/O automata formalism introduces a way to integrate automata with their respective
environments.

The work of N. Lynch and M. Tuttle takes inspiration from CSP (such as the
understanding that inputs are transmitted instantaneously) but there are differences.
For example, I/O automata are not allowed to suppress input actions, as those are
under the control of the environment. An automaton needs to explicitly handle such
situations as failure cases. The main application of I/O automata is for correctness
proofs of distributed algorithms using so-called “executions” – alternating sequences
of states and actions, which constitute traces of the automaton execution. The main
interest of N. Lynch and M. Tuttle was to decide on the fairness of specific I/O
automata-based on given execution traces.

The work on I/O automata continued in miscellaneous directions; one concerned
dynamic systems, where automata can be created or destroyed during operation
and the set of events in use by the automata can change [9]. A different research
direction studied the interaction of discrete and continuous behaviour using hybrid
I/O automata [129].

1Both are based on concepts previously elaborated by E. Djikstra

53

3 Related Work

Extended Finite State Machines The FSM formalism was generalised into the
EFSM formalism in the 1990s by K. Cheng and A. Krishnakumar. The extension
concerns the addition of a data space, guard conditions in the form of enabling
functions that are evaluated on the data space and update transformations that
modify the data space. The EFSM formalism also separates input and output
symbols. In [39, Section 2], an EFSM is defined as the 7-tuple {S, I, O, D, F , U ,
T}, where S is a set of input states, I and O define the input and output symbols,
D is an n-dimensional space D1 × ...×Dn, F is a set of enabling functions fi such
that fi : D → {0, 1}, U is a set of update transformations ui such that ui : D → D
and T is a transition relation such that T : S × F × I → S × U × O. The EFSM
formalism adds a basic definition of the ECA transition label discussed on page 15.

Petri Nets The Petri net formalism is a graphical tool that can be used to describe
and analyse discrete, distributed systems. It was initially developed by C. Petri and
published in his doctoral thesis [153] in 1962.

A Petri net describes a bipartite graph of places (a.k.a states) and transitions.
There are so-called markers , which are assigned to the places. The dynamic aspects
of a Petri net are described by the way in which the markers are changing places
in the static graph structure. The definition [22, page 50 and 79] of a Petri net is
based on a Petri net graph, which defines the net’s structure. Petri net graphs are
commonly defined as a triple (S, T, F), with S as a finite set of places, T as a finite
set of transitions and F as a so-called flow relation, defining the edges of the graph
F ⊆ (S×T)∪ (T ×S). The Petri net is then defined as a 6-tuple (S, T, F,K,W,M0)
by adding properties for marking the net. (S, T, F) needs to constitute a valid Petri
net graph, K : S → N ∪ {∞} describes the capacity (the number of markers that
can be assigned to each place), W : F → N determines the weights of the edges
(how many markers are needed in a place for an outgoing transition to fire), and
M0 : S → N0 determines the initial marking of the Petri net. Since its introduction,
the formalism has not only been widely adopted with thousands of publications about
the definition, application and uses of Petri nets, but it has also been standardised
in ISO/IEC 15909. For more information about Petri nets, refer to the “Petri Nets
World” web site [274], which serves as a central information repository for the Petri
net research community.

3.1.2 Statecharts

The statechart formalism was invented in the 1980’s by D. Harel to describe complex,
reactive event systems [88]. The formalism builds on higraphs, which are defined in
[89, Appendix] as a quadruple H = (B, σ, π, E), where B is a finite set of so-called
blobs . E is a binary relation on B defining a set of edges, E = B ×B. Composition
is given through the sub-blob function σ, which is defined as σ → 22B and assigns
each blob x its set σ(x) of sub-blobs. σ(x) needs to be cycle-free. The partitioning

54

3.1 State-Transition Systems

function π is defined as π : B → 2B×B and associates with each blob x ∈ B some
equivalence relation π(x) on the set of sub-blobs, σ(x). Where σ is used to define a
composition relationship between the blobs, π can be used to define parallel regions
based on equivalence classes. In a recent article [107], we proposed a formalisation
for higraphs that is better suited to our work on statechart execution for embedded
platforms.

Higraphs can be understood as the main innovation that statecharts contribute to
the field of automata theory. Statecharts, or other similar Higraph-based formalisms,
contribute two very useful features: composition and concurrency. Both concepts
were previously studied on the level of distributed processes, but the use of higraphs
allows one to incorporate these aspects into a single automaton.

D. Harel later investigated the modelling of executable objects with statecharts,
together with E. Gery [90]. O. Grossman and D. Harel published [84], within which
they define syntax and semantics of higraphs in a way that minimises (but not
circumvents) interpretation ambiguities. In the same report, they also investigate
algorithms that calculate basic properties on statecharts, similar to the ones used in
graph theory, e. g. shortest path or Hamiltonian cycles.

Object Orientation The proliferation of OO in the fields of programming languages
and modelling techniques led to the study of various approaches that aimed to combine
OO with statecharts. A straight-foward approach was carried out by S. Yacoub
and H. Ammar, who published a pattern language for statecharts in 1998 [208].
The created language allows engineers to rely on standardised design patterns when
implementing functionality as state machines using an OO language.

Other approaches concern the integration of statecharts and OO on a conceptual
level. B. Paech and B. Rumpe specify the refinement of automata for behaviour
modelling [150] with OO concepts like type specialisation. D. Coleman et al. describe
a concept called Objectcharts [41], which adapts statecharts to describe the behaviour
of objects by identifying transitions with state-changing methods of a modelled
object, while states model the lifecycle of the associated object.

OO Statecharts also found acceptance in the field of real-time system engineering
as part of the Real-Time Object Oriented Modeling (ROOM) methodology [172].
ROOM prescribes a three-layered architecture consisting of a system, a concurrency
and a detail level. Behaviour is modelled on the concurrency level using ROOM-charts,
which are based on statecharts. Individual behaviour is assigned to actors, which
communicate by transmitting messages over ports. This explicit communication
model is the main difference to statecharts, where the sending and receiving of events
is specified implicitly (events arrive instantaneously). In the late 1990s, it became
obvious that UML State Machines can benefit from the integration of ROOM charts
[164].

55

3 Related Work

UML State Machines Statecharts have been integrated with the UML under
the name of “UML State Machines” [255, Section 15] since the first version of
the language. Currently, they can be reckoned as the most feature-rich statechart
formalism in use today, which is the reason why the discussion of statechart issues in
this thesis is orientated along the set of features defined by UML State Machines.

3.2 Behaviour Models

Within this section we examine existing research related to BMs, including alternative
formalisms for behaviour specification, as well as research on BM execution semantics,
model checking and model transformation. We are looking at the different techniques
for generating code from statecharts and survey the published execution semantics
for statechart formalisms. We also take languages for the evaluation of expressions
and execution of actions into account. This complements our own work on the
concrete semantics of BM interpretation, highlighting issues with UML State Machine
execution as well as providing inspiration for possible solutions. We then continue to
look at work regarding model transformation and model checking. Both areas are
important as a foundation for adaptation of BMs at runtime. Model transformations
provide the necessary means to execute an adaptation, and model checking can ensure
the correctness of manually provided BMs, or BMs that result from a transformation
process. This section also contains a survey of software libraries and commercial
tools for BM specification, simulation and code generation. Tool support is a major
factor in software engineering; therefore, it is interesting to know which applications
are available on the market and what they are able to do. Although we chose to
solely adopt statechart-based formalisms, it is necessary to investigate other existing
approaches. This section therefore contains an overview of alternative ways for
specification of executable system behaviour.

3.2.1 Interpretation and Execution

We found a usage of the term “interpretation” in conjunction with statecharts in an
article from the early nineties by J. Ebert [65]. The paper contains a discussion of
the operational semantics of statecharts as well as a description of algorithms for
their interpretation and validation. It does not explore the implementation from
a practical perspective, but discusses the subject theoretically in the context of
support for code generation using Computer-Aided Software Engineering (CASE)
tools. Although the concept of statechart interpretation exists already for some
time, it is only in the last two or three years that BM interpretation has become
a hot topic. During the work on this thesis, we saw the emergence of three other
interpreters for statecharts. On the one hand the MOCAS Engine by C. Ballagny
[16], which interprets UML State Machines based on EMF in a similar manner to

56

3.2 Behaviour Models

the UML interpreter that we created; on the other hand the Apache [215] and the
QT [253] SCXML engines. From inspection of the source code, we can conclude that
all are maintaining BM in dynamically modifiable runtime structure, as the BMs are
completely allocated on the heap and build at runtime. Thus, they could theoretically
support the adaptation of an executing BM at runtime, but only the MOCAS system
does provide support for this feature. Compared to our implementation of a UML
interpreter (see Section 4.4), the MOCAS engine is better integrated with UML, but
less sophisticated in regard to the interpretation of conditions or actions. This is also
true for the QT SCXML engine, where guard conditions have to be specified using
new classes, which derive from a QAbstractTransition base class. The Apache
engine is more flexible in this regard, allowing a user to change the language and
interpretation mechanism for action and condition specifications. It is also the most
mature implementation currently available. Due to these two properties, we decided
to include this particular engine for one of the implementations, within the use case
studies and the performance comparison (see Section 4.5, Section 5.2.2 and Section
6.3.2, respectively).

There is also a large body of research on the interpretation performance of pro-
gramming languages, but we did not find it to be applicable due to the scope of
our problem; the discussion of programming language interpretation performance is
usually too closely related to a specific hardware or platform.

Code Generation Although interpretation of statecharts was discussed early in the
1990s, the vast majority of realisations of executable models have been implemented
with automatic or semi-automatic code generation approaches, even when BMs
are employed for simulation purposes only (as done by, for example, the Rhapsody
tool). Code generation from statecharts itself is a well researched problem, e. g. see
[119, 147], with applications of the formalism going back to the early 1990s [71]
and an active ongoing research on, for example, runtime issues of extensibility and
adaptation [167].

The Shlaer-Mellor Method and Executable UML Developed by S. Shlaer and
S. Mellor in the late 1980s, this method introduced OO techniques for model-based
system analysis and design [178]. Shlaer-Mellor uses FSMs for specification of
behaviour, but lacks a single, standard expression language for specification of action
expressions. This shortcoming was addressed with the specification of UML action
semantics, which lead to the Executable UML (xUML). Considered a successor to
the Shlaer-Mellor method, xUML was created within the MDA research direction as
a UML profile. The profile restricts the UML to elements that have clear execution
semantics, while adding the missing action semantics.

Although the employed UML action semantics prescribe the necessary details for
integration of the UML with an expression language, they do not specify a concrete

57

3 Related Work

syntax (what Sunyé et al. describe as a surface language [191, Section 2.4]). This is
still left to the user, with universal programming languages, such as C++ or Java
or more specific solutions like OCL4X [242], Jumbala [230] or ASL [265, Chapter
10] being employed. Further information on xUML is available from a number of
sources, e. g. [138] [265].

Regarding its relation to our work, xUML is an approach that employs BMs
for specification of system dynamics, with the goal of generating code from these
specifications. We demonstrated the general possibility of interpreting the complete
set of features for UML State Machines in Section 4.4; thus, an adaptation of the
interpretation approach to the restricted set of xUML features is also possible. The
approach complements our work insofar as we did not examine the binding of other
UML diagram types (especially ones for data & structural modelling) to expression
language statements, and exactly this has been done in the UML action semantics
research.

UML State Machine Execution Semantics The execution semantics of UML
State Machines are commonly criticised for not being adequately formalised, and
a substantial amount of effort has been invested into the identification of weak
points in the standard, as well as in the creation of execution semantics using
alternative formalisms. Using predicate logic, H. Fecher et al. formulated an execution
semantics of UML for model checking purposes [69], although they omitted some
pseudo-states (choice, junction, terminate) and nesting constructs (submachines).
X. Than et al. [197] specify execution semantics in the Z language, but examine
only core statechart constructs (states, transitions, state containment, concurrency).
A treatment of the ambiguous semantics of the history concept within UML State
Machines is provided by A. Derezińska and R. Pilitowski [52]. Execution semantics
have also been studied by mapping to other existing formalisms, e. g. by applying
graph rewriting techniques to statecharts [131] or by using Abstract State Machines
(ASM) [115]. An exhaustive survey of these research efforts can be found in a
technical report [45] compiled by M. Crane and J. Dingel from Queen’s University in
Ontario, Canada.

3.2.2 Operations on Behaviour Models

Employing an interpretation approach for BM execution is only sensible when making
use of more advanced operations that go beyond the straightforward execution
provided by generated code. One of the most interesting of such operations is
runtime model transformation; by modifying models at runtime, system behaviour
can be adapted to a changing operational context.

58

3.2 Behaviour Models

Model Transformation UML State Machines are commonly modified by means
of graph transformations [212, 143]. H. Frank and J. Eder worked on equivalence
transformations2 on statecharts, which could be employed for runtime refactoring
purposes [74]. N. Guelfi and B. Ries proposed the Statechart Transformation
Language (SCTL) [85].

There are a number of languages available for model transformations on gen-
eral UML: MOLA [245], UMLX (which has a graphical syntax for specification of
transformations) [285], the textual ATLAS Transformation Language (ATL) [243],
GReAT [227] and the popular Query View Transformation (QVT) language [246].
This area can currently be regarded as a hot topic, and work is carried out to unify
some of these approaches (e. g. see [116] for a discussion on the integration of ATL
and QVT). A comparative study on model transformation approaches using graph
transformation has been conducted by G. Taentzer et al. and can be found in [194].

Model Checking When allowing for the dynamic runtime adaptation of BMs, it
is also necessary to ensure that such a transformation yields correct, interpretable
results. Applying techniques from the research field of model checking enables
transformations to be verified, as well as model properties and constraints to be
supervised at runtime. The Formal Methods & Tools Group at the Institute of
Information Science and Technologies in Pisa conducts research on model checking of
UML State Machines using the JACK environment [79]. They also investigated the
runtime verification of a group of interacting state machines [80]. For a verification
of UML 1 statechart core concepts the use of PROMELA and SPIN is described in
[124]. An application of the Extended Hierarchical Automaton (EHA) formalism for
state machine verification can be found in [61]. Algorithms for the verification of
UML State Machines have recently been researched by C. Prashanth and K. Shet
[158].

3.2.3 Tool Support

In the realm of BM execution, concrete execution semantics created through code
generation seem to be more relevant than formally specified execution semantics.
Thus, tool suites are of significant importance for the processes of behaviour design,
validation and execution. We briefly describe major tools used for the creation of
executable BMs.

Statemate The U.S. American company i-Logix created the Statemate development
environment with the help of D. Harel. After acquisition of i-Logix by Telelogic
in 2006 and subsequent acquisition of Telelogic by IBM in 2008, Statemate is now
sold as part of the IBM Rational tool suite. Statemate is technically obsolete, but

2Transformations which do not change the semantics of a model

59

3 Related Work

still relevant for legacy system support and due to its leading role as the first major
product employing statecharts. A description of Statemate can be found in [92]. The
tool can produce either C [268] or Ada [272] code.

Rhapsody As a successor to Statemate, the Rhapsody tool has a similar history;
created at i-Logix and acquired first by Telelogic and later by IBM. Now sold as part
of the Rational Toolsuite, it is IBM’s flagship application for behaviour modelling.
Similar to Statemate, the Rhapsody execution semantics are clearly defined [91]. The
product is able to generate code for the C, C++ and Java programming languages.

StateWORKS Created by the swiss company SW Software, StateWORKS allows
for visual modelling, simulation and code generation using FSM-based BMs. The
product does not support statechart concepts and generates code in C or C++.

Simulink/Stateflow MathWorks Inc. publishes the Stateflow software, which
provides a toolset for the design of behaviour using state machines. The tool is
used mainly in conjunction with Simulink, a simulation environment for embedded
systems, developed by the same company. Stateflow can generate C code from BMs
and provides advanced features like concurrency and a history mechanism.

iUML Modeller and Simulator The iUML product from the U.S. American com-
pany Kennedy Carter is a toolset for xUML, providing a visual modeller, along with
a simulation environment. The software generates code in C, C++, Ada and Java.

BridgePoint Is a toolsuite for xUML, sold by the U. S. American company Mentor
Graphics. Targeted at the embedded system market, the product offers a visual
development environment for UML models including state machines, along with code
generation capabilities for C and C++.

ASADAL The Software Engineering Laboratory at the Pohang University of Science
and Technology provides the ASADAL CASE tool [263] for specification and analysis
of real-time systems. The tool utilises statecharts for simulation and can generate
Java code for prototyping purposes.

Software Libraries The PauWare software is a library for creation of UML 2 State
Machines using Java classes. Resulting programs can be executed as BMs, while
the employed state machines are constructed at runtime using hard-coded Java
statements.

V. L. Maout researches approaches for the integration of automata with the C++

language. The Automaton Standard Template Library (ASTL) is a C++ framework
for the programmatic creation of automata [133], which adapts well-known concepts

60

3.2 Behaviour Models

for data structures to automata, i. e. Cursors — an adaptation of the Iterator pattern
[75, p. 88 ff.] for traversal of acyclic automata [134].

The Framework for Executable UML (FXU) can transform UML 2 State Machines
(and classes) into executable C# code [155]. The authors claim to have complete
support for all features of UML State Machines. It is interesting to note that
multithreading is used for the execution of concurrent behaviour.

3.2.4 Alternatives for Behaviour Modelling and Execution

Employing UML State Machines might be the most popular method for specification
of system behaviour, but there are other approaches that enable behaviour description
on a more abstract level than source code. There are languages for directly expressing
system behaviour; S. Lee and S. Sluizer created the textual SXL language [125],
which is also based on state-transition systems, while Nordstrom et al. propose a
combination of two languages: the Behavioral Modeling Language (BML) and the
Action language [148]. This division into two languages is similar to using UML
State Machines and a separate expression language; BML is state machine-based
and plays the part of a generic modelling language, while the Action language is
responsible for prescribing platform details, like the type system and event structure.

Behavior Trees A technique, mainly researched at the Griffith University’s Soft-
ware Quality Institute by G. Dromey et al., aims at deriving BMs from functional
requirements, while keeping a traceable relationship [64]. Using behavior trees, sys-
tem requirements are systematically refined until arriving at a level where a concrete
functional behaviour can be created for the system’s components. The formalism has
been grounded upon CSP [206] as well as on a Meta-model [81]. A formal, operational
semantics has been specified by R. Colvin and I. Hayes [42]. Z. Milosevic and G.
Dromey also applied behavior trees to the specification and monitoring of contracts,
using a collective of interacting entities in a scenario from the Business-to-Business
(B2B) domain [141]. Behavior trees complement our work, as they offer a solid
methodology for the creation of BMs from functional requirements. However, they
are missing a more concrete elaboration in regard to model execution.

Control Theory Control theory has been used successfully for several decades to
formalise the behaviour of dynamic systems. An introduction to the topic can be
found, e. g. in the book by J. Hellerstein et al. [95]. Control theory is mainly used for
time-continuous systems with a small number of variables and it was a popular topic
within cybernetic research on self-organisation in the 1960s and 70s, e. g. as described
in [8, 25]. It is still an active research area, as demonstrated by the more current
works of M. Kokar et al. [121] and Y. Diao et al. [58] on self-control and autonomic
computing. As already argued in the introduction in Section 1.1.1, control theory is

61

3 Related Work

a good example for controlling system behaviour using models, but not generally
suitable for our purposes.

Software Agents The definition of behaviour is a central topic in the research on
agent-based systems. M. Lötzsch et al. developed the Extensible Agent Behavior
Specification Language (XABSL) [128], which uses hierarchies of FSMs to specify
agent behaviour. A. Sharpanskykh and J. Treur propose a behaviour modelling
approach for cognitive agents, which can be transformed into an executable format
employing finite state-transition systems [174]. S. Donikian uses hierarchical and
concurrent transition systems for the behavioural specification of autonomous agents
[63]. Similar to the former approach, a BM is compiled into C++ code, which is then
used for simulation of an agent’s behaviour. Research in BM interpretation and
software agents is considered complementary and both fields can benefit from each
other.

3.3 Autonomic Systems Engineering

Many of the concepts examined or developed in this thesis are based on systems
engineering research conducted in the autonomic communication [180] or autonomic
computing [112] areas. This is particularly true in regard to the integration of BM
interpretation mechanisms with network and systems management infrastructures, as
presented in the use case studies in Chapter 5. Within this section we are surveying
approaches for dynamic adaptation of system behaviour that can serve as guiding
examples for our own work. On an architectural level, BM interpreters can be
regarded as autonomic components, which is why we included a survey of the current
work on component systems that support system adaptation. We also consider our
approach as an adaptation of programming in the large concepts (e. g. as used for
business process composition) to an programming in the small environment; therefore,
a short overview of this area is also included. The passing of events between operating
BMs is critical for the correct operation of a collective of CUs; thus, we investigate
communication mechanisms that can be used to transmit events between CUs in
various types of communication networks. The section concludes with a survey of a
number of other frameworks and relevant architectures that can be used to engineer
ASs.

3.3.1 Dynamic System Adaptation

Research on large-scale, distributed systems that can be adapted or are self-adapting
to a changing environment has received a large amount of attention within the
research community. An overview of adaptive software can be found in [136], and
G. Serugendo et al. compiled a state of the art report in regard to self-organisation

62

3.3 Autonomic Systems Engineering

[173]. Ö. Babaoğlu et al. describe biological mechanisms that could be utilised
for self-organisation purposes in [10]. Self-organisation using software agents was
researched by P. Marrow and M. Koubarakis [135] as well as R. Quitadamo and F.
Zambonelli [159]. Communication mechanisms that support self-organisation can
be found in [165] and [11]. The creation of BMs from an existing system has been
researched by S. Uchitel et al. [199].

Autonomic Components There a several approaches to extend the existing body
of work on software components [193] towards adaptive systems. We consider the
work of C. Herring and S. Kaplan on the application of cybernetic principles to
component systems [97] as an early (end of 1990s) ancestor of autonomic components.
Autonomic Components are also proposed in [127], using a rule-based approach for
component behaviour specification. More recent work by C. Ballagny et al. uses
UML 2 State Machine execution for realising the runtime behaviour of adaptive
components in the PauWare and MOCAS systems [17, 18].

Apart from research on adaptable runtime behaviour on the level of components,
work is also done on the composition of components, supporting dynamic adaptation
on the system level. For the field of pervasive computing, C. Becker et al. propose
the PCOM system [23], and a similar approach has been developed by D. Sykes et
al. [192], employing high-level goals to assemble a collective of interacting software
components. A. Bailly et al. describe the hierarchical composition of components,
while maintaining a behavioural specification for the whole aggregate [14]. An
overview of current technologies and approaches for the modelling of component
behaviour and compositions can also be found in the masters thesis of I. Ferdelja
[70].

Service Composition There is an established body of research on programming
in the large approaches for business process/work flow automation and scientific
GRID computing [73]. Together with the Business Process Execution Language
(BPEL) and the Business Process Modeling Notation (BPMN) standards, these are
in wide-spread use for orchestration of services. Alternatively, services are composed
without central control using choreography, with the Web Services Choreography
Description Language (WS-CDL) as the prime specimen of this genre. The main
difference to our approach is that we employ programming in the small principles,
which require fundamentally different techniques. For more information on BPEL,
BPMN and WS-CDL, refer to [244, 213, 287].

System adaptation is researched in the context of service composition by A. Bottaro
et al. [29]. P. Michiardi et al. discuss adaptive service composition by means of
overlay network rewiring [140], while M. Pistore et al. research Web Service (WS)
composition by planning with state-transition systems [156].

63

3 Related Work

3.3.2 Communication Mechanisms

The following examination of relevant approaches for the communication between
BM interpreters is motivated by the necessity for a broadcasting mechanism that
conveys events in a one-to-many fashion between orthogonal parts of a model, see
[89, p. 523] and [208, p. 11]. Extending this mechanism to a distributed setting,
where events are mediated between multiple models on a single machine or even
between multiple distributed model interpreters, leads us to a discussion of group
communication mechanisms. We also consider a category of mechanisms where event
transport relies on one-to-one communication channels with guaranteed properties.

Reliable Multicast In IP networks, the simplest form of group communication is
based on IP broadcast or User Datagram Protocol (UDP) multicast communication
[43, p. 128 ff.]. These low-level primitives are provided for network layer commu-
nications and do not offer reliability or fragmentation features, i. e. packets can
be lost and there is no support for datagrams of a bigger size than the network’s
MTU. To solve this issue, reliable multicast protocols have been introduced, e. g.
[151, 126]. A major issue with reliable multicast concerns scalability, on which O.
Ozkasap et al. did an investigation using two popular reliable multicast protocols
[149]. Another issue is the protocol deployment within networking devices. To
implement a reliable multicast protocol, each networked device within the domain
of use needs to implement the protocol in question. Hitherto, none of the existing
protocols gained enough clout to be widely deployed.

Application-Level Group Communication A possible solution to this problem
are application-layer multicast mechanisms, i. e. [72, 110], where multicast routing,
retransmissions and group membership is handled on the application level.

The Horus [162] and Totem [146] group communication systems have been designed
in the mid-1990’s to support the virtual synchrony paradigm. Virtual synchrony
guarantees that the total order of messages is the same for all communication
partners throughout the local network, which is a crucial requirement for consistency
in distributed systems using group communication. A popular framework for group
communication is JGroups [19], which is the default mechanism used for data
replication in clusters of JBoss application servers. Although JGroups is successfully
applied in production environments, its scalability in cluster replication scenarios
is limited, as demonstrated by T. Abdellatif et al. [1]. Another popular framework
is Spread [6], which concentrates on establishing security measures for the group
communication paradigm. Spread scales on an Internet-wide level by using a static
configuration approach, sacrificing the flexibility needed for context-adaptive and
self-organising applications. Scalability of secure, reliable multicast has also been
researched by S. Banerjee and B. Bhattacharjee [20].

64

3.3 Autonomic Systems Engineering

We would also like to point out the work of our colleagues C. Reichert and D.
Witaszek on the Group Event Notification (GEN) protocol [161]. GEN introduces
primitives to select groups based on expressions with operators like oneof(p), which
selects exactly one member out of a set p, or prop(x), which selects all members where
x is true. We also contributed to the field with the Autonomic Reliable Multicast
(AutoRM) mechanism that supports the oneof(p) operator using a reliable multicast
scheme with declarative group membership [102].

Message- and Notification Services Event dissemination can also be carried out
using notification services, for example the ones that follow PubSub principles. These
are well-understood, and there is a large body of work done on the subject. An
overview of PubSub systems and approaches has been compiled by P. T. Eugster et
al. [68].

In the enterprise computing domain, the task of event transport and dispatching
is often left to a MOM. Typically, such systems support more advanced features,
such as message persistence (useful when sender and receivers of a message are
only sporadically connected to the network). Popular examples are the CORBA
Notification Service and Java Message Service (JMS) [266, p. 610 ff.] compatible
queueing systems like Apache ActiveMQ. Notification services are also a central
component within an ESB or Cloud Computing infrastructure, i. e. the Amazon
Simple Notification Service [214].

Contract Based Communication We deviate from the meaning of contract, as
coined by B. Meyer [139] and being widely used in Software Engineering, as we do not
use pre- and post-conditions. The goal is still similar: to specify constraints between
interacting system components and to discover when these constraints are being
violated. The usage of contracts for cooperating objects was researched by R. Helm et
al. [96] as well as later by M. Schrefl et al. [170]. J. Strassner published an application
of contracts in runtime system design to interacting components in telecommunication
systems [185]. We later utilised contracts as a means of establishing trust and control
for service collaborations in AS [55]. In our view, contractual connections are similar
to the managed communication channels concept of E. Stoyanov et al. [182], where
the channel is associated with metadata that captures mutual agreements between
cooperating parties in a machine-understandable language.

3.3.3 Frameworks

A popular method for researching AS engineering concepts consists of the development
of prototypical software implementations, either for proof-of-concept purposes or as
a preliminary stage for software products. A typical example for this is the ACE
Toolkit [222], which is described in Section 4.3.

65

3 Related Work

One of the most important AS engineering implementations is the IBM Auto-
nomic Computing Toolkit [113]. Its major use is the management of computing
infrastructures in the context of IBM products. Management processes are specified
and executed using JavaScript [113, Section 7.1], and communication is done using
the CBE format, which defines the structure and content of exchanged events [113,
Section 4][258].

Autonomia, also an autonomic computing environment, is presented by X. Dong
et al. in [62]; a description of self-configuration using this system is given in [38].
In Autonomia, a user can edit application templates that define compositions of
distributed components, along with management requirements. Mobile agents are
used during the runtime of the application to monitor these requirements and adapt
the system for self-healing and self-optimisation purposes. In [12], Ö. Babaoğlu et
al. explain the AntHill framework that employs mobile agents to achieve adaptability
and self-organisation in peer-to-peer systems.

The autonomic self-healing of J2EE clusters using the component-based JADE
framework is described by S. Bouchenak et al. in [30]. The approach relies on the novel
FRACTAL component model, which adds runtime introspection and reconfiguration
capabilities to the components and aims at improving the self-repair capabilities
of systems by means of architectural reconfiguration. The Rainbow framework
[76] also enables an architecture-based runtime system adaptation. The approach
understands architectures as models that are transformed into a more concrete
operational representation of a system at runtime. M. Agarwal et al. describe the
AutoMate framework in [2]. It can be used to compose and adapt GRID applications
in a context-aware fashion. This is achieved on an architectural level by means of
composition and reconfiguration of autonomic components and by employment of
the so-called RUDDER deductive reasoning engine to control the process.

In [200], the authors propose a process-based approach for the adaptation of
existing (legacy) systems, using an engine that is called WorkFlakes. The approach
can be used as an external component to adapt existing systems. It relies on the
existence of a set of suitable effectors (mobile agents) and sensors (so-called Probes
and Gauges) with the target system. A framework for reconfiguration of component
behaviour by means of statecharts is proposed by X. Elkorobarrutia et al. under
the name FraC [66]. In FraC, statecharts define the runtime behaviour of system
components, which are encoded as Java classes and instantiated during runtime. The
authors also investigate the adaptation of such systems by means of class inheritance.
This enables them to change a component’s BM at instantiation time, but does not
allow them to adapt BMs on the level of model elements while they are executing.

66

3.4 Network and Systems Management

3.4 Network and Systems Management

In this section, we are studying research that is relevant to the application of our
approach in the network and systems management domains. We first look at current
research in regard to systems supervision and monitoring, which are the major areas
picked for the use case studies. We then take a look at Information Models (IM)
and Data Models (DM). This impacts several aspects of our work: the event format
that is used by CUs to communicate, the context format that is used to store local
data, the definition of the expression language, the definition of the action language,
the process of mapping the BMs to a CU collective, and a potential usage of BMs
for describing dynamic aspects in IMs. The idea of shifting management processes
into the network itself is not novel; therefore, we survey existing management in
the network approaches in relation to our approach, which is called Model Based
Integrated Management (MBIM). The section concludes by looking at the field of
policy-based network management, which is considered as having the biggest impact
for current research on autonomic network management.

The current state of the art in network management is captured from a historical
perspective in an article by G. Pavlou [152], while A. Gupta describes developments
with a forward-looking perspective [86]. Research challenges are detailed in a 2007
article from A. Pras et al. [157].

3.4.1 System Regulation

A general background for system supervision can be taken from cybernetics. Within
this field, the connection between system regulation and BMs had already been
explored in the 1960s and 70s [8, 44].

Supervision The planning of system supervision using BMs was thoroughly invest-
igated by P. H. Deussen et al. [53, 54]. The determination and adaptation of an
FSM-based BM to a running system has been researched by G. Denaro et al. [51],
while A. Schumann and Y. Pencolé researched supervision of event-driven systems
based on a state-transition model [171].

Monitoring Monitoring is the primary means for observing the operation of a
network. Although the basic mechanism for monitoring IP networks seems to be
set in stone (SNMP), there is still a considerable amount of research conducted on
the subject. A novel paradigm known as On-Demand Monitoring (ODM) has been
researched by R. Chaparadza. The approach uses a composition language that allows
to flexibly program monitoring sessions [37]. M. Andreolini et al. examine a number
of models for monitoring network load with regard to their applicability for systems
with autonomic decision making capabilities [7]. The monitoring of networks using
mobile agents has been researched by S. Manvi and P. Venkataram [132]. Besides

67

3 Related Work

our own work on intrinsic monitoring [104], L. Shi and A. Davy from the TSSG3 are
also researching this subject [176, 175], and we recently wrote a shared paper on the
subject [177].

3.4.2 Information and Data Models

There are clear differences between an IM and a DM. For example, in [264] an IM is
described as “[...] primarily useful for designers to describe the managed environment,
for operators to understand the modeled objects, and for implementors as a guide
to the functionality that must be described and coded in the DMs. [...] IMs can
be implemented in different ways and mapped on different protocols. They are
protocol neutral. An important characteristic of IMs is that they can (and generally
should) specify relationships between objects”, whereas “Compared to IMs, DMs
define managed objects at a lower level of abstraction. They include implementation-
and protocol-specific details, e. g. rules that explain how to map managed objects
onto lower-level protocol constructs.” (Changes to the original text are set in [square
braces].)

A BM is typically interpreted in conjunction with context data. In the network
and systems management domain, this data would usually conform to a DM, which
in turn might have been derived from an IM. The idea is to use a single IM for the
overall network and to map this model to the different implementations used for the
individual subsystems, thus creating a number of data models. For model integration
purposes, the usage of ontologies has been researched by a number of groups, e. g. see
[49, 186]. Employing a metamodel for model integration is discussed by B. Zakaria
et al. [210].

Common Information Model (CIM) The CIM has been standardised by the
Distributed Management Task Force (DMTF) as a general model for managing
complex IT systems. It is structured using OO concepts and has an XML format
[228], which is used with the Web-Based Enterprise Management (WBEM) standard
technologies [229]. WBEM has particular significance, as Microsoft products conform
to this standard.

Directory Enabled Networks – next generation (DEN-ng) The DEN-ng IM is
being actively developed and is currently at version 7.1. It aims at capturing all
necessary aspects of network management, from business requirements to the control
of concrete router configurations using OO techniques and design patterns — this
includes capturing dynamic characteristics as well as the behaviour of managed
entities using FSMs. DEN-ng has been created by J. Strassner in UML, and a
number of publications on the subject exist, for example [183, 189].

3Telecommunications Software & Systems Group at the Waterford Institute of Technology, Ireland

68

3.4 Network and Systems Management

Shared Information and Data Model (SID) An IM standardised by the TeleM-
anagement Forum (TM Forum) [273], the SID provides business and system view
definitions for designing and managing telecommunications networks. SID is based
on an early version of DEN-ng (version 3.5), and Z. Boudjemil et al. criticise the
model as not adequate for autonomic management [31, p. 14–15] with the following
words: ”[...] the SID is limited with regard to modelling autonomic environments in
four main areas. First, the SID policy framework is inflexible compared to that of
DEN-ng; see [59, 184] for more details. Second, the business-to-network translation
(and vice versa) was not realised in any tangible form in the SID. Third, important
concepts such as context are completely missing from the SID. Finally, the SID
does not provide artefact [sic] for the design of the entities behaviour such as state
machines.” (Changes to the original text are set in italic font and in [square braces].)

Structure of Managed Information (SMI) The IETF created SMI [250] as a DM
for usage with the SNMP Management Information Base (MIB). It is one of the
most widespread DM, but also one of the most simple ones. SMI is tightly coupled
to SNMP, and research has been conducted on a protocol-agnostic language as a
successor to SMI, called SMIng [270]. However, the working group closed, and this
work was abandoned.

3.4.3 Management in the Network

Shifting network management from a centralised system to decentralised components
located within (or close to) the network core is an idea that has been examined in
various other contexts than BM interpretation. A similar approach as Intrinsic Mon-
itoring, but without the BM interpretation aspects, has been studied by D. Pezaros
under the term In-Line Measurement [154]. In [36], K. Calvert et al. propose the
Ephemeral State Processing approach, which facilitates a lightweight programmable
service within routers to achieve management in the network. The usage of mobile
agents for network management has been widely researched by various groups, e. g.
[168, 198]. Work has also been carried out in the area of active networking regarding
the application of programmability to individual network nodes, see for example the
article of D. Tennenhouse and D. Wetherall [196].

3.4.4 Towards Autonomic Network Management

As communication networks become more and more complex, engineers and research-
ers aspire further automation of network management by incorporating higher levels
of abstraction within the management processes. This supports humans to take
decisions on management actions or even allow machines to decide, instead of human
operators. R. Cronk et al. researched the application of expert systems for short term
as well as long term planning operations within a network, specifying an autonomic,

69

3 Related Work

context-aware scheme [46] as early as 1988. Researchers in the field of Artificial
Intelligence (AI) also consider network management as an application domain. For a
discussion of various approaches, refer to the article by G. Kumar and P. Venkataram
[123]. From our perspective, the area of autonomic network management emerged
from the PBM field around 2005–2006. The following text is structured in two parts,
with the earlier work on PBM in the first one and recent approaches in the second
part.

Policy Based Management According to the article by R. Boutaba and I. Aib
[32], the work of a group lead by M. Sloman at the Imperial College of Science and
Technology, University of London, did create the PBM concept. For an explanation
of the original work, refer to [179]. A more current overview of the field can be found
in J. Strassner’s book on PBM [184]. An analysis of the manifold PBM models and
languages can be found in [4], and a specific investigation of the popular Ponder
language can be found in [47]. The use of policies for automated configuration man-
agement has also been studied in the context of active networks by A. Konstantinou
et al. [122].

Approaches for Autonomic Management In a “lessons-learned” article [145], R.
Mortier and E. Kiciman discuss some general considerations regarding autonomic
approaches, based on studying previous techniques employed for automation and
adaptation in network management. S. van der Meer et al. strive for a clarification
of terms and concepts in a 2006 article [202]. J. Strassner created the concept of the
Policy Continuum; this was then formalised in the TSSG enabling the integration of
policy languages using DEN-ng [48, 114]. A prototype of the policy continuum has
also been created [201], and work on this subject lead to the Foundation, Observation,
Comparison, Action and Learning Environment (FOCALE) [187]. The DEN-ng
policy model used within FOCALE is described in [190, 189].

Based on PBM research, R. Bahati et al. created a system to manage an Apache
web server using autonomic principles, facilitating policies for the control operations
[13]. The JADE [30] successor TUNE uses policies to specify deployment and
reconfiguration processes based on components [35]. We also contributed a publication
[103] in this area that proposes an autonomic regulation approach for AS. The
mechanism makes use of TMPL for monitoring a system and policies for controlling
a resulting adaptation within the system.

3.5 Performance Benchmarking

To compare the performance of different methods for solving a single problem,
it is common engineering practice to exercise the different methods in question
using a set of standard examples. Collections of such standard examples, or data

70

3.5 Performance Benchmarking

sets, are usually referred to as benchmarks suites. There is a large body of work
on the usage of state-transition systems in benchmarks, with a wide spectrum
of applications. We will survey the existing work by investigating three distinct
areas: benchmarks used for logic synthesis, the utilisation of statecharts and general
performance benchmarks. This work is of importance for our quantitative assessment
of the interpreter implementations. Most of the publications on state-transition
systems for benchmarking are referring to quite simple automata or are using a
single, exemplary statechart. As we will see, this is not sufficient for the thesis, as
we strive to investigate very specific aspects of an execution system in far greater
detail as provided by the current state of the art.

Usage for Logic Synthesis The usage of FSM-based benchmarks has a long history
in the field of logic synthesis. This research area is concerned with the mapping
of logical expressions, usually formulated in a higher-level language like the Very
High Speed Integrated Circuit Hardware Description Language (VHDL)[240], to
connections of transistors using a given hardware technology. Benchmarks suites for
application in this area usually contain one or more FSMs because of the importance
of the formalism for designing control systems. Besides employing FSMs, such kinds
of benchmark suites encompass designs for standard elements (e. g. shift-register or
adder).

The most popular collection of benchmarks of this type is referred to as the
Association for Computing Machinery (ACM) Special Interest Group on Design
Automation (SIGDA) benchmarks, or as the Microelectronics Center of North
Carolina (MCNC) benchmarks [209]. They are somewhat dated4, but still widely
referenced. The ACM/SIGDA benchmarks are archived by the North Carolina
State University at the Collaborative Benchmarking and Experimental Algorithmics
Laboratory site [254]. The benchmark suites have been compiled at meetings of the
International Symposium on Circuits & Systems (e. g. the ISCA89 benchmark suite);
at various High-Level Synthesis workshops (for example the HLSynth91 benchmark
suite); or at the Logic Synthesis Workshops (e. g. LGSynth93). For the usage in
the area of Field-Programmable Gate Array (FPGA) hardware, the Programmable
Electronics Performance Corporation (PREP) benchmark suite is often utilised,
which contains, among other benchmarks, two definitions of state machines [118,
Table 1].

The Utilisation of Statecharts in Performance Benchmarks There is no widely
accepted benchmark suite that uses statecharts for performance assessment and
we found only a very small number of publications documenting the utilisation
of statecharts for this purpose. Among the employed statecharts is the calculator

4Most of them are older than 15 years

71

3 Related Work

example from the book on statecharts by M. Samek [166] and a statechart that is
constructed from the Generalized Railroad Crossing problem [158, 94].

General Performance Benchmarks For the general performance assessment of
computing systems, there are a number of well-known standard benchmark suites.
For example, the SPEC-cpu2000 benchmark suite [269] or the Dhrystone benchmark
[204]. Such benchmarks will asses the performance of a hardware platform and are
not suitable for evaluating software execution mechanisms. For this area, other
benchmarks have been devised, e. g. the DaCapo benchmark suite [277], which is
intended as a tool for benchmarking the runtime performance of the Java program-
ming language in relation to implementation aspects like memory management and
the binding to the underlying computer architecture.

An interesting approach for designing benchmarks is to generate them. S. Ramesh
reports on using a statechart generator to achieve this, but does not disclose further
details [160]. A similar approach is followed by L. Jóźwiak et al. by generating FSMs
based on user-supplied parameters [117], which allows them to customise certain
aspects of the generated benchmark (e. g. number of states, relation of states to
transitions, etc.) and to generate a wide variety of FSMs. Within the proposed
benchmark, we are also making use of generative approaches for creating some of
the employed models.

We did not find any suitable benchmark suite that will allow us to assess the
performance of a statechart execution engine accurately and in necessary detail.
Either the benchmarks are defined too simple, without taking statechart specific
features into account (e. g. the ones that are based on FSMs) or they are using
statecharts, but only in the form of a single, exemplary model. This is not sufficient
for an in-depth study of the various aspects of an execution system. General
performance benchmarks are interesting as a documentation of the current best-
practices for benchmark design, but, again, these benchmark suites are not specific
enough for our purposes. The current state of the art in this area forces us to
create our own, more suitable benchmark, and this is where our work most obviously
advances the current state of science.

3.6 Summary

This chapter captured the state of the art of research related to the thesis, structured
into five sections.

We are using the statechart formalism, which has been influenced by a number
of other formalisms and the first section gave a historic overview of state-transition
systems, from automata theory to UML State Machines. Current state of the art for
such formalisms are UML Behavioral State Machines, which is the paradigm that

72

3.6 Summary

we employ throughout the thesis, although not all of the implementations that we
discuss are using its complete set of features.

The second section discussed research related to BMs, in regard to interpretation,
execution, transformation, the available tools and specification alternatives. We
are significantly contributing to the current state of the art of BM interpretation
through the concepts established in Section 2.2 as well as through the quantitative
assessment of our approach as described in Section 6.3. The discussion on model
transformation and model checking is included to complete the picture in regard to
the use case studies in Chapter 5, as is the description of the state of the art tooling.
The overview of alternative approaches for BM modelling and execution is included
to allow readers to clearly separate our approach from others.

The third section investigated AS engineering topics by discussing recent advances
in the area of dynamic system adaptation and composition. Our work contributed
novel insights in this area, especially in the area of interpretation performance.
It also provides novel tools (the performance benchmark described in Chapter 6,
that can be used to evaluate AS). An important aspect of BM-driven systems is
communication, where we adopt state of the art approaches and technology for the
interpreter implementations. Therefore, this section contains an overview of the area.
It also contains an overview of implementation technologies and frameworks.

A survey of the network and systems management application domains is con-
tained in the fourth section. This is relevant for the qualitative assessment of our
approach within the use case studies in Chapter 5, as we directly utilise the described
best practices and state of the art research for information modelling and system
management. We are advancing the current state of science in these fields and our
work contains novel contributions to the areas of system supervision and monitoring
as well as autonomic network and system management.

The fifth section contains a discussion of the state of the art research on performance
benchmarking. We found no suitable benchmark for assessing the performance of
BM interpretation or execution systems. Thus, the benchmark defined in Chapter 6
constitutes a novel contribution to the field of performance benchmarks.

73

74

4 Implementations

What I cannot create, I do not understand.

Richard P. Feynman

Four different implementations have been carried out, and the resulting prototypes
have been used to study aspects of our approach. Each of the prototypes has a
different focus. Our earliest implementation serves mostly as an inspiration and
primer for the later interpreter prototypes. It is used as an engine for the TMPL
runtime system and employs interpreted state machines for matching patterns in XML
streams. The TMPL engine shows the feasibility of the general BM interpretation
concept and demonstrates how BM adaptation can be used to optimise system
behaviour at runtime.

The second implementation is the ACE toolkit, a component-based framework
for creating autonomic applications using interpreted state machines. Component
behaviour results from runtime interpretation of BMs, which are adapted by ACEs in
reaction to changes in the environment of an ACE. The ACE toolkit implementation
demonstrates the communication facilities needed to operate a CU collective, along
with sophisticated mechanisms for FC binding and invocation. Furthermore, our work
on the toolkit helped us to more clearly identify the general software architecture
that such an approach requires.

For the third implementation, we created a BM interpreter for UML State Machines.
The reason behind this is found in the richness of the UML State Machine formalism,
which covers a large number of features beneficial for state machine execution. To
gain insight into the implementation of mechanisms for the widest range of possible
features, we implemented the complete set of features for UML 2 Behavioral State
Machines based on an Ecore representation of the UML models.

The final implementation is a BM execution platform that uses an SCXML engine.
This prototype concentrates on issues of BM initialisation, FC dependency resolution
and CU management. The motivation for this prototype is to enable applications for
management in the network — we want to shift the responsibility for network and
systems management processes from dedicated and centralised network management
systems to the elements that constitute the network itself. Thus, this prototype
supports the thesis by demonstrating potentials paths for the integration of our
approach with systems that are common to the infrastructure found in the network
and systems management domains.

75

4 Implementations

To better explain the differences of the various implementations, we start by
establishing a basic set of BM features and a generic software architecture for an
interpreter. The implementations can then be compared with this generic model,
allowing us to not only highlight the focus of each prototype, but also to help us
with the definition of a performance benchmark suite in Chapter 6.

4.1 An Interpreter for Behaviour Models

For comparing the different implementations, it is useful to first have an understanding
of the general functionality that a BM interpreter needs to fulfil. Therefore, we are
establishing a set of basic BM features and then continue to discuss the generic
architecture of such runtime interpretation mechanisms. We will start by reviewing
the basic properties that characterise BMs.

Graph Properties As discussed in the previous chapter, the state-transition structure
of BMs forms a graph. This graph has certain properties: it is usually sparse,
meaning that the real number of edges is much less than the possible number of
edges. BMs often contain cycles, which are the equivalent of loops in traditional
programming languages. Transitions are always directed. These properties
directly impact the data structures used for model storage and we suggest to
use a storage model based on referencing (e. g. a linked structure of objects).

BMs as Composition Glue for FCs The reason for introducing BMs is to capture
the application logic in a format that is meaningful for humans and accessible
to machines. By abstracting from detail, complexity can be hidden: this is
done by encapsulating technicalities into FCs, which, in turn, are used by the
BM. We see BMs as a lightweight orchestration mechanism on top of the FCs
that do the heavy-lifting in regard to computational operations. Therefore,
most processing time would be spent within the FC, not in the interpretation
of the BM and the BM specification language should cover orchestration-like
statements, rather then statements geared towards programming.

Explicit Control Flow The control flows within an application should be expressed
explicitly in a BM. This allows the use of parallelism within the application logic
but also ensures that we have a reactive system, which enters a quiescent state1

at regular intervals during the interpretation. Quiescence is a crucial property
for runtime adaptation of BMs and also necessary for model serialisation, i. e.
for migration or persistent storage of a model during its interpretation.

The Application Domain Although an understanding of the application domain
is not required at this point in the text, it is helpful to be reminded of the

1A system state where no active processing takes places

76

4.1 An Interpreter for Behaviour Models

professional field in which the approach is being applied. Most of our research
has its roots in autonomic systems engineering, and we apply BM interpretation
to the field of network and systems management. The following text therefore
puts an emphasis on non real-time, loosely-coupled communication mechanisms
and should be read keeping a distributed systems setting in mind.

4.1.1 Fundamental Behaviour Model Features

A BM needs to be uniquely identifiable and the format has to be understandable by
the interpreter. The following text provides a set of BM features that we found to
be fundamental for runtime BM interpretation. These features should be reflected in
any BM format used for specification of runtime-interpretable BMs.

States The employed BM format has to support the basic notion of States and has
to uniquely identify states with a name. Initial states and final states need to
be marked explicitly (see Section 2.1.1).

Compound States States are allowed to be contained within each other. There
exists a composition hierarchy similar to the one defined by the higraph
formalism [84, Section 2.1]. A state is considered active once a system has
reached the state or any of its substates (see Section 2.1.4).

Transitions need to support the specification of ECA transition labels. Transitions
are triggered by a single event, can be constrained through a single guard
condition and might contain a single action specification (see Section 2.1.2 –
2.1.3). We need BMs to be deterministic; thus, event labels on the outgoing
transitions of any state have to be unique. All of the ECA label components
(event, guard condition and action) are optional. In case that an event trigger is
omitted, the transition is considered an ε-transition, which is active as soon as
the interpreter has finished entering the transition’s source state. They can be
self-referencing, might run laterally to the composition hierarchy and connect
states in different parts of the hierarchy tree (e. g. the transition labelled 14 in
Figure 2.9 that crosses the composition hierarchy between A and B, as well as
B and C) and might connect more than one state, for example when forking a
control flow (see Section 2.1.5). The state-transition graph that is defined by a
BM has to be directed and traversable in a deterministic fashion2.

Events Messages that are transmitted between a BM and its environment or intern-
ally within a BM are required to have a name and might optionally include a
payload. The use of timed events needs to be supported (see Section 2.1.2.1).

2The selection of the transition that fires when a state has been completely entered needs to be
unambiguous.

77

4 Implementations

Conditions Guard Conditions are used as part of the transition labels and formulated
in a suitable language as expression statements that evaluate to a boolean
value (see Section 2.1.2.3). A suitable expression language needs to support
arithmetic, boolean and comparison operators, as well as the specification of
evaluation prioritisation using parentheses. The language also needs statements
for accessing data in the context and for specification of literal values.

Context Features for the access to context information (see Section 2.1.2.2) must
be available in the language employed for condition and action statements. We
require that variables in the context data are identified by name and can be
read and written to. Context data should be typed with support for boolean
values, integer numbers, floating-point numbers and at least a primitive list
data type for the dynamic insertion and removal of values.

Actions There are three distinct activities that can trigger the execution of actions:
firing a transition, entering a state and leaving a state. Action statements are
specified in a suitable language and we postulate the existence of two default
actions for each interpreter. The first action concerns the ability to send and
parametrise3 events, while the second action concerns the invocation of FCs,
including the binding of input parameters and storage of the return values in
the context (see Section 2.2.5.1).

Parallelism Specially marked regions of the composition hierarchy have to be in-
terpreted in parallel. There exists a disjoint partitioning of the composition
hierarchy similar to the one in [84, Section 2.1]. We require the use of constructs
that manipulate the control flow cardinality, like the fork and join constructs,
to specify this (see Section 2.1.5).

History We require the deep history construct, which supports the storing of an
active state configuration and the re-establishment of a previously stored
configuration (see Section 2.1.6). The history mechanism is supposed to store
the complete state configuration from a given root state down to all leaf states
of the composition hierarchy.

4.1.2 Generic Interpreter Architecture

Building upon the fundamental set of BM features introduced in the previous section,
we are now able introduce a generic architecture for a BM interpreter. Although each
of our implementations employes a different set of technologies and is created with a
different goal in mind, we found that their architectures are largely similar. Using
this experience, we created Figure 4.1, which depicts a breakdown of an interpreter
application into distinct subsystems, showing the connections between the different

3E.g. set a payload or a destination address

78

4.1 An Interpreter for Behaviour Models

parts and the responsibilities of each of the components. We will use this diagram
when investigating the features of each of the concrete implementations and while
discussing how they are different from one another.

Control Interface

Ev
en

t I
nt

er
fa

ce

FC
Repository

BM
Repository

Event Queue State

Context

Active
State Config

History

BM Instance

BM

Manager Creates, Adapts

& Removes

Invocation

D
is

pa
tc

he
r

Sending

FC FC...
FCs

Selects &
D

eploys

Interpreter Engine

- RTC Processing
- Expression Evaluation
- Supports Timers/Parallelism
- Binding to Context & FCs

Evaluates &
Updates State

Controls

Figure 4.1: Generic BM Interpreter Architecture

The figure shows a CU running a single interpreter application. It is a system with
two interfaces to the environment: the Control Interface and the Event Interface. For
illustrative purposes, we show only a single BM instance where instances of several
BMs could be used. The following text explains the architecture in more detail.

Event Interface Communication messages that pertain to the behaviour of the BM
and that are exchanged with other entities in the environment (e. g. BMs that
are part of a collaborating collective) are transmitted using this interface. The
interface acts as a gateway between the environment and the locally active BMs
and thus has to to be compatible with the messaging protocols and formats
employed within the overall BM collective (see Section 2.2.6).

Dispatcher The Event Interface establishes a connection to the environment, but
this is not sufficient in cases where the CU collective is widely spread and
internet-wide communication technologies need to be employed (see Section
2.2.6.4). The Dispatcher subsystem enables the use of routable event messages
by taking care of event addressing. When accepting events for sending, the

79

4 Implementations

Dispatcher needs to differentiate between internal and external events and
transmits the external ones via the Event Interface, whereas the internal ones
are added to the interpreter’s Event Queue.

Event Queue BMs are interpreted in a stepwise fashion, one event at a time. The
event queue buffers external events until they can be processed by the Interpreter
Engine. It offers the getNextExternalEvent() method used by Algorithm 1 as
discussed in Section 2.2.2.

Interpreter Engine The Interpreter Engine executes the logic for a stepwise evalu-
ation of the BM, by following the RTC semantics described in Section 2.2.2. It
evaluates conditional expressions, action statements (see Section 2.2.4) and the
context data associated with BM instances. It also provides support for timed
events (see Section 2.1.2.1) and the BM concurrency features (see Section 2.2.3).
To conduct BM interpretation using RTC semantics, the Interpreter Engine
needs to maintain the state associated with each BM instance. This includes the
context data, the active state configuration and the history state configuration
(see Section 2.2.3). Functionality that is contained in FCs is triggered by action
statements evaluated in the Interpreter Engine. The invocation process (see
Section 2.2.5) relies on previously established binding information (see Section
2.2.1).

Control Interface Management access to the BM interpreter is given through the
Control Interface, allowing an MA (see Section 2.3) to control the interpreter.
It is understood as a gateway between the environment and the interpreter,
which transmits messages that pertain to the management of the interpreter,
not the behaviour of the BMs.

Manager The Control Interface establishes a connection to the MA, but does not
implement the concrete logic needed to control the interpreter. This is done by
the Manager subsystem, which provides lifecycle management capabilities for
the interpreter as well as handling BMs and FCs.

An interpreter application can potentially execute a large number of BM
instances in parallel. These instances need to be created, might be adapted
during runtime and have to be removed when finished with execution. During
runtime, the MA might also be interested in utilisation data and information
about the progress of certain BM instances. Thus, the Manager needs to provide
information about all existing BM instances and the active state configuration
of BMs.

Similarly, a Manager needs to maintain the FCs used by the BMs instances.
It needs to resolve the dependencies by analysing binding information and
subsequently selecting and deploying the appropriate FCs (see discussion on
dependency resolution in Section 2.3).

80

4.2 The TMPL Engine

BM Repository BMs are stored in a repository that is accessed by the Manager
to retrieve the BM prior to instantiation (see Section 2.3). We included the
BM Repository in the diagram as a local subsystem, but in a larger setup it
might also be beneficial to retrieve BMs from a central, remote BM Repository
(indicated by the dashed lines).

FC Repository FCs are also stored in a repository that is accessed by the Manager
when solving the dependencies of a BM (see Section 2.3). Again, our architecture
proposes to use a local subsystem, with the option of using a distributed setup.

4.2 The TMPL Engine

The TMPL [238] has been devised for the specification of
structured patterns that are to be identified in a stream of
XML data. As a technical basis for executing the pattern
matching, we initially chose to use a simple Pushdown
Automaton (PDA) [109, Chapter 5], but it soon became
clear that we will need to use a full-fledged EFSM, with
separate access to a stack that stores nesting level values
and some additional context data.

4.2.1 Architecture and Operation

Our first approach involved code generation, and TMPL patterns (called templates)
were compiled to Java classes implementing the state machines [101]. An XML data
stream is separated into tokens, e. g. using Simple API for XML (SAX) events [251]
and each token is supplied as an input event to all state machines. Upon a successful
match, an event is raised to inform an application.

We found that the inflexible structure of the compiled EFSM classes not only
forced us to go through the code generation and deployment steps for each change in
a template, but also that the approach does not scale well. Imagine a system that
matches not a couple, but several thousand of templates against an input stream.
Each token would need to be supplied to all of the thousands of templates. To solve
this issue, we created an interpretation mechanism based on a runtime execution
specification, instead of compiling the state machine structures into Java classes.
This allowed us to combine state machines in one large automaton that needs to be
supplied with only a single event. The resulting toolchain takes the form depicted in
Figure 4.2.

TMPL templates are provided in a textual format to the parser, which does
syntax checking and generates automata representations, one for each template. The
automata can be stored using the Graph eXchange Language (GXL) [205] persistency

81

4 Implementations

Application
Interpreter
Engine

XML
Stream

GXL

TMPL

Automata

Parser

Figure 4.2: The TMPL toolchain

format. An interpretation engine uses the templates to match patterns on an XML
data stream. Once a pattern has been identified, an application is notified with
the identified variable values. To clarify this process, take a look at the following
example template:

1 template ab {

2 <a>

3 ["hello"]

4

5 }

This template identifies all occurrences of an <a> element, containing a direct child
element with the textual content hello. When compiling the template source
given above, one obtains the automaton depicted in Figure 4.3.

The syntax of TMPL looks like, but is not, XML. This pseudo-XML is interspersed
with square braces that contain predicates. Apart from matching the structure of
an XML input stream, all predicates need to evaluate to true. For example, the
predicate in line 3 checks that the content at the indicated position equals the given
string hello. TMPL defines many more predicates (e. g. access to context data
structures or regular expressions matching) and an overview of the language features
can be found in [98].

As seen from Figure 4.3, TMPL automata use guard conditions as well as action
statements (written in curly braces) during the interpretation process. Generated
automata make use of a stack data structure for tracking XML element nesting
levels. During a successful matching process, the TMPL automaton will be traversed
from START, through the various MATCH states, to the END state, where it will
signal a successful match and return to the START state. This path is shown using
thicker arrows in the diagram. In case of an incorrect token in the input stream
(e. g. a closing element tag, where content was still expected), a previous system

82

4.2 The TMPL Engine

START

MATCH_A_ELEMENT__1

ε
{CLEAR()}

MATCH_B_ELEMENT__2

START_ELEMENT
[ELEMENT="a"&&TOP<Level] {PUSH()}

END_ELEMENT
[TOP=Level] {POP()}

END_ELEMENT
[TOP=Level] {POP()}

MATCH_CONTENT__3

ε, START_ELEMENT
{POP()}

END_ELEMENT
{POP()}

MATCH_B_ELEMENT_END__4

CONTENT
[CONTENT="hello"]

MATCH_A_ELEMENT_END__5

END_ELEMENT
[TOP=Level] {POP()}

END
 {TEMPLATE_MATCH()}

END_ELEMENT
[TOP=Level] {POP()} ε

START_ELEMENT
[ELEMENT="b"&&TOP=Level-1] {PUSH()}

Figure 4.3: An example for a generated TMPL automaton

state is entered. The example uses a number of token types for the transition event
labels: START ELEMENT, END ELEMENT and CONTENT; these are signalling an
encounter with an opening tag, a closing tag or content data in the XML stream.
The employed guard condition statements include ELEMENT (a variable holding
the name of an element), TOP (a variable that holds the topmost value on the
nesting level stack), Level (the current nesting level in the XML stream), a number
of operators (the logical “and”, comparison operators and the arithmetic minus
operator) and literal values (e. g. “hello”). There are also some action statements
used: CLEAR() (Resets the nesting level stack and level counter), PUSH() (Stores
the current nesting level on the stack), POP() (Removes the topmost stack element)
and TEMPLATE MATCH (Reports a successful match for the template). The Level
variable is updated automatically before firing a transition with a START ELEMENT
event and after firing a transition with a END ELEMENT event. Using the TOP
and Level variables is necessary when matching nested templates on an arbitrary
depth: the example template will not only find patterns where <a> is a direct child
of the root element, but also any occurrence of the pattern when nested below other

83

4 Implementations

elements (see the condition part of the transition from MATCH A ELEMENT 1 to
MATCH B ELEMENT 2). In contrast, the element will only be matched if it
appears as a direct child of the <a> element (see the condition part of the transition
from MATCH B ELEMENT 2 to MATCH CONTENT 3).

4.2.2 Major Challenges and Key Results

Using state machines with an interpretative approach, instead of employing code
generation techniques to create the executable matching logic, enables us to invest-
igate an interesting optimisation technique: facilitating the state machine product
based on the cartesian product of two graphs.

Optimisation using the cartesian product Calculating the cartesian product of
two graphs is a standard procedure used in graph theory and the following definition
is taken from [87, p. 22]: “The Cartesian graph product G = G12G2 of graphs G1

and G2 with disjoint point sets V1 and V2 and edge sets X1 and X2 is the graph with
point set V1 × V2 and u = (u1, u2) adjacent with v = (v1, v2) whenever [u1 = v1 and
u2 adj v2] or [u2 = v2 and u1 adj v1].”

1

2

3 CONTENT
[2]{2}

START_ELEMENT
[1]{1}

END_ELEMENT
[3]{3}

A

B

START_ELEMENT
[A]{A}END_ELEMENT

[B]{B}

Figure 4.4: Two simple TMPL automata Aab and A123

As an example, take the two automata Aab and A123 shown in Figure 4.4. These
automata are structured in a simple manner and do not possess an actual function.
The automaton Aab uses only letters for states, conditions and actions, whereas the
automaton A123 uses only digits. When calculating the combination Aab2A123, one
ends up with the automaton shown in Figure 4.5.

The resulting set of states consists of all combinations between the original state
sets: A1, A2, A3, B1, B2 and B3. For example, when the resulting state machine
A is in state A2, this would be equal to Aab being in state A, while A123 is in
state 2. Transitions between the states are also handled accordingly: each of the
transitions between the original states now exists multiple times, connecting each of
the combined states with each possible destination. The problem with this approach

84

4.2 The TMPL Engine

A1

A2

A3

B1

B2

B3

START_ELEMENT
[1]{1}

CONTENT
[2]{2}

END_ELEMENT
[3]{3}

START_ELEMENT
[1]{1}

CONTENT
[2]{2}

END_ELEMENT
[3]{3}

START_ELEMENT
[A]{A}

END_ELEMENT
[B]{B}

END_ELEMENT
[B]{B}

START_ELEMENT
[A]{A}

END_ELEMENT
[B]{B}

START_ELEMENT

[1][A]{1}{A}

END_ELEMENT[3][B]{3}{B}

START_ELEMENT
[A]{A}

Figure 4.5: Combination of the automata Aab and A123

is in the exponential increase in states and transitions, which can be solved by using
lazy construction as described by us in [98, Section 4.2.1 ff.]:

“A combination of ten EFSM with ten states each (e. g. templates having three
elements and two content predicates) would end up with 10 billion (1010) states and
far more transitions. As the authors of [83] point out, a possible solution to this
dilemma is to use lazy construction principles for the automata.

Even if the hypothetical number of states of a combined EFSM seems to grow to
exorbitant numbers, only a very small portion of these states would ever be used. If
an automaton is built in a lazy fashion by constructing new states at runtime only
when they are needed, this number may be decreased dramatically. For example,
we combined twelve templates with a total of 350 states using a lazy construction
principle and ended up with an EFSM of only 169 states for a specific data stream
after further optimisations that reduced redundant or empty states and transitions.”

The potential for optimisation lies within the transitions that trigger state changes
on the same event, but in both of the models. For example, see the transitions
that trigger on START ELEMENT in state A and 1. These two transitions can
be merged into a single one, as seen in Figure 4.5. In addition, both of the guard
conditions still need to be evaluated to true, and both of the action statements must
be executed on firing of the transition. This allows us to evaluate similar structures
of different state machines only once, which leads to a substantial performance gain.

Performance We found that the approach proves to be not only successful, but that
it also constitutes the fastest approach for template matching on XML streams that
we know of [98]. This is due to the potential optimisations that are made possible by

85

4 Implementations

the dynamic properties provided by an interpretation mechanism. For example, with
generated code, a lazy construction of the automaton cannot be implemented, which
makes it effectively impossible to use this optimisation technique in combination
with code generation. The success of this technique is also indicated in Figure 4.6,
which compares the throughput of the previous, compiled version of TMPL with the
interpreted one, as well as with the fastest library for pattern matching on XML data
that we could find, called Streaming Transformations for XML (STX) [24]. Other
XSLT engines are considerably slower than STX, which is why we choose to not
include them here.

20000 300 600 900 1200 1500

10

0
1

2
3

4
5

6
7

8
9

Size of input stream [MB]

Th
ro

ug
hp

ut
 [M

B/
s]

TMPL Interpreted

TMPL Compiled

STX

Figure 4.6: Throughput of TMPL implementations and of STX

The general conditions, employed data sets and templates for obtaining the shown
results are described in [98, Section 5.1]. It is interesting that the interpreted version
can be faster than the one using direct compilation. This happens gradually while the
combined automaton is constructed internally. Over time, the combined automaton
will be more and more complete and at some stage yield a higher throughput than
the compiled approach. In the given example, the TMPL interpreter processes a 2
GB stream of data in less than half the time that its STX counterpart needs — for
large volumes of data its throughput is more than 3 MB/s higher than the compiled
version and almost three times as high as the one provided by STX. It needs to be
pointed out that the interpreted approach only makes sense for large amounts of
fairly redundant data.

86

4.3 The ACE Toolkit

Relation to the Generic Interpreter The interpretation of TMPL automata con-
stitutes our first application of the interpretation principle to state machines. TMPL
excels in the domain that it has been engineered for (pattern matching on large
streams of XML data), and we have been employing it successfully in a number
of projects. Although the templates are processed in a similar fashion as EFSM-
based BMs, their purpose is to serve only as recognisers for a sequence of input
tokes, not as interpreted BMs. This is most obvious when comparing the supported
BM features to the generic BM format as laid out in Section 4.1.1. Both state
machine formats support the notion of states and use ECA transactions, but the
TMPL interpreter does not support compound states, nor does it have features for
parallelism. The nesting level stack can be regarded as a history mechanism and
TMPL is able to identify and store values in variables that are kept in a context
data structure. Nonetheless, state names are generated automatically and have only
limited informational value. The generated automata are rather hard to understand
when read by a human.

From an architectural perspective (see Section 4.1.2), one can already identify
most subsystems that a BM interpreter should have. The Control Interface is used
to deploy the automata and to notify an application about the matching of a certain
template. Logic for managing the Interpreter Engine exists, and the Engine itself
conducts a form of reactive, stepwise RTC processing. The Event Interface and
Dispatcher are boiled down to a tokenising mechanism that does not support the
queueing of events, nor allows for sending of events from the automaton. FCs are
hard-coded into the Engine, and there is no FC Repository as such. A BM Repository
exists, which stores the templates that the Engine uses. Templates are instantiated,
not on a one-instance-per-template basis, but as one, lazily-constructed instance that
is a cross-product of all of the active templates.

4.3 The ACE Toolkit

A major influence for our current work on BMs
has been the participation in the creation of the
ACE toolkit. During development of the TMPL
interpreter engine we needed to look closely into the details of runtime EFSM
interpretation; working on the design and implementation of the ACE toolkit com-
plemented this research. We investigated the dynamic composition of BMs, created
a sophisticated event infrastructure and explored the concept of using FCs to provide
additional functions to a BM.

ACE Self-Models The primary focus for ACE development has not been in creating
a performant or feature-rich state machine executor, but rather in the engineering of
a software architecture that enables the development of component-based, autonomic

87

4 Implementations

systems driven by BMs. One of the key aspects about ACEs is the ability to
automatically adapt their runtime behaviour to a changing environment. This is
achieved using so-called self-models. A self-model contains a set of rules that defines
all possible ACE behaviours and that enables the ACE to construct concrete BM
instances (referred to as plans) at runtime. The ACE continuously evaluates its
self-model in regard to the environment, and creates new plans or adapts existing
ones if necessary.

As the generation of BM instances from a set of rules is a challenging task on its
own, we are employing only a simple BM format with only a limited set of features.
The format uses EFSMs and does support states, transitions with ECA labels and
context access features. It does not support parallel regions or state containment on
a model level, although it is possible to spawn the execution of new plans parallel to
existing ones. The defined expression language has nine default predicates for logical
comparison and boolean operations, but is extensible by allowing the declaration of
custom predicates. Actions are restricted to the invocation of FCs (which include
functions for sending events). Context data can be accessed and stored in local data
structures, either with a global, session or FC invocation scope. The session data
structures are shared between the model and any invoked functions.

4.3.1 Architecture and Operation

An exhaustive discussion of the ACE architecture is found in [34, Section 3]. In the
following text, we will only give a short overview of the architecture and describe
the central elements that make up an ACE. The following description of components
is adapted from one of our publications on the ACE toolkit [26, Section II].

ACEs are basic building blocks for creating autonomic services in distributed
environments. An ACE can be seen as a general-purpose abstraction for communic-
ation services, which collaborates with other ACEs in order to fulfil certain goals
while adapting its behaviour to changes observed in the environment. The ACE
architecture is derived from the simple biological model where an entity consists of
multiple organs and where each organ fulfils a certain purpose in order to keep the
entity alive. As presented in Figure 4.7, an ACE consists of six organs that each fulfil
a certain purpose, and in the following text, we will shortly describe these organs.

Gateway organ A subsystem responsible for the inter ACE communication. The
ACE communication model is event-based and distinguishes between internal
and external events. It corresponds to the Event Interface and Dispatcher
subsystem of the generic interpreter architecture introduced in Section 4.1.2.
The gateway supports two modes of communication. On the one hand, one can
use the connection-less Goal Needed (GN) – Goal Achievable (GA) discovery
protocol for retrieval of addresses of ACEs that implement a certain service. On
the other hand, one can establish direct connections between a group of ACEs

88

4.3 The ACE Toolkit

Run

Supervision

Gateway Manager

Facilitator

Environment

R
ea

d

Plans

Fct 1 Fct 2 Fct n...

Fct 1 Fct 2 Fct n...

Functionality Repository

C
al

l

Executor

Specific
Functions

Common
Functions

<rules>
<create/>
<modify/>
</rules>

Self-Model

Events

Figure 4.7: ACE architecture

using a software contract paradigm (the concept of a contract is introduced in
Section 2.2.6.4).

Manager Organ This organ manages the ACE lifecycle (start, stop, migrate) and
handles the internal ACE communication. Lifecycle management comprises
scheduling, controlling and executing any operation that influences the lifecycle
of an ACE. If a lifecycle operation is requested, the manager will inform
all other organs about the upcoming lifecycle action and will execute the
action after all organs have confirmed their readiness. The Manager organ
corresponds to the Manager subsystem of the generic interpreter architecture.
Besides management of an ACE’s lifecycle, the Manager organ also handles
the internal ACE communication using an elaborated version of the generic
interpreter’s Event Queue subsystem. The internal ACE communication model
also implements a PubSub messaging paradigm: ACE organs can publish
events to the event bus and can subscribe for receiving events from the bus.

Facilitator Organ The Facilitator is responsible for creating ACE plans and adapting
the ACE behaviour with respect to new requirements. The ACE plan is a BM
instance that is interpreted to yield the runtime behaviour of an ACE. All
possible ACE behaviours are defined by the developer within a self-model, which
contains a set of rules that enable the Facilitator to construct concrete ACE
plans. The facilitator loads the self-model on ACE start up and continuously
evaluates it in regard to the ACE environment, creating new ACE plans or

89

4 Implementations

adapting existing ones, when necessary. The Facilitator loosely corresponds
to the BM Repository subsystem in the generic interpreter architecture as it
provides behaviour specifications that the Manager organ uses to create BM
instances.

Executor Organ This organ is a BM interpreter: it executes the ACE plans and
requests the invocation of FCs. Multiple plans can be executed in parallel,
which allows ACEs to fulfil multiple goals and serve multiple other ACEs at
the same time. The executor maintains all active plans, along with their state
configuration and context data.

Functionality Repository An organ that is responsible for maintaining FCs. It
corresponds to the FC Repository component of the generic interpreter archi-
tecture. In the ACE toolkit we distinguish between common and specific FCs.
Common FCs are an integral part of the ACE toolkit. They comprise a set of
required functions, e. g. sending event messages, creating contracts, accessing
the context, etc. In contrast, FCs can be custom defined; in this case, they are
provided by an ACE developer and used to fulfil the specific requirements of
the target domain within which the ACE is used. The functionality repository
will load FCs on ACE start up and will invoke them when requested by the
executor.

Supervision Organ The Supervision organ monitors and logs the ACE operation and
enables access to the internal supervision system. It provides the supervision
system with current events, the self-model, the active state configuration and
the context. Using this information, the supervision system can control an
ACE that entered an error state, leading it back to a normal operational state.
The supervision organ does this by monitoring (and optionally modifying) the
message flow over two monitoring points within the manager and gateway
organs. We are regarding the Supervision organ as an implementation of
the Control Interface subsystem of the generic interpreter architecture. The
supervision concepts have been researched extensively (see Section 5.1).

4.3.2 Major Challenges and Key Results

The operativeness of the ACE toolkit has been shown successfully and the toolkit is
provided as an open source project available from sourceforge [222]. We took a series
of performance measurements for observing the toolkit performance and discussed
the findings in an article [27, Section 5] that is currently under submission to the
ACM journal Transactions on Autonomous and Adaptive Systems.

The development of the ACE toolkit helps us to prove that interpretation is a
well suited strategy for creating adaptable runtime behaviour. We especially gained
insights into the engineering of groups of autonomic components that collaborate

90

4.3 The ACE Toolkit

towards a common goal. In comparison to the other interpreter implementations,
there a four areas where our research on the ACE toolkit contributes novel findings
to the research field. These are described in the remainder of this section.

The Communication Infrastructure ACEs interact by providing services to other
ACEs and by consuming services from other ACEs in order to fulfil a certain goal.
ACEs discover collaboration partners through the GN–GA protocol and subsequently
form groups using software contracts. The process of forming and maintaining
aggregates is highly dynamic: ACEs can migrate between hosts and ACE addresses
used within existing contracts are maintained.

Most of the programmatic support for this functionality is provided by two
communication mechanisms that are used for transmitting external events over the
gateway. The event-based, connection-less mechanism is based on the REDS PubSub
middleware [226], which is employed for service discovery purposes using the GN–GA
protocol. Following this protocol, an ACE A publishes a GN Message with a goal
identifier, and its own address to the REDS middleware. All subscribed ACEs will be
supplied with the GN message. In case that an ACE B can fulfil the requested goal it
will answer back to A with a GA message, containing its own address. By employing
the addresses from the received GA, the ACE A can then proceed to establish point-
to-point connections with B. As PubSub supports one-to-many communication (see
Section 2.2.6.4), a single GN can result in a number of GA messages, where the
originating ACE is free to select the most suitable communication partner(s).

Contractual connections are based on the DIET framework [248] which is used for
creating dedicated communication channels between ACEs. A collaboration contract
can be established upon a successful negotiation via GN–GA between the ACEs
(see Section 2.2.6.4). A group of ACEs that has a contract in place exposes their
services to each other and can invoke them. The contracting mechanism provides
a form of reliable group communication with guaranteed notification on contract
infringement4. These features are mainly responsible for enabling the engineering
of robust, distributed applications using the ACE toolkit. Using a combination of
a connection-less, non-routing message passing protocol for service discovery with
dedicated point-to-point connections for service usage is also a central topic of [100].

The Functionality Repository The idea of using a BM together with a number
of FCs emerged during our work on the ACE toolkit. There are some functions
that are either too complicated or that need to be formulated too optimised to be
expressed in terms of the BM format. FCs are considered as software components
that encapsulate such functions. They are orchestrated by the operational logic
contained in the plans executed by an ACE. FCs offer functions that can be called

4The invalidation of the contractual invariant

91

4 Implementations

during the processing of the self-model and these functions are bound5 to action
statements contained in the plans. The mechanisms that trigger the invocation
of FCs are supporting a binding to existing Java code using configuration files for
specifying parameters, method mappings and type conversions. This enables software
developers to easily create FCs for use by the ACE toolkit.

The Facilitator and Supervision Organs Both, the Facilitator organ, as well
as Supervisor organ implement novel concepts. Until now, we argued that BM
interpreters rely on manually-specified models. In the case of the ACE toolkit an
additional indirection layer is introduced: behaviour is not specified in the form of a
deterministic process but rather as a set of rules to describe the parameter space in
which the behaviour should take place. A concrete behaviour is then determined with
respect to an ACE’s environment, using deductive reasoning on a given rule base.
This is an interesting research venue and we would like to investigate it further as a
topic in our future work. The creation of the Supervisor organ is a direct consequence
of employing the Facilitator to create new behaviours in response to changes in the
environment. Due to the complexity of runtime behaviour adaptation; it is very
complex to assure that a BM always operates in a manner intended by an MA. The
supervision organ supports truly autonomous systems by allowing errors and less
than optimal behaviour. Once an intolerable situation occurs, the Supervisor is
used by an external MA to adapt an ACE plan to conform to a more appropriate
operational behaviour.

The ACElandic High-Level Language The self-model syntax uses an XML format
to describe the rules that are used to create the concrete state machine BMs for the
executable plans. Thus, manually specifying a self-model is a tedious undertaking. To
ease this task, we developed the ACElandic language. With ACElandic, self-models
can be created using appropriate higher-level language statements while the matching
glue code and configuration files, which enable a binding with the required FCs, are
generated by the ACElandic compiler. We can follow a compilation approach, as
the tool only needs to produce the self-model XML file read by an ACE at startup.
The adaptation of the runtime behaviour is achieved through the interpretation of
the plan by the Executor organ and the plan adaptation by the Facilitator. The
ACElandic language, as well as the toolset, have been used very successfully to
demonstrate the approach [56]. A comprehensive presentation of the language is
contained in Appendix C.

5In the sense of programming language binding of functions

92

4.4 The UML State Machine Interpreter

4.4 The UML State Machine Interpreter

The following section discusses an implementation of a BM interpreter for UML 2
Behavioral State Machines. The intention is to investigate the performance impact
of the corresponding mechanisms as well as to gain insight into the aspects that
dominate the runtime performance characteristics of the approach. The use of UML
for BM representation also has a second motivation: using a graphical symbology
is beneficial to humans for understanding and developing BM specifications. While
the specific representation format is irrelevant for machines, humans usually grasp
the meaning of a graphical BM representation more easily, as when supplied with
a textual representation. It is not our goal to develop general execution semantics
for UML State Machines. This has already been done by several other parties, and
information on this can be found as part of the discussion of related work in Chapter
3.

We picked UML 2 Behavioral State Machines, as they are the most feature-rich
formalism for state machines that we know of. As UML aims at integrating all
existing modelling languages within a single syntax, its current version (2.2) contains
a very rich set of features for the specification of state machines [255, Section 15].
UML can be regarded as the current state of the art for BM representation. Both,
the TMPL engine as well as the ACE toolkit, provide only a limited set of BM
features and, most notably, they do not support compound states and parallelism.
UML State Machines implement all of the fundamental BM features listed in Section
4.1.1, along with many others.

Besides state machines, UML provides three alternatives for the specification of
behaviour: activities, interactions and use cases. We choose to not investigate these
other UML constructs. Use cases are too abstract for our purposes and interactions
only allow the modelling of black box behaviour. Activities might be an option for
runtime behaviour modelling, but we choose to restrict ourselves to the use of state
machines.

Whenever UML is mentioned in the following text, we are referring to version 2.2
of the specification. We restrict our description to UML behavior state machines and
ignore the UML Protocol State Machine formalism, as we are interested in expressing
behaviour only. An overview of UML Behavioral State Machines can be found in
Appendix A.

Adaptive Systems Profile For runtime interpretation purposes, we found it useful
to extend UML State Machines with a proprietary profile, which we termed the
Adaptive Systems Profile (ASP). The ASP contains additional information that
enables a UML interpreter to construct an execution specification of the BM (see
Section 2.2). It currently consists of four stereotypes, which are extending the UML
meta model as depicted in Figure 4.8.

93

4 Implementations

<<metaclass>>
StateMachine

alias: String

<<metaclass>>
ElementImport

body: String
language: String

<<metaclass>>
OpaqueBehavior

<<stereotype>>
ContextImport

<<stereotype>>
Runtime
Behavior

<<stereotype>>
Initialization
Behavior

<<stereotype>>
Shutdown
Behavior

Figure 4.8: Structure of the Adaptive Systems UML Profile

RuntimeBehavior Extends the StateMachine class, allowing a BM interpreter to
identify which state machines are designed for runtime interpretation (rather
than being analysis or design artefacts).

ContextImport An association that is used to reference instance specifications as
part of the context. An alias property is used to assign a local name to the
imported instance and this alias can be used as an identifier in guard conditions
or action statements. Extends the ElementImport class. This stereotype is
evaluated by the interpreter prior to BM start to determine and instantiate
the classes used in the context.

InitializationBehavior Extends the OpaqueBehavior class. Using the body and lan-
guage properties one can directly specify a behaviour employing a programming
language that is supported by an interpreter implementation. This allows the
interpreter to execute an initialisation behaviour before the interpretation of
the BM.

ShutdownBehavior Used in a similar manner as InitializationBehavior, but the
specified function is executed after the state machine terminates. This enables
the interpreter to execute the indicated clean up code after the interpretation
process commences.

4.4.1 Architecture and Operation

We implemented an interpreter encompassing all of the features of UML 2 Behavioral
State Machines, except for redefinition (see Appendix A on page 214). The support
of state machine redefinition at runtime possesses only limited relevance for our
approach. In the words of H. Fecher, M. Kyas and J. Schönborn: “The concept of
redefinition [...] is not a behavioral issue.”[69, page 2]. As we pioneer the basics of
runtime BM interpretation, we choose to leave the treatment of UML State Machine
redefinitions at runtime as an open task to the research community. We still regard

94

4.4 The UML State Machine Interpreter

state machine redefinition as a useful tool for model specification at design time and
suspect that it could also be a beneficial structuring mechanism for runtime BMs.

The software architecture for the prototype is focussed on BM execution and
integration with the Java platform. More sophisticated infrastructure aspects (remote
messaging, logging, graphical user-interface, configuration, etc.) have been ignored.
The core classes used for BM execution are depicted in Figure 4.9.

InterpreterModelRepository

Executor

ControlFlowModelInstance

controlFlowChanged(ControlFlow, State)

<<Interface>>
RuntimeObserver

<<use>>

ObserverImpl
1 *

1..*

1..*
1..*

1

*

1

Figure 4.9: Architecture of the UML interpreter – execution aspects

There are seven central classes in the design that care for execution of BMs.
The ModelRepository provides storage facilities and access functions for BMs, it
corresponds to the BM Repository in the generic interpreter architecture (see Section
4.1.2). BMs are loaded from persistent storage and retained in dynamic memory.
They can be accessed element-wise using query functions. BMs contained in the
repository can be changed during runtime, resulting in a different execution behaviour
of the interpreter implementation once the modified elements are encountered. From
a user’s point of view, the Interpreter class is the central point of interaction with
the application. It offers lifecycle management functions and provides methods for
inspection of running BM instances and the dispatching of events. For tracing BM
state changes, the Interpreter allows other classes to register as observers for given
models by using the RuntimeObserver interface. This design follows the Observer
pattern [75, p. 287 ff.]. The Interpreter class combines the Control Interface, the
Event Interface, the Dispatcher and the Manager subsystem found in the generic
architecture.

A single Interpreter holds one or more Executor instances. These are active
classes that use a separate thread for sequentially executing a number of BMs, which
are referenced using the ModelInstance class. For all applications relevant to this
thesis, we used only a single Executor and a single ModelInstance. The idea behind
supporting several Executor instances is to be able to better utilise an underlying
hardware platform’s multitasking capabilities by adapting the number of executors
to the numbers of available processing cores. Each ModelInstance object stands for

95

4 Implementations

a single running instance of a BM and contains all necessary information needed
to interpret the model (e. g. the current active state configuration or the associated
context). A ModelInstance accesses data stored in a ModelRepository when
conducting model traversal and evaluation operations during the event processing
steps. The Executor maintains an Event Queue for external events.

The logic for processing events is found in the ControlFlow class, which is instan-
tiated once per control flow in the model. It largely corresponds to the Interpreter
Engine subsystem in the generic architecture. Peculiarities of the UML State Ma-
chine model (support for deferred events) demand that the ControlFlow class also
implements an Event Queue. Management of ControlFlow instances is done by the
related ModelInstance class using using retained continuation semantics (see explan-
ation on page 29 ff.). A ControlFlow uses the RuntimeObserver interface to update
observers on state changes by triggering an invocation of the controlFlowChanged
method for any registered observer classes. This enables the easy determination of the
active state configuration in parallel with the BM interpretation. Additionally, it can
be used to assure that a model is in a certain state before supplying it with further
events. During event processing, the ModelInstance class’s processing functionality
needs to evaluate expression statements within guard conditions or action directives.
The designed architecture, with the relevant classes shown in Figure 4.10, enables the
interchange of platform bindings for the employed expression languages by means of
an interface-based variation of the Abstract Factory pattern [75, p. 107 ff.].

ModelRepository ModelInstance*1

startDoActivity(Behavior, ControlFlow)
executeAction(Behavior)
isValid(Constraint)
setTimer(TimeEvent)

<<Interface>>
IntegrationSemantics

IntegrationSemantics
Factory

Timer
HandleImpl

Java
IntegrationSemantics

DoActivity
HandleImpl

cancel()

<<Interface>>
Cancellable

<<use>>

<<use>>

<<use>>

*

*

1

1

1
1

<<use>>

Figure 4.10: Architecture of the UML interpreter – integration aspects

The IntegrationSemanticsFactory provides the functionality to retrieve an ob-
ject that adheres to the IntegrationSemantics interface. Within the scope of this

96

4.4 The UML State Machine Interpreter

document, we are only using a single integration semantics, the JavaIntegrationSe-
mantics. This particular class employes native Java for the evaluation of expression
statements using the MVFLEX Expression Language (MVEL) [275]. The motivation
behind this is the usage of an on-the-fly bytecode compiler for MVEL. The resulting
code executes very fast — the authors of MVEL claim that it is the fastest expression
evaluator on the Java platform [276]. As the UML interpreter is able to directly bind
its expression statements to the execution platform, we are omitting any features
that relate to FCs. Instead, a BM invokes Java objects that have been specified
using the ASP ContextImport Stereotype.

Apart from the platform-dependent evaluation of expression statements, Integ-
rationSemantics implementing classes are responsible for managing concurrent
activities and handling timers. Concurrent do-activities (see page 212) are triggered
as in-state behaviour. Timers are set once a state has been entered, when the state
has an outgoing transition that is triggered by a timed event (e. g. after 1 minute).
Should a state be left, before a timer expires, then the timer needs to be cancelled to
suppress firing of the timed event. This is done using the Cancellable interface and
the corresponding TimerHandleImpl class, which is instantiated for every started
timer. A similar mechanism is used to cancel do-activities on state exit.

The UML interpreter has been implemented from scratch in Java language (version
6). We use version 3.0.1 of the UML 2 Ecore format provided by the EMF Model
Development Tools (MDT) project [280] for the in-memory storage format. An Ecore
version of the ASP was created to easily identify interpretable BMs and context data
imports. The utilisation of Ecore is motivated by the large number of tools that
can be used with this technology and the same reason applies for the selection of
UML in the first place: it is a standardised representation format, widely understood
and supported by a large set of tools. The following list enumerates additional
components used by the UML interpreter, which are provided by [278], except the
ASP and MVEL, which is provided by [275]. The mentioned version numbers are
the ones used for executing the performance benchmark.

Ecore The Ecore libraries are used as the underlying framework for the model
runtime format. Persistent storage is achieved using the XMI import and
export facilities. The employed version of the libraries is 2.5.0.

UML 2 An implementation of the UML 2 meta model in Ecore. We use two libraries:
the common functions in version 1.5.0 and the UML library itself in version
3.0.1.

ASP An extension to the UML 2 libraries, we use the initial version of this profile.

EMF Query A library for querying Ecore models, used for convenient access to the
BM elements. The utilised version is 1.2.100.

MVEL We employ version 2.0.14 of the library.

97

4 Implementations

We also use the EMF Compare tools for determination of model differences and
merging of BMs at runtime. For graphical representation and modification of BMs
the IBM Rational Software Architect (RSA) tool suite and the UML editor from the
Topcased project [282] are employed.

4.4.2 Major Challenges and Key Results

Implementing the UML interpreter is an important and challenging task. Although
the general mechanisms seem to be simple to engineer, correctly integrating the many
features of UML 2 State Machines requires attention to detail regarding potential
side-effects of the implemented mechanisms. Engineering the UML BM interpreter
implementation forced us to look deeper into the involved complexities as for any
of the other implementations. In the subsequent text, we will highlight the major
lessons learned while creating this proof-of-concept prototype.

Processing Compound Transitions in UML 2, a transition is not limited to con-
sisting of a single edge leading from a single source state to a single target state, but
can be made up of an arbitrary number of segments leading from a number of source
states to a number of destination states, eventually branching and merging via choice
and junction constructs. To determine the correct sets of entered and exited states,
we identify a set of paths through this graph of transition segments. Depending on
these identified paths. it is possible — under consideration of orthogonality, history
and initial pseudostates — to establish the target state configuration of a compound
transition. Using the current active state and the target state configurations, the
entered and exited states can be calculated as elaborated in Section 2.2.

Determination of Exited States in Transitions Using the Choice Construct A
particular problem with determining the proper set of exited states is encountered
when combining choice constructs together with transitions that trigger actions.
Figure 4.11 shows a model that demonstrates the issue.

B

[x>10]

[x<=10]

A

/x:=random(1..20)

Figure 4.11: Demonstration of a problem with the UML choice construct

98

4.4 The UML State Machine Interpreter

Imagine that the system is in state A and exits via the ε-transition, assigning a
random value in the range 1 to 20 to the variable x. On the subsequent processing
of the choice construct, a path is taken depending on the value of the variable x.
Assuming that the transition is an external one, the exited states are either only A
or A,B.

The UML standard, on the one hand, dictates that states need to be exited prior
to executing any transition actions: “Once a transition is enabled and is selected to
fire, the following steps are carried out in order: The main source state is properly
exited. [...] If a choice point is encountered, the guards following that choice point
are evaluated dynamically and a path whose guards are true is selected. [...]” [255,
p. 576] (ellipsis added). On the other hand, it demands that “In a compound
transition where multiple outgoing transitions emanate from a common choice point,
the outgoing transition whose guard is true at the time the choice point is reached,
will be taken.” [255, p. 574] (emphasis in original text). The problem is that the
individual states of a compound main source state might not be determinable before
processing the choice — at this point in time, the states would need to have already
been exited. This issue has already been reported on the 7 December 2000 issues list;
it is tracked under issue number 4110 at the OMG and a solution has been deferred
to UML 2.4. By convention, our interpreter exits states up to the level of directly
nested children of the parent vertex of the choice pseudostate: in the example, this
would only be state A.

Completion Events The UML standard introduces ε-transitions as transitions
that trigger on completion events. Completion events are either dispatched once
a state has been entered and eventual do-activities are completed, or once all
substates of a compound state have completed. Understanding state completion
as solely represented through events is an elegant approach for combining the
state completion mechanisms and the mechanism that processes event triggers on
transitions. Unfortunately, this approach is problematic in conjunction with guard
conditions; imagine a transition that is triggered on a completion event and that is
labelled with a guard condition relying on context data. Once the source state of
the transition is completely entered, a completion event is generated. At this point
in time, the guard condition could evaluate to false: the transition would not fire
and the completion event would be discarded. At a later point in time the context
changes and the condition could now evaluate to true. As the completion event
would already have been discarded, the transition could not be triggered anymore.
Such a behaviour is perceived as contrary to the semantics connected intuitively to
such a transition. This problem is also obvious with internal transitions: as these
do not exit or enter a state when firing, they do not generate completion events on
processing — therefore, internal ε-transitions would only work once at the initial
entering of the state.

99

4 Implementations

We found that state completion needs to be characterised as a persistent situation
and that it cannot properly be mapped to transient events, as one needs to retain per-
state completion information. Our solution is to maintain an additional runtime data
structure, which contains the completion information. This runtime data structure
is evaluated and completion events are generated, even in a recurring fashion, if
necessary.

Fork & Join The aforementioned completion data structure is also useful for
determining the preconditions (completion of source states for all incoming transition
segments) for join pseudostates. We found that a major obstacle for implementing
UML features regarding to control flow handling is found in the non-exclusive usage
of fork and join pseudostates for manipulating the control flow. For example, contrary
to SCXML6, UML allows us to mix fork/join nodes with transitions that implicitly
enter or exit parallel regions: i. e. two regions of a state might be entered through a
fork pseudostate, while a third region is entered by means of an initial pseudostate.
Such a situation is depicted in Figure 4.12.

A

B

D F

e01

e01

C

E
e02

HG
e02

Figure 4.12: Implicit control flow creation and termination

The shown BM can be executed from start to end, by processing the two events
e01 and e02. It can be seen that the initial fork pseudostate only specifies entry in
the states B and D. State G is entered implicitly by means of an initial pseudostate.
A similar issue can be observed when finally joining the control flows: once the BM
enters the states F and H, the superstate A is left and the control flow with the
active state C needs to be terminated implicitly.

Due to such combinations of constructs, an interpreter is required to check each
exited, orthogonal state for control flows that need to be implicitly terminated and
to check each entered, orthogonal state for control flows that need to be implicitly

6Which does not use join or fork and solely uses implicit handling of parallel regions

100

4.4 The UML State Machine Interpreter

created. This information can be determined by calculations based on the active and
target state configuration using the instructions given in Section 2.2.3.

Another issue concerns how the graphical representation of transitions outgoing
from a fork pseudostate relates to the entered states of the individual control flows.
For example, take the fork node depicted in Figure 2.10 on page 31: the graphical
visualisation suggests that a control flow entering the fork node would split into two
and that both of the control flows would enter state E individually, before entering
their target states F and G. As discussed in the related text, this is not the case, as
state E is supposed to be entered only once.

History and Regions As recognised by others [52], the semantics of the history
pseudostate is not clearly defined with respect to orthogonal states. The UML
standard states that “A composite state can have at most one [deep/shallow] history
vertex.” [255, p. 542] (square braces added, these are two separate statements). If
the respective composite state is also orthogonal, the history pseudostate needs to be
contained in one of the regions. This is confusing, as the history functionality refers
to the composite state, not the region. There are also no clear specifications on how
control flows should be created upon restoration of a previously stored state — as
mentioned on page 30, we are entering parallel regions from a history pseudostate as
if through a fork construct.

Storing the History To be able to restore a historic state configuration when
processing a history pseudostate, this state configuration has to be saved beforehand.
Saving the state cannot be done in-line with the regular state exit process, as nested
states would already have been exited upon encountering the history pseudostate
(exiting states requires a bottom-up traversal of the composition hierarchy). The state
infomation would need to be saved before commencing any exit process, necessitating
detection of any existing history pseudostates prior to transition firing. We are
employing a top-down scanning functionality prior to state changes for this purpose,
but more optimal approaches are imaginable (e. g. marking nested states on entering
during a regular top-down traversal of the composition hierarchy or a preprocessing
of the model at deployment/adaptation time).

Transition Kinds and Segments The UML Transition class exposes an attribute
that assigns a kind to the transition which can be either internal, local or external (see
page 210 ff.). Compound transitions consist of transition segments, where each one
corresponds to the Transition class; therefore a compound transition could potentially
consist of several segments with differing kinds. This is a conflict, as a compound
transition should only be of a single kind (necessary for correct determination of
exited and entered states). Our solution is to only consider the attribute of the first
transition segment, assuming that it represents the overall transition.

101

4 Implementations

Deferred Events and Message Storage Allowing states to be annotated with
a set of deferred events entails the need for storing deferred events. This storage
structure for the accumulated events has to exist separately for each control flow,
as the sets of deferred events might vary from flow to flow. To allow for this, we
implemented event queues on a per-flow level. If this feature is not to be supported,
a single input queue could be used for all control flows, as events could be discarded
right after their processing.

Fast Expression Evaluation As we will show in Section 6.3, the performance
of expression evaluation is of utmost importance for the overall performance of
the interpretation approach. By pre-compiling expressions in the native execution
format (in our case Java bytecode) for the BM action and condition statements, we
demonstrated a feasible path to implementing fast interpreters while still supporting
BM adaptation at runtime.

Runtime Model Adaptation We conducted some simple experiments to confirm
our hypothesis that BM interpretation allows us to modify the BM at runtime. We
found that we can add and remove transitions and states without any problems, while
the system is dormant between the RTC executions. The EMF supports runtime
adaptation of models by providing diff functionality that enables us to create a
second version of the BM and then to automatically calculate the changes needed
to transform the original model into the new one. These changes can be executed
as a series of basic transformations (e. g. remove a transition, rename an identifier,
etc.). Thus, theoretically, BM runtime adaptation is feasible. Practically though,
an implementer needs to take care not to introduce inconsistencies. For example, a
saved history state configurations also needs to be taken into account when changing
a BM structure or precompiled expression statements might require to be updated.
There are also situations, where arbitrary BM modifications might be invalid, e. g.
the removal of a state that is currently active.

Concepts that go beyond fundamental BMs UML State Machines provide many
concepts that go beyond the fundamental features described in Section 4.1.1. With
the UML interpreter we implemented all of them, including: support for partial
models, evaluation of arbitrarily segmented transitions, handling of deferred events,
support for multiple event specifications on transition labels, taking transition kinds
into account, supporting concurrently executing do actions (and their termination on
exiting the declaring state), termination of the BM by the corresponding pseudostate,
handling the choice and junction features and support for completion events.

102

4.5 The Model Processing Unit

4.5 The Model Processing Unit

We created the previously described three implementations and although each of
them has a different focus regarding its functionality and intended use, they all
have something in common: they all have been written from scratch with only little
utilisation of existing technologies. Thus, the goal of this, fourth, implementation
is to create a robust interpreter application that utilises only mature technologies,
which have been proven to be applicable for production use. By carrying out this
implementation, we can explore the real-world7 requirements for such an application
and can investigate how well our approach fits to currently available technology.

The most important decision is the selection of an appropriate BM runtime format.
We decided to use SCXML, which is a working draft [289] that is being maintained
by the World Wide Web Consortium (W3C). SCXML does not only prescribe a XML
persistency format for statecharts, but also specifies concrete RTC interpretation
semantics. The employed SCXML specification supports all of the fundamental BM
features as discussed in section 4.1.1. An overview of the language is provided in
Appendix B. For the model runtime format, we adopt the Java-based SCXML engine
from the Apache commons project [215]. Both, the SCXML standard document
as well as the Apache engine, are commonly used for runtime statechart execution,
which is the main reason for selecting them.

Based on the Apache engine, we create a comprehensive CU that is able to deploy,
execute and maintain BMs within a network and systems management context. We
refer to this implementation as the Model Processing Unit (MPU). The MPU employs
the OSGi platform [262] for providing the fundamental framework and the services
(e. g. logging, configuration, event dispatching) needed for its operation. OSGi is
chosen due to its popularity, maturity and conservative resource usage. Compared
to the bare-bones UML interpreter implementation, the MPU is feature-rich, in
the sense that it provides many of the necessary features needed for real-world
applications, like a web-based management interface or proper logging mechanisms.

The Plan Format SCXML has been devised with an arbitrary, but fixed and
pre-established, set of external services (FCs) in mind. This can be concluded from
the lack of language features for specification of FC bindings. We created a specific
XML persistency format (the plan format), which incorporates plain SCXML for the
description of behaviour, but additionally enables the specification of dependency
information for FCs that a BM is bound to. This information is used by the MPU
to make required FCs available and to create the runtime binding for invoking the
FC-contained functions. The plan format is specified using XML Schema and its
structure is depicted in Figure 4.13.

7We understand “real-world” requirements as related to the production use of systems, as opposed
to employing a technology for academic research or as a prototype.

103

4 Implementations

Figure 4.13: Structure of the plan format for BMs based on SCXML

Each plan starts with a top level <Plan> element, with a mandatory id and an
optional author attribute. It has three child elements: <Provides>, <Requires> and
<Behaviour>, where <Behaviour> contains content from the SCXML namespace.
The two other children adhere both to the Dependencies structure, which allows an
arbitrary number of children of either <Capability> or <ExternalPlan> elements.
<Requires> specifies the dependencies needed for a BM to run, whereas <Provides>
specifies which features the BM contributes to the interpreter. The motivation
behind this structure is to handle the invocation of BM instances with similar calling
conventions as the invocation of FCs; therefore, a plan could be treated as an FC
and vice versa.

The <ExternalPlan> tag is used for addressing purposes. Its attributes id,
targettype and the optional location are used by an SCXML interpreter in
conjunction with an underlying transport technology to communicate with other
BMs. The <Capability> element defines the interface to a single FC. It contains
an attribute targettype that identifies the calling conventions used, along with a
single <FunctionalComponent> child that contains the information for identifying
an FC in the id and version attributes. FCs can be triggering by invocation or
through event dispatching. Therefore, to specify event scopes, the plan specification
stipulates a set of <Event> elements with assigned topic identifiers.

The following code fragment shows an example plan used in the MBIM monitor
router-load use case (see Section 5.2.2).

1 <?xml version="1.0"?>

2 <Plan id="Example">

3 <Provides/>

4 <Requires>

104

4.5 The Model Processing Unit

5 <Capability targettype="x-mbim-event">

6 <FunctionalComponent id="SomeCapability" version="1.0">

7 <Event topic="monitoring"/>

8 </FunctionalComponent>

9 </Capability>

10 </Requires>

11 <Behaviour>

12 SCXML behaviour definition

13 </Behaviour>

14 </Plan>

For the sake of brevity, we excluded XML namespace definitions. The plan is defined
with the unique identifier Example, enabling the plan management to unambiguously
identify the plan. The plan does not provide anything to its environment (line 3)
and requires only one capability (lines 4 – 10). The capability is accessed using
event-based calling conventions (indicated by the x-mbim-event targettype in line
5) and consists of an FC with the id SomeCapability and the version 1.0 (lines 6
– 8). This information is used to ensure that the identified FC is available to the
model instance at the beginning of the execution. In line 7, the plan specifies that
event exchange with the FC is to be done using the monitoring scope identifier.
This value is used to setup the event dispatching mechanisms of the platform to
deliver events with the given topic to the plan instance. The behaviour is specified
using a SCXML definition enclosed within the <Behaviour> and </Behaviour> tag
pairs (lines 11 – 13). The content within these tags is passed to the SCXML engine
without modification.

4.5.1 Architecture and Operation

A high-level view of an MPU’s internal structure, the communication between its
subsystems as well as the communication with external entities is shown in Figure
4.14. Central to the MPU are the Plans, which specify BMs along with binding
information for FCs. The instantiation and handling of plans is managed by the
MPU through the use of OSGi service invocations and dispatching of internal events.
The MPU assumes the role of the Manager subsystem in the generic interpreter
architecture (see Section 4.1.2). The MPU itself is controlled by the MA (see Section
2.3), which we assume to be a human operator. The Control Interface is implemented
as a web GUI, employing the Hypertext Transfer Protocol (HTTP) [235] and the
Asynchronous JavaScript and XML (AJAX) [77] principle for data transfer and
updating of the displayed operational data. Using a web interface is a solution that
lets us conveniently experiment with the software. In a larger deployment scenario,
this interface could be replaced by something more appropriate, e. g. a Web Service
API [286]. The web interface exposes controls for instantiating, starting, stopping
and removing plans.

105

4 Implementations

Managed
Entity

OBR
Functional

Capabilities
(OSGi Bundles)

Plans
(SCXML) Coordination

(Message Broker)

Operations Management,
Logging, Configuration,

Deployment

Data
Context
(XML) External Events

Invocations & Internal Events

FC
FC
FC

HTTP

Browser HTTP / AJAX

Some Protocol

other
MPU

Messages

SNMP
Agent SNMP

Invocations & Internal Events

Figure 4.14: Structure of the MPU prototype

Plans are deployed from a BM Repository. We are currently using the local file
system, but have also successfully employed a remote XML Document Management
Server (XDMS) [236] for storage and retrieval of plan documents.

The generic interpreter architecture’s Engine and Event Queue subsystem are
implemented by the Apache engine, which conducts a stepwise interpretation of the
model according to the SCXML execution semantics (see [289, Appendix B]) and
maintains state configurations and context data. The Apache engine provides an
extension mechanism for selecting/substituting the employed expression language,
the event dispatching infrastructure, the context data binding and for specifying
custom action statements, which can be formulated in the native execution platform
language. The MPU maintains context data using the DOM format, which makes
it easy to persistently store it as XML. The data is bound to the BM and can be
accessed during the interpretation process by expressions specified in the plan. We
choose to employ the JEXL expression language as it offers a decent performance
and is maintained as an Apache commons project as well.

The role of the generic Event Dispatcher is covered by the OSGi Event Admin
service [262, Service Compendium, Section 113], which offers a sophisticated mech-
anism for publishing events using topic scopes (see Section 2.2.6). In SCXML the
<send> tag is employed to dispatch an event using a previously agreed-upon identifier.
External communication between MPUs is also event-based, and event messages
that are addressed to other MPUs are forwarded to a message broker, which takes
care of dispatching the event to the target. For transmitting external events, we are

106

4.5 The Model Processing Unit

employing the Apache ActiveMQ message broker [218], which is also maintained by
the Apache Software Foundation (ASF). We choose this product, as it is released as
open-source, mature enough for production purposes and has an active community
that supports it.

FCs are maintained as OSGi bundles, which can be invoked using either a method-
like call triggered by <invoke> or by dispatching events that are addressed to a
designated FC using <send>. FCs are downloaded from an FC Repository and
installed automatically during the dependency resolution process executed when
deploying a new plan. This task is significantly alleviated through the usage of the
OSGi Bundle Repository (OBR) technology [261], which automates most of the
process.

Employed Technologies OSGi defines a standard, but does not prescribe an im-
plementation. Therefore, a number of competing implementations exists. We
investigated the use of Knopflerfish [281], Equinox [279] and Felix [216] — settling
on Apache Felix, although there should be no problem in running the MPU using
any of the other implementations.

The employed Apache SCXML engine is in version 0.9, implementing roughly
the feature set specified in the W3C working draft dated May 16th, 2008. The
Apache Felix framework is used in version 2.0.5, which implements the OSGi R4.1
standard. The web interface makes use of the Google Web Toolkit [237] in version
2.0 and Apache ActiveMQ was used in version 5.3.2. The versions of other software
components is detailed below.

Event Admin Service The event admin service is used for local dispatching of events.
It is connected to the SCXML engine and the employed message broker. The
used version is 1.2.2.

OBR The bundle repository is either located in the local file system or uses a HTTP
server for providing the FC jars. On the MPU side, the Bundle Repository
provided by Apache Felix was used in version 1.6.2.

HTTP Service For exposing a web interface, the MPU needs to include an OSGi
HTTP service. This is provided by the Pax Web project [259] from the Open
Participation Software for Java (OPS4J) community, in version 0.7.2.

Management Interface For managing the MPU, we created a web interface and a
textual interface. Additionally, the Apache Felix Web Management Console
(3.0.0) and the Apache Felix Shell Service (1.4.2) are started, enabling runtime
control of the OSGi implementation itself.

Log Service Logging is build upon version 1.0.0 of the Apache Felix Log Service.

107

4 Implementations

4.5.2 Major Challenges and Key Results

The developed software is stable and offers a range of features required for utilisation
of the MPU in a production setting. Using the MPU, we could show that our
approach can be applied using an integration of existing, mature products and
that the implementation of an MPU based on the OSGi framework is possible and
well-suited to the requirements of a CU. The remaining text in this section describes
the most challenging problems and solutions encountered while creating the MPU.

SCXML development cycle A major issue concerns the stability of the SCXML
specification: it is still changed frequently, with one or more new versions each year.
This is a problem in regard to the Apache SCXML implementation, which is not
updated in the same cycle. It is sometimes hard to determine if an encountered issue
is due to a bug in the software or an incompatibility because of an ambiguous or
modified specification document. Although the Apache SCXML engine is still a beta
version and we submitted bug reports and functionality patches to the project, this
software is the most suitable and mature SCXML execution engine available.

Processing of ε-events The SCXML standard prescribes interpretation semantics
using a normative algorithm, specified in a lisp-like notation [289, Appendix B]. The
algorithm employs RTC semantics, which dictate that each external event submitted
to an interpreter needs to be completely processed before the processing of the
next event can occur. In the case of SCXML, this includes the processing of all
internal events generated during the processing as well as all (direct and indirect)
ε-transitions. This opens up the possibility for life-locks of the interpreter in ε-cycles.
If the interpreter enters a ε-cycle, it becomes impossible to process external events,
and as external events are defined as the only means to supply information to the
interpreter [289, Encapsulation, Appendix B – Principles and Constraints], it is
impossible for the interpreter to leave the cycle. This behaviour is explicitly allowed
by the standard [289, Termination, Appendix B – Principles and Constraints].

Event Conversion We found that a larger amount of work needed to be invested
into engineering the event dispatching routines. Although we employed the ActiveMQ
product for external communication, events still need to be converted between three
formats: the format of the SCXML implementation, the format of the OSGi Event
Admin service and the format used by the JMS, which defines the standard interface
used for passing events to the message broker. Conversion of the events does not only
apply to a potential payload, but also to the event’s topic and addressing scheme
(see Section 2.2.6).

Creating and Referencing FCs FCs are intended as a way of packaging function-
ality to prepare them for invocation by the BMs. As we found out, it is necessary

108

4.6 Summary

to indicate the used FCs from within the BM, and this is what the plan format
is mainly used for. In addition to binding an FC, it might be necessary that the
OSGI bundle containing the FC adheres to some constrains. This is due to the
way that FC invocations are implemented; invocations from the SCXML engine
must be transformed into Java calls that target a method within an OSGi service
interface. The SCXML engine uses XML and OSGi bundles employ Java. Thus, not
only does the call itself need to be transformed, but also the types and values of
the parameters. We tried this approach with a simple invocation format and type
system and found that it is possible but complex to implement. We then decided
on prescribing a generic event format containing XML payload, which is dispatched
to an FC, triggering the invocation of a function. Return values are communicated
back in the same manner. This approach is easier to implement, but requires that
FC developers are aware of the use of their components and implement the necessary
mechanism (registration at the OSGi event admin service under an agreed-upon
topic and processing of the received events).

Adaptation of the SCXML BM The current status of the Apache SCXML engine
does not fully support an adaptation of the BM at runtime. This is a technical and
not a conceptional issue: the interfaces that would allow us to change the runtime
format and execution specification are not available after a plan has been started.
We inspected the source code of the Apache SCXML engine and found no substantial
obstacles for implementing runtime adaptation. Thus, we conclude that an extension
of the engine code to support runtime modification of a BM is possible.

4.6 Summary

This chapter contains a description of the four implementations that we created to
verify different aspects of our work. At the beginning of the chapter, we introduced
a set of fundamental BM features that allowed us to classify the BM feature support
provided by each of the interpreters. We also specified a generic interpreter architec-
ture, which helps us to identify common concepts used in our implementation and
which enables us to explain the differences between each of the created architectures.

Our earliest implementation is the TMPL engine, which interprets an EFSM to
match patterns on a XML data stream. The EFSM is constructed in a lazy fashion
at runtime, which demonstrates not only that the general adaptation of BMs at
runtime is possible, but also that this approach bears a big potential for performance
optimisation. The TMPL engine does not support the full set of fundamental BM
features.

The second implementation is the ACE toolkit, which provides a component-
based framework for the creation of autonomic systems. ACE behaviour is created
through the interpretation of state machines at runtime. The design of this prototype

109

4 Implementations

helped us to develop the architecture of our approach and allowed us to study BM
interpretation in the context of a group of collaborative entities, leading to interesting
results for the specification of behaviour, the support of group communication in CU
collectives and the supervision of components with runtime-adaptable behaviours (a
topic that is investigated in more depth in Section 5.1). The ACE Toolkit enables
novel strategies for creation of BMs, but does not support the full set of fundamental
BM features.

The UML State Machine interpreter was the third implementation completed.
This implementation is based on the Ecore runtime model format, and we use it
to study the interpretation characteristics of the greatest possible range of BM
features. Therefore, it implements all of the fundamental BM feature and many
additional ones as well. The UML interpreter is not as applicable to real-world
scenarios as the ACE toolkit or the MPU implementation, which is why we do not
use it for the use case scenarios in Chapter 5. On the other hand, it is the most
sophisticated implementation in regard to BM interpretation, and thus, we will use
it for performance comparison of our approach in Section 6.3.1.

The last implementation was the MPU, which uses SCXML as the BM format,
along with the Apache Felix OSGi framework to provide a sophisticated execution
environment for BMs. The SCXML covers all of the fundamental BM features,
and the Apache SCXML engine is a popular technology for BM execution. This
is why we are interested in the general interpretation performance of the MPU
(investigated in Section 6.3.2) and in the applicability of the MPU for real-world use
cases (investigated in Section 5.2.2).

110

5 Use Case Studies

Facts do not cease to exist because they are ignored.

Aldous Huxley

We conduct four use case studies to show the feasibility of a BM interpretation
approach in real-world situations and to provide guidance in regard to the estimation
of resource constraints. Common to all of them is a network and systems management
setting and the use of IP. The first one, Service Supervision with ACEs, is employed
as a demonstration of the ACE toolkit and published in [57]. The second one,
Management in the Network, shows the usage of BMs for delegation of management
processes from a central management system to the network devices themselves and
demonstrates how to technically determine the router load within such a scenario.
This use case study is published in [106]. The third one, Intrinsic Monitoring
investigates an application of our approach to path-based monitoring. It is published
in [104]. The fourth use case documents the creation of a BM interpreter on an
embedded system platform and is used to study the scalability limits of our approach.
This research is published in [107].

5.1 Service Supervision with ACEs

Service supervision is the continuous observation of a system with the goal of
determining correct and incorrect behaviour. The idea is to specify constraints on
the system behaviour and to match them against the real execution behaviour of the
system. This task is made much easier through the use of BMs, as the operational
behaviour of a system is available for analysis in a meaningful format. Supervision of
a system invariant could then be accomplished by, e. g., matching input and output
events or observing the current state configuration.

Within our working group, the foundations for supervision of communicating
Extended Finite State Machines (EFSM) [78] have been researched, along with a
theory that allows to dynamically abstract from BMs [53]. By utilising dynamic
abstraction, it is possible to derive a more abstract BM from (and consistent with) a
more specific one. This approach is useful for assessment of complex systems utilising
BM interpretation: a more abstract supervision model is generated from the specific
BM used for interpretation. The supervision model is transmitted to a supervisor,
where it is used in conjunction with runtime operational data to conclude on the
correct behaviour of a system.

111

5 Use Case Studies

Supervision can also be extended to include self-healing facilities: by monitoring
the operation of BMs, a supervision system can determine not only if another system
is working properly, but also undertake means of repairing it. One approach that
enables such a functionality is based on the annotation of states with desirability
values (see also page 229 f. in Appendix C). In case that a supervision system detects
that a BM remains in undesired states, it can try to resolve this problem by planning
a transition path that leads to better desired states. System supervision based on
annotated BMs has been studied extensively from an engineering perspective in
our working group, and the interested reader can find more information in a recent
publication [57].

To enable supervision, an interpreter needs to provide the current state config-
urations of all BM instances to a supervision system. Additionally, if supervision
should also be used to handle errors, control facilities need to be provided. These
might be as simple as a restart mechanism or more sophisticated, e. g. the ability to
directly access the internal event dispatching mechanism. Such control capabilities
are built into every ACE (see [54, Section III] and [27, Section 3.6]). Supervision
using ACEs and a demonstration of possible applications are also described in detail
in our recent publications on the subject [57, 56].

Supervision System Architecture In the ACE toolkit, supervision is considered
as a service itself, performed by an collaborating group of ACEs. The supervision
of a system is left to a third party that assures cooperating entities of the correct
overall system behaviour. Supervision systems are created dynamic and on-demand
using the self-organisation capabilities of ACEs, which allows them to form operative
clusters, and even do so in the light of potential node failures. This is achieved by
the adaptable BM as well as the ACEs ability to migrate between hosts dynamically
while continuing to provide a service. To provide services, ACEs use self-organisation
principles encoded in their self-models to find and connect to each other and in such
a way form collaborating groups that are able to provide services. For the supervision
use case, the supervision system creates itself to conform to the supervised system,
in a structure that looks similar to the one depicted in Figure 5.1.

The picture shows the general type of ACEs (the hexagonal symbols) which would
be involved in a supervision setup but omits their cardinality — in reality there are
usually multiple Sensors, Corellators, Effectors and Systems under Supervision (SUS).
ACE supervision relies on the interception of messages over two monitoring points
(see the description of the Supervision organ in Section 4.3.1). These monitoring
points are used by so-called Checker objects, of which there are two types: Bus
Checker Object (BCO) and Gateway Checker Object (GCO). The scenario employs
GCO objects, as only the external communication is monitored. The checker objects
are transferred into the supervision organ of the SUS and run locally, handling the
events passed through the two monitoring points. The reason for executing local

112

5.1 Service Supervision with ACEs

Sensor Correlator

AssessorEffector

Supervision
Organ

ACE under Supervision

Internal
Supervision

Contract

Supervisor

Supervision System

Supervision
Contract

External
Super-
vision

Contract

Figure 5.1: Organisation of ACEs for service supervision

functionality is to avoid excessive monitoring traffic being transmitted from the SUS
to the supervision system as well as to filter and pre-process monitored data locally,
before passing them to the supervision system. The five ACE types [57, Section
IV.A 3)] of a supervision system are:

Supervisor is responsible for setting up and configuring the supervision system.

Sensors link the supervision system with the SUS by deploying checker objects into
the supervised ACEs and by establishing dedicated communication channels
for monitoring. They translate events delivered by the checker objects into the
internal message format used by the supervision system and distribute them
to other components of the supervision infrastructure.

Correlators are responsible for aggregating monitored data from distributed sources
and correlate them with other information in order to extract meaningful
indicators of the current condition of the SUS.

Assessor make assumptions on the current (or future) system health based on the
output of the Correlators and invoke associated effectors if necessary.

Effectors are responsible to distribute contingency actions to the checker objects of
the various ACEs under supervision, where they are used to steer the supervised
ACE’s execution.

Together, these ACEs form a control loop (from the SUS to the Sensor of the
supervision system and back via the Effector), which is a typical feature found in

113

5 Use Case Studies

an AS. The drawing also depicts the contracts in place between the ACEs: the
Supervisor maintains a supervision contract with the SUS, the Sensor and Effector
create an external contract with the SUS, which allows them to access the monitoring
points and deploy the checker objects. The supervision system ACEs uses a separate,
internal contract for its communication requirements.

5.1.1 Dynamic Reconfiguration Scenario

We employ the described approach to supervise a video service implemented as a set
of distributed ACEs. A more detailed description of the scenario can be found in [57,
Section VI]. The motivation for introducing service supervision is to handle failures of
ACEs implementing the video client and one of several available video provider ACEs,
as depicted in Figure 5.2. The goal of this scenario is to autonomously reconfigure
the SUS and the supervision components if the Provider-Client relationship develops
a fault.

Sensor

Effector

Sensor

Effector

Correlator

Correlator

Assessor

Client

Provider GCO

GCO

H
eartbeats

Reset

δ

tsent

t recv Resettrecv

tsent
δ ← trecv - tsent

δ

δ ← trecv - tsent

δ > δthreshold?

Figure 5.2: ACE-based supervision system for dynamic reconfiguration

The diagram omits the supervision ACE, as it is only relevant for setting up and
removing the supervision system. During operation, the supervision system will
monitor the state of the contract between the client ACE and the provider ACE.
Lifeliness is tested using an exchange of heartbeat signals between two GCOs; hence,
if the contract is malfunctioning in one or both directions, this fault can be detected
by comparing the difference δ of the timestamps for sending (tsent) or receiving (trecv)
a heartbeat signal to a threshold value δthreshold. The timestamps are collected by the
Sensor ACEs and forwarded to the Corellator ACEs, which calculate the difference
and pass this information on to the Assessor. Once an Assessor ACE determines that
a communication delay between client and provider ACE is above a given threshold,

114

5.1 Service Supervision with ACEs

it issues a reset command to an Effector ACE, which conducts a correction of the
faulty ACE1.

Employed Self-models In the following section we will give an overview of the
self-models for the Supervisor, Correlator, Assessor, Sensor and Effector ACEs. A
complete description in ACElandic can be found in Appendix E, while an overview
of ACElandic is provided in Appendix C. The self-model of the Supervisor ACE first
accepts a supervision contract and subsequently receives configuration information
about the SUS (line 14–18). Afterwards, it discovers the necessary ACEs to set
up a supervision system (line 20-34), concludes the internal supervision contract
(line 36–44) and configures the involved ACEs (line 46–68). On cancellation of the
supervision contract, it triggers a cancellation of the internal supervision system
contract (line 70–72).

The Corellator ACE’s self-models first accept a supervision contract and receive
the associated configuration information (line 20–27) before starting. They are
then listening to notifications from one of the sensors and store the contained tsent,
respective trecv, data in the local context (line 31–40). Alternatively, on receiving
a contract cancellation, they exit the inner forever loop and are available for
contracting as part of another supervision system (line 40–45). Once a notification
is received, the FC corellate is invoked and the calculated result δ is forwarded to
the Assessor ACE.

The Assessor ACE’s self-models at first enter a supervision system contract and
conduct internal initialisation (line 13–18). Afterwards, they are available to receive
notifications from the two Corellators and to store the transmitted δ in the local
context (line 21–32); alternatively they receive a contract cancellation and start
over (line 33–36). On detecting a transgression of the δthreshold values, they send a
notification to the corresponding Effector (line 39–50).

The Effector ACEs use a self-model that enters two contracts: an external one with
the SUS and an internal one with the supervision system (line 20–22). Afterwards,
an access to the SUS is established using a specific FC connect (line 23) and the
Effector waits for an acknowledgment of the setup (line 25). During the regular
operation, notifications are received from the Assessor and forwarded to the SUS
(line 28–33). Alternatively, the Effector ACE receives a cancellation of the internal
supervision contract and starts over.

In the beginning, the a Sensor ACE self-model executes the config plan that
establishes two contracts: the ACE accepts an internal one, which provides them
with the overall system configuration and is used for passing events to the Corellator
(line 29–40), and it creates an external one, for monitoring the SUS (line 41–44).

1We are working under the assumption that the reason for the communication delay is a crash of
a currently interpreted BM instance and that the ACE’s Facilitator organ is able to fix this
problem by resetting the faulty BM instance to a working state configuration

115

5 Use Case Studies

Afterwards, the Sensor ACE deploys the GCO and waits for confirmation of their
deployment (line 45–53). It then spawns a concurrent execution of the monitor plan
(line 54–55). The config plan subsequently waits for cancellation of the internal
supervision contract and, in turn, cancels the external supervision contract after the
monitor plan has finished (line 56–67). The monitor plan continuously polls the
delay data of incoming and outgoing heartbeat messages and forwards them to the
respective Correlators (line 75–87).

The service supervision scenario demonstrates how ACEs can be used to construct
a supervision system in an on-demand fashion at runtime. The use case shows
how one can monitor the interpretation of BMs at runtime and demonstrates the
possibility of repairing a system by resetting a BM instance to a working state
configuration. The performance of the dynamic reconfiguration scenario has not
been assessed, but we conducted performance measurements with the ACE toolkit
itself [27, Section 5].

5.2 Management in the Network

Network and systems management is a complex field that cannot be handled using a
single, generic solution, as the infrastructure of an enterprise network may comprise
thousands of devices from several vendors, all with slightly varying capabilities,
software patch levels and protocol versions. Even if these could be cleanly integrated
by following standardised protocols and operating procedures, there are still many
problems to face: continuous integration whenever new devices are being introduced
in the infrastructure as well as legacy system support, the integration of business goals
with the technical infrastructure, or ensuring decent training for the administrative
personnel [40]. We mandate the use of BMs for network and systems management,
and propose to facilitate AS to tackle these problems.

Motivation for Management in the Network To understand the benefits that AS
have over non-autonomic ones, we will take a look at the fundamental characteristics
of AS. One characteristic that is repeatedly mentioned is the ability to talk about the
behaviour of constituent entities of an AS and to change their behaviour dynamically
[188, 136]. Given the assumption that AS are always composed of a collective of
interacting entities2, it is important to know how a system will behave as a whole
based on the behaviour of the constituents and how to constrain the overall behaviour
of the system to adhere to policies dictated by the system’s environment. The idea
of capturing behaviour in a way that it can be exchanged, transformed, interpreted
and communicated was developed from this insight, which led us to the usage of
BMs. BMs allow a network management system to exist as a widely distributed

2There is not much sense in regarding a single entity as being an AS; although from a strict point
of view this is correct, from a practical point of view, this case is irrelevant.

116

5.2 Management in the Network

collective of collaborating components, instead of a central monolithic application.
This distribution is made possible through the capturing of management processes
in the form of BMs, which are interpreted by a distributed set of CUs.

The management in the network use case study is employed to see how this idea
works in a real world setting. We postulate that all management processes are
captured in BMs, and one of the major ideas behind the employment of BMs for
describing management operations is the potential re-use of previously captured
expert knowledge. Re-use of knowledge across different administrative roles directly
translates to a reduction of training and operational support costs regarding the
personnel that executes these tasks. Once a BM is created for solving a routine task,
it can then be added to a database or document management system and utilised by
other people than the original creator of the model. For example, it would be feasible
that BMs are created and maintained by specialised infrastructure experts, solely for
other users like support assistants or network administration personnel. Through
the use of BMs, operators could exercise control over an infrastructure on a more
abstract level. Access to the heterogeneous infrastructure entities is achieved through
a homogenous collective of CUs, providing a uniform way of executing management
tasks. Re-use of management knowledge becomes feasible.

Managing a homogenous CU collective is easier than directly managing a hetero-
geneous set of infrastructure elements (routers, switches, servers, firewalls, etc.), each
with a potentially different command set and varying management access technology.
Even in an environment offering a centralised management system that allows for
homogenous access to the devices, an administrator would need to know the specifics
of an infrastructure element to manage it appropriately. These specifics can be hidden
through the use of BMs that represent an abstraction of a concrete management
process in a form that is suitable, both for human understanding, and for execution
by a number of CUs. As BMs encapsulate expert knowledge, it is possible for people
without this knowledge to not only execute the encapsulated processes, but also
to gain an understanding of the internal steps of the processes due to the explicit
representation contained within a BM.

Architectural Considerations The management in the network use case applies
BM interpretation in the context of network and systems management. We researched
this subject from a systems integration perspective and published our ideas in two
articles [105, 106], using MBIM and Document Based Integrated Management as
phrases to identify these concepts. The following text is based on these publications.
This research also initiated our implementation of an MPU as well as of the associated
infrastructure components.

The idea of management in the network is to formalise management processes using
BMs interpreted by CUs, which are able to translate the processes described in the
models to the management protocols understood by infrastructure elements. CUs are

117

5 Use Case Studies

conceptually placed between the management plane and the technical infrastructure
itself, as shown in Figure 5.3.

Management

Processing

Infrastructure

Group
Communication

Coordination
Protocols

Service
Connections

Supporter
Topology
Database

BM Repository

CU State
Information

MA

Administrator

FC
Repository

CU CUCU
(integrated)

CMP

Knowledge
Base

Figure 5.3: “Management in the Network” architecture

For each of the three depicted planes, there are typically specific communication
primitives used between the entities on that level3 and shown as white boxes un-
derlying each of the contained elements. For requirements regarding the different
communication protocols, see the discussion on distributed model management in
Section 2.3.

All elements that are the actual subject of management are found at the Infra-
structure level. These do not only encompass network elements, but also include
business systems like web portal clusters or directory servers. Internal communication
on this plane is typically done through coordination protocols, e. g. routing protocols
or application server clustering protocols. Communication with the processing plane
could be carried out using existing management protocols like the SNMP, the Network
Configuration Protocol (NETCONF) [234] or command line over Secure Shell (SSH)
[290], and is depicted using dashed lines in the diagram. MBIM does not add or
modify anything at the infrastructure plane.

3There are also specific protocols used for inter-plane communication, but we found this to be a
suitable criterium for identifying a separation between the conceptual planes.

118

5.2 Management in the Network

We choose to place the CUs at the newly introduced Processing plane of the
network, although it may also be regarded as part of the management plane. The
processing plane contains a collective of CUs, optionally integrated with networking
hardware, which are able to instantiate and interpret BMs. The interpretation
of a BM instance at a CU triggers a number of invocations of FCs (see Section
2.2.5) that result in information exchange with the infrastructure layer via standard
management protocols. Within the collective, information is exchanged using group
communication facilities. An additional protocol is not needed here, as message
content and semantics are determined by the language that is used by the BMs that
implement a management task.

Between the management and processing plane, things are different. Information
exchange is also based on the group communication primitive, due to its ability to
address a set of CUs at once, along with guaranteed reliability aspects. However,
this should be realised using a standard interaction protocol, which we term the CU
Management Protocol (CMP). The CMP is used for three separate purposes: BM
management, FC management and dissemination of CU runtime information. It
defines the interaction between CUs and the elements that serve as managers for
the collective in the management plane. Thus, a CMP needs be able to handle the
semantics of the BMs, FCs and CU concepts.

The Management plane contains conventional management systems, including
central management information databases as well as additional introduced com-
ponents, namely the MA, the BM and FC Repositories. The MA is responsible for
management of the overall system, including the maintenance of CUs and deployment
of BMs in the collective. To accomplish this task, the MA accesses four resources.
The first resource is the BM Repository that maintains all BMs that are known to
the system. The second one, called the Knowledge Base, collects information about
troubleshooting processes in the form of previously created Trouble Tickets (TT).
The third one, termed the Topology Database, contains up-to-date information about
the topology of the network. This includes the addresses, names and locations of
networked devices and the connections between them. The fourth resource concerns
runtime information of the CUs, which includes the currently active BM instances,
the active state configurations of these, and the degree of utilisation for each CU.
We do not prescribe how such information is collected, but possibilities include e. g.
listening to the continuous data flow within the collective or directly polling CUs.

The FC Repository is used to configure, maintain and provide FCs in a network.
Provisioning an FC means offering a CU the possibility to download and install
software in an executable representation, e. g. a suitable code binary. Enabling the
dynamic loading of FCs supports the flexible deployment of models, as missing FCs
can be amended at the CU level in response to BM binding requirements.

The MA, FC Repository and other resources are regarded as conceptual elements.
For MBIM, it does not matter how a technical implementation would map them
to real soft- or hardware, as long as the described functions are available to an

119

5 Use Case Studies

operator. Operating personnel itself is modelled using two roles: the Supporter role
(someone utilising the system to carry out a management task) and the Admin role
(someone who influences the way that the system works by configuring available
FCs). Operators directly interact with the MA and FC Repository using human
interaction interfaces — any other communication on the management plane would
typically be carried out over application-specific service connections.

5.2.1 Performance Troubleshooting Scenario

Internet
Access

Edge Router + CU

Internet

Flow
Probe

A6Intranet Application
Server

Flow
Probe

CU
A4

C1

D1

Division B

Supporter

E1

Production Network
Management Network

Management

Issue
Tracking

MA

CU

A3

DB Host

A1

B1

B2
FC Repository

A2

 Access Router
+ CU

User

Admin

A5 E2

E3

Division A

Knowledge Base

Topology Database
Alarm Database

BM Repository

Flow Information

D2

Figure 5.4: Example network topology for the troubleshooting scenario

As a guiding vision for MBIM, we developed a scenario in the realm of performance
and fault management. It is based on a hypothetical network of a small enterprise with
two divisions. There are three human actors: the Admin – a network administrator,
the Supporter – an employee in first level IT support, and the User – an accountant.
The scenario is meant to serve as a conceptual framework, allowing us to investigate
specific aspects of its implementation within a more complete setting.

Figure 5.4 depicts a simplified view of the examined network topology. Elements
that are relevant for the scenario are depicted by a designator indicating their

120

5.2 Management in the Network

conceptual affiliation. There are two separate networks: a management network (thin
black lines) and a production network (thick grey lines). In places where both are
on the same physical medium (depicted by a thin black line surrounded by a large
grey border), a logical separation with Virtual LAN is used. The complete network
consists of five subnets, connected by four routers. There are two fully switched
division subnets connected via access routers, an intranet subnet containing the
backend servers, a management subnet that contains the administrative systems and
a subnet for internet access. Both the internet edge router (A6) as well as the intranet
access router (D1) use equipment that allows for capturing of IP flow information.
All elements with designators that contain an A are devices that were introduced in
the network to support MBIM. Besides the MA and FC Repository (A1 & A2), there
are four CUs (A3, A4, A5, A6), two of them integrated with a router. The B group
contains other management systems, namely an issue tracking system (B2) and a
database host (B1). Besides the Knowledge Base and Topology Database, there
is a BM Repository, a database for captured IP flow information and a database
that stores alarm notifications from any of the networked devices. Back-end server
systems fall into the C category and are found in the intranet subnet. The case
study presupposes only an application server (C1). Conventional network equipment
has been assigned D designators: The intranet router (D1) and a managed switch
in division A (D2). The last category, designated E, is for devices which interface
directly with humans. These are the computer of the Supporter in division B (E1),
the computer of the User (E2) and the workstation of the Admin (E3).

Anamnesis In the following text, we portray the scenario of a performance trou-
bleshooting process using a narrated dialogue between two roles: the Supporter and
the User. The Phone rings at IT support. Supporter answers and talks to the User.
The User complains about the network performance: “My access to the accounts is
sometimes really slow”. Supporter creates a TT and starts to record the incident.
The problem is not known to the Supporter and she starts looking up similar issues
in the Knowledge Base. She discovers a number of other TTs with similar issues
described, pointing to a number of potential root causes.

Root cause hypotheses establishment After reading some of the TT descriptions,
the Supporter identifies four reasons that might be causes for the observed behaviour:

1. The application server that executes the accounting software is running un-
der full load. For example, this could be due to a slow processor or a bad
configuration of Java VM garbage collection parameters.

2. The network route between the desktop computer of the User and the applica-
tion server is operating at full capacity. This could be due to, e. g. transmission

121

5 Use Case Studies

of abnormally high data volumes or because of badly dimensioned bandwidth
during capacity planning of the network.

3. A device on the route between the desktop computer of the User and the ap-
plication server is damaged. For example, a cable could have a loose connection
or an interface card could have switched off due to high temperature.

4. The desktop computer of the User is operating at its limits, e. g. due to an
overeager virus scanner or because the machine is generally not capable of
keeping up with the processing requirements.

The User explains that “the problem only happens from time to time and I’m not
a computer-savvy guy, anyway”. The Supporter decides that all four possibilities
are relevant and that they should be monitored to find a solution to the problem.

The Supporter now wants to check all of the four hypotheses. Using nowadays tools,
this is a very tough problem for a first-level IT support employee. The Supporter
would need to have access to the necessary tools for checking each of the possibilities,
plus the expertise on how to use them. Due to the sporadic nature of the problem,
it would be unlikely that the User tells the Supporter exactly when the issue is
happening. Arranging such feedback is not trivial: helpdesk staff are often not
allowed to give out their individual phone extension, or they are busy with another
client and unavailable to take the call. The most likely reaction of the Supporter
would be to only falsify hypothesis 3 through a manual search in the alarm database
and then escalate the TT to second-level support.

Let us now assume that the network facilitates MBIM. In this case, the Supporter
has access to a collection of troubleshooting BMs, which she would either find by
searching the BM Repository or which would be referenced from an already solved
TT in the Knowledge Base.

The Supporter identifies four existing troubleshooting BMs (from now on referenced
to as models A, B, C, D – matching to hypotheses 1, 2, 3, 4) in the BM Repository.
She uses a graphical tool to add an additional BM (E) to coordinate the four other
ones. The four existing BMs and the newly created one are referenced in the TT.

Selected Behaviour Models for Activation The five employed BMs are formulated
as UML State Machine diagrams and can be found in Appendix F. They are shortly
described here.

Model A contains the logic for a performance audit of a given application server and
measures performance values by employing cyclic polling using Java Manage-
ment Extensions (JMX). It also calculates statistical results using the measured
values and classifies them as red, yellow or green.

122

5.2 Management in the Network

Model B is used to execute a performance audit on a given network route, measuring
the performance values of all network elements on a given route using cyclic
polling via SNMP. It also calculates performance statistics and classifies the
results, providing an overall view of a route’s state.

Model C collects all alarms of a given type, raised during a given time period, on
a given route by querying the alarm database for alarms that were send by
any network element on that route and in that period of time. It prepares the
results by correlating and filtering the alarms.

Model D executes a performance audit of a given client computer by measuring the
machine’s performance through cyclic polling over SNMP. It will also calculate
statistical values and classify the result.

Model E sends a start event to the models A – D once the User is accessing the
application server, which it can conclude by analysing IP flow information
from the intranet router D1. It is responsible for collecting the results and
errors that appeared over the period of a week and informs the Supporter by
activation of the TT. All models are automatically removed once they reach a
final state in their process logic.

Behaviour Model Deployment Process The Supporter now uses the MA to deploy
the model with the network using the step-by-step process as described in Section
2.3. She starts with the selection step by using the five models that will capture the
overall troubleshooting activity.

During the mapping process she conducts a static configuration of the BMs by
going through a list of open parameters and assigning values to each of them. With
some parameters, she keeps the default values, e. g. the time period of the activity is
set to one week. Other values come from information in the TT, for example the
identification of the User’s computer or are disclosed by the User himself, e. g. the
identification of the accounting system he uses. They might also stem from her own
experience, for example the identification of the credentials for logging into a system.
After filling in the missing parameters, the MA automatically completes the step by
querying the topology database for unresolved topology parameters like IP addresses
or route configurations. For example, the process logic contained in Model B receives
the host name of E2 as a value for the source host identifier and the name of C1 as
destination host identifier to carry out the route audit; during the mapping step this
would be resolved to a sequence of IP addresses that correspond to the route E2 -
D2 - A5 - D1 - C14.

The mapping step results in an assignment as follows: CU A3 is assigned the
coordination model E and the collection of alarms using BM C. A4 will measure

4compare with Figure 5.4

123

5 Use Case Studies

the performance of the application server (model A), because this device can easily
access the application server via JMX. CU A5 is assigned model D because of the
required FCs and the proximity to the User’s computer. A6 will process BM B due
to a low utilisation of the device.

As it is not necessary for the User to participate in the subsequent activation steps,
the Supporter explains the start of the measurement activity, promises to resume
contact in a week’s time and ends the phone call.

In the following transmission step, each BM is deployed at a CU using CMP.
Once the local model is received at a CU, the FC dependencies need to be resolved,
eventually resulting in one or more, binary FC downloads from the FC Repository
and subsequent installation of any new FCs. Once all necessary FCs are in place, the
BMs are instantiated. For the fourth step, activation, a ready event is disseminated
to other CUs, allowing for the synchronised start of BM logic evaluation at each of
the local model state machines.

Observation and Diagnosis Every time that the User accesses the accounting
system, models A, B and D are triggered with a start event from model E. Similarly,
a stop event will be sent if the IP flow information between E2 and C1 indicates that
the User stopped accessing the server. After one week, the measured performance
values for each cycle are combined through the local model E with any alarms queried
from the alarm database using BM C. The classified results are stored in the TT and
the Supporter is notified by an open TT that is assigned to her support team.

These are the results found in the TT: server utilisation measurements were
classified as green, implying that the server was working well all the time. The route
audit results are marked with a warning value: the network link between D2 and A5
of the audited route in the division A subnet was over-utilised at two times, on a
Monday between 14:01h – 14:23h and on a Friday between 14:05h – 14:18h. This
was determined through the unusually high number of TCP re-transmits and packet
losses on the link. No relevant alarms were detected in the time-span and the client
computer had some utilisation peaks, but these were in a normal range for the device.

The Supporter concludes that a specific audit on the over-utilised link is to be
conducted, to further narrow down the problems that exist. The User is informed
about the intermediary results. After further analysis of the link in question, for
example using intrinsic monitoring, it turns out that all computers in the subnet of
division A start to run a backup script at 14:00h each day – this traffic chokes the
link completely. The Admin modifies the backup scripts and the problem vanishes.
The User is informed, and the TT closed and added to the Knowledge Base. This
information is now available to other troubleshooters as directly re-usable knowledge
through the appropriate BM models in the BM Repository.

124

5.2 Management in the Network

5.2.2 Monitoring Router-Load Using MBIM

The previously described scenario enabled us to form a vision on how BM interpreta-
tion can play a role in the context of network and systems management. However,
this scenario is too large to be completely implemented with the resources available to
us. We therefore concentrated on demonstrating key issues. One of the them concerns
the interpretation of a model, which captures monitoring behaviour using SNMP.
The employed plan (see Section 4.5) contains a BM akin to model D in Appendix F,
but is used for monitoring a router, not a client computer. For interpretation of the
monitoring model, we employed the MPU discussed in Section 4.5, integrated within
a CISCO 2800 Integrated Services Router (ISR) [224]. This setup is shown in Figure
5.5.

©
 C

IS
C

O

IOS

AXP

GigE

MIB

Linux Host OS

Virtual Linux

Virtual
Linux Virtual

Linux
Java

Production
Traffic

GigE

Management
Traffic

GigEGigE

GigE

Figure 5.5: Integration of the interpreter with a CISCO 2800 ISR

Cisco names this technology the Application eXtension Platform (AXP) [225].
From a hardware point of view, it consists of a small computer using a form factor
compatible with the network-module slot of the 2800 ISR series. This enables it
to be directly inserted into the router chassis, receiving power by the router and
communicating with the router’s OS5 via a dedicated Gigabit Ethernet (GigE) [241]
connection. The AXP machine provides a separate, external GigE interface, which
we are using to manage the MPU by means of a web interface. From a software point
of view, the AXP platform provides a hardened Linux host OS, which is able to run
a number of virtual instances of itself. Each virtual instance serves as a sandbox

5The Internetwork Operating System (IOS)

125

5 Use Case Studies

that can be constrained in regard to available resources. The MPU, in turn, executes
on top of a Java VM in one of these virtual instances.

The Employed BM To obtain performance data of the current production traffic
that is passing through the router’s network interfaces, the MPU assumes the role of
an SNMP manager. It uses the plan shown on page 245 ff. in Appendix F, while the
plan format itself is described in Section 4.5.

The plan definition starts by specification of a unique id and namespace (line 2).
Afterwards, the dependencies are listed. The BM requires three FCs to be present
(line 7–15). These support the communication using the SNMP protocol, calculate of
statistical values and are able to classify the measurement results. Additionally, the
dependencies include the declaration of addressing details for an external plan with
the identifier Collector (line 16–17). The collector plan receives the classification
reports created by this plan.

The BM is defined in SCXML (see Appendix B) as a direct child of the <Behaviour>
element (line 21 –117). The nested SCXML script starts with a declaration of the
context (line 26–36), which holds the current measurement values for CPU and RAM
utilisation, the calculated average of these utilisation values over the last minute and
a classification result. The XML namespaces for these data need to be set or cleared6,
as the elements would wrongfully belong to the SCXML namespace, otherwise. The
BM starts in the state Init and enters the state Idle upon reception of a ready

event (line 39–41). It then waits for reception of either a start or exit event (line
44–45). In case of a reception of the exit event, the BM continues to state Exit,
where a done event will trigger the termination of the BM (line 111-115). Otherwise,
a start event will cause the BM to enter the substate PollCPU of the compound
state MeasurePerfomanceSNMP.

The compound state MeasurePerfomanceSNMP can only be left using two trans-
itions: on the reception of the stop event, the BM will continue in the Classified

state, or on the reception of the exit event, it will go to the Exit state (line 50–51).
While the BM stays in the compound state, the execution flow is circular: at first,
the PollCPU state is traversed, then the PollRAM state. The BM then arrives at
the CalcStatistics state and continues to the Waiting state, where it stops for a
minute before continuing with another cycle by entering the PollCPU state again
(line 53–90). In both of the Poll... states, the BM triggers the sending of a SNMP
GetRequest Protocol Data Unit (PDU) to the agent running in the IOS part of
the router by invoking a suitable SNMP FC that uses the router’s internal GigE
connection. This invocation is done using the Snmp FC (line 54–59 and line 67–72).
The router’s SNMP agent queries the relevant MIBs and sends the obtained data
back to the MPU by employing a SNMP Response PDU. The SNMP FC receives
the response and delivers it back to the BM in a done.invoke... event. The result

6Done by the xmlns="" statement

126

5.3 Intrinsic Monitoring

of this invocation is then stored in the context data for later retrieval (line 61–26
and line 74–75). Another FC invocation, this time of the StatisticsCalculator

FC, is processed in the state CalcStatistics. During the invocation, the complete
context is passed to the FC. The FC calculates an average of the recorded values
and stores the results in the Averages section of the context (line 80–81). Once the
average has been calculated, the Waiting state is entered, where an internal timeout
event is used to restart the cycle after one minute by entering the state PollCPU

(line 85–90).
Once the performance measurement cycle has stopped, the Classify state is

entered. In this state, the classification FC is invoked, which calculates a classification
result (e. g. red for a router under maximum load) and stores it in the context (line
95–96). Afterwards the state Report is entered, and a report event is send to the
external Collector plan (line 101–107). The BM then returns to the state Idle

and waits for another start event.
There are a number of alternatives within this scheme that we further investigated.

For example, SNMP requests and responses can be directly mapped to events, allowing
the model to continue with the execution while a request is being processed. Another
option concerns the use of SNMP; there are APIs for the AXP platform provided
by Cisco that allow for privileged access to the IOS, facilitating the monitoring or
control of the device without the usage of SNMP at all.

To manage operational aspects of the MPU (existing plans, available functional
repositories, logging) via a Control Interface, we employ a web GUI that allows us
to inspect an MPU’s operation, the deployed FCs and the state configuration of the
active plans. Following the MBIM vision, the management would be carried out
using a dedicated system like the previously discussed MA component, but this has
not been concretely demonstrated yet. In our current scenario, an operator directly
monitors an MPU’s runtime data using a web browser, while the CMP governs the
AJAX-based data exchange between an MPU and the HTTP client.

Apart from the MPU, the MBIM components that have been concretely imple-
mented within this scenario are the FC Repository, which is engineered as a web
server that provides FCs via the OBR standard, and the BM Repository, which
is implemented as an XDMS or a file system. We found that by using the BM
interpreted with MPUs on the AXP platform we can drastically reduce management
traffic. Additionally, the approach promises unmatched flexibility when introducing
new monitoring functions into a network.

5.3 Intrinsic Monitoring

This use case was created in the context of an investigation of novel mechanisms
that allow the monitoring of routers along a given path, based on IPv6 [43, Chapter
22] features. It has also been published in [104].

127

5 Use Case Studies

When observing the properties of resources in a telecommunications network along
a route and in an on-demand manner, a typical setup like the one seen in Figure 5.6
is often used.

Internet

Ingress
Router

Egress
Router

Router 2 Router n-1
...

Management

Client Server
SNMP
get

Figure 5.6: Monitoring a route using SNMP polling

Depicted is the path of IPv6 packets that travel from a client to a server machine
through the internet. One part of the route lies within a single administrative domain,
traffic entering the domain comes trough the Ingress router and leaves through the
Egress router. To monitor information along the route inside the domain, a central
management system would first need to determine which routers were traversed by
a given packet by inspection of routing tables or querying of topology databases
and subsequently poll every device using SNMP (or similar mechanism) over its
management interface. Using such an approach is straightforward to implement
and works with the majority of networking devices. Unfortunately, it exhibits some
overhead concerning the amount of SNMP packets that need to be transmitted for
each observation. Usually, scalability is also an issue because of the centralised
organisation of the monitoring management system.

In contrast, our approach, called intrinsic monitoring, introduces a new method
to network monitoring that promises a reduction of monitoring and management
traffic through an increased autonomy of the network monitoring system.

The idea behind intrinsic monitoring is simple; we embed monitoring data within
a suitable conventional packet and forward that packet along the route. Each device
on the route updates the embedded information until the last router reports it back
to the management system. Figure 5.7 shows that there is a reduction in the number
of packets used to obtain the monitoring result. It can also be seen that routers
are now behaving more autonomically: Router 2 . . . Router n-1 are not directly
communicating with the management system, they operate on their own accord.

Intrinsic monitoring only focusses on a single domain rather than on an internet-
wide application. The reason for this is simple: control of network elements in a

128

5.3 Intrinsic Monitoring

Internet

Ingress
Router

Egress
Router

Router 2 Router n-1
...

Management

Client Server
reportmonitor

trigger

forward

Figure 5.7: Monitoring a route using intrinsic monitoring

single administrative domain is fully in the hand of an operator, giving them the
freedom to apply new techniques (even proprietary ones). Using new extension
headers would be such a proprietary extension, as none of the currently available
devices supports this feature, and packets with unknown extensions trigger an error
or are simply discarded. Furthermore, different administrators have different policies
and use different mechanisms, even to accomplish the same task. Hence, intrinsic
monitoring can only be viable within a single management domain.

For this use case, we employ two mechanisms: IPv6 extension headers [104, Section
4] and BMs. Extension headers enable the embedding of monitoring data in-band to
normal IPv6 traffic and thus support a distributed approach to monitoring. BMs
are used to formalise the operations that each router can apply on a packet and
are interpreted during runtime, thereby orchestrating a device’s behaviour. This
presupposes that BMs are already deployed at the network devices prior to executing
the monitoring task and that they are selectable using an identification number.

5.3.1 Execution of Monitoring Behaviour

Once an Ingress router has identified an IPv6 packet to use for intrinsic monitoring,
it adds an intrinsic monitoring header (for details regarding this extension header,
see [104, Section 4.1]) and forwards the packet along the path. An intermediary
router will pick it up and process the contained monitoring data in the way depicted
in Figure 5.8.

The diagram shows the flow of a single IPv6 packet, containing an intrinsic
monitoring extension header, through an intrinsic-monitoring aware router. The
router detects (e. g. by means of Deep Packet Inspection (DPI)) [142] that the packet
contains an intrinsic monitoring extension header. The data carried within the
header is then used to select a BM through the Type field. The selected BM is then
interpreted, resulting in the execution of a number of actions, in this case monitoring

129

5 Use Case Studies

Addr. Data
Addr. Data
Addr. Data

Addr. Data
Addr. Data

IPv6
Packet

IPv6
Packet

Extension Header

Query

Behaviour
Models

TypeNxt Len TypeNxt LenSelect

Φ

Figure 5.8: Packet forwarding using intrinsic monitoring

queries that retrieves some performance data from the router itself. The extension
header contents are updated with the router’s address and the obtained value(s),
and the packet is forwarded further along the path. In the diagram, the maximum
extension header size is indicated as Φ.

Employed BMs There are four example BMs found in Appendix G, which demon-
strate the use of intrinsic monitoring for collection of a monitoring data element
from each router along a path. BM D queries a router for the current value of
a monitored data element and subsequently updates the extension header. The
model consists of three states connected by ε-transitions. There are two actions
used: read performance datum(), which queries the router for the current value of
the resource attribute via an FC binding, and update ext header(), which appends
a given value to the header’s content. We do not describe in detail how a datum
would be obtained at the router but assume that it should generally be possible, i. e.
using internal SNMP calls or by directly interfacing with the device’s hardware. The
returned value is stored in the context data under the identifier u and thereafter used
to update the header content. The packet that is being modified can be accessed
using the identifier p, which is handed as a parameter to the model.

The BM A waits for a trigger from the management system and subsequently
selects a packet to embed in the extension header. Finding a suitable packet depends
on the packet size: If one would attempt in-band monitoring in a näıve manner
and simply attach a new extension header to an existing packet, the packet’s size
could easily grow larger than the paths Maximum Transmission Unit (MTU) [43, p.
336 ff.], resulting in a packet drop. One solution to get around the problem is by
calculating Φ in advance using Φ = M × (16 +D) + 3 and then choosing a packet
that can accommodate Φ bytes of additional data without invalidating the path
MTU. The maximum size Φ depends on the number of routers M on the path, the

130

5.4 An Application to Embedded Systems

size of data D to acquire on the route and a constant given by the IPv6 extension
header layout (we assume 3 bytes). In the worst case, M is the number of hops on
the longest, non-circular path within the administrative domain.

Insertion of an intrinsic monitoring extension header is triggered by the management
system through transmission of a trigger message that activates the first transition of
the matching BM A at the Ingress router. The router starts to scan every packet for
its size, identifies the first suitable one and removes it from the forwarding mechanism
using packet filtering. It then utilises the functionality depicted in BM D to update
the extension header before enqueuing the packet for forwarding and returning to
the initial behaviour state.

Intermediary routers have a more trivial task: they need to update any packet
arriving with an existing intrinsic monitoring extension header. The BM B shows
how this is done, again relying on model D to query the datum and update the
header. This BM is executed by all the intermediary routers on the path.

Lastly, the extension header needs to be removed from the in-band traffic at the
Egress router, which is achieved by the BM C. After retrieving the packet, the header
is updated with the Egress router’s datum to complete the data acquisition, and the
data is afterwards consolidated in a report format. The report is then sent with a
report message to the management system. Subsequently, the intrinsic monitoring
header is removed from the packet, and the packet forwarded to its actual destination.

The overall study has not been evaluated completely in a real-world setting,
but important aspects have been proven to work. For example, the embedded
systems experiment (described in Section 5.4 and in [107]) was conducted in the
context of this setting, as we are interested in the feasibility of BM interpretation in
resource-constrained platforms, such as routers. Our colleagues L. Shi and A. Davy
also researched intrinsic monitoring in more detail [176], including the implications
regarding system security [175].

5.4 An Application to Embedded Systems

Our final use case concerns the creation of a BM interpreter for embedded systems and
has been published together with P.H. Deussen and H. Coşkun [107].This experiment
was conducted to determine the scalability limits of the approach in regard to
resource consumption and to demonstrate the feasibility of such an undertaking,
while determining if the performance is reasonably adequate for our application
purposes.

We decided to use the simplest hardware that could serve as an interpreter platform
to mark the possibly low end regarding the resource usage of the interpretation
approach. The interpreter for this use case was implemented using the C language
and an Arduino board [220] with an 8 bit ATmega328P microcontroller. The features
of the Arduino prototyping platform are listed in Table 5.1.

131

5 Use Case Studies

Feature Description

Model Arduino Duemilanove
CPU ATmega328P Microcontroller
Core Frequency 16 MHz
RAM 2 KB
Non-volatile Memory 32 KB Flash and 1 KB EEPROM7

Operating System —

Table 5.1: Platform used for measuring the embedded interpreter

The platform has been extended with a custom board that allows for input and
output events by the means of three buttons, a potentiometer and three lights of
different colours. Universal Serial Bus (USB) [283] is used for providing current
to power the board, transmitting BMs and more sophisticated output, e. g. of
measurement values. Error diagnostics is done via blink sequences of a blue light.
The utilised platform is shown in Figure 5.9.

3 outputs
Red, yellow, green LED

1 error indicator
Blue LED

4 inputs
Blue, white, black button

Potentiometer

USB used for power
and communication

Figure 5.9: Target platform for the embedded system interpreter

Software-wise we are using the simplest design that still enables us to show a
working approach. This interpreter has little in common with the generic interpreter
architecture, but still includes all of the fundamental BM features, apart from a
history mechanism (see Section 4.1).

Architecture and Operation We abstained from defining a presentation or per-
sistent storage format for the utilised BMs and work directly with the in-memory
representation Abstract Syntax Tree (AST) [3, Vol. 1, p. 60]. For each model, the

7Electrically Erasable Programmable Read Only Memory

132

5.4 An Application to Embedded Systems

complete AST data is allocated as a single chunk of memory, and the AST structure
is constructed with single-byte references to this data. Prior to interpretation, an
additional executor structure is allocated that holds input and output event queues
as well as data structures for processing parallel regions and a reference to the initial
starting state for execution.

The number of states is restricted to 256 symbols. Each state is represented by a
data structure containing fields that allow navigation of the composition hierarchy.
For performance reasons, we separate the state data structure into a set of substates,
a set of parallel regions and an additional reference to a superstate. In addition,
the structure contains a set of references to outgoing edges and a so-called flag byte
used to indicate state properties, e. g. marking of initial states is implemented as
a single bit in the flag byte. Sets are generally implemented as byte arrays with
an additional field that holds set size. For aggregated states and states containing
parallel regions, it is necessary to identify the start state of contained component(s)
and to additionally create data structures that allow for pseudo-concurrent processing
of parallel regions.

There can be 256 transitions, which are defined by a data structure with a
reference to a destination state, assignment of a triggering event and an output event
assignment. Events are numbered from 0 to 255 and identified by their numerical
value — 0 marks the special ε-event. The transition structure also contains references
to a guard condition predicate and an action mapping. Due to the parallel processing
of transitions, it is possible for multiple events to be received during a single step
of a model. Events are buffered for input and output in ring-buffers, limited to 10
elements. The context data variables are limited to a maximum of 246 readable
and writeable entries per BM and 10 global entries shared between all executing
models. The variables are limited to 8 bit integer numbers and there is no other type
system. When data values are evaluated within boolean expressions, we follow C
conventions for assigning logical values: 0 corresponds to a logical false, other values
are true. The guard condition predicates are specified within the model AST and
can be constructed from variable or constant references (notationally depicted using
a $ sign), boolean operators (!, ∧, ∨) and comparison operators (=, <, >, ≤, ≥).
Evaluation precedence is implicitly given through the AST hierarchy. Actions are
implemented as statically bound code. An action binding is a conventional function
call with an arbitrary number of input and output parameters, and represents fixed
capabilities of a device that are orchestrated using the BM’s logic. FC bindings
are implemented using a function pointer and an ordered set of variable references.
Parameters need to be de-referenced inside of the action function and can be used
to read or write the variable value. There are also two predefined actions that can
be used for delayed event sending. We created three timers that can be set with a
delay value using set timer(id,delay) to deliver the specific events 8, 9 and 10
once the delay time passes. Timers can be cleared using clear timer(id) which
suppresses dispatching of the timer event.

133

5 Use Case Studies

Performance of Transition Matching We measured the time that our implemen-
tation needs to react to a single input event with a single output event by firing
a single transition, and we also determined the latency of the interpreter when
processing multiple transitions. For this, we employed 30 different BMs with an
increasing number of transitions leaving a single state. Each transition is triggered by
a specific event (numbered from 1 to 30) and sends a corresponding output event 101
to 130. Each model is then supplied with exactly one event, activating the transition
that is triggered by the event with the highest number. This is done to force the
interpreter into exhibiting worst-case behaviour (it needs to check each transition
before finding the transition that matches). The results, along with an illustration of
the experimental models, are depicted in Fig. 5.10.

Test

e1 /
send(e101)

e2 /
send(e102)

en / send(e100 + n)

...

Measurement Models

30 5 10 15 20 25

200

0

40

80

120

160

Number of Transitions For a Single State

D
el

ay
 [μ

s] Interpreter

switch Statement

Figure 5.10: Transition matching performance of the embedded interpreter

To put the measurements into perspective, we also measured the time that it
takes for a conventional switch statement in C to deliver the same result. Latency
measurements have been conducted using in-line timestamps with an accuracy of ∼ 4
µs and the latency for a simple transition is ∼ 64 µs, which includes event processing,
timer handling, transition selection and firing the transition. It is a factor of ∼ 10
slower than a conventional switch statement, which executes at ∼ 6 µs. Latency
increases linearly with each additional transition, ∼ 3 µs for each transition up to 152
µs for 30 transitions. The switch statement has a roughly constant delay, independent
of the given event. To determine the performance of dynamic action bindings, we
created models that trigger an action using a single transition from a single state and
altered the number of parameters (0 to 10) passed to the action. The additionally
introduced delay amounts to an average of ∼ 3 µs per additional parameter. For
conventional function calls, an additional delay must exist as well, but we were
unable to determine it, as the measured runtime latencies fell within the precision
range of the employed timing mechanism.

134

5.4 An Application to Embedded Systems

30 5 10 15 20 25

1600

0

200

400

600

800

1000

1200

1400

(B) Number of Parallel Components

D
el

ay
 [μ

s]

1st Event
2nd Event

for-loop Statement

en / send(e100 + n)

Test
...

Test

Test

Testen /
 send(e100 + n)

...
Behaviour Models for Nested States Models for Parallel Components

30 5 10 15 20 25

450

0
50

100
150

200
250
300

350
400

(A) Depth of sub-state containment

D
el

ay
 [μ

s] 1st Event

2nd Event

e1 /
 send(e101)

e2 /
 send(e101)

Figure 5.11: Embedded interpreter performance for composition and concurrency

Performance of Processing of Compound States and Parallel Regions The two
major features that differentiate statecharts from EFSMs are state composition and
the ability to specify parallel regions. To measure the performance of processing
composite states, we used a series of models with an increasing number of nested
states (from a single state to a compound with a nesting depth of 30), where the
most deeply nested state has a transition that matches on a given input event. The
parallel region processing was analysed using 30 models, where each model consists
of a state with an increasing number of parallel regions, each triggering on the same
input event. The results are displayed along with the experimental models in Figure
5.11.

We found it necessary to differentiate between the first input event and subsequent
events8 processed in the same state. This is due to additional functionality executed
when entering a composite state or a state that contains parallel regions. Figure
5.11(A) shows an average delay of ∼ 12.5 µs per additional nested state for an event

8In the diagram labelled as 2nd Event, representative for all subsequent events

135

5 Use Case Studies

that triggers the entering of the composition hierarchy. Once the compound state has
been entered, the delay for processing subsequent events is independent of the nesting
level. This is different for parallel regions, as shown in Figure 5.11(B). Entering a
state with parallel regions for the first time has an average latency of ∼ 52 µs per
parallel region. There is an average overhead of approx. 26 µs per active component
for each subsequent event. To compare the latency overhead with conventional
constructs, we also show the delay of a standard for-loop construct that sequentially
processes the input event. In this case, the overhead is at approx. 2 µs per additional
iteration.

Expression Evaluation Performance The expression evaluator is implemented as
a tree walker that recursively traverses a binary tree of statement tokens (variables,
constants and operators). We are using the same expressions as described in the
EXPRESSION scenario in Section 6.1.7 to measure the evaluation performance. The
measured values are listed in the following Table 5.2, along with the recursion depth
of the tree walker.

Expression Delay Recursion

$0 < 15 24 µs 2 levels
($0 < 15) ∧ ($1 = $2) 56 µs 3 levels
(($0 < 15) ∧ ($1 = $2)) ∧ ((30 > $4) ∨ ($3 = $5)) 116 µs 4 levels

Table 5.2: Expression evaluation performance of the embedded interpreter

Our approach has a remarkable performance overhead; a hard-coded version of
any of these expressions in the C language executes in less than 4 µs. The evaluator
uses an additional 11 bytes per recursive level used when processing the expression,
e. g. the most complex expression uses a total of 44 bytes stack memory during
evaluation, as the interpreter (re-)enters the evaluation method four times.

Memory Consumption Heap memory depends on the model structure. Table 5.3
details the memory requirements for various BM features, in bytes.

Element Size Additional size requirements

BM 12
State 12 + 1 per referenced edge, parallel region, substate
Transition 7
Parallel region 4 + 1 per referenced substate
Action binding 4 + 1 per bound parameter
Expression token 6
Global context data 10

136

5.4 An Application to Embedded Systems

Element Size Additional size requirements

Local context data 0 As defined by BM
Control Flow 5

Table 5.3: Memory requirements for embedded interpreter data structures

To analyse stack performance, we exercised the BM shown in Fig. 5.12.

Lights and Door

OnOff

open /
switch_lights_on()

Waiting

open /
clear_timer(1)

close
/ set_timer(1, 5s)

timer1_up /
switch_lights_off()

Opened

Closed
Locked

door_close /
send(close)

Unlocked

lock
[key = true]

unlock
[key = true]

door_open /
send(open)

Figure 5.12: Example BM Lights & Door

Stack memory measurements were conducted by dumping the stack pointer during
runtime. The performance of these routines is non-critical, as such experiments
only measured memory consumption, never latency. The employed BM imitates the
behaviour of a car door and passenger compartment lights, which we regard as a
simple but typical example for applications in the embedded systems field.

We used the following sequence to measure the stack allocation: key ← false,
door open, door close, lock, door open, door close, key ← true, lock, door open,
key ← false, unlock, door open, key ← true, unlock, door open, door close, wait
for the lights to turn off. The interpreter uses 25 bytes of additional stack memory
when processing input events and 23 bytes when processing ε events. Evaluation of
the guard conditions on the transitions between the Locked and Unlocked states
related to the key variable show up as peaks in the stack usage.

There are strict limitations on the available memory: 2 KB of RAM contain
the BM data structures as well as the runtime data needed for its interpretation.
Volatile memory can be exhausted easily by moderately complex models, e. g. the
performance benchmark’s L2 BM (see Section 6.1.1) would already be too large to

137

5 Use Case Studies

fit into the platform’s available memory. The interpreter itself uses less than 8 KB
of Flash memory, leaving 24 KB for definition of FCs.

This use case demonstrates that it is possible to use runtime BM interpretation
on a hardware platform with extremely limited resources. This opens up a number
of possibilities. Usually, one needs to go through complicated processes for updating
software in embedded systems (e. g. conducting firmware upgrades). This does
not need to be the case when employing our approach: customisable parts of an
application can be modelled using state machines, while highly performant functions
are provided by FCs. It might be even easier to adopt our approach in the world of
embedded systems, as state machines are widely used to design functionality, and
thus, complete BMs already exist.

5.5 Summary

The main goal for creation of the use case studies is to ground our work by applying
it within a realistic context. By conducting the service supervision study, we found
that our approach can be successfully applied for monitoring a number of services
using a collective of CUs that employ interpreted BMs. It has been demonstrated
that the interpretation approach, together with a well-defined communication model,
is a decent choice for managing the re-configuration of a supervision service. The
resource consumption of the employed technology (the Java-based ACE Toolkit) was
adequate to execute this scenario on plain personal computer hardware.

Within the management in the network use case, we demonstrated the usage of the
MPU for deploying and administration of BMs. Required FCs are loaded on demand
as part of the model deployment process. The benefits of the interpretation approach
were immediately visible during development of the demonstrator for monitoring
router loads: the use of statechart-based BMs allowed us to easily communicate,
discuss and change the monitoring functions. By using interpretation, it is also
possible to adapt the modelled management processes while they are active. For long
running processes, this is an advantage over conventional approaches, where system
functionality is usually altered by deploying a patch or new version of a component
and then rebooting the executing device. Such an approach is more disruptive to
the operation of the management system and possibly to the production network
than the one proposed. We also showed that it is possible to reduce management
overhead by moving management processes closer to the actual devices that should
be managed. Take, as an example, the employed Cisco AXP platform, where the BM
executes on a machine that shares a single physical chassis with the router hardware,
communicating with the device via a dedicated internal interface. The advantages of
such an approach are a reduction in management traffic, the removal of load from
the management system and a shorter delay for obtaining the monitored values. BM
interpretation supports this strategy by enabling the use of models for description of

138

5.5 Summary

management processes. This allows network and system administrators to create,
enact, and modify management processes using a symbology that is more advanced
and intuitive than the current state of the art in this field.

The intrinsic monitoring use case study also employs BMs to encode decision
processes, which are then interpreted within routers. The idea is to have a flexible tool
for describing the monitoring processes and to be able to delegate these processes to
devices that are in the network, rather than executing them in a centralised network
management system. Apart from several issues that have been brought forward
against the idea of embedding monitoring information in an IPv6 extension header
(violation of the path MTU, the end-to-end principle, the security mechanisms),
a major concern was execution speed. Critics do have a point here. Although
we did show that data analysis with a solid throughput can be achieved by using
interpretation of automata (see [98] and Section 4.2), it does not make sense to trigger
interpreted BMs using packets as events within a router’s forwarding mechanism,
as an interpreter would need to process packets at line speed. Given that an event
equals a packet, that we use a GigE link with a minimal IPv6 packet of 78 bytes9

and there is no packet loss, an interpreter would need to completely process a packet
within 624 nanoseconds. This does not seem to be possible in software, even when
executing generated code instead of using interpretation. In contrast, if only some of
the packets ought to be processed, a router could filter out packets, before supplying
only the relevant ones to the BM interpreter. Relaying of a packet to the interpreter
and the subsequent execution of the BM will always incur a processing delay, which
might disqualify this approach for certain types of traffic, e. g. data streams with time
sensitive information. For all other types of traffic, and especially for an application to
management processes in the system and network management domains, employing
BM interpreters constitutes an adequate approach.

The embedded systems use case documents in detail that BM interpretation is not
a question of resource availability. The concepts can be used over a very wide range
of available hardware platforms, from high-performance server-cluster down to the
level of single 8-bit microcontrollers.

940 byte IPv6 header, 26 byte Ethernet frame, 12 byte for the Interframe Gap

139

140

6 Performance Benchmark

A hundred objective measurements didn’t sum the worth of a garden;

only the delight of its users did that. Only the use made it mean something.

Lois McMaster Bujold

Demonstrating the feasibility of BM interpretation for application in the network
and systems management domains is a valuable result; however, it is more important
to show the performance impact that such an approach incurs. To determine
the performance that a specific interpreter implementation delivers, we designed a
benchmarking suite that enables the comparison of a set of different implementations,
based on standardised performance measurement scenarios. The benchmark suite is
not restricted to BM interpreters and can be used with execution approaches that
rely on code generation as well.

In this chapter, we will first introduce a novel and comprehensive benchmark
suite for determining the performance of BM execution mechanisms. Each of the
ten scenarios used in the benchmark will be discussed in detail. Subsequently, we
are defining mappings of the fundamental BM features identified in Section 4.1.1
to three concrete measurement platforms. This is necessary because each of our
implementations differs in the employed expression languages and supported BM
features, and we need to state how these differences relate to the BM features used
in the benchmark suite definition. Finally, we use the benchmark to asses the
performance of two of our implementations in regard to a reference implementation.
Namely, we compare the performance of the UML interpreter and the MPU to static
C++ code generated by the Rational Rhapsody tool.

6.1 The Benchmark Suite

The goal of the benchmark suite is to establish a baseline for quantitative judgement
on the execution performance of a given implementation. Such an instrument is
necessary for classifying the overhead that the interpretation approach introduces
when compared with a BM execution strategy that involves code generation and
compilation. It is also a useful tool for comparison of different implementations of
execution engines.

Requirements The benchmark is specified using the fundamental BM features
introduced in Section 4.1.1 and the BMs, which are employed for the individual

141

6 Performance Benchmark

scenarios, are specified using UML syntax. Should a certain feature not be available
for a given implementation1, then the relevant benchmarking scenario must be
considered invalid.

We also need to specify some requirements regarding the context, expression
language and available actions. The context needs to support integer variables,
denoted by the letters a to f.We utilise three comparison operators for integer
numbers: equals ‘=’, lesser ‘<’ and greater ‘>’. The only required arithmetic
operation is addition ‘+’. Furthermore, we need two boolean operations: the and
operation ‘∧’ as well as the or operation ‘∨’. Assignment to a context variable a
is depicted using the ‘:=’ symbol. Pairs of braces ‘(. . .)’ are used for specifying
evaluation precedence in expressions. Three specific actions need to be provided
through the expression language. The action timestamp() records a timestamp value
for subsequent use in analysis. The send(event) action takes an event as an argument
and supplies the given event to the BM instance. The action call(fc,value) invokes a
functional component. The first parameter fc identifies the operation and functional
component to call, the second parameter value is an integer value supplied to the
operation during invocation. The call function provides an integer return value. We
use only a single FC, called DIV 10, which returns the input value divided by 10.

The benchmark relies on the measurement of three different kinds of performance
indicators: occupied CPU time, allocated memory during runtime and static ex-
ecutable size. Timespans are stated in units of Microseconds (µs) and memory size
values will be given in Kilobyte (KB) units. We employ the traditional definition
of KB, where one KB is defined as 8192 (210 × 8) bits of data. Any platform used
for executing the benchmark must supply functionality that enables the reliable
computation of these values. Benchmark results are obtained by sampling CPU time
and used memory over time and through a subsequent analysis of the obtained data.

Structure and Objectives The benchmark suite is divided into ten scenarios, each
aiming at objectively determining certain performance characteristics, expressed
through a set of performance indicators. The ten scenarios are SIZE, ALTERNATIVE,
EPSILON, EVENT, GUARD, COMPOUND, EXPRESSION, CONCURRENT,
CONFIG and LIFECYCLE. Each of the scenarios is described following a similar
structure, comprised of the following sections:

• The scenario name and a general description of the scenario and its goals

• The BM(s) necessary to execute the scenario

• A step-by-step description of the procedure used to conduct the scenario

• A list of metrics (called performance indicators) that represent the results of
the scenario execution

1E. g. some implementation might not implement a deep history construct.

142

6.1 The Benchmark Suite

• Further background information, detailing common stumbling blocks when
implementing the scenario and mentioning any further points of interest.

Together, the ten scenarios are designed to provide a complete picture of an execution
mechanism’s performance. The relation between the benchmark’s objectives and the
scenarios that accomplish the objective are described in Table 6.1.

Objective Scenario

Determine impact of the benchmark instrumenta-
tion

LIFECYCLE, TSTAMP2

Determine the resource consumption (dynamic
memory, executable size) of the execution mechan-
ism itself

SIZE, LIFECYCLE

Determine execution mechanism’s resource con-
sumption (dynamic memory, executable size) in
relation to the employed BM’s size

SIZE

Determine execution mechanism’s dynamic
memory usage during execution

LIFECYCLE

Determine execution mechanism’s speed of match-
ing basic transitions triggered by an event. Basic
transitions are transitions that do not have a guard
condition, are not self-referencing and do not cross
nesting levels in the composition hierarchy.

ALTERNATIVE

Determine execution mechanism’s speed of match-
ing basic ε-transitions.

EPSILON

Determine execution mechanism’s speed of match-
ing transitions that are self-referencing or cross
nesting levels in the composition hierarchy

COMPOUND

Determine execution mechanism’s speed of select-
ing a transition among multiple potential ones

EVENT, GUARD

Determine execution mechanism’s speed of evalu-
ating guard conditions

EXPRESSION

Determine execution mechanism’s speed of sending
and receiving events

EXPRESSION

Determine execution mechanism’s speed of calling
an FC

EXPRESSION

Determine execution mechanism’s speed when en-
tering and exiting parallel regions

CONCURRENT

Determine execution mechanism’s speed when stor-
ing and re-establishing a state configuration

CONCURRENT

2Not a scenario, described in Section 6.1.11

143

6 Performance Benchmark

Objective Scenario

Determine execution mechanism’s speed when ac-
cessing the active state configuration

CONFIG

Determine speed of activating and deactivating a
BM with the execution mechanism

LIFECYCLE

Table 6.1: Objectives of the benchmark and the relevant scenarios

The benchmark covers all major features of BM execution mechanisms, making it
suitable for determination of the overall performance of our approach and for carrying
out comparisons between different interpreter implementations. The focus lies on the
detailed measurement of the transition matching performance and the performance
overhead introduced by the compound states and parallel region constructs. A general
evaluation of guard conditions is conducted, as well as a determination of FC calling
and event sending overhead. Besides the execution characteristics, the performance
of management operations, such as activation of a BM and the speed for accessing
the active state configuration, is determined. The benchmark also determines the
performance and resource overhead of the execution mechanism itself (without any
activated BMs) as well as the impact of the measurement instrumentation on the
results. We will now continue by describing each of the ten scenarios that make up
the benchmark suite.

6.1.1 SIZE Scenario

The SIZE scenario determines the relation of the execution system’s memory con-
sumption in relation to the size of the BM. Five BMs are deployed with the execution
system and the memory consumption of the system is determined for each model.

Employed Behaviour Models The five BMs are termed the L0, L1, L2, L3 and
L4 models, referring to the level of nested states that they contain. Each of them
contains an exponentially larger number of states (and transitions) than the previous
one, according to the following formula for calculation of the number of states nstates.

nstates :=
∑L

k=0 10k

The value of L determines the nesting level of the states (0..4). For model L0 the
number of states is 1, for L1 it is 11 and for L4 it is 11111. As larger numbers of
states are hard to depict graphically, we only give textual instructions to construct
the BMs. The idea is simple: start with an initial transition leading to a state
labelled Root — this is L0. For L1 add ten children to the root state, each one
reachable by a single transition firing on the reception of an event e01 to e10. Name

144

6.1 The Benchmark Suite

the child states State0 to State9. Every subsequent level is constructed by appending
ten children to each leaf state using the same transition structure and appending
a number from 0 to 9 to the parent’s state name, i. e. State00, State000, et cetera.
Figure 6.1 shows the complete L2 BM that is in the process of being extended to L3.

e01

e02

e0
3

e0
4

e05

e06

e07e08e0
9

e1
0

Level 1

Level 2Level 3

e02

e01

Figure 6.1: Constructing benchmark models for the SIZE scenario

Benchmarking Procedure For the first measurement, the execution runtime is
started without a deployed BM and the consumed runtime memory, as well as the
binary executable size of the execution engine, is recorded. For benchmarking the
BMs L0 to L4, each BM is individually deployed at the execution system and the
memory, as well as the executable size of the implementation, is recorded. Consumed
runtime memory is recorded after the engine finished the startup process and for each
of the measurements a freshly started execution runtime has to be used. The BMs
are only instantiated but never executed. Each of the runtime memory measurements

145

6 Performance Benchmark

is to be carried out 50 times and the final result is the arithmetic mean3 of all 50
measurement runs — this is done to remove variations in the measured values due
to effects of any memory management mechanisms.

Outcome The obtained values refer to size measurements. A measurement run
collects six values for runtime memory and one or six values for the executable size
(an interpreter’s executable does not change in size, whereas the size of a generated
runtime system does). Table 6.2 lists the performance indicators of the SIZE scenario.
Derived performance indicators (indicators that are calculated from other ones) are
set in italic type.

Indicator Meaning

SIZE.MEMORY.INIT The average consumed memory after system
start, without any deployed BM

SIZE.MEMORY.L0 The average consumed memory after deploying
the L0 model

SIZE.MEMORY.L1 The average consumed memory after deploying
the L1 model

SIZE.MEMORY.L2 The average consumed memory after deploying
the L2 model

SIZE.MEMORY.L3 The average consumed memory after deploying
the L3 model

SIZE.MEMORY.L4 The average consumed memory after deploying
the L4 model

SIZE.MEMORY.GROW (SIZE.MEMORY.L4 - SIZE.MEMORY.INIT)
/ 11111

SIZE.EXECUTABLE.INIT The executable size without any included BM
SIZE.EXECUTABLE.L0 The executable size including the L0 model
SIZE.EXECUTABLE.L1 The executable size including the L1 model
SIZE.EXECUTABLE.L2 The executable size including the L2 model
SIZE.EXECUTABLE.L3 The executable size including the L3 model
SIZE.EXECUTABLE.L4 The executable size including the L4 model
SIZE.EXECUTABLE A convenience name for the previous

SIZE.EXECUTABLE indicators, in case that
all have the same value (for example when the
same executable is used)

SIZE.EXECUTABLE.GROW (SIZE.EXECUTABLE.L4 - SIZE.EXECUT-
ABLE.INIT) / 11111

Table 6.2: Performance indicators of the SIZE scenario

3From now on simply referred to as the average.

146

6.1 The Benchmark Suite

Further Information The motivation for SIZE is to judge upon the amount of
memory that is utilised by the static structures of a BM, in relation to the model
size. The dynamic aspects of BM execution are examined within the subsequent
scenarios.

Relying only on states and transitions is adequate for this purpose, as these types
constitute the majority of elements used when modelling behaviour. Furthermore,
most other BM features have similar storage requirements as these structures. Also,
we found that using a small number of exponentially larger models allows us to more
quickly observe the static storage characteristics of the runtime (in comparison to
using a larger number of models that grow linearily in size).

Creating the L3 and L4 BMs might be a challenge. While L2 could still be created
by manually modifying a graphical representation, this is not feasible for the larger
models. We found that it works well to follow a programmatic approach, either using
direct modification of the in-memory format of the model (possible with Ecore) or
by creating a suitable persistent storage representation (e. g. by textually creating a
XMI or SCXML representation). We would also like to point out that the creation
of larger models does take some time and might collide with the constraints imposed
by an employed tool chain.

6.1.2 ALTERNATIVE Scenario

This scenario determines the timespan that the execution runtime needs to fire a
simple transition (a transition that is triggered by an event and has an associated
action but no guard condition). A single, self-referential transition will be activated
99 times in a row and the time between each processing step of the transition is
recorded.

B

e01 / timestamp()

/ timestamp() e02 / timestamp()
A

Figure 6.2: BM for the ALTERNATIVE scenario

Employed Behaviour Model Figure 6.2 depicts the BM used to carry out the
measurement. The control flow initially starts in state A, where an ε-transition is
taken to state B and the transition time is recorded. B contains an alternative: a
reception of e01 returns to state B via a self-referential transition while recording
the time and a reception of e02 records the time and ends the measurement.

147

6 Performance Benchmark

Benchmarking Procedure After the BM is deployed and started, the execution
system is supplied with 99 e01 events, followed by a single e02 event. Sending of
the events should be done as fast as possible. After the events have been supplied,
the measurement environment needs to wait until the model has terminated, before
continuing with an analysis of the compiled values.

Outcome The BM execution will yield 101 time stamps, which are used to calculate
the duration of the 100 intervals between the successive time stamps. Using these
intervals the following three performance indicators are determined.

Indicator Meaning

ALTERNATIVE.MIN The shortest recorded interval duration between two
successive timestamp values

ALTERNATIVE.AVG The average interval duration between two successive
timestamp values

ALTERNATIVE.MAX The longest recorded interval duration between two
successive timestamp values

Table 6.3: Performance indicators of the ALTERNATIVE scenario

Further Information The ALTERNATIVE scenario conducts a basic measurement
for determining the duration of a simple transition trigger. On some platforms, a
clear difference can be observed between the duration of the first interval and all
other interval durations. Inclusion of this value is intended, as the benchmark does
not aim at determination of the fastest possible execution speed but rather the
realistic performance characteristics of an execution runtime.

6.1.3 EPSILON Scenario

The EPSILON scenario determines the performance of ε-transition processing. A
sequence of states is connected through ε-transitions and this “chain” is repeatedly
processed, while measuring the elapsed time from chain processing start to end.

Employed Behaviour Model The BM used to measure ε-transition processing
performance is depicted in Figure 6.3. The BM begins in state Pre and enters the
transition chain on reception of an e01 event. The ε-transition chain connects the
states from A to E and the first and last ε-transition records a timestamp value. In
state E at the end of sequence, the control flow has two alternative paths: a reception
of e01 returns to the beginning of the transition chain for the next measurement,
and the reception of e02 ends the measurement process.

148

6.1 The Benchmark Suite

/ timestamp() / timestamp()
A B C D

e01

e02

EPre
e01

Figure 6.3: BM for the EPSILON scenario

Benchmarking Procedure After startup, the model is supplied with 100 e01 events,
followed by a single e02 event. Subsequently, the benchmarking infrastructure needs
to wait until the BM finishes execution before continuing with data analysis.

Outcome Exercising the BM in this manner will result in a list of 100 timestamp
pairs (overall, a total of 200 single timestamp values). For each pair, the duration
between the start and end times is determined by subtracting the earlier timestamp
value from the later one. Based on these calculated values, the following three
performance indicators are determined.

Indicator Meaning

EPSILON.MIN The shortest duration between calculated values, divided by
three

EPSILON.AVG The average duration for all calculated values, divided by three
EPSILON.MAX The longest normalised duration between calculated values,

divided by three

Table 6.4: Performance indicators of the EPSILON scenario

Further Information The processing of ε-transitions is often implemented differ-
ently (e. g. by internal completion events) than the processing of transitions that
are triggered by regular events. It is interesting to determine the runtime perform-
ance and compare it with the performance of regular transition processing. The
normalisation of the obtained duration times using division by three enables this
comparison.

Figuratively described: the earlier timestamp is recorded after the first “half” of
the first transition is processed, the next two transitions are processed completely
and the later timestamp value is taken after the first “half” of the last transition
is processed — the measured duration should be roughly similar to a processing of
three complete ε-transitions, which is the reason for the division by three.

149

6 Performance Benchmark

6.1.4 EVENT Scenario

In this scenario, five different events e01 to e05 are used to identify the transition
matching performance in regard to event reception. The goal is to determine the
performance indicators independently of the order of transitions as defined in the
BM execution format.

/ timestamp()

e0
1

e0
2

e03

e04
e05

e01e02e03

e05e04

/ timestamp()

e01e02e03

e05e04

B3

B2

B1

B4

B5

C3

C4

C5

C2

C1

D3

D4

D5

D2

D1

A E

e06

e07

Figure 6.4: BM for the EVENT scenario

Employed Behaviour Model The utilised BM is shown in Figure 6.4. Although the
model might look complicated, the composition is simple: a control flow always starts
at state A and continues along a path through states Bx, Cy, Dz, finally arriving at
state E. The values of x, y and z are determined by received corresponding events
ex, ey and ez. They can range from 1 (triggered by e01) to 5 (triggered by e05). At
state E, a reception of e06 returns the flow to the beginning of the BM in state A,
where the behaviour can also be ended through the reception of an e07 event.

Benchmarking Procedure The benchmark scenario is executed by going through
all possible paths in the model using events for all permutations of x, y and z (which
we refer to as a complete run). For example, a sequence of e01, e04, e03, e06 will
lead to the following path of entered states: A, B1, C4, D3, E and A. There are 125
possible paths (5× 5× 5). A complete run is repeated 125 times, each time starting
with a different permutation but going through all of the possible events. Algorithm
4 shows the procedure for executing this measurement.

150

6.1 The Benchmark Suite

Algorithm 4 Benchmarking procedure for EVENT scenario

1: for o = 0 to 124 do
2: Start Execution of BM
3: for p = 0 to 124 do
4: x← ((p+ o)/25) mod 5 + 1
5: y ← ((p+ o)/5) mod 5 + 1
6: z ← (p+ o) mod 5 + 1
7: Send ex, then ey, then ez, then e6
8: end for
9: Send e7

10: Wait for Termination
11: end for

There are two loops: the outer one (lines 1 to 11) determines the permutation
offset (indicated by the variable o) and executes the overall measurement. The inner
loop (lines 3 to 8) executes a complete run of all path permutations (indicated by
the variable p) by calculating and sending the appropriate sequences of ex, ey and ez
and e06 events. After each complete run the measurement is terminated using an
e07 event.

Outcome Running the described procedure results in 15625 timestamp pairs, each
pair determining the duration that the execution runtime used to process each one
of the paths within each complete run. Based on these durations, the following
performance indicators are determined.

Indicator Meaning

EVENT.MIN The shortest duration found in any timestamp pair
EVENT.AVG The average duration of all timestamp pairs
EVENT.MAX The longest duration found in any timestamp pair

Table 6.5: Performance indicators of the EVENT scenario

Further Information Any employed model element needs to be represented within
data structures of the runtime execution format. As all outgoing transitions of a state
are potentially matched with each incoming event, the exact nature of the access
performance characteristics of these data structures, as well as the order in which
the transitions are contained within them, can have an impact on the performance
of the overall transition matching process.

To expunge the effects of storage order, all possible orders of transitions are
executed. As results for a complete run might also vary over time, this measurement

151

6 Performance Benchmark

is conducted several times and, for each of these repetitions, the starting permutation
is altered. The reason for this is that on some platforms, earlier measurement runs
are always slower than later ones, presumably due to internal runtime optimisations
of the execution platform (e. g. caching). If the measurement were rerun in a näıve
manner (always starting with 1,1,1; then 1,1,2; etc.) these effects would add up,
which is what we would like to prevent.

6.1.5 GUARD Scenario

The GUARD scenario identifies the transition matching performance for transitions
that carry guard conditions. Only a single event is used, which is handled according
to the value of context data variables.

/ timestamp()

e0
1 [

a=
1]

e01 [a=2]

e01 [a=3]
e01 [a=4]

e01 [a=5]

e01 [b=3]

e01 [b=5]
e01 [b=4]

/ timestamp()

B3

B2

B1

B4

B5

C3

C4

C5

C2

C1

D3

D4

D5

D2

D1

e01 [b=2]
e01 [b=1]

e01 [c=3]

e01 [c=5]
e01 [c=4]

e01 [c=2]
e01 [c=1]

E

e02

e03

A

Figure 6.5: BM for the GUARD scenario

Employed Behaviour Model The relevant BM for this scenario is depicted in
Figure 6.5. It is very similar to the model used for the EVENT scenario. The
difference is that, instead of using the events e01 to e07, the model only employs
three events: e01, e02 and e03. Only the single event e01 is used in conjunction with
varying guard conditions to establish a path along the states A, Bx, Cy, Dz and E.
The value of context data variables define the selection of x (variable a), y (variable

152

6.1 The Benchmark Suite

b) and z (variable c). Measurement runs can be repeated using e02 and end when
the execution runtime receives an e03 event in state A.

Benchmarking Procedure The procedure for exercising the BM is also quite similar
to the EVENT benchmarking scenario. Algorithm 5 shows the necessary procedure to
trigger the measurement execution. Note the differences in lines 4 – 8: the calculated
permutation values are assigned to the context data variables, instead of being used
to directly select an event. Only the event e01 is used to select the transition path.
Line 8 is important, as it is necessary for the measurement infrastructure to wait
until the execution runtime actually processes the events for a single run. Apart
from these differences, the procedure is similar to the one described in Section 6.1.4.

Algorithm 5 Benchmarking procedure for GUARD scenario

1: for o = 0 to 124 do
2: Start Execution of BM
3: for p = 0 to 124 do
4: a← ((p+ o)/25) mod 5 + 1
5: b← ((p+ o)/5) mod 5 + 1
6: c← (p+ o) mod 5 + 1
7: Send 3× e1, followed by e2
8: Wait until model is in state E
9: end for

10: Send e3
11: Wait for Termination
12: end for

Outcome Running the procedure given above results in 15625 timestamp pairs,
which contain the duration that the execution runtime used for processing each run.
Based on these durations, the following performance indicators are determined.

Indicator Meaning

GUARD.MIN The shortest duration found in any timestamp pair
GUARD.AVG The average duration of all timestamp pairs
GUARD.MAX The longest duration found in any timestamp pair

Table 6.6: Performance indicators of the GUARD scenario

Further Information The motivation for the EVENT scenario is similar to the
one behind the GUARD scenario — matching guard conditions is one of the most
important operations when executing BMs. Potentially a single condition might be

153

6 Performance Benchmark

evaluated many times over, e. g. when a BM changes its state from A to B5, it is
likely that five guard conditions from a = 1 to a = 5 will be evaluated. Again, this
depends on the storage order of transitions in the execution format data structures,
which is why all possible paths are measured.

Waiting for a runtime engine to process all sent events is necessary, as it has to be
guaranteed that the context is in a certain state when the guard condition statement
is evaluated. Imagine that the inner loop runs without this statement; due to the
multitasking capabilities of the underlying operating system, the loop could have
executed several times before the runtime engine thread starts fetching the external
events from the incoming queue. When subsequently evaluating the guard condition
statements, the values of x, y and z would be wrong. This problem does not exist in
the EVENT scenario; thus, Algorithm 4 does not contain such a command.

6.1.6 COMPOUND Scenario

The COMPOUND scenario measures the execution performance of transitions that
cross nesting levels in the composition hierarchy. A number of self-referential
transitions that leave and enter various levels of the composition hierarchy are
triggered using suitable event sequences.

A

B

C

e05

e02

e07

e06

e04

e03

e09
e08

E
/ timestamp()

e10

e02

Out
e01

D

Figure 6.6: BM for the COMPOUND scenario

Employed Behaviour Model Figure 6.6 shows the utilised BM. The model com-
prises a number of nested states on four levels (top level, contained within A,
contained within B, contained within C). There are 10 events in use; note that e01
and e10 are solely used for managing recurring runs and do not participate in the
measurement functionality. Once the model starts in the Out state, a reception of

154

6.1 The Benchmark Suite

e01 induces the entering of the initial states A, B, C and D. The next step is carried
out automatically via an ε-transition and records a timestamp while changing to
state E. Once the BM resides in E, it will return to this state on reception of any
of the events e02 to e09 and record a timestamp on doing so. Each of these events
triggers a single transition with different source and target states. A measurement
run might be ended by sending e10, prompting the model to enter the Out state.
Another measurement run could then be initiated using the event e01, while the
event e02 would terminate the BM.

Benchmarking Procedure The COMPOUND scenario BM is exercised using se-
quences of events, so-called patterns. Patterns specify the order of the eight events
e02 (referred to as “2”) to e09 (referred to as “9”). Each complete measurement run
consists of an execution of all of the 72 patterns listed in Table 6.7.

1 2, 3, 4, 5, 6, 8, 7, 9 2 2, 4, 3, 5, 6, 8, 7, 9 3 3, 2, 4, 5, 6, 8, 7, 9
4 3, 4, 2, 5, 6, 8, 7, 9 5 4, 2, 3, 5, 6, 8, 7, 9 6 4, 3, 2, 5, 6, 8, 7, 9
7 2, 3, 4, 5, 8, 6, 7, 9 8 2, 4, 3, 5, 8, 6, 7, 9 9 3, 2, 4, 5, 8, 6, 7, 9

10 3, 4, 2, 5, 8, 6, 7, 9 11 4, 2, 3, 5, 8, 6, 7, 9 12 4, 3, 2, 5, 8, 6, 7, 9
13 2, 3, 4, 6, 5, 8, 7, 9 14 2, 4, 3, 6, 5, 8, 7, 9 15 3, 2, 4, 6, 5, 8, 7, 9
16 3, 4, 2, 6, 5, 8, 7, 9 17 4, 2, 3, 6, 5, 8, 7, 9 18 4, 3, 2, 6, 5, 8, 7, 9
19 2, 3, 4, 6, 8, 5, 7, 9 20 2, 4, 3, 6, 8, 5, 7, 9 21 3, 2, 4, 6, 8, 5, 7, 9
22 3, 4, 2, 6, 8, 5, 7, 9 23 4, 2, 3, 6, 8, 5, 7, 9 24 4, 3, 2, 6, 8, 5, 7, 9
25 2, 3, 4, 8, 5, 6, 7, 9 26 2, 4, 3, 8, 5, 6, 7, 9 27 3, 2, 4, 8, 5, 6, 7, 9
28 3, 4, 2, 8, 5, 6, 7, 9 29 4, 2, 3, 8, 5, 6, 7, 9 30 4, 3, 2, 8, 5, 6, 7, 9
31 2, 3, 4, 8, 6, 5, 7, 9 32 2, 4, 3, 8, 6, 5, 7, 9 33 3, 2, 4, 8, 6, 5, 7, 9
34 3, 4, 2, 8, 6, 5, 7, 9 35 4, 2, 3, 8, 6, 5, 7, 9 36 4, 3, 2, 8, 6, 5, 7, 9
37 2, 3, 4, 5, 6, 8, 9, 7 38 2, 4, 3, 5, 6, 8, 9, 7 39 3, 2, 4, 5, 6, 8, 9, 7
40 3, 4, 2, 5, 6, 8, 9, 7 41 4, 2, 3, 5, 6, 8, 9, 7 42 4, 3, 2, 5, 6, 8, 9, 7
43 2, 3, 4, 5, 8, 6, 9, 7 44 2, 4, 3, 5, 8, 6, 9, 7 45 3, 2, 4, 5, 8, 6, 9, 7
46 3, 4, 2, 5, 8, 6, 9, 7 47 4, 2, 3, 5, 8, 6, 9, 7 48 4, 3, 2, 5, 8, 6, 9, 7
49 2, 3, 4, 6, 5, 8, 9, 7 50 2, 4, 3, 6, 5, 8, 9, 7 51 3, 2, 4, 6, 5, 8, 9, 7
52 3, 4, 2, 6, 5, 8, 9, 7 53 4, 2, 3, 6, 5, 8, 9, 7 54 4, 3, 2, 6, 5, 8, 9, 7
55 2, 3, 4, 6, 8, 5, 9, 7 56 2, 4, 3, 6, 8, 5, 9, 7 57 3, 2, 4, 6, 8, 5, 9, 7
58 3, 4, 2, 6, 8, 5, 9, 7 59 4, 2, 3, 6, 8, 5, 9, 7 60 4, 3, 2, 6, 8, 5, 9, 7
61 2, 3, 4, 8, 5, 6, 9, 7 62 2, 4, 3, 8, 5, 6, 9, 7 63 3, 2, 4, 8, 5, 6, 9, 7
64 3, 4, 2, 8, 5, 6, 9, 7 65 4, 2, 3, 8, 5, 6, 9, 7 66 4, 3, 2, 8, 5, 6, 9, 7
67 2, 3, 4, 8, 6, 5, 9, 7 68 2, 4, 3, 8, 6, 5, 9, 7 69 3, 2, 4, 8, 6, 5, 9, 7
70 3, 4, 2, 8, 6, 5, 9, 7 71 4, 2, 3, 8, 6, 5, 9, 7 72 4, 3, 2, 8, 6, 5, 9, 7

Table 6.7: Event patterns used for the COMPOUND scenario

155

6 Performance Benchmark

After executing a pattern, the compound state will be left and a new pattern is
selected. The procedure is then repeated with the new pattern until all patterns
have been executed, which constitutes a complete measurement run. Complete
measurement runs are executed several times as described in Algorithm 6, which
shows the procedure for controlling the overall measurement execution.

Algorithm 6 Benchmarking procedure for COMPOUND scenario

1: for o = 0 to 71 do
2: Start Execution of BM
3: for p = 0 to 71 do
4: Send e1
5: x← (o+ p) mod 72 + 1
6: for all y in Pattern No. x do
7: Send ey
8: end for
9: Send e10

10: end for
11: Send e2
12: Wait for Termination
13: end for

Outcome Each pattern execution yields nine timestamps. From these timestamps,
the durations of the eight intervals between consecutive measurement values are
determined and assigned to the corresponding event that was used to trigger them,
i. e. for pattern 23, the first interval is assigned to event e04, whereas the last interval
is assigned to e09. A complete measurement run therefore results in 72 values
assigned to each of the events e02 to e09. As there are 72 complete runs in the
complete scenario, this leads to a total of 5184 timestamp values assigned per event.
From these values, the 27 performance indicators listed in Table 6.8 are calculated.

Indicator Meaning

COMPOUND.E0X.MIN The shortest duration measured for e0X , where X
can range from 2 to 9. There are eight indicators
of this kind.

COMPOUND.E0X.AVG The average duration measured for e0X , where X
can range from 2 to 9. There are eight indicators
of this kind.

COMPOUND.E0X.MAX The longest duration measured for e0X , where X
can range from 2 to 9. There are eight indicators
of this kind.

156

6.1 The Benchmark Suite

Indicator Meaning

COMPOUND.MIN The shortest value measured for any duration.
COMPOUND.AVG The average value for all 41472 (72× 72× 8) dura-

tions.
COMPOUND.MAX The longest value measured for any duration.

Table 6.8: Performance indicators of the COMPOUND scenario

Further Information The order in which we measure the transitions is always from
the innermost nesting level to the outermost one, e. g. the outgoing transitions of
C first, then the outgoing transitions of B, then the ones of A. The 72 patterns
are designed to cancel out the effects that the outgoing transition storage order
has on the performance. Therefore, it is not necessary to go through all possible
permutations of events (256 variants), but to only measure the variants for utilised
transitions outgoing from a single state, e. g. for state B these are the transitions
triggered by event e05, e06 and e08. All possible permutations of the order of these
need to be measured in conjunction with the possible variants for transitions of other
states; there are six further variants for state C and two variants for state A, which
explains the overall 3!× 3!× 2! = 72 patterns used.

The determined duration for each event is a combination of the time used for the
processing of the transition from the source state to the target state, the time used
for the implicitly exited states and the time used for entering the initial states. The
processing times for these three aspects are different for each of the transitions and
the scenario is constructed in a way that aims at determining an overall balanced
proportion.

6.1.7 EXPRESSION Scenario

This scenario determines the performance of transitions that conduct expression
evaluations as part of their guard or action statements. Considered categories
for action statements are: integer arithmetic, event handling, FC calling and the
evaluation of boolean expressions with context variables.

Employed Behaviour Model The BM used for the EXPRESSION scenario forms
a chain of states and transitions that execute a certain action at each step, while
recording timestamps between steps. The model is depicted in Figure 6.7. The
BM starts in state A and follows the chain on reception of event e01 to state B,
while assigning a value of zero to the variable a. An ε-transition leaves state B,
while recording the first timestamp value. Arriving in state C, the model waits for a
number of e01 events that initiate an incrementation of the value of a with every
received event. Once a has a value of 100, the state is left, a second timestamp

157

6 Performance Benchmark

/ a := call(DIV10, a)

/ timestamp()
A C

e01 / a := 0
D

e01 / a := a+1

[a = 100]
/ timestamp() / send(e02)

EF

e02
/ timestamp()

G

[a = 10]
 / timestamp()

B

e02

e03

KJI

[a < 15]
/ timestamp()

H

[(a < 15) ∧ (b = c)]
/ timestamp()

[((a < 15) ∧ (b = c)) ∧

((30 > e) ∨ (d = f))]
/ timestamp()

Figure 6.7: BM for the EXPRESSION scenario

is recorded and state D is entered. Again, the BM automatically leaves the state
via an ε-transition shortly after entering it, triggering the sending of event e02 and
entering state E. This state is left on reception of the previously send event e02, a
third timestamp value is recorded, and the next state is entered. State F is left by
processing an ε-transition, that includes the synchronous invocation of an FC and
storage of the obtained result in variable a. State G is entered and left if variable a
contains the correct value. A timestamp value is recorded before the model changes
its state to H. The transitions to the following three states (I, J and K) each provoke
the evaluation of increasingly more complex guard conditions while recording the
fifth, sixth and seventh timestamp values. When the control flow finally reaches
state K, a reception of event e03 leads it back to state A. The scenario is terminated
when receiving event e02 in state A.

Benchmarking Procedure Firstly, all employed variables, apart from a, are initial-
ised in the following manner: b := 15, c := 15, d := 23, e := 46, f := 23. Subsequently,
a measurement run is conducted by sending 101 e01 events, followed by an e03 event.
This procedure is repeated 150 times before terminating the measurement by sending
a e02 event in state A.

Outcome Each measurement run yields 7 timestamps. Based on consecutive
timestamps, a sequence of six duration values is calculated. These durations represent
the processing time that it took to carry out a certain action, and we refer to the
corresponding six actions with the following phrases:

158

6.1 The Benchmark Suite

COUNT Counting

EVENT Sending and receiving and event

CALL Synchronously calling an FC and storing the result

GUARD1 Evaluation of guard condition 1

GUARD2 Evaluation of guard condition 2

GUARD3 Evaluation of guard condition 3

Based on the 900 (150× 6) collected duration values, the 18 performance indicators
listed in Table 6.9 are calculated.

Indicator Meaning

EXPRESSION.COUNT.MIN The shortest duration of the counting action
EXPRESSION.COUNT.AVG The average duration of the counting action
EXPRESSION.COUNT.MAX The longest duration of the counting action
EXPRESSION.EVENT.MIN The shortest duration for sending and receiv-

ing an event
EXPRESSION.EVENT.AVG The average duration for sending and receiv-

ing an event
EXPRESSION.EVENT.MAX The longest duration for sending and receiv-

ing an event
EXPRESSION.CALL.MIN The shortest duration for calling the ‘DIV10’

FC
EXPRESSION.CALL.AVG The average duration for calling a ‘DIV10’ FC
EXPRESSION.CALL.MAX The longest duration for calling a ‘DIV10’ FC
EXPRESSION.GUARD1.MIN The shortest duration for evaluation of con-

dition 1
EXPRESSION.GUARD1.AVG The average duration for evaluation of condi-

tion 1
EXPRESSION.GUARD1.MAX The longest duration for evaluation of condi-

tion 1
EXPRESSION.GUARD2.MIN The shortest duration for evaluation of con-

dition 2
EXPRESSION.GUARD2.AVG The average duration for evaluation of condi-

tion 2
EXPRESSION.GUARD2.MAX The longest duration for evaluation of condi-

tion 2
EXPRESSION.GUARD3.MIN The shortest duration for evaluation of con-

dition 3

159

6 Performance Benchmark

Indicator Meaning

EXPRESSION.GUARD3.AVG The average duration for evaluation of condi-
tion 3

EXPRESSION.GUARD3.MAX The longest duration for evaluation of condi-
tion 3

EXPRESSION.GUARD.MIN The minimum of EXPRESSION.GUARD1.-
MIN, EXPRESSION.GUARD2.MIN, EX-
PRESSION.GUARD3.MIN

EXPRESSION.GUARD.AVG (EXPRESSION.GUARD1.AVG + EXPRES-
SION.GUARD2.AVG + EXPRESSION.-
GUARD3.AVG) / 3

EXPRESSION.GUARD.MAX The maximum of EXPRESSION.GUARD1.-
MAX, EXPRESSION.GUARD2.MAX, EX-
PRESSION.GUARD3.MAX

Table 6.9: Performance indicators of the EXPRESSION scenario

Further Information Languages used for specification of actions can vary greatly
in regard to the richness of features and the execution performance. Giving a general
and exhaustive performance benchmark for such languages is not the aim of this
scenario, nor this thesis. However, judging the performance impact of certain types
of actions has to be a necessary part for a BM runtime benchmark. We decided that
by determination of the performance of a set of typical actions we can at least help to
provide a representative, high-level understanding of the performance characteristics
of the employed expression languages. Regarding the guard conditions GUARD1,
GUARD2 and GUARD3, it should be noted, that along with their bound values,
these are constructed in a way that a left-associative expression evaluator with the
usual operator precedence rules will need to process all components before being
able to come to a conclusion.

6.1.8 CONCURRENT Scenario

This scenario determines the execution performance for BM constructs that ma-
nipulate the number of concurrent control flows. It determines the performance
characteristics for entering, executing and exiting parallel regions as well as providing
an analysis of the history mechanism.

Employed Behaviour Model Figure 6.8 depicts the BM used for measuring per-
formance indicators related to concurrent control flows. Although the model consists
of a number of states, the basic structure is simple; on reception of event e01, a

160

6.1 The Benchmark Suite

Outer

B

E

G O

F

H P

I M

J N
A

e02

e02

e03

e03

e03

e03

e04

e05

H*

e07 / timestamp()
e08

Out
e09

In e06

D

C

V

T

S

U

K

L
e04

e05

Q

R

e04

e04

/ timestamp()

e01

Figure 6.8: BM for the CONCURRENT scenario

control flow is forked into two concurrent ones on entry of state B. On the reception
of event e02, this fork is repeated for each of the control flows on entry of state E
and F, leading to four concurrent control flows on the lowest nesting level of the
composition hierarchy. These control flows then progress along a sequence of states,
induced through the events e03 and e04. As soon as two control flows reach the
states O and P, they are joined, and the model enters state T. The same thing
happens to the two control flows that enter states Q and R; they are joined and
enter state V. This procedure is repeated with the two remaining control flows on
reception of event e05, and only one control flows remains.

Apart from the structures responsible for concurrency, there are additional features
that help to conduct the measurements. The states In and Out are used to trigger
runs of the fork/join functionality contained in state Outer. The model starts in
state In, from where it will also terminate on reception of event e09. There are only

161

6 Performance Benchmark

two timestamps taken: one directly before the first fork and one just after the last
join node. Two additional events e07 and e08 are used for measuring the performance
of the deep history feature.

Benchmarking Procedure The model always starts in state In. Executing a
complete measurement run consists of triggering a sequence of events, depending on
the type of measurement; for non-history measurements, a sequence of e01, e02, e03,
e04, e05, e06 will exercise the functionality, take two timestamps and return to state
In. For history measurements, a sequence of e01, e02, e03, e07, e08, e04, e05, e06
will also have the model change to state In and record two timestamps, but includes
the time needed for the runtime to execute the operations necessary for recording
and restoring state configurations.

The overall measurement procedure consists of going through 100 complete runs,
where on odd repetitions4, the non-history sequence is used and on even ones the
sequence that activates the history mechanism is used. At the end of the procedure,
event e09 is used to terminate the measurement.

Outcome The measurement procedure yields 50 timestamp pairs for normal runs
and 50 timestamp pairs for runs that employ the history feature. The timestamp pairs
are used to determine the duration for processing the fork/join functionality. Based
on these durations, the performance indicators listed in Table 6.10 are calculated.

Indicator Meaning

CONCURRENT.MIN The shortest duration found in any normal
timestamp pair

CONCURRENT.AVG The average duration of all normal timestamp pairs
CONCURRENT.MAX The longest duration found in any normal

timestamp pair
HISTORY.MIN The shortest duration found in any history

timestamp pair
HISTORY.AVG The average duration of all history timestamp pairs
HISTORY.MAX The longest duration found in any history

timestamp pair

Table 6.10: Performance indicators of the CONCURRENT scenario

Further Information The reason for the introduction of additional states beyond
the described ones in Section 6.1.8 is twofold. They have been introduced due to

4Starting at 1 and counting to 100

162

6.1 The Benchmark Suite

constraints in the UML standards, e. g. the state T was introduced to be able to wait
for e05 before continuing with joining the control flows. The UML standard forbids
using only a single join element for this purpose: “Transitions outgoing pseudostates
may not have a trigger (except for those coming out of the initial pseudostate).” [255,
p.573] and “The transitions entering a join vertex cannot have guards or triggers.”
[255, p.542]. In addition, they enable better control over the model when conducting
the measurement process.

The idea to alternate between a measurement with history usage and one without
history usage, is due to our observation that on some platforms measurement runs
might provide quite different result values, for example depending on the number
of iterations that were conducted beforehand. We found that a simple solution for
maintaining comparability between runs with and without history is to interleave
them.

We picked this model for integration of history measurements due to its structural
complexity. The model uses both concurrency as well as compound states, making it
necessary for the deep history mechanism to restore control flows as well as state
configurations with more than one nesting level.

6.1.9 CONFIG Scenario

This scenario is used to determine the time that it takes for an execution engine to
retrieve an active state configuration.

Employed Behaviour Model We use the previously presented model of the CON-
CURRENT scenario, discussed in Section 6.1.8, but employ a different benchmarking
procedure.

Benchmarking Procedure After starting the model, it is prompted to enter the
states K, L, M and N by supplying the runtime with the event sequence e01, e02
and e03. The measurement infrastructure then needs to assure that the BM actually
entered these states (e. g. by waiting for a timespan long enough to let the execution
runtime process all events from the input queue). The execution runtime is then
requested to provide the active state configuration, which should be the one shown
in Figure 6.9. A timestamp is taken directly before and directly after completion of
this request. Timestamps taken as part of the BM itself are ignored.

After the active state configuration has been retrieved, the BM is prepared for
the next measurement run by sending the event sequence e04, e05 and e06. The
measurement process is repeated 50 times and terminated by sending a single e09
event.

163

6 Performance Benchmark

Outer

B
E F

K L M N

Figure 6.9: Active state configuration expected in the CONFIG scenario

Outcome On completion of the measurement process, 50 timestamp pairs will
have been collected. For each timestamp pair, the duration between the values is
determined, and the following performance indicators are calculated.

Indicator Meaning

CONFIGURATION.MIN The shortest duration for retrieving the active state
configuration

CONFIGURATION.AVG The average duration of all collected timespans
CONFIGURATION.MAX The longest duration for retrieving the active state

configuration

Table 6.11: Performance indicators of the CONFIG scenario

Further Information Retrieving the active state configuration is a unique feature
when using BMs instead of conventionally coded application logic. As a BM forms
an abstraction of the real system behaviour, it usually provides additional semantics,
e. g. through state names, the composition hierarchy or the specification of parallel
regions. This information can be accessed by retrieving the active state configuration,
which makes it a useful feature for determining and tracing system operation.

6.1.10 LIFECYCLE Scenario

This scenario measures the runtime performance for behaviour deployment and
removal. A BM is deployed, started and removed on termination, while recording
dynamic memory consumption and process duration.

Employed Behaviour Model Figure 6.10 shows the BM. The model is very simple:
On deployment and start of the BM state A is entered and immediately left via an
ε-transition, while recording a timestamp. The model then terminates.

164

6.1 The Benchmark Suite

/ timestamp()
A

Figure 6.10: BM for the LIFECYCLE scenario

Benchmarking Procedure The benchmarking procedure is simple as well; all that
is required is starting an execution runtime system. The given BM is instantiated,
started, and the instance is removed after termination. This process is repeated
50 times with the same execution runtime instance. Before the BM is instantiated,
a timestamp value is recorded. Also, directly after the instance is removed, a
timestamp value is taken. This results in three timestamps collected for each of
the 50 measurement runs. The consumed dynamic runtime memory is recorded at
various points during this process:

BEGIN Taken at the very beginning of the measurement processes, before the
execution runtime system is created.

INIT Once the execution runtime system has been created and before it is started.

START When the execution runtime system has been started but before the BM is
being instantiated.

OPERATION After a BM has been instantiated, started, terminated and the in-
stance removed. There will be 50 values of this type, one for each measurement
run.

END After the execution runtime system has terminated at the end of the measure-
ment runs.

Outcome Two durations are calculated from the three timestamps recorded for each
measurement run; the first duration (ENTER) is the duration from the first timestamp
to the second timestamp, and the second duration is the overall (OVERALL) timespan
between the first and the third timestamp. Table 6.12 lists all of the thirteen
performance indicators calculated from these 150 duration values and 54 recorded
memory sizes.

Indicator Meaning

LIFECYCLE.MEMORY.BEGIN The consumed dynamic memory at the
beginning of the process

LIFECYCLE.MEMORY.INIT The consumed dynamic memory after the
execution runtime has been created

165

6 Performance Benchmark

Indicator Meaning

LIFECYCLE.MEMORY.START The consumed dynamic memory after the
execution runtime has been started

LIFECYCLE.MEMORY.MIN The least consumed dynamic memory dur-
ing measurement of the execution runtime
operations (uses the OPERATION tim-
stamps)

LIFECYCLE.MEMORY.AVG The average consumed dynamic memory
during measurement of the execution
runtime operations (uses the OPERA-
TION timstamps)

LIFECYCLE.MEMORY.MAX The most consumed dynamic memory dur-
ing measurement of the execution runtime
operations (uses the OPERATION tim-
stamps)

LIFECYCLE.MEMORY.END The consumed dynamic memory at the
end of the process

LIFECYCLE.ENTER.MIN The shortest timespan calculated for in-
stantiating and starting the model

LIFECYCLE.ENTER.AVG The average timespan calculated for in-
stantiating and starting the model

LIFECYCLE.ENTER.MAX The longest timespan calculated for instan-
tiating and starting the model

LIFECYCLE.OVERALL.MIN The shortest timespan calculated for in-
stantiating, starting, stopping and remov-
ing the model

LIFECYCLE.OVERALL.AVG The average timespan calculated for instan-
tiating, starting, stopping and removing
the model

LIFECYCLE.OVERALL.MAX The longest timespan calculated for instan-
tiating, starting, stopping and removing
the model

Table 6.12: Performance indicators of the LIFECYCLE scenario

Further Information Originally the used BM was merely an initial pseudostate that
directly led to a final state, while recording a timestamp. This was later modified,
as the chosen SCXML mapping for specifying initial states (as an attribute of the
parent element) does not allow for actions on initial transitions.

166

6.1 The Benchmark Suite

6.1.11 The General Benchmark Process

Measuring the performance of a piece of software can be a sophisticated task on most
of the recent hardware platforms; it is wise to check (and re-check) measurement
results when implementing the benchmark. There are many factors that can influence
the gathered values. For example, measuring the so-called wall-time5 is usually a bad
idea as most of the current hardware platforms execute many processes at the same
time — it is necessary to ensure that performance measurements only collect data
relevant to the BM execution process(es). It should also be noted that performance
measurements are highly dependent on the hardware used for running the benchmark
and comparisons of measurement results are only meaningful when conducted on
the same platform. The benchmarking suite is designed to be platform independent,
but we can give some helpful hints on the measurement process for the platforms we
implemented the benchmark on.

Taking Timestamps When measuring elapsed time, it is best to rely on functions,
which enable calculating the time that a process (or thread) spent executing on a pro-
cessor. For the Java platform, such timespans can be measured on a per-thread basis
by utilising the getThreadCpuTime method of the java.lang.management.Thread-

MXBean class, which is available since version 1.5. On Portable Operating System
Interface (POSIX) compliant platforms [181, p. 26 ff.], an option is to employ the
getrusage system call, which is able to retrieve CPU usage per process. From the
returned rusage structure, one adds the ru utime and ru stime fields and converts
to µs.

Algorithm 7 Determination of timer resolution
1: a← Current Time
2: b← Current Time
3: while a = b do
4: b← Current Time
5: end while
6: print b− a

When taking timestamps, it is necessary to be aware of the resolution of the timer.
Although some platforms offer timing values expressed in nanosecond units, the
employed timing hardware will usually have a resolution with a far larger granularity.
Algorithm 7 implements a simple way to determine the timing resolution. It is
important to be aware of the limits of timestamp recording instrumentation in order
to ensure a correct interpretation of the benchmark results. One piece of required
information is the timer resolution, another one concerns the impact of the employed
measurement instrumentation.
5Time that one can measure using a clock hanging on the wall

167

6 Performance Benchmark

Determination of timestamp overhead We require that the following method is
used when determining the performance overhead for recording a timestamp value.
A measurement process repeatedly records 101 timestamp values, as fast as possible.
From these values, use the 100 durations between the successive timestamp values to
calculate the performance indicators shown in Table 6.13. When interpreting the
timestamping overhead in relation to some benchmark scenario, it is useful to know
the approximate impact that timestamping has on each measurement run.

Indicator Meaning

TIMESTAMP.MIN The shortest duration for recording a timestamp
TIMESTAMP.AVG The average duration for recording a timestamp
TIMESTAMP.MAX The longest duration for recording a timestamp

Table 6.13: Performance indicators in regard to timestamping overhead

The following Table 6.14 contains this information. We treat the collection of a
duration value by using timestamping pairs as having the impact of a single recorded
timestamp, due to the following reason: the recorded duration includes the time used
for recording the first timestamp, exiting from the timestamping function, carrying
out some processing, entering the second timestamping function and recording the
second timestamp. It does not contain the time used for entering the first timestamp
function, nor the time needed to exit the second one, thus forming two times “half” a
timestamp. This approach is not overly accurate, but gives us at least an approximate
of the impact, without going to extreme lengths (e. g. determination of the exact
timing of user space/kernel interactions).

Scenario Approximate overhead

ALTERNATIVE One timestamp per run (single, send event)
EPSILON One timestamp per run (single, send event)
EVENT One timestamp per run (processing of complete path)
GUARD One timestamp per run (processing of complete path)
COMPOUND One timestamp per obtained duration, 576 timestamps per

measurement run (processing of all patterns)
EXPRESSION One timestamp per obtained duration, six timestamps per

measurement run (completed state sequence)
GUARD One timestamp per measurement run (from In to Out)
CONFIG One timestamp per obtained retrieval duration
LIFECYCLE One timestamp per ENTER duration, two timestamps per

OVERALL duration

Table 6.14: Approximate timestamping overhead per scenario and measurement run

168

6.1 The Benchmark Suite

Recording Dynamic Memory Consumption On the Java platform, we add the val-
ues obtained from the getNonHeapMemoryUsage and getHeapMemoryUsage methods
of the java.lang.management.MemoryMXBean class to calculate the overall consumed
memory. For the C++ runtime, we again employed the getrusage system call, using
the ru maxrss field of the rusage struct and converting the obtained value to KB.

On the Java platform, obtained memory values can be erratic, due to the employed
garbage collection scheme. It might be possible to suppress these fluctuations by
triggering garbage collection runs between measurements using the System.gc()

call. The benchmark is constructed in a way that memory measurements should
not interfere with performance measurements; therefore, we neglect determining
the performance impact associated with recording memory. The same is true for
indicators relating to executable size.

Measuring Executable Size This can usually be done with OS-supplied tools. For
the Java platform, the size of the virtual machine executable should be used. When
dealing with compiled languages, one has to control more closely which features are
compiled and linked into the final executable; a compiled executable should only
contain symbols for the current target architecture. This must not be taken for
granted. For example, the GNU Compiler Collection (GCC) configuration supplied
with the current development tools [219] for Mac OS X creates a combined executable
for three different processor architectures (32bit Intel, 64bit Intel, 32bit PowerPC)
per default. Executable size is also influenced by the way that libraries are linked
with the final binary: either statically or dynamically. As there might be a wide
spectrum of options, we stipulate only that all dependencies are clearly stated when
documenting the measured executable size as part of the benchmark.

Correct execution of measurement runs As already mentioned in Section 6.1.5,
there are situations were the concurrent execution of measurement infrastructure and
execution runtime might need to be synchronised to make sure that measurement runs
are processed completely. This can be achieved by employing platform-dependent
primitives like Mutual Exclusion (Mutex) and conditional variables. A measurement
infrastructure is not allowed to use active waiting, and the measurement thread(s)
needs to be dormant while waiting on the completion of the execution runtime
thread(s). It can easily be observed if execution runtime and measurement infra-
structure are out of sync, as the number of captured timestamps will be less than
the required amount at the end of a scenario’s measurement process.

A Note Regarding the Java Platform Due to runtime optimisation processes like
JIT or caching within a Java VM (e. g. the Sun HotSpot VM [260]) subsequent
measurement runs can vary drastically in speed. The inclusion of such phenomena in
the benchmark results is not intended; therefore, the benchmark should be executed

169

6 Performance Benchmark

several times and only measurement values from the last execution need to be
considered. The only exceptions are the runtime memory measurements, where the
values have to be determined during the first run.

6.1.12 Comparing the Results

Executing the complete benchmark yields 100 measured or derived performance
indicators. To allow for a quick comparison of results for different platforms, we
introduce the calculations for two overview values based on comparison of the
benchmark values with values obtained from the generated C++ version of the
benchmark. For this, a ratio between a given performance indicator Pgiven and the
corresponding value PC++ (taken from the results of a C++ benchmark run on the

same platform) is calculated using
Pgiven

PC++
. If a ratio cannot be calculated, e. g. due

to a C++ performance indicator of 0, the concerned value is omitted from the final
calculation. This fact has to be stated clearly with the final benchmark results.
Based on these ratios, two overview indicators can be calculated.

SPEED Using the geometric mean of the ratios for these performance indicators:

• ALTERNATIVE.AVG

• EPSILON.AVG

• EVENT.AVG

• GUARD.AVG

• COMPOUND.AVG

• EXPRESSION.COUNT.AVG

• EXPRESSION.EVENT.AVG

• EXPRESSION.CALL.AVG

• EXPRESSION.GUARD.AVG

• CONCURRENT.AVG

• HISTORY.AVG

• CONFIGURATION.AVG

MEMORY Using the geometric mean of the ratios for these indicators:

• SIZE.MEMORY.INIT

• SIZE.MEMORY.L0

• SIZE.MEMORY.L1

• SIZE.MEMORY.L2

• SIZE.MEMORY.L3

170

6.2 Execution Platform Mappings

• SIZE.MEMORY.L4

• LIFECYCLE.MEMORY.AVG

For both indicators, lower values represent better results. This approach for cal-
culating overview indicators was inspired by the calculation of metrics with the
Standard Performance Evaluation Corporation (SPEC) CPU2006 benchmark suite
[269]. While the overview values provide easy access for comparing different plat-
forms, it is recommended to examine the complete set of indicators in more detail,
rather than just using the overview values.

6.2 Execution Platform Mappings

The definition of the benchmark allows us to conduct a platform independent
performance assessment. As our implementations use specific technologies and
support different expression languages and BM features, we have to first define
mappings of the BM features used in the benchmark (see Section 4.1.1) to a target
platform. We define three mappings. The first mapping specifies benchmarking
details for the BM interpreter implementation using UML State Machines and Ecore
(see Section 4.4). The second mapping refers to the MPU implementation in Java
and OSGi (see Section 4.5). The third mapping is used for a reference benchmark
implementation using generated C++ with the Rational Rhapsody tool (see Section
3.2.3).

6.2.1 Mapping to the UML Adaptive Systems Profile and Ecore

A mapping of the UML interpreter implementation is straightforward, as we already
use a UML notation for describing the BMs that make up the benchmark. MVEL
is employed as an expression language [275]. Table 6.15 contains the mapping
for the set fundamental BM features to features employed in the specific UML
interpreter implementation. For binding of context data and FCs, we are relying on
the ContextImport stereotype defined in the UML ASP profile (see Section 4.4 on
the implementation of the UML interpreter).

Feature Description of Mapping

States Are mapped to instances of the State class. Initial states are
Pseudostate instances with the kind attribute set to initial, final
states are represented by instances of the FinalState class.

Compound
States

Supported through hierarchies of nested Region class instances.
Navigable over the container and state transitions of the State
and Region classes.

171

6 Performance Benchmark

Feature Description of Mapping

Transitions Instances of the Transition class. Access to the ECA labels is
provided via the trigger, guard and effect associations.

Events Represented as instances of the SignalEvent class.
Conditions Guard conditions are expressed in MVEL syntax using instances

of the OpaqueBehavior class with the attributes language set
to java and the attribute body set to the corresponding MVEL
source code. Operators have a similar semantics, but a different
syntax: = is mapped to == in MVEL, ∧ to &&, ∨ to || and := to
=. The other operators use equivalent symbols, and parenthesis
can be used in the usual way.

Context Variables are mapped to public accessible integer fields of a
provided SessionData Java class, referenced using a ContextIm-
port stereotype and created using instances of the InstanceSpe-
cification class. Data access is handled via MVEL code. Con-
stants are mapped to Java literals.

Actions Actions directly map to Java method invocations using MVEL.
Action expressions utilise instances of the OpaqueExpression
class with the attributes language set to java and the attrib-
ute body set to the corresponding MVEL source code. The
timestamp() action should be implemented as part of the inter-
preter functionality — this enables the collection of timestamp
measurements with a low overhead. The send(...) and call(...)
actions are provided as methods of specific Java classes, bound to
the model via ContextImport and InstanceSpecification classes.

Parallelism Supported using multiple Region class instances as well as in-
stances of the Fork and Join classes.

History Represented as an instance of the Pseudostate class with the
kind attribute set to deepHistory.

Table 6.15: Mapping of benchmark features to the UML ASP, Ecore and MVEL

6.2.2 Mapping to State Chart XML and JEXL

SCXML is used for the implementation of the MPU (see Section 4.5) and also
employed in the Management in the Network use case described in Section 5.2.
Most of the fundamental BM features have a direct counterpart in SCXML; for
the missing features (fork/join), an identical functionality can be specified by using
transitions that directly lead to (or leave from) an orthogonal state. JEXL is used for
the specification of expressions [217]. This particular combination of interpretation
engine and choice of expression language is the default configuration used by the

172

6.2 Execution Platform Mappings

Apache Commons SCXML project [215]. Table 6.16 contains the mapping of SCXML
and JEXL features to the fundamental BM features used in the benchmark.

Feature Description of Mapping

States Represented by the <state> tag. Final states are represented
by <final> tags. There are two ways for representing an initial
state: either through the <initial> element or by specifying
the initial attribute for a <state> element. The benchmark
mapping requires the attribute use.

Compound
States

Enabled by the nesting of <state> tags. A <state> element
can have an arbitrary number of child <state> elements, which
are considered substates.

Transitions Represented by the <transition> tag with the attributes event
and cond for specifying an event trigger using a string identifier
and a guard condition by means of a JEXL expression. An
optional action is represented using executable child content
contained under the <transition> tag.

Events Specified as immutable data structures and handled by a unique
string identifier.

Conditions Formulated in JEXL and used in various places as condition,
location or value expressions. All operators that are used in
the benchmark exist in JEXL. The following syntax has to be
used: equals ‘eq’, lesser ‘lt’ and greater ‘gt’. Addition uses the
‘+’ operator. The boolean operators also use cleartext ‘and’ and
‘or’. Assignment uses the ‘=’ symbol and parenthesis can be
employed in the usual way.

Context The context is stored in <data> entries as part of a <datamodel>

element. Constants are represented as JEXL integer literals.
Actions The timestamp() action has to be implemented as part of the

interpreter (e. g. via the CustomAction class as explained on
page 218 in Appendix B). The send(...) function is provided
through the <raise> element, as the event is supposed to be
used in the internal session only. The call(...) action needs to be
implemented using a <invoke> element. As <invoke> can only
be used within a state, the action will not be executed as part of
a transition but considered as a child of the exited source state
(this is only relevant in a single situation and refers to the state
F of Figure 6.7 on page 158). The <invoke> statement needs
to contain a single <param> for passing an integer value. The
state will be left on a transition that fires on the corresponding
‘invoke.done’ event, after updating a data entry with the result
of the invocation.

173

6 Performance Benchmark

Feature Description of Mapping

Parallelism Is supported through the use of the <parallel> element that
represents a state, where all substate children are considered
disjoint parallel regions. Once all parallel regions finished ex-
ecution an engine will raise a done.state.id completion event,
where id refers to the id of the <parallel> element. This event
needs to be used as a trigger on an outgoing transition from
the <parallel> element to imitate the semantics of a join con-
struct. Control flow forking happens implicitly when entering a
<parallel> state via an incoming transition. Parallelism will
introduce a new superstate per parallel region - these states
need to carry the identifier of the enclosing <parallel> element,
with an appended sequence number6. The newly introduced
states must carry an initial attribute providing the initial
state of the control flow.

History Corresponds to a <history> element with an existing attribute
type set to ‘deep’.

Table 6.16: Mapping of benchmark features to the SCXML and JEXL

6.2.3 Mapping to UML and Generated C++

By assessing the performance of generated code for the benchmark suite, we are
able to define a baseline performance. We suppose that any BM interpreter will be
slower than the performance of generated static C++ code. This does not take into
account the potential optimisations that are possible when facilitating the similarities
between a number of BMs using an interpretation approach (see the description of
the TMPL engine in Section 4.2).

For benchmark creation, we are using IBM’s Rational Rhapsody [239], which
is a graphical tool for generating C++ code from UML diagrams. Each of the
Benchmark scenarios is represented as an individual UML Class with its behaviour
defined by a statechart. The classes are then automatically transformed to C++

code, which is compiled and subsequently measured. Each scenario yields the
header and implementation file for exactly one C++ class, which encodes all states
and transitions of the BM. When generating the benchmark from Rhapsody, no
additional instrumentation code (e. g. tracing) is to be embedded with the created
C++ source. Table 6.17 contains a mapping of the fundamental BM features used in
the benchmark to Rhapsody primitives.

6E.g. if the <parallel> state has the id B, two parallel sub components will carry the state ids
B1 and B2.

174

6.2 Execution Platform Mappings

Feature Description of Mapping

States States are created graphically using the State tool and are
represented using enumerations within the resulting C++ class,
which also provides methods for determining the active states.
Final and initial states are mapped similarily.

Compound
States

Compound states are supported in the usual UML notation
(see Appendix A). The code generator creates a single event
dispatching method per compound state.

Transitions Specified in UML notation and represented implicitly as part of
the code that determines state changes. Transition labels are
specified using the syntax described on page 211 or by using
configuration forms that allow to specify trigger events, guard
conditions and actions separately.

Events Events are specified as textual identifiers and represented as
C++ classes, one per event. Each event that is dispatched from
outside of the provided Rhapsody runtime needs to be created
by the developer but is destroyed automatically by the runtime.

Conditions Statements are formulated using C++ and automatically integ-
rated within the generated classes. The operational semantics
of C++ are similar, but the syntax is different for some of the
symbols: = is mapped to ==, ∧ to &&, ∨ to || and := to =.
The other operators use equivalent symbols and parenthesis can
be used in the usual way.

Context Specified using a separate SessionData class with publicly ac-
cessible attributes. Scenario classes that make use of context
data are specified using a unilateral composition association with
the SessionData class, enabling them to access these attributes
using C++ dot notation7.

Actions The timestamp() action is implemented as a method of an addi-
tional Interpreter class and also accessed through referencing an
association. The send(...) function is provided by the OMReact-
ive class, which is the base class of all generated BMs. Accessing
FCs via the call(...) action is implemented as a function call on
a FunctionalComponent class.

Parallelism Supported through orthogonal states and specified using dashed
And lines as well as fork/join constructs.

History Is specified using the provided graphical tools.

Table 6.17: Mapping of benchmark features to a generated C++ runtime

7e. g. dat.a in case that the context class association end is labelled ‘dat’ with an attribute ‘a’.

175

6 Performance Benchmark

6.3 Quantitative Assessment of the Approach

The evaluation of our approach has been carried out using two methods. Using the
first first method we conducted a qualitative assessment, facilitating the use case
studies described in Chapter 5. With the second method we conducted a quantitative
assessment of the two prototype implementations using the performance benchmark,
along with a documentation of the baseline performance for the benchmark, and the
results are documented in the following text. The collected data for the benchmark
measurements is documented in Appendix D.

6.3.1 Performance of the UML Interpreter

We implemented and executed the benchmark suite using the UML interpreter. For
driving the benchmarking process, we used version 4 of the JUnit framework [267] to
execute the individual measurement scenarios. The determination of memory, timing
and binary size values has been implemented according to the considerations in
Section 6.1.11. Execution of the benchmark was done on a laptop computer supplied
with power from the grid over the duration of the measurements. The machine had
the following features:

Feature Description

Computer Model Apple MacBook Pro
CPU Intel Core 2 Duo Processor, 2 Cores with 2.5 GHz
L2-Cache 6 MB
RAM 4 GB
Bus Frequency 800 GHz
Operating System Mac OS X 10.6.3
Java VM Sun Java HotSpot 64-Bit Server VM
Java Runtime Environment Sun Java SE, version 1.6.0 17

Table 6.18: Platform used for benchmarking interpreter implementations

The complete result data of the UML interpreter benchmark measurements can
be found in Appendix D, in a combined table with data from other benchmark
measurements. A timer resolution of approximate 1 µs was determined, and the
employed timestamping method incurred an average delay of 3.64 µs. We will not
discuss every performance indicator in detail but only point out some of the more
interesting performance characteristics in the following text.

Transition matching The average delay for matching self-referencing transitions is
∼ 40 µs (ALTERNATIVE.AVG), while the average delay for matching ε-transitions

176

6.3 Quantitative Assessment of the Approach

is faster with a value of ∼ 25 µs (EPSILON.AVG). The EVENT scenario tests the
performance for matching single, non-self-referencing transitions from a number of
outgoing ones. Figure 6.11 shows the shortest, average and longest delay values for
all 125 subsequent measurements.

 1 20 40 60 80 100 120

500

0

100

200

300

400

Measurement No.

D
el

ay
 [μ

s]

Shortest timespan

Average timespan

Longest timespan

Figure 6.11: UML interpreter performance for matching multiple transitions

The individual, discrete values have been connected by lines to better indicate
the trend. As can be seen from the performance indicators, as well as the given
figures, the minimal and average values have a low variance8 (both of the two series
have values that vary only within a range of ∼ 13 µs), while the maximal values
are much more erratic (varying within a ∼ 294 µs range). We suspect that these
spikes are caused by effects on VM and OS level. Although the variance of the worst
case values is high, this has little impact on the average matching delay for events,
which is closer to the minimal matching delay, as longer delay times are observed
only sporadically. Results for the GUARD scenario measurements are similar, with
an additional delay of ∼ 14 µs (on average) when compared with the results from
the EVENT scenario.

When plotting the average measured matching timespans for the GUARD scenario
on a per path basis (the path number corresponds to the variable p of Algorithm
5, incremented by one), it is possible to directly see the effect that the model data
structure has on the transition matching delay. Figure 6.12 shows the matching
delays of the 125 different paths.

8We are giving the variance in value ranges. We believe that this is more descriptive than quoting

177

6 Performance Benchmark

1251 15 30 45 60 75 90 105

215

185

188

191

194

197

200

203

206

209

212

Path No.

Av
er

ag
e

Ti
m

es
pa

n
[μ

s]

a=1

a=3a=2

a=4 a=5

b=1

b=2

b=3

...

Figure 6.12: UML interpreter guard condition evaluation performance (per path)

For understanding the data, one needs to remember the composition of the different
paths. Along all of the paths, the interpreter needs to consecutively evaluate three
context data variables: a, b and c. For the first 25 paths, a is fixed to a value of
1, for the next 25 paths to the value 2, et cetera. For each of these 5 × 25 paths,
the variable b is set to 1 for the first five paths, to 2 for the second five paths and
so on. The variable c is continuously altered with every path. The data values
corresponding to this schema have been measured, and we can conclude that the
internal data structure stores outgoing transitions in the order in which they were
defined (in our case this order is consistent with the context data variable values
used in the guard conditions), and the matching algorithm processes them in the
same order. This implies, e. g., that a transition annotated with [a=1] is tested first
and that a transition with [a=5] is tested last. In the worst case (path 125) the
interpreter needs to evaluate 15 guard conditions, as one condition after the other
needs to be tested until a match is found. Coming back to the data plot in Figure
6.12: the measurement values have been connected by a dotted line, forming a curve
with five large jags — these correspond to the values of a. Each of the jags is again
made up of five smaller spikes, reflecting the influence of the b values. Lastly, each
of the smaller spikes is made up of five data values, related to the c values.

Processing self-referencing transitions that traverse nesting levels within the com-
position hierarchy of the COMPOUND scenario is slower than the processing of

a statistical variance value.

178

6.3 Quantitative Assessment of the Approach

 e02 e03 e04 e05 e06 e07 e08 e09

140

20

40

60

80

100

120

Event Name

Av
er

ag
e

De
la

y
[μ

s]

Figure 6.13: Performance of the UML interpreter in the COMPOUND scenario

simple transitions. This performance reduction depends on the number of exited
and entered states, with an average factor between ∼ 2.5 (COMPOUND.E02.AVG
= 95.06 µs) and ∼ 3 (COMPOUND.E07.AVG = 121.45 µs). Figure 6.13 shows the
average delays incurred by processing an event within the scenario.

The primary factor that influences the processing time difference is the number of
nesting levels that need to be considered during firing of a transition (which can be
either 1, 2 or 3). The second factor is the ratio between states that are explicitly given
by a transition and the ones that need to be determined implicitly. E. g., processing
the e04 and e07 transitions in Figure 6.6 produces the same behaviour, but the e07
transition is processed slower — the exited states C and B have to be discovered
implicitly, while the source state C is explicitly given for the e04 transition.

Expression Evaluation The measurement values taken during execution of the
EXPRESSION scenario have one thing in common: the first conducted measurement
always yields the longest processing time of all measurements. The worst case is
found for the expression that calls an FC: EXPRESSION.CALL.MAX is ∼ 1259 µs,
whereas EXPRESSION.CALL.AVG is ∼ 66 µs, a difference of approximately a factor
of 19. We found that these exceptional values are caused by one-time initialisation
processes within the MVEL library. After initialisation, the expressions are evaluated
with a lower variance: FC call execution time varies in the range of ∼ 15 µs, event
sending varies within ∼ 20 µs and condition evaluation within a ∼ 30 µs range. The
evaluation of guard conditions tends to be moderately slower for more complex
conditions, as demonstrated by the values for EXPRESSION.GUARD1.AVG = 30.67
µs, EXPRESSION.GUARD2.AVG = 34.20 µs and EXPRESSION.GUARD3.AVG =
36.51 µs.

179

6 Performance Benchmark

Concurrency Interpreter performance when handling concurrent control flows is
depicted in Figure 6.14. There have been two dashed lines fitted to the diagram,
showing the trend of the measured values.

501 5 10 15 20 25 30 35 40 45

1600

0

200

400

600

800

1000

1200

1400

Measurement No.

Ti
m

es
pa

n
[μ

s]

with history

without history

Figure 6.14: Performance of the UML interpreter for the CONCURRENT scenario

The timespan values form a steady sequence with the averages CONCURRENT.-
AVG = 785.96 µs and HISTORY.AVG = 1094.72 µs with only a few visible spikes.
The difference between the scenario execution with history information and the
execution without history, is on average ∼ 308 µs.

Configuration & Lifecycle Management Issues The interpreter performance for
both instantiating and starting, as well as stopping and removing models, is steady.
Values for starting (the time it takes for the model to reach the timestamp ac-
tion) have been measured between 972 µs – 1275 µs, while the stopping and re-
moving processes vary within a timespan of 186 µs – 252 µs. The average start
time is LIFECYCLE.ENTER.AVG = 1073.52 µs, while the overall time is LIFE-
CYCLE.OVERALL.AVG = 1226.40 µs. Generally, it can be said that BM start and
deployment takes ∼ 1 ms and that stopping and removing a BM takes only a fraction
(∼ 1

7
) of that time. This is due to the more complex processes needed when creating

an initial BM instance.
Retrieval of configuration values was measured to occur within a timeframe of

CONFIGURATION.MIN = 14.00 µs and CONFIGURATION.MAX = 144.00 µs,
with an average value of CONFIGURATION.AVG = 47.72 µs. The collected values
show variation, but 90% fall below 65 µs.

Figure 6.15 shows the consumed memory at key points during the process. Depicted
values are separated into heap and non-heap (static and stack) memory. After the
interpreter has been initialised, the allocated memory is roughly constant (around

180

6.3 Quantitative Assessment of the Approach

 Begin Init Start Op.Avg End

30.000

0

5000

10.000

15.000

20.000

25.000

Measurement Event

C
on

su
m

ed
 M

em
or

y
[K

B]

Static + stack

Heap

Figure 6.15: Consumed memory by the UML interpreter in the LIFECYCLE scenario

27–28 MB), although we measured some spikes during the operation where consumed
memory goes up to a value of LIFECYCLE.MEMORY.MAX = 38519.00 KB.

 Init L0 L1 L2 L3 L4

40.000

0

5000
10.000

15.000

20.000
25.000

30.000

35.000

Model Size

C
on

su
m

ed
 M

em
or

y
[K

B]

Static + stackHeap

Figure 6.16: Consumed memory by the UML interpreter in the SIZE scenario

The influence of model size is neglected in the LIFECYCLE scenario but can be
observed from measurements conducted in the SIZE scenario. A similar diagram
is shown in Figure 6.16, depicting the values of consumed memory in relation
to the differently sized models L0 to L4. Again, the diagram shows measured
values separated into heap and non-heap values, but this time only the heap value
substantially increases with growing model size. The overall amount is ∼ 1 KB per

181

6 Performance Benchmark

additional state in the BMs for the SIZE scenario (SIZE.MEMORY.GROW = 1.04
KB / State). Note that the difference in size between each of the employed models is
exponential, thus, L4 is significantly larger than the other ones. In general, memory
consumption does not seem to be a relevant factor for desktop or server applications
for BM interpretation, unless the interpreter is executed with a large number of
models or with extremely large ones. For other platforms, this is quite different (see
Section 5.4).

6.3.2 Performance of the Model Processing Unit

The MPU was also subjected to measurements according to the benchmark suite,
on the same platform as used for benchmarking the UML interpreter (see Table
6.18 on page 176). The average timestamping overhead was determined at less than
1 µs, and the accuracy of the timer is the same as for the UML interpreter. The
benchmark was carried out using JUnit 3.8 test classes, which were executed via the
JUnit OSGi bundle provided by the Apache Felix project. Logging was configured at
a minimal verbosity (errors only), and the web interface was disabled. The measured
values can be found in Appendix D.

 1 20 40 60 80 100 120

250

0

50

100

150

200

Measurement No.

D
el

ay
 [μ

s]

Shortest timespan

Average timespan

Longest timespan

Figure 6.17: MPU performance for matching multiple transitions

Transition Matching The average ε-transition delay is EPSILON.AVG = 14.24
µs, while the matching of simple self-referencing transitions is considerably slower at

182

6.3 Quantitative Assessment of the Approach

an average of ALTERNATIVE.AVG = 53.20 µs. This is not surprising, as ε-events
are handled quite differently to the completion events used in the UML interpreter.
For simple transitions, the MPU is ∼ 12 µs slower than the one for UML. Variance
of simple transitions is low, with 95% of all values within a range of ∼ 5 µs; for
ε-transitions this is still good — more than 90% of the measured values lie within a
similar interval.

Figure 6.17 shows the performance of the MPU in the EVENT scenario. The
measurement results have a similar distribution as the ones shown in Figure 6.11 (with
an average of EVENT.AVG = 70.06 µs close to the optimum EVENT.MIN = 64.00
µs) but with an execution speed that is on average ∼ 2.5 times faster than the one
determined for the UML engine. This is different in the GUARD scenario, where the
MPU uses an average of GUARD.AVG = 191.96 µs for processing of a complete path
in the BM. A delay that is 10 µs less than the one of the UML equivalent. Differences

 1 15 30 45 60 75 90 105 120

215

185

188

191

194

197

200

203

206

209

212

Path No.

Av
er

ag
e

Ti
m

es
pa

n
[μ

s] UML interpreter

Figure 6.18: MPU guard condition evaluation performance (per path)

in the implementation of transition matching data structures and algorithms become
obvious when looking at the average measured matching timespans per path in
Figure 6.18. The diagram also shows the values of the corresponding UML engine
measurements (Figure 6.12) for comparison purposes, and a dashed trend line has
been added to the plotted data, showing that the values are evenly distributed within
a ±5 µs interval around the average delay GUARD.AVG. While the UML interpreter
exhibits a clear pattern that depends on the transition matching sequence, the MPU

183

6 Performance Benchmark

has no such characteristics. As all possible patterns are tested, it is very likely9 that
the SCXML implementation will necessarily have to test all of the given conditions
at some stage — thus the depicted measurement results might seem puzzling. The
explanation is simple: the measured time spans indicate the time needed to check
the conditions for all of the five transitions leading out of a state. The MPU employs
an algorithm that first constructs a set of transitions that trigger for a given event
and then filters this set by evaluating each of the guard conditions. Although this
approach has a larger overhead than the one chosen for the UML engine, the average
time of the MPU is still a bit faster for the GUARD scenario model.

The processing delays of self-referencing transitions, measured using the MPU
within the COMPOUND scenario, exhibit similar characteristics with regard to the
event types as the ones depicted for the UML interpreter in Figure 6.13. Regarding
the average speed of execution, the SCXML implementation is ∼ 50 µs faster (COM-
POUND.AVG = 60.91 µs) than the UML interpreter (110.28 µs). Values for the
average processing times are steady, falling within a range of 3 µs when compared
between each of the individual patterns. The overall variance of values is in the range
of COMPOUND.MIN = 52.00 µs and COMPOUND.MAX = 197.00 µs. Regarding
the best-case execution times, the UML engine still has an advantage of ∼ 30 µs.
The worst-case values exhibit similar characteristics for both interpreters: the ratio
MAX
AV G

is roughly the same within each of the transition measurement scenarios (e. g.
in the COMPOUND scenario, it is ∼ 2.96 for the UML interpreter and ∼ 3.23 for
the MPU).

Expression Evaluation Performance of the MPU for evaluation of expression is
worse than that of the UML interpreter. While it is still on par for the sending of
events (EXPRESSION.EVENT.AVG = 68.99 µs, the UML interpreter needs an aver-
age of 69.94 µs), the counting loop takes twice as long at EXPRESSION.COUNT.AVG
= 6918.77 µs. This difference increases when evaluating more complex expressions:
EXPRESSION.GUARD1.AVG = 44.92 µs (takes ∼ 1.5 times longer than the UML
engine), EXPRESSION.GUARD2.AVG = 64.08 µs (∼ 1.9 times longer), EXPRES-
SION.GUARD3.AVG = 93.23 µs (∼ 2.6 times longer). The calling of an FC has the
worst average execution time at EXPRESSION.CALL.AVG = 479.21 µs, which is
more than 7 times longer than the execution time of the UML interpreter.

The observed delays for evaluating guard conditions are due to the speed of the
employed JEXL engine, which evaluates statements based on an AST representation
of a given statement, presumably with no pre-compilation taking place within the
library code. These conclusions are also supported by comparative measurements
conducted by M. Brock et al. [276]. Regarding the FC call, which is implemented in
SCXML using an <invoke> tag, it is clear that this is a more complicated operation
than the simple invocation of a Java method, as there are additional events used

9Unless the data structure is subjected to runtime re-ordering processes.

184

6.3 Quantitative Assessment of the Approach

for communicating the return value back to the calling BM, explaining the observed
overhead.

Concurrency Parallel regions within the CONCURRENT scenario are executed
more than twice as fast by the MPU, as by the UML interpreter, at CONCUR-
RENT.AVG = 358.76 µs. This is also true when conducting the scenario using the
additional history step: HISTORY.AVG = 480.12 µs, whereas 1094.72 µs have been
measured on average for the UML engine.

501 5 10 15 20 25 30 35 40 45

600

0

100

200

300

400

500

Measurement No.

Ti
m

es
pa

n
[μ

s]

with history

without history

Figure 6.19: Performance of the MPU for the CONCURRENT scenario

Figure 6.19 shows the values for both the history and the normal measurement
scenario. Apart from the offset caused by the faster execution, the plot looks similar
to the one created for the UML interpreter (see Figure 6.14). As can be seen from
the plotted values, there are a number of outliers (3 of 50 values for the normal
scenario and 6 out of 50 for the history scenario), but generally the values cluster
closely around the respective average values.

Configuration & Lifecycle Management Issues The retrieval of the active state
configuration is fast, as these values are readily available during the interpreter’s
operation. The determined values are between CONFIGURATION.MIN = 12.00 µs
and CONFIGURATION.MAX = 31.00 µs with an average of 16.04 µs. In 90% of
the measured trials the time was less than 20 µs.

While the times for stopping and removing a model from the interpreter are similar
(on average ∼ 150 µs with the UML engine vs. ∼ 200 µs for the MPU), there is a
big difference when instantiating and starting a BM. The MPU needs on average
∼ 12 times more time for this task (LIFECYCLE.ENTER.AVG = 13697.42 µs). In

185

6 Performance Benchmark

contrast with the UML interpreter, which is merely a research prototype, the MPU
has been designed with a more sophisticated — and realistic — architecture in mind.
This additional complexity of the infrastructure is the cause for the measured time
differences. Although the differences are remarkable, this should not constitute an
issue for real-world applications, as even the worst case deployment time of ∼ 16 ms
is fast enough for all purposes that we can possibly think of.

Memory consumption during execution of the LIFECYCLE scenario is on aver-
age LIFECYCLE.MEMORY.AVG = 35862.14 KB, and usage varies only slightly
within a range of ∼ 180 KB. With a value of 35832.00 KB, even the initial LI-
FECYCLE.MEMORY.BEGIN indicator has a similar size. This is different when
compared with the UML interpreter (see Figure 6.15). Again, these discrepancies
are due to the different architectures; in the MPU, the interpreter’s bytecode is
already available at the very beginning of the benchmark execution, while it is loaded
dynamically for the UML engine benchmark.

The consumed memory within the SIZE scenario is shown in Figure 6.20.

 Init L0 L1 L2 L3 L4

60.000

0

10.000

20.000

30.000

40.000

50.000

Model Size

C
on

su
m

ed
 M

em
or

y
[K

B] Static + stackHeap

Figure 6.20: Consumed memory by the MPU in the SIZE scenario

The overall picture is similar to the one depicted in Figure 6.16 for the UML inter-
preter; the memory region that contains static + stack data remains approximately
the same, while the heap memory values grow exponentially with each deployed
BM. Memory increase per state is at SIZE.MEMORY.GROW = 1.81 KB, which is
more than the ∼ 1 KB used by the EMF format in the UML engine. With the L4
BM deployed, the MPU consumes an overall SIZE.MEMORY.L4 = 55509.00 KB
of memory. The SIZE.EXECUTABLE value is the same as for the UML version,
amounting to 100.67 KB, which is the size of the employed Java VM executable.

186

6.3 Quantitative Assessment of the Approach

6.3.3 Determination of Baseline Performance

To enable a better comparison between the results obtained from benchmarking
different interpreter implementations, a baseline performance is determined. We
decided to create an executor based on static models that yields the best possible
execution performance on a given platform. This is achieved by employing code
generation to create C++ classes for all of the benchmark’s behaviour models.

For this purpose, we are using version 7.5 of the Rational Rhapsody tool from
IBM on Microsoft Windows 7. We created BMs for the various scenarios of the
benchmark, either manually within the tool’s editor or through generation of suitable
XMI files that were imported in the application (for the larger SIZE scenario models
L2, L3 and L4). Each scenario of the benchmark was represented by a single class
with an attached statechart, defining the behaviour. Context data, timestamping
functionality, FCs and routines for configuration retrieval were added using separate
classes, which are referenced by the scenario classes. The tool was subsequently
instructed to generate C++ code in a configuration that did not add additional
instrumentation code for tracing or simulation. The chosen target platform was
Linux, as OS X is not supported by Rhapsody. This also forced us to carry out a
minor patch10 on the runtime framework used by the generated code.

The operation of the code generator is straightforward; each class in the Rhapsody
benchmark model is compiled into an individual C++ class. Event processing is
implemented by one or more methods that utilise switch statements with declared
event symbols. Actions bindings are simple method calls, and expression evaluation is
also done using untranslated C++ statements. Additionally, there are some methods
used in initialisation of the BM and a couple of boolean, inline accessors that support
the determination of an instances particular state configuration. States are encoded
using integer values.

Taking the generated source code, we then added logic to conduct the measure-
ments and compiled it using the GCC, version 4.2 on OS X 10.6.3. The following
parameters were used to compile the source: -mdynamic-no-pic -arch x86 64

-fvisibility-inlines-hidden -mmacosx-version-min=10.6 -x c++ -Os

-fvisibility=hidden. The resulting binary contained only a single set of instruc-
tions for execution on a 64 bit X86 platform. Both timestamps, as well as memory
measurements, have been implemented using the getrusage system call, as proposed
in Section 6.1.11.

For execution of the benchmark, the same platform used to benchmark the previous
interpreters was employed (see Table 6.18 on page 176). Due to optimisations on
the static code, the executable exhibits only a constant runtime complexity, where
the other interpreters have a linear complexity. For example, this can be observed
in the EVENT scenario. Also, the evaluation of expressions is heavily optimised by
the compiler and well integrated with the execution code, so that the introduced

10Modification of an identifier related to pthreads semaphore handling

187

6 Performance Benchmark

delay often becomes too small to be measurable. The timer resolution has been
determined at ∼ 1 µs, and the average delay incurred by the timestamping mechanism
is TIMESTAMP.AVG = 2.13 µs. The complete measurement results can be found in
Appendix D.

Transition Matching The average time for matching ε-transitions is ∼ 2.25 µs,
while the matching of simple transitions takes more than five times longer: ALTERN-
ATIVE.AVG has been determined at 12.2 µs.

Although the performance used for processing paths in the GUARD scenario
follows similar rules as already discussed in relation to the UML interpreter on page
178 ff., the resulting measurement values follow a different distribution, as depicted
in Figure 6.21.

1260 15 30 45 60 75 90 105

28

22

23

24
25

26

27

Path No.

Av
er

ag
e

Ti
m

es
pa

n
[μ

s]

Figure 6.21: Performance of generated code for matching guard conditions

Interpretation of the guard conditions is implemented as nested if-then-else state-
ments, so each condition is evaluated separately. It appears that the speed for
evaluation is so fast that this has no real impact; most of the values (more than 95%)
fall into an interval between 24 – 26 µs. There are five outliers (the paths where b=2
and c=5, not shown in the diagram) that finish much quicker in ∼ 14 µs. This might
be be attributed to caching phenomena of the execution hardware.

Regarding the EVENT scenario, the average time for matching transitions on a
single path using only event triggers was measured to be ∼ 23.5 µs (EVENT.AVG),
but there were a small number of measurement runs that completed much quicker
(taking around 1 or 2 µs for the complete run). Figure 6.22 shows the trends for all
of the measurements. It can be observed that the average matching time exhibits
only little variance (the values are always between 22 and 25 µs), whereas the worst
case times might go up to EVENT.MAX = 128 µs.

188

6.3 Quantitative Assessment of the Approach

 1 20 40 60 80 100 120

140

0

20

40

60

80

100

120

Measurement No.

D
el

ay
 [μ

s] Shortest timespan

Average timespan

Longest timespan

Figure 6.22: Performance of generated code for matching multiple transitions

The values resulting from execution of the COMPOUND scenario are more uniform
than the ones taken for the UML interpreter, and the execution of a single pattern
takes on average less than 9 µs. Due to the high number of collected timestamps,
there is also a higher number of outliers contained in the result set, making for some
large worst-case values, e. g. COMPOUND.E06.MAX=2172 µs.

Expression Evaluation The performance for evaluating expressions is steady over
the set of collected measurements. EXPRESSION.COUNT.AVG is calculated at
∼ 65 µs but the values contain an outlier (EXPRESSION.COUNT.MAX=5924 µs).
Without this outlier, the average would be determined at ∼ 35 µs. All values for the
other performance indicators have only a small variance, and the averages are as
follows; sending events has an average delay of ∼ 3 µs (EXPRESSION.EVENT.AVG),
and the calling of a method (EXPRESSION.CALL.AVG) as well as the evaluation
of any of the three guard conditions (EXPRESSION.GUARD1.AVG, EXPRES-
SION.GUARD2.AVG, EXPRESSION.GUARD3.AVG) all have a similar average
of ∼ 1 µs. This demonstrates the big difference that exists between the timespan
used for evaluating expressions using an interpretative approach and the time needed
when evaluating native code.

Concurrency Performance of the generated code for the CONCURRENT scenario is
faster than for the interpreted approach. Figure 6.23 shows the relevant measurement
data with added, linear trends as dashed lines.

189

6 Performance Benchmark

501 5 10 15 20 25 30 35 40 45

10

0

2

4

6

8

Measurement No.

Ti
m

es
pa

n
[μ

s]

With history

Without history

Figure 6.23: Performance of generated code for the CONCURRENT scenario

On average, it takes CONCURRENT.AVG = 3.92 µs to process the complete
scenario without using history. With the use of history measurements, this value
is at HISTORY.AVG = 6.20 µs. Variance for both of these values is low, with a
minimal value of 3 µs (CONCURRENT.MIN) and a maximum timespan of 10 µs
(HISTORY.MAX).

Configuration & Lifecycle Management By default, Rhapsody generates no meth-
ods for retrieval of the active state configuration. Instead, there are macros provided
that can be used to determine if a single state is active. We added code that executed
each of the state macros of the CONCURRENT scenario class to determine the
active states. The state configuration was then returned as a string containing the
active state ids. On average, this code used ∼ 8 µs to complete. The performance
indicators CONFIGURATION.MIN and CONFIGURATION.MAX were calculated
to be 4 µs and 14 µs, respectively.

The lifecycle management performance of the generated code depends essentially
on four things: the instantiation of a Lifecycle object, which contains the BM; calling
of the provided startBehaviour method; waiting for the BM to finish; and deleting
the instance. There is no such phase as deployment, as the BM is already deployed,
in the form of statically bound code. Figure 6.24 shows that measurements are
executed relatively fast and that the execution timespan values show little variation.
The average time that the executor needed to reach the timestamp statement was
LIFECYCLE.ENTER.AVG = 6.04 µs and a single run of the complete scenario was
executed on average in LIFECYCLE.OVERALL.AVG = 19.06 µs. Contrary to, e. g.,
the UML interpreter, the time needed for exiting the model is longer than the time
required to initialise it.

190

6.3 Quantitative Assessment of the Approach

501 10 20 30 40

30

0

5

10

15

20

25

Measurement No.

Ti
m

es
pa

n
[μ

s]

Overall process

To timestamp

Figure 6.24: Baseline performance for the LIFECYCLE scenario

Memory measurements show that only a small amount of overall memory is
consumed during operation (LIFECYCLE.MEMORY.END < 600 KB) and the
consumed memory grows continuously, from executor start to measurement end.
Figure 6.25 shows the memory consumption at selected measurement points during
execution. Due to the nature of the getrusage system call, only a single value can be
determined, and there is no differentiation between heap and static+stack memory.

 Begin Init Start Op.Avg End

700

100

200
300
400

500
600

Measurement Event

C
on

su
m

ed
 M

em
or

y
[K

B]

Figure 6.25: Consumed memory of generated code in the LIFECYCLE scenario

The additional memory consumed during the the LIFECYCLE scenario after
executor start amounts to ∼ 180 KB and the consumed memory seems to only exhibit
small variations. For example, the consumed memory did not grow continuously,
but varied within ∼ 12 KB during operation, as seen in the differences of the

191

6 Performance Benchmark

SIZE.MEMORY.L0 to SIZE.MEMORY.L4 values. Therefore, the executable size of
the BMs is more interesting than the amount of consumed runtime memory. Figure
6.26 shows the values for the different models employed in the SIZE scenario.

 Init L0 L1 L2 L3 L4

1750

0

250

500

750

1000

1250

1500

Model Size

C
on

su
m

ed
 M

em
or

y
[K

B]

Figure 6.26: Binary executable size of generated code for the SIZE scenario

The executable binaries show a growth in size of SIZE.EXECUTABLE.GROW =
0.1 KB per state. The largest executable binary (the one that executes the L4 BM)
has an overall size at SIZE.EXECUTABLE.L4 = 1423.20 KB and the BM code is
responsible for more than 75% of the executable size.

6.4 Summary

This chapter contained the specification of a performance benchmark suite for
measuring BM execution. Ten benchmark scenarios have been specified that are
based on the fundamental set of BM features introduced in Section 4.1.1, and an
execution of the benchmark yields 100 performance indicators that can be used
to to asses the performance of a given execution platform. As the benchmark is
platform-independent, one needs a mapping to a concrete execution platform for
conducting an execution of the benchmark. We specified mappings to three different
platforms: the UML ASP with Ecore and MVEL; SCXML and JEXL; and UML with
C++ statements for code generation with the Rhapsody tool. We then documented
the results of an execution of the benchmark for three implementations: the UML
interpreter, the MPU and a reference implementation using generated code.

We found that, although the UML interpreter and the MPU are implemented
very differently, they have similar overall results in the benchmark. For the UML
interpreter, the overall execution speed is ∼ 20 times slower as the baseline perform-

192

6.4 Summary

ance at SPEED = 22.30, while the MPU has a similar value of 20.33. The overall
memory consumption was determined at MEMORY = 64.09 for the UML interpreter
and at 81.07 for the MPU. Depending on the scenario, the interpretation processes
are on average between 3 – 460 times slower and consume between 50 – 120 times
more memory than the baseline implementation. We expected that the interpreter
performance is not as good as the one of the baseline code, which is true. Nonetheless,
a factor of 20 is not critical for the application purposes described in Chapter 5, and
we found that both of the implementations have a more than adequate performance
for our purposes. As such general values can convey only a very limited impression,
we want to examine the differences in more detail.

The average performance of matching transitions is good for both implementations,
with a slowdown factor of less than 10. For an interpreter, this is a decent result.
Exceptions to this observation are found in two cases for the UML interpreter: the
handling of ε-transitions, as well as the processing of transitions that cross levels in
the composition hierarchy, are processed slower with an average factor of ∼ 12 each.
This is due to the usage of an additional completion event for ε-transitions and the
need to determine the Cactive and Ctarget state configurations when traversing the
composition hierarchy (see Section 2.2.3).

Even though we employed the two fastest Java libraries available for expression
evaluation, the speed is still an average ∼ 30 (compiled MVEL in the UML interpreter)
to ∼ 60 (interpreted JEXL in the MPU) times slower than native code. The largest
observed difference is the invocation of an FC using the MPU, which is on average 460
times slower. The reason is found in the employed architecture, which is relaying the
invocation via an event middleware, a feature that is very helpful when implementing
FCs as components that can be changed at runtime (OSGi bundles in our case). An
FC invocation can be executed much quicker when facilitating the binding mechanism
of the underlying programming language. As expression evaluation is used over and
over when processing guard conditions, an improvement of this aspect is of crucial
importance. This can be done through the use of precompilation, which effectively
doubles the speed of expression evaluation for the considered scenarios.

The largest discrepancy between the baseline code and the interpreters concerns
the speed of the concurrency mechanism: the average slowdown factor incurred
is ∼ 90 for the MPU and ∼ 200 for the UML interpreter. This is due to the fact
that interpreters are required to dynamically maintain control flow information,
whereas a code generation process is able to encode this information within the static
switch statements that govern state transitions. Although the values suggest quite a
shortcoming, explicitly maintaining control flows can potentially have a positive effect
by enabling the facilitation of hardware features that support concurrent execution
(e. g. multiple processor cores) and by supporting optimisations at runtime.

Retrieving the active state configuration is a fast operation, being only 2 – 10 times
slower than the corresponding operation in baseline code. As the state configuration
needs to be explicitly maintained for the interpretation processes, it is merely a

193

6 Performance Benchmark

matter of providing the data to the requester, rather than obtaining it.
Model instantiation has a distinct time penalty, e. g. the MPU is∼ 2260 times slower

as the generated code. We do not deem this value particularly meaningful, as the
generated code does not explicitly construct an in-memory representation of the model.
Furthermore, the worst-case model instantiation time was measured at ∼ 16 ms, which
seems to be sufficient for any application, as BM instantiation is usually not deemed
a time-critical process. For the same reason, the LIFECYCLE.OVERALL.AVG
performance indicator was also not included in calculation of the overall SPEED
value.

Both of the interpreters have been implemented as memory-intensive Java applica-
tions; thus, the obtained MEMORY benchmark indicators are quite large. Although
these indicators are relevant for judging resource consumption of a certain imple-
mentation, we found that they are non-critical and stay well within the resource
constraints of current computing systems. Supporting this, the embedded systems
experiment also demonstrates that memory is not per se an issue with the approach.
We were able to interpret meaningful BMs within 2 KB of RAM, and as Table 5.3
shows, the minimal memory requirements for the various BM constructs can be very
moderate.

It is interesting to note that performance values for the embedded systems ex-
periment are in the same magnitude of speed as the ones for the interpreter imple-
mentations, even though the embedded system experiment uses only an 16 MHz 8
bit processor, while the UML interpreter and the MPU utilised a 64 bit dual-core
processor running at 2.5 GHz.

A final note on the performance concerns the impact of the BM’s structure on
the interpretation speed. The differences between the various indicators in the
benchmark measurements indicate that some constructs in the model structure can
be interpreted faster than others. For example, when traversing a transition within
a deeply nested composition hierarchy, the interpreter potentially needs to check all
outgoing transitions from all parent states of the source state, which can be a costly
operation. By employing model runtime and persistency formats that maintain
the sequence of outgoing transitions, a BM designer could coerce the interpreter
to check transitions in a particular order. Depending on the intended use of the
BM, this could have a large impact on the execution performance. Another example
concerns guard conditions: as guards on all outgoing transitions might potentially
be evaluated for every incoming event, the formulation of these statements can have
a huge influence on the performance. Thus, we can say that execution performance
also depends on the experience of the model designer and the abilities of the utilised
tools.

194

7 Conclusion

To say of what is, that it is,

or of what is not, that it is not,

is true.

Aristotle

To come to a conclusion on the overall approach, we first summarise the work
conducted within this thesis.

Chapter 1 explains our motivation for undertaking the research. An introduction
to the AS Engineering field is provided, and we stated the problem that we aimed
to solve as well as describing our underlying research hypothesis. The employed
methodology is explained and the scientific contributions of the thesis are highlighted.

Chapter 2 creates the foundation that the thesis rests on. We identified, described
and discussed the concepts used for modelling runtime behaviour starting from simple
states and transitions to the more complex ones, like model composition or control flow
concurrency. Building upon these BM concepts the text subsequently introduced a
terminology for various model formats and artefacts used in the interpretation process.
We then continue to describe BM interpretation in detail and investigated a variety
of key topics including BM instantiation, internal and external event processing,
behaviour parallelism, the binding of expression languages and the invocation of FCs.
There are a numbers of engineering solutions presented in this section (including
the specification of algorithms and concrete mechanisms), which we consider central
contributions of our work. The chapter ends with a discussion on the management of
BMs. In the text, we provide a distributed system architecture for BM management
together with a discussion on implementation alternatives.

Chapter 3 investigated the relation of our work to existing research undertakings.
The text contains a discussion of the history of state-transition systems, followed by
an overview of important publications regarding the execution and transformation
of state-machine based BMs. We also looked at alternatives to state-transition
systems for behaviour modelling and provided an overview of popular tools used in
the context. The text then continues with a state-of-the-art description of dynamic
system adaptation and communication mechanism. The reason is to give the reader
a background to comprehend how and why major aspects of runtime interpretation

195

7 Conclusion

of BMs relate to concepts used in AS Engineering. The discussion of the related
work also contains an investigation of the network and systems management domains,
as the use case studies are conducted within these target domains. The chapter
closes with a discussion on the current state-of-the-art for performance benchmarking,
which is an interesting topic in relation to the benchmark suite introduced in chapter
6.

Chapter 4 continues by demonstrating the feasibility of our approach using proof-
of-concept implementations. We described four implementations of the concept,
where each implementation was conducted with a different goal in mind. To enable
a comparison of these implementations, we also described a set of fundamental
BM features and proposed a generic software architecture for a BM interpreter,
at the beginning of the chapter. We then described each of the implementations:
the TMPL Engine, which has been created for matching patterns on XML data
streams and which demonstrates the potential for runtime optimisation by means
of BM adaptation. The ACE Toolkit for creating AS based on interpreted self-
models, which allowed us to explore the necessary event transmission mechanisms
and the FC concept as well as the creation of BMs by means of high-level language
specification. The UML Interpreter, which implements the full set of Behavioral State
Machine features of the UML 2.2 standard, providing us not only with an interpreter
that utilises the most important BM formalism, but also with a comprehensive
expertise on the interpretation of a large number of BM features. The last described
implementation, the MPU, puts our concepts into practice by using only mature
libraries and technologies. The motivation is to create a prototype that best fulfils
the real-world requirements of the network and systems management domains.

Chapter 5 documents four use case studies, that asses the practical usefulness of
the implementations. The first use case study demonstrated an application of the
ACE toolkit to the problem of self-organised service supervision. The second use
case facilitated a collective of MPUs to demonstrate a novel approach for managing
systems and networks. This study is motivated by a narrated troubleshooting
scenario, and we demonstrate the monitoring of the utilisation of a router by means
of BM interpretation. In the third use case study, we are exploring the possibility of
using BM interpretation within network entities to drastically reduce management
traffic in IPv6 networks. The fourth use case researches the scalability limits of our
approach in regard to resource utilisation.

Chapter 6 completes our examination of the runtime interpretation of BMs by
providing a benchmark suite that allows us to quantify the performance of a given
interpretation mechanism. Such a tool is necessary to compare our approach to
the current best-practice of using code generation for the execution of BMs. The

196

7.1 Feasibility of the Approach

benchmark is platform independent and defined using ten scenarios. To execute
the benchmark on a concrete measurement platform, one needs a platform mapping
and we provide mappings to the UML ASP and MVEL, SCXML and JEXL, and to
Rhapsody generated C++. This chapter closes with a quantitative assessment of the
UML interpreter, the MPU and the generated reference implementation.

Chapter 7 provides a critical discussion of our research results, based on the elabor-
ated use cases and performance assessment provided by the benchmark measurements.
In the first section, we are giving a summary on the overall course of the research
contained in the previous chapters. Afterwards, we are reflecting on the feasibility
of the approach by contrasting our initial research hypothesis with the established
results based on our experience with the implementations, use case studies and
benchmark applications. The third section details the major challenges that are
encountered when using BM interpretation and captures our lessons learned from
solving these. The fourth section describes the relevance of our work for the wider
research community and assesses the impact of the results. In the final section, we
are describing future work and further, more advanced applications of the approach.

7.1 Feasibility of the Approach

The conducted implementations, along with the use case studies and the performance
assessments, clearly support our research hypothesis formulated in Section 1.1.2. The
interpretation of BMs at runtime is a viable approach with an adequate performance
for all of the examined use case studies.

We were able to systematically determine the performance penalty incurred by
such an approach. The results of the performance analysis confirm our assumptions;
the performance of the interpretation approach is ∼ 3 to ∼ 460 times slower than
generated code, depending on the utilised features of the BM and the employed
technology for the runtime system. The average speed for the benchmark is ∼ 20
times slower and the average consumed memory is between ∼ 60 and ∼ 80 times
larger. For an interpreted language, such an overhead is considered normal, e. g.
compare with Romer et al. [163] who determine the overheads of a variety of general-
purpose interpreted languages at a similar magnitude. As a general rule of thumb, it
can be said that adding a level of interpretation slows down the execution time of a
program by at least a factor of ten [82]. This is the cost to pay for the advanced
runtime adaptation features provided by an interpretative approach.

When comparing the MPU and the UML interpreter, it is surprising that both
have a similar overall performance with differences only in some details. Regarding
memory consumption, the UML interpreter uses ∼ 1

5
less memory than the MPU. The

matching overhead of the MPU is less than the one needed by the UML interpreter,
making it up to ∼ 2.5 times faster when selecting transitions in the EVENT scenario.

197

7 Conclusion

The MPU also tops the UML interpreter when it comes to processing parallel regions.
In the CONCURRENT scenario it is more than twice as fast, and the retrieval
of the active state configuration is on average ∼ 2.7 times faster. But there are
functions were the UML interpreter is faster, for example, on average the UML
interpreter is twice as fast as the MPU when evaluating expressions, which explains
the similar outcome of both execution mechanisms in the GUARD scenario. The
biggest difference is measured when invoking an FC, where the UML interpreter is
∼ 7 times faster than the MPU. As the mechanisms for FC invocation and expression
evaluation are exchangeable with the Apache SCXML library that is used in the
MPU, one could potentially improve these values.

The embedded systems experiment shows that it is possible to implement an
interpreter that works with a very small amount of memory. This is an interesting
result as interpreters are usually considered as non-suitable for resource-limited
platforms. We also found that the Java-based interpreter prototypes consume more
memory than generated C++ code. This is not surprising. To put the measured
memory consumption of the UML interpreter and the MPU into perspective: the
maximum of allocated dynamic memory for a very large BM (SIZE.MEMORY.L4),
including all of the necessary runtime system functions, stayed in all cases below 60
MB. For Java applications 60 MB of allocated memory is not much.

Regarding the use case studies, we found that even though the BM interpretation
is slower than generated code, our approach is applicable in all of the use cases.
The measured performance data also suggests that the performance of runtime BM
interpretation should be adequate for the majority of situations. An exception to
this are applications that rely on the processing of high-throughput or delay-sensitive
data. In this case, the overhead or introduced delay might render the interpretation
approach less applicable. How much a system would benefit from the adoption of
the approach needs to be decided on a case-by-case basis, by weighing between the
positive features of dynamic system adaptation and the performance loss due to the
maintenance of a more complex runtime system.

7.2 Encountered Challenges and Lessons Learned

The major challenges that were encountered during our work on the thesis are
discussed in the following subsections. This section explains the reasons behind our
design decisions and discusses some of the alternatives. It also contains a general
assessment of devised solutions in a wider context. The section is structured in three
parts: the first one discusses issues connected to the interpretation of BMs, the
second part deals with the integration of BM interpretation and a target execution
platform (e. g. the Java VM) and the third part deals with issues that arise in the
context of the performance benchmark.

198

7.2 Encountered Challenges and Lessons Learned

7.2.1 BM Interpretation

Although there is a substantial body of work on the execution of BMs, we found
that the hitherto applied approaches either employ code generation or are used for
simulation purposes. The problem with the code generation approach is that the
BM is assumed to be static. BM interpretation aims at executing models that are
adaptable at runtime; thus, this basic assumption is violated. As a result, most of the
employed processes and optimisations used for executing BMs cannot be applied in
our context. When applying execution of BMs for simulation purposes, it is common
to use either code generation (with the restrictions given above) or to implement
execution processes that explicitly model time, which is hardly suitable for runtime
execution. Due to their explicit notion of time, simulation processes can ignore
runtime requirements, choosing more elegant ways for processing of the dynamic
aspects of BMs (e. g. based on set theory). This also limits the transferability of
established research, forcing us to design our own execution mechanisms that better
fit to the requirements of adaptable runtime execution. The following text highlights
the key challenges that this thesis deals with, along with the lessons learned from
solving them.

UML In regard to interpretation processes, one of the most important and on most
challenging parts of our work was the implementation of an interpreter for all of
the UML State Machine constructs. One of the biggest problems with the UML 2.2
specification of Behavioral State Machines is that, although the authors aim for a
clear description of the semantics, the current standard document is often imprecise
or even plain wrong. This problem has also been recognised by others and solutions,
such as the xUML profile, have been proposed. Despite the disadvantages of the
original UML standard, we implemented the UML interpreter using the specified
features set. The motivation for this was not only to implement a large number
of different features, but also to create an implementation for the currently most
important standard for the description of BMs.

A downside on using the feature-rich UML State Machines is that implemented
features are not independent of each other; the inflicted runtime overhead of a
mechanism needed to process a certain feature will often contribute to the overall
processing overhead, even if the feature is not used within a model. As an example,
take the use of deferred events. Although a model might not defer a single event, it is
still necessary to maintain individual message queues as well as evaluating a state’s
“deferrableTrigger” set in conjunction with each received event. This generally means
that the more features there are in a BM formalism, the slower the interpretation
process will be. Additionally, each feature might have a side effect on other ones,
making a working implementation a difficult effort.

The most challenging part when implementing UML State Machine interpretation
lies in the correct processing of the transition matching and the firing functionality.

199

7 Conclusion

Transitions are far more complex constructs in UML than the plain state-connecting
edges known from automata or graph theory. First of all, transitions are segmented,
allowing them to connect multiple source states with multiple destination states. The
determination of an active transition might involve an evaluation of all transition
segments, including the pseudostates between them. Secondly, there are different
kinds of transitions, which might influence the set of entered and exited states when
firing the transition. Thirdly, transitions may cross the composition hierarchy or
leave/enter parallel regions, which requires employing sophisticated mechanisms for
correct determination of the entered and exited states. Fourthly, only parts of a
transition might be given explicitly while others might need to be inferred implicitly,
i. e. parallel regions that are entered by default or substates entered via a history
mechanism. It was difficult to design a mechanism that could deal with all of these
features.

Activity and ε-events As a state machine interpreter is a reactive system, it should
not consume any processing time when there are no external events to process. This
can be accomplished by blocking a designated executor thread until a new external
event arrives, which is usually done with an appropriate concurrent data structure.
This mechanism works well, but fails when allowing the use of ε-events, as these are
characterised by the absence of an external event, an additional mechanism needs
to be put in place. A solution is to completely process all ε-transitions within a
single RTC step, although this might lead to uninterruptible life-locks (as in the
case of SCXML). Alternatively, one can employ an active polling approach where
the executor thread is never allowed to sleep, but this leads to an exhaustion of all
available CPU resources on a CU. This problem can be solved using completion
events, as proposed by the UML; such events are sent once state entry is completed
and allow to define transitions that fire without receiving an external event, while
enabling the executor thread to sleep.

Preprocessing Behaviour Models The execution speed of a BM can be improved
by employing preprocessing, and code generation can be regarded as the most extreme
example of this approach. When applying this technique to BM interpretation, it is
necessary for an interpreter to make sure that changes done in the in-memory storage
format are propagated to the execution specification. An example for employing
preprocessing to speed up execution, is the usage of MVEL for expression evaluation.
As a consequence, we need to recompile expression statements when they are being
changed in the in-memory format. We suspect that preprocessing can also be applied
beneficially to other features, e. g. we are currently scanning the content of an entered
state for history pseudostates every time we enter the state. This information could
be determined at BM instantiation time and cached for use by the interpreter.
The downside of this strategy is the increased adaptation complexity; the more

200

7.2 Encountered Challenges and Lessons Learned

preprocessed information exists, the more complicated and tedious the adaptation
processes need to be, to assure the consistency between in-memory storage and
execution specification.

7.2.2 Platform Integration

When using BM interpretation to execute management tasks, a model interpreter
is of no use by itself, as it needs to be integrated with the environment in regard
to the employed programming language, information model and communication
infrastructure.

Evaluation of Expressions The most important aspect for interpretation perform-
ance is arguably the relation between the underlying platform that executes the
interpreter and the BM formalism that the interpreter processes. This is shown
most clearly in the way that the evaluation of (conditional and action) expressions
are implemented in the interpreter, and there are three general directions that can
be followed. The first option is to directly state expressions in the syntax of the
native programming language. They are opaque to the interpreter and passed down
unmodified to the underlying platform. This is the fastest option and the one where
the model interpreter has the least control over the specification and processing of the
expressions. This approach is not always possible, as it depends on the underlying
runtime platform to provide sufficient facilities for dynamically binding the given
expressions. The second option is to use an external library that provides expression
evaluation capabilities, along with bindings to the underlying platform. Expressions
are still opaque to the interpreter, but there is more control over the evaluation
process and the interpreter can be executed in isolation from the evaluation logic.
The third option is to use transparent expressions, by integrating an expression
language into the BM formalism. In this case, the expressions are evaluated by the
interpreter itself, e. g. through the traversal of an AST structure. This is the slowest
option, but provides the most amount of control over the way that expressions are
specified and evaluated.

All three of these options have been prototyped, either as part of one of the
interpreters or in one of the experiments. All of them are feasible, and a design
decision needs to be made based on the concrete operational requirements in a given
setting.

Context Data We found that it is beneficial to have context access for all but the
simplest BMs and that it is helpful to structure the context, e. g. by enabling locally
scoped session data and globally scoped environment data or by using OO principles.
Similar to the previously discussed decisions on the choice of an expression language,
we do not prescribe a context format. This issue must be treated as a design decision

201

7 Conclusion

that depends on the setting that an interpreter is supposed to work in. As a general
rule of thumb, it is sensible to employ a data model that is already in use in the
domain that the approach is applied to. The data model has to be compatible with
the BM formats and needs to be compatible with the employed expression language.
For example, in our case the choice of JEXL for the MPU was also motivated by
the fact that it integrates XPath statements into the language, which allows to work
elegantly with the XML context employed by SCXML. For the UML interpreter, we
defined the context using UML class diagrams, mapping them to Java classes for
evaluation by MVEL. For the embedded systems experiment we used a byte array
as the context.

Internal and External Communication BM interpreters are completely event-
driven; they are triggered by events and use events to communicate with the en-
vironment. Thus, the event handling mechanisms play a key role in our approach.
The implementation of a local broadcast mechanism is straightforward and usually
builds upon message queues. These data structures serve as the interface between
the environment that raises events in an asynchronous fashion and the interpreter,
which processes events in a synchronous fashion. Although message queues are well
understood, they can be tricky to implement due to their inherently concurrent
nature.

For external communication, things are a bit more complicated. The broadcast
model does not scale, which necessitates the use of addressing, preferably by employing
group communication (the use of static addresses is not a good idea, as they easily
break when network topology changes). Group communication can provide the means
for building collectives of cooperating CUs, which is also possible using contract-
based communication primitives. A crucial requirement for any communication
infrastructure is the support for reliable messages. BMs are not good at dealing with
missing events — they get stuck at some state and block further operations. If BMs
have to deal with unreliable events, it must be explicitly encoded in the model’s
logic, e. g. with timed guard statements or by creating alternative transitions. This
introduces additional overhead in the BM and forces a BM designer to explicitly
model the potential failure cases.

One of the most important issues regarding the communication mechanism is
the format of the event’s content. As long as an event is only used within a single
BM, the format can be decided by the model’s creator, but as soon as the event is
sent to another entity, the event needs to follow an agreed-upon format, which is
interpretable by the receiving entity.

The Application Domain When applying the benchmark to the application do-
mains, we needed to realise that network and systems management are well established
fields. This community is very traditional; new approaches are received with a large

202

7.2 Encountered Challenges and Lessons Learned

amount of skepticism, as backwards compatibility is an important concern. Com-
municating the benefits of our approach is a difficult undertaking, as it deviates
from existing standards, tools and practices. This is understandable, as members
of the community are involved with ensuring the operability of legacy systems that
need to run smoothly alongside more modern technology. We therefore looked for
means to clearly demonstrate how BM interpretation can be integrated with existing
systems. This is one of the main reasons for employing the Cisco AXP platform in
the router-load monitoring use case as well as the motivation for the usage of SNMP
as a primary demonstration of the FC functionality. We hope that such a course
of action will help support the introduction of our approach to this conservative
community.

Behaviour Model Design During discussions with researchers in the field, we
realised that creating a BM to capture the processes involved when managing a
network seems to be a large conceptual step for people that are not familiar with
MDA principles. Not only do we have to communicate the concepts and processes
involved, but we must also provide tools that support the creation of models in the
context of network and systems management. We investigated this direction with
the ACElandic language; by creating BMs that adhere to the ASP using graphical
UML editors; by using XML editors to create SCXML models for the MPU and
self-models for the ACE toolkit; and through programmatic creation of models using
a direct manipulation of the in-memory format. Based on this experience, we found
that the worst option is to edit XML files by hand. This is cumbersome and not
helpful, as the syntax is not made to be edited manually. All the other options are
viable, with the graphical editor likely the most intuitive and ACElandic the most
powerful, although the generated models provide little semantical value due to the
generated naming. Editing models using a programmatic API is also an option that
is not only feasible but also surprisingly easy1 to use.

7.2.3 The Benchmark

The embedded systems interpreter was evaluated before we created the UML inter-
preter and before the benchmark was devised. Although adequate for its purpose,
there are some aspects missing in the measurement process used for the embedded
system interpreter analysis, e. g. the evaluation of transitions that cross nesting
boundaries in the composition hierarchy or the determination of the ε-transition
matching time. After implementing the UML interpreter, key factors responsible for
execution performance were sufficiently clarified in order to create a more meaningful
benchmark. For example, refer to the BMs shown in Figure 5.10. It is not neces-
sary to consider 30 different BMs with a constantly increasing number of outgoing

1For someone with programming experience, that is.

203

7 Conclusion

transitions for a single state if the speed of the lookup in the transition storage
structure has a linear runtime complexity. Furthermore, by using self-referential
transitions in the BMs, the measurement results contain both the effects of the effort
of self-referential transition matching and the speed of the transition data structure
lookup mechanism. Only during the investigation on the correct determination of
entered and exited states did it become clear that self-referencing transition matching
might exhibit a different runtime behaviour than the matching of transitions that
are not self-referencing.

Employed Behaviour Models We are confident that the benchmark covers all main
aspects that are important for determining the execution performance, although the
employed BMs are artificial, in the sense that they do not reflect the structure of
BMs used in real-world scenarios. BMs can take very different forms, depending
on the application domain. As the benchmark aims at a general applicability, an
integration of such domain-specific models does not seem to be a good idea. We
could have restricted the benchmark to our application domain, but would then
face a different problem; currently, there are no BMs that capture best practices for
network or systems management processes.

Another challenge in the creation of good measurement BMs was the necessary fine-
tuning of the benchmarking scenarios with respect to the technological mappings. We
had to ensure that the benchmark works similarly on three different platforms (The
UML Interpreter, the MPU and Rhapsody C++), which was especially demanding
in case of the COMPOUND and CONCURRENT scenarios. Although not directly
visible anymore, this polishing work is reflected in the scenario’s BMs and the
benchmarking procedures.

Measuring the Java Platform Contrary to the measurements that employed
the embedded system prototype, we found that performance data obtained from
measurements on the Java platform can vary within a large margin (easily two
orders of magnitude). The embedded systems prototype is a computer running a
single task and capable of producing the same result for every measurement iteration.
This is not true for the platform used for the benchmarking process, which runs
many processes in parallel, yielding non-deterministic results. Additionally, the Java
platform introduces a number of runtime effects, notably due to garbage collection
and JIT compilation. These issues can be alleviated by restricting measurements of
resources to certain process or threads (e. g. ignoring the garbage collection thread) as
well as by conducting a number of measurements and averaging the obtained values.
Another technique is to execute the BM for a number of times before taking the
measurements. We deem this procedure valid, as it is assumed that BMs would be
executed many times during their lifetime, and the goal is to determine an amortised
runtime performance, not the effects when initially introducing a model.

204

7.3 Relevance of the Results

7.3 Relevance of the Results

Our research is mainly motivated by the requirements of AS engineering, namely
the need for runtime adaptation of system behaviour in response to changes in a
system’s environment. In addition to enabling changes at runtime, the use of BM
interpretation has a lot more advantages as recently pointed out by J. den Haan et. al
[50]. BM interpretation enables a much faster turnaround time for applying system
changes, as it does not require conducting code generation or build steps. This also
increases the ease of deployment, because the same artefact used for designing a
behaviour can also be used for deployment at the runtime system. Similar to a VM,
an interpreter supports the portability of applications by de-coupling the concrete
execution hardware from the application logic contained in the BM. Using interpreted
BMs not only supports functional scalability, but also helps with scalability of resource
utilisation, as one can create more processing capability by simply utilising additional
CU instances for interpreting a given BM, and where required, adapting employed
BMs to account for the newly created instances. Our approach also enables the
easy migration and persistency of running BMs by maintaining a separation of BM
State and execution logic (for example, this is possible with the ACE toolkit, see [34,
Appendix 2.1]). Furthermore, BM interpretation enhances the security of a platform,
as the BM usually cannot access resources (e. g. the file system) on a CU directly,
but only through the FCs provided by the interpreter. The interpreter forms an
abstraction layer on top of the execution system, essentially providing a Platform-as-a-
Service (PaaS) infrastructure. Another interesting idea is the possibility of debugging
BMs at runtime by using breakpoints at model level. To this list of features, we
can add the support of a more understandable monitoring of application behaviour,
which can be achieved by inspecting the active state configuration of BM instances.
With appropriately designed models, the active state configuration of a BM instance
can easily provide valuable runtime information for system management (e. g. a
system being in a fallback state or in a state waiting for end of calculation). We
also demonstrated the potential that lies in the optimisation of BMs by facilitating
runtime information, e. g. as demonstrated by the cartesian product optimisation
provided by the TMPL engine discussed in Section 4.2.2.

In terms of the impact of our research within the scientific community, we see
our work as consisting of the contributions mentioned in Section 1.3. This includes
the identification and verification of a number of concepts for the interpretation
of BMs as documented in Chapter 2. These concepts can serve as guidelines for
engineers when applying an interpretation approach. By verifying the concepts using
four prototypical implementations (see Section 4), we not only demonstrate that
the approach is suitable for a wide spectrum of technologies and purposes, but also
provide concrete architectural blueprints that can be used. The practical relevance of
our work is documented through four use case studies in Chapter 5. Together, these
studies form a framework for an application of BM interpretation in the network and

205

7 Conclusion

systems management domains that is of interest to network engineers, operators and
administrators. Although the use case studies are limited to certain domains, we
suspect that BM interpretation can successfully be used in a lot of other domains as
well.

An important result of our work is the performance benchmark suite introduced
in Chapter 6. As there were no previously existing benchmarks that are suitable
for assessing the performance of BM execution (see Section 3.5), we have created a
novel one, based on the experience gained from concept study and implementation
work. This benchmark is available in an executable version from the author upon
request. It takes the form of a number of generated C++ classes, together with a
corresponding Rational Rhapsody project file. Our final contribution to the scientific
community lies in the study of the interpretation performance of three different
implementations. The results from these measurements prove that BM interpretation
is a feasible approach with an adequate performance for the examined use cases.
The performance values itself are also interesting and support the taking of decisions
in the design phase of a system that could potentially avail of BM interpretation
techniques.

7.4 Future Work

Our research provided us with answers to the original questions on the feasibility
and performance of an interpretative approach to BM execution. It also raises a
number of questions that we would like to investigate in the future.

Capturing system behaviour The formalism, as well as the tool side of BM in-
terpretation, was explored. However, we did not investigate the process of actually
capturing system behaviour within such a model. It would be helpful to have a
methodology for such a process and to research how interpretation would fit to such a
methodology. As the use of BMs for specification of management tasks has only been
studied in recent years, there are no established guidelines. It seems to be beneficial
to identify common patterns for management tasks as best practices, which could
then be collected as BMs and subsequently used by means of model interpretation.

Employing model transformation While the transformation of BMs is well estab-
lished — there is a sound body of research and a whole range of available tools — the
application of this technique for runtime use and the application in a management
context are ongoing research topics. It would be beneficial to further study the
application of model transformations, such as refinement or partitioning of beha-
viour, in the context of network and systems management. The Investigation of the
consistency issues that can arise when transforming a running model would also be
very interesting. Such inconsistencies might appear in the execution specification,

206

7.4 Future Work

e. g. in the history state configuration, but also between the execution specification
and the BM itself, for example when missing pre-compiled expression statements for
a newly added action.

Host-level concurrency We investigated concurrent interpretation in the context of
parallel regions within a single model, but only superficially explored the implications
of an underlying execution platform’s parallelism in regard to the interpretation
performance. Studying the effects that concurrently executing BMs have on each
other would be a fitting complementary research topic to this thesis. This topic
is also interesting because of the potential increase in execution speed due to the
parallelism offered by modern multi-core processors or the facilitation of Graphics
Processing Units (GPU). We suppose that by finding an efficient mapping of the
interpreter’s stepwise event processing routines to an underlying platform’s parallel
execution features one could increase the speed of a BM interpreter beyond the
performance provided by conventional compiled languages.

Collective models Figure 2.15 introduces a Mapping step for assigning models to
CUs. The idea behind this is to specify the behaviour of a collective of cooperating
CUs and to automatically transform such an overall BM to a number of local
ones, fitting to the network topology. The local models would then execute on the
individual CUs, cooperating to achieve a common goal. A working system that
follows this approach would be an important contribution to the autonomic systems
engineering field. Our work on BM interpretation lays the foundation of such a
system, but does not investigate methods and criteria for adaptation of a model to a
given network topology or a collective of CUs.

Impact of the Implementation Language and Runtime System All of the in-
terpreter implementations were created using the Java platform. The baseline
implementation uses C++, but this is only an execution engine with code generated
by Rhapsody, not a BM interpreter. The use case study with the resource-constrained
interpreter also uses C++, but this is just an experiment for determining the smallest
resource usage possible. It would be interesting to compare the performance of these
implementations with interpreters that use programming languages with a different
runtime system, especially with a full-grown BM interpreter using C++. Furthermore,
it would be interesting to generate the performance benchmark using Java classes
to assess the difference between interpretation and compilation approaches for this
particular technology.

Performance indicators The selection of the performance indicators used for the
benchmark definition is subjective — it contains what we believe to be the most
meaningful indicators. Besides our experience and the data sets collected by us, there

207

7 Conclusion

is currently no independent data that could support their significance. Although
we are sure that the benchmark is both valid and the currently best possible tool
for assessing the performance of BM execution mechanisms, it would be beneficial
to re-visit the benchmark definition at a later time, to judge upon the practical
relevance of the proposed indicators.

Further Applications Currently, we consider two application ideas for a closer
investigation. The first one concerns the use of BM interpretation as a customisation
mechanism for light-weight composition of telecommunication services. Telecom-
munication operators are providing APIs to access core network functions (e. g. the
sending of text messages). Composition of services that use these APIs could be
specified and executed using suitable BMs, while core network functions would be
safely hidden by FCs. This approach is more lightweight, as similar technology that is
already available from the business process engineering community uses heavyweight
programming in the large components like BPEL engines (see Section 3.3.1). The
second application idea is about constructing a mechanism for supervision of the
dynamic aspects of service interfaces. This follows the idea of interface automata as
proposed by L. Alfaro and T. Henzinger [5] to specify the temporal dependencies
of method invocations on an interface. Using BMs one can constrain and monitor
the message exchanges between communicating entities and thus, provide a runtime
checking system that goes far beyond the capability of current type checkers. We now
know that BM interpretation is a feasible mechanism, and these two ideas already
show that it can be useful in a variety of other applications.

208

Appendices

A UML State Machines

UML 2 Behavioral State Machines are defined as consisting of the classes and
relationships depicted in Figure A.1, which is taken from [255, p. 527] and the
following text explains each of the classes in detail.

Figure A.1: Definition of state machines in UML 2.2

209

Appendices

StateMachine This class serves as the root entity, containing the complete structure
of the behaviour specification. It inherits from the generic Behavior class, which
effectively enables the nesting of state machines. A StateMachine owns one or more
parallel regions defined by the Region class, and these regions contain the actual
vertices (see description below) and transitions that make up the behaviour. As
UML is object-oriented, it is possible to define operations and attributes on classes.
The StateMachine class provides — among others — operations for determining the
hierarchical order of two states: “The operation LCA(s1,s2) returns an orthogonal
state or region that is the least common ancestor of states s1 and s2, based on the
statemachine composition hierarchy.” and “The query ancestor(s1, s2) checks
whether s2 is an ancestor state of state s1.” [255, 15.3.12, “Additional Operations”].
These two methods can be utilised when determining the entry and exit actions
associated with a transition as described in Section 2.2.2.

Region The Region class is used to implement parallelism in UML State Machines.
According to [255, p. 550], regions are notationally defined by dividing a state using
one or more dashed lines, as shown in Figure A.2.

StateName

Region 1 Region 2

Figure A.2: Notation for a state with two regions in UML 2.2

Regions contain vertices and transitions. They also create a navigable composition
hierarchy through associations with the containing State or StateMachine as well as
the owned vertices. A Region is constrained to contain at most one initial and one
history vertex.

Vertex Vertices are contained in a region and are connected by transitions. They
define a graph structure through the associated incoming and outgoing transitions.
A Vertex class is an abstract type and can occur in three forms: either as a State, as
a Pseudostate or as a ConnectionPointReference. References to connection points
are used when composing partial models by means of exit and entry points (see
2.1.4); the State and Pseudostate classes are each explained below. Vertices have no
additional attributes.

Transition The Transition class defines a directed relationship between a source
and a target vertex. Transitions support multiple triggers, can have an optional guard

210

A UML State Machines

condition and an optional action statement (referred to as an effect). A Transition
has a single additional attribute, kind, which defines the processing of entry and exit
behaviours in regard to the source and target state. The kind attribute can take three
different values: ‘internal’, ‘local’ and ‘external’. This characterisation of transitions
is particular to UML and defined in the standard [255, 15.3.15, “Semantics”] in the
following manner ([...] denotes an omission in the cited text).

internal “[...] implies that the transition, if triggered, occurs without exiting or
entering the source state. Thus, it does not cause a state change. This means
that the entry or exit condition of the source state will not be invoked. An
internal transition can be taken even if the state machine is in one or more
regions nested within this state.”

local “[...] implies that the transition, if triggered, will not exit the composite
(source) state but it will apply to any state within the composite state and
these will be exited and entered.”

external “[...] implies that the transition, if triggered, will exit the composite (source)
state.”

Generally speaking, the semantics for the external transition kind are closest to the
conventional behaviour for automata supporting entry and exit actions. Internal
transitions have also been used in automata theory for some time (see 3.1.1), but
the semantics for local transitions are novel.

The notation for a transition is an arrow, leading from a source to a target state.
The arrow can be decorated with a label, which specifies optional event triggers, a
guard condition and an effect. The transition label needs to adhere to the following
format, given in EBNF.

label ::= (trigger (‘,’ trigger)∗)? (‘[’ guard-constraint ‘]’)? (‘/’ behavior-expression)?

All of the three components are optional. Should a transition not specify a trigger,
then it is implicitly triggered on a state’s completion event. UML dictates that
completion events need to be sent once a state is completely entered (the entry and
do activities have finished executing, see [255, 15.3.14, “Semantics”, “Completion
transitions and completion events”], and that completion events need to be processed
before any other events (in particular any external event).

The specification [255, p. 581] also states that a transition arrow is drawn differently,
depending on the transition kind. For internal transitions it is omitted completely.
Figure A.3 A) shows the common2 syntax for a local transition: the arrow starts at
the border of the source state and ends at the border of the target state. An external

2Alternatively, a local transition can be marked with a ‘*’ and drawn like an external one.

211

Appendices

transition is depicted in Figure A.3 B). This one leaves the source state first and
then re-enters it.

OuterState OuterState

InnerState InnerState

A) local B) external

Figure A.3: Notation for local and external transitions in UML 2.2

State In UML, states are drawn as boxes. They might be compound, in which
case they contain substates drawn as boxes within the State box. The opposite of
a compound state is a simple state. A state is called orthogonal should it contain
two or more regions. A state might also be a submachine state, meaning that it
represents a complete state machine. UML allows the State class to represent a
complete, external state machine, which is entered upon entering of the state and
left upon completion of the external behaviour. Such a feature can help to structure
complex BMs by enabling a separation into independently managed sub-models and
supporting re-use of existing BMs.

A State can expose a number of behaviors: an entry behaviour, an exit behaviour
and a do-activity (also called an in-state behaviour). Entry and exit behaviours are
executed when entering or leaving a state. A do activity is an activity that executes
while a system is in a certain state. Once it completes, a completion event is raised.
In case that the state should be left before a do activity commences, the do activity
would be implicitly aborted.

Each UML state relates to a set of deferrable trigger events. Should a system
be supplied with an input event that occurs in one of the active state’s deferred
event sets, then the event is stored until a state is entered where the event can be
consumed3.

There is only one class that inherits from State: the class FinalState, which
indicates a state where a BM has finished execution. In UML, a final state is
depicted with the symbol shown in Figure A.4.

Pseudostate The Pseudostates class defines a number of types of transient vertices
that a system can encounter, while in the process of changing states. The processing
of a BM is not allowed to stop in a pseudostate and event processing needs to continue

3Exactly this feature forces one to implement a UML BM interpreter with a single message queue
per control flow.

212

A UML State Machines

Figure A.4: The notation for final states in UML 2.2

until the BM has entered a state. Pseudostate is used to create compound transitions
and to prescribe default routes for the control flow. A compound transition is defined
as ‘[...] a “semantically complete” path made of one or more transitions, originating
from a set of states (as opposed to pseudostate) and targeting a set of states.’ [255,
15.3.14, “Semantics”]. Individual transition segments are connected by pseudostates
and, as BM processing cannot conclude in a pseudostate, a compound transition
needs to be processed as a single entity.

There are ten different kinds of pseudostates specified in [255, 15.3.8]. We introduce
them in the following list, together with their common notation. There are a couple
of notational variants and the reader is requested to refer to the standard document
for a discussion of the alternative notations.

initial represents a Vertex with a single transition leading to a
default start state. The transition is not allowed to have triggers or
guard conditions, and only one initial vertex is allowed per region.

H*
deepHistory represents the state configuration of the compound
state containing this pseudostate and all of its substates when it was
last exited. This state configuration is reestablished once the deep
history pseudostate is entered. Similar to the initial pseudostate, a
single transition can leave the vertex that defines the initial state
entered, in case the deep history function has never been active
before.

H
shallowHistory is similar to the deep history pseudostate, but re-
members only the active state configuration of the containing state
(and not of its substates).

fork enables the splitting of a single control flow into multiple ones
that enter parallel regions. Outgoing transition segments for such a
pseudostate cannot be annotated with conditions or triggers.

join has the opposite functionality of fork: the join pseudostate
bundles a number of control flows, coming from different parallel
regions, in a single one. Transition segments that enter a join
pseudostate are not allowed to have triggers or guard conditions.

213

Appendices

junction can be used to chain together multiple transition segments,
including merging or splitting a transition (this does not fork the
control flow). The path of transition segments that is taken depends
on the guard conditions annotated on the outgoing transition seg-
ments for the pseudostate. The model designer needs to make sure
that exactly one outgoing transition is valid in all cases — a specific
else label is provided that might serve as a catch-all in case that no
other guard condition is valid. Conditions on a junction pseudostate
are evaluated before processing of the transition, meaning that ac-
tions encountered in previous transition segments are not able to
influence the decision of the path to follow.

choice is similar to the junction pseudostate but evaluated dynam-
ically at the time that the pseudostate is reached. This means
that actions encountered in the previous transition segments can
influence the decision taken at the choice pseudostate.

Name
entryPoint is used with partial models for entering a state machine
or composite state. It provides a single transition to a vertex within
each of the regions of the entered state.

Name
exitPoint is also used with partial models when exiting a composite
or submachine state. On encountering this pseudostate, the complete
state is left (including termination of orthogonal control flows) and
the next system state is determined using the transition that has
this pseudostate as source vertex.

terminate shuts down the execution of the state machine that this
pseudostate belongs to. The termination does not call any other
exit behaviours than the ones associated with the transition that
enters this pseudostate.

Redefinition

UML 2 provides features for the redefinition of four elements related to state machines:
the StateMachine itself as well as each Region, State and Transition. Figure A.5
shows the specification of redefinitions as defined in [255, p. 528].

Employing redefinition enables a model designer to extend existing BMs, while
retaining a traceable relationship between the new features and the original ones.
According to [28, page 192 ff.], the following kinds of redefinitions are defined in
regard to UML 2 State Machines.

• Replacing a simple state through a composed or orthogonal one.

214

B State Chart XML

528 UML Superstructure Specification, v2.2

Figure 15.3 - State Machine Redefinitions

Figure 15.4 - Time events

Figure A.5: Redefinition of state machines in UML 2.2

• Extending a composed or orthogonal state state with additional regions.

• Adding new transitions or substates to a composed or orthogonal state.

• Replacing a partial model with a conforming new one. The new partial model
needs to offer all entry and exit points of the former one, but can also add new
ones.

• Replacing an existing transition with a conforming new one. The new transition
will need to leave the same source state and posses the same triggers as the
replaced one, but needs to redefine the target state as well as the optional
guard condition and action.

It is not possible to redefine states or transitions marked with {final}.

B State Chart XML

The language constructs of the SCXML are classified in modules (namely Core,
External Communications, Data, Script and Anchor). Each of the SCXML modules
groups a distinct set of features and is briefly described in the following text.

215

Appendices

Core Module The core module defines the root element <scxml> along with the
<state>, <transition>, <initial> and <final> elements for specification of the
model structure. The <parallel> element allows to specify parallel regions. Explicit
elements for fork and join have been excluded4, as their functionality can be re-
created using event triggers (a completion event is generated once all end states
contained within a <parallel> are reached). State composition is created through
the composition hierarchy of the XML elements, and control flow can be remembered
using the <history> element.

Actions are specified using specific executable content elements. Executable content
is attached to states using <onentry> or <onexit> elements, while direct child
elements are used in case of an attachment to transitions. The core module defines
five standard elements for executable content: <raise> for generating an (interpreter-
local) event, <log> for writing logging entries as well as <if>, <elseif> and <else>

for defining state- or transition internal choices. The set of executable content
elements can be extended, either by other modules of the SCXML working draft or
using proprietary extensions.

External Communications Module Defines executable content that enables send-
ing messages and invoke services through the <send> and <invoke> elements. Con-
trary to <raise>, <send> is used to transmit events to external systems. The
transport mechanism is not prescribed by the standard, but left open for the inter-
pretation platform to define. It is possible to indicate the transport mechanism using
a type attribute in the <send> element. Events can be delayed and cancelled in case
that they have not already been sent.

Invocation of synchronous services is carried out using the <invoke> command,
which can be used to emulate a Remote Procedure Call (RPC), including passing of
parameters to the invoked service. The <invoke> command creates an instance of the
external service and returns to the interpreter while the external service is running.
The service might then generate several events, but needs to finish operation with a
dedicated completion event, triggering execution of custom functionality specified
using the <finalize> element. The <finalize> element can be used to aggregate
the events sent by the service and stores the operation’s result. If the model leaves a
state with a running service invocation, the interpreter will cancel the invocation
automatically. <invoke> is well suited for calling FCs from a BM specified in the
SCXML.

Data Module Definition of the BM context and access to this data is provided
by the data module through the <datamodel>, <data>, <assign>, <validate> and
<param> elements. The <datamodel> element serves as the root for a tree of arbitrary
but uniquely identified <data> XML nodes. Assignment to the data model is done

4<join> used to be part of the working draft until version 24 January 2006.

216

B State Chart XML

by specifying a data model location using the <assign> element. The expression
language for describing a location is not prescribed by the SCXML working draft,
but depends on the profile of the execution platform. All of the elements that
contain conditional, location or value expressions have read access to the BM state.
For example, this is the case for any guard condition, <if> conditions or <param>

elements used in conjunction with <invoke> to pass data from a runtime BM state
location directly to an external service. It is possible to validate state content from
within the BM using the <validate> element. The usage of XML, as a format for
runtime model state data, also permits using all existing technologies for describing
state data (e. g. , name spacing, referencing of external data, transformation between
representations, filtering of content). As useful as this might be, it also highlights
one of the downsides of SCXML: the language is clearly geared towards a web
infrastructure and integration with other platforms might be intricate and inelegant.

Script Module The script module enables the integration of a scripting language
with SCXML by specifying a <script> element containing the functionality to
execute. The scripting language is defined by the employed SCXML profile.

Anchor Module The anchor module defines a single element <anchor>, which is
used to revert an executing model to a so-called snapshot. Such a functionality
goes beyond the history construct, as snapshot data includes both the former active
state configuration as well as the former context. During the work on this thesis, a
new version of the working draft (13. May 2010) was published, which removed the
anchor module.

The original goal for creation of SCXML was to specify a flow control language
allowing for flexible interaction management in the context of the activities of the
W3C Voice Browser Working Group and the W3C in general [221]. It soon became
obvious that the language is general enough to meet the needs of other applications,
e. g. Nokia Qt uses SCXML in their Qt animation framework [253], and we are
employing it to specify BMs for network and systems management.

The extensibility of SCXML builds on a profile mechanism. There are profiles
that define a concrete realisation of the language by specifying which modules are
included, which data format is utilised and how certain expressions (conditional
expressions, location expressions and value expressions) are to be evaluated. In the
working draft dated October 2009, three profiles are defined:

Minimal Defines a state machine with no data model and no external communica-
tions, relying only on the Core module.

ECMAScript Defines state machines that facilitate the JavaScript Object Notation
(JSON) for data models (see RFC 4627) and the ECMAScript Compact Profile

217

Appendices

(ES-CP) [231] or ECMAScript for XML (E4X) [232] as expression languages.
Requires the Core, External Communications, Data and Script modules.

XPath Defines state machines that use XML for the data model and XPath 2.0 [288]
for specification of expressions. Relies on the Core, External Communications
and Data modules.

The provided profiles are all geared towards usage in web environments. Although
it is possible to utilise SCXML in a variety of contexts, its web heritage is obvious
and it is most fruitfully applied in such an environment.

When using the ECMAScript profile, the combined syntax of the SCXML and
ECMAScript can be confusing and hard to read. This problem also persists when
defining proprietary profiles for integration of the SCXML with regular programming
languages. For example, when integrating a platform based on Java technology via
JEXL [217], most expressions will necessarily reflect concepts of the Java language
(type system, data model access, etc.) and hence are visible in SCXML-based model
format, making it necessary for a model designer to understand them.

As the data model format is left open, SCXML can include and work with any data
format. Such a way of handling data has a clear downside: pure SCXML does only
provide generic, non type-specific features for dealing with data (reading, assignment
and validation of XML elements or sub-trees). This has practical implications when
integrating executable content with a data model. For example, it is impossible to
use simple data structures, like a list, within standard SCXML. We found two —
implementation dependent — ways of dealing with this issue. One is to provide
the necessary functions as executable content through appropriate features of the
facilitated scripting language. The second is to extend SCXML through custom
actions.

Custom Actions The Apache Software Foundation provides an implementation
of SCMXL as part of the Apache Commons projects [215]. This software provides
a mechanism to extend standard SCXML with additional executable content, by
specification of new XML tags and their associated semantics using Java classes.

Technically, this is done by instantiating a user-created class that conforms to
the CustomAction class provided by the Apache SCXML implementation. The
instantiated object is then registered with the SCXML parser before reading the
document. This enables the parser to bind user-provided functionality with the
custom XML tags used in the document. A walk-through tutorial for this tech-
nique is given in the SCXML guide at http://commons.apache.org/scxml/guide/
custom-actions.html.

A mechanism like this makes it quite easy to integrate new features seamlessly
with the existing language, but also seems to undermine the standardisation efforts
at the W3C. As such, we see it fitting for the exploration of new SCXML constructs,
but not as a suitable solution employed for platform-independent BMs.

218

http://commons.apache.org/scxml/guide/custom-actions.html
http://commons.apache.org/scxml/guide/custom-actions.html

C ACElandic

C ACElandic

To provide an overview of the language, we will first introduce an instructive ex-
ample of an ACElandic program comprising the most important language features.
The currently implemented language features are then discussed in detail using an
Extended Backus-Naur Form (EBNF) [207] of the language syntax.

ACElandic by Example

The following lines show an introductory example of an ACElandic script. It describes
the self-model of an ACE, which offers a multiplexing service. We are employing
two supplementary services (data and location) for which we receive requests from a
client and forward them to the appropriate service. Then the ACE receives replies
from these services and returns them to the client. The example illustrates only the
basic usage of the language. A number of features, such as timers, parallel execution
of plans, inter-plan communication, etc. are not covered here.

1 XML "<!DOCTYPE selfModel SYSTEM \"../../dtd/selfmodel.dtd\">"

2

3 declare [

4 request <- myapplication.events.MultiPlexerRequestEvent,

5 reply <- myapplication.events.MultiPlexerReplyEvent,

6 start <- myapplication.events.MultiPlexerStartEvent,

7 stop <- myapplication.events.MultiPlexerStopEvent

8];

9

10 selfmodel multiplexer {

11

12 initial plan setup {

13 reveal multiplex;

14 accept -> multiplex.contract;

15 discover service.date { select provider.date; }

16 discover service.location { select provider.location; }

17 contract server.contract [

18 composer <- self/address,

19 date <- local/provider.date,

20 location <- local/provider.location];

21 switch operate;

22 }

23

24 plan operate {

25 receive start <= multiplex.contract;

26 forever {

27 choice {

28 alternative {

29 receive request <= multiplex.contract when message/type = date

30 do {

31 send request[type <- get] => server.contract : date;

219

Appendices

32 receive reply [now -> answer] <= server.contract;

33 send reply[date <- local/answer] => multiplexer.contract : client;

34 }

35 }

36 alternative {

37 receive request <= multiplex.contract when message/type = location

38 do {

39 send request[type <- get] => server.contract : location;

40 receive reply [here -> answer] <= server.contract;

41 send reply[location <- local/answer] => multiplexer.contract : client;

42 }

43 }

44 alternative {

45 receive stop <= multiplex.contract do { exit; }

46 }

47 }

48 switch finalize;

49 }

50 }

51

52 plan finalize {

53 cancel server.contract;

54 cancel multiplex.contract;

55 switch setup;

56 }

57 }

The script starts with an XML header. The header is simply copied to the
beginning of the XML output file. It specifies the document type using either a
reference to a DTD (as in the example) or a XSD document. The next directive
is a declare block that allows to choose aliases for otherwise very long identifiers.
We assume that myapplication.events is a Java package and all the classes in this
package are derived from the ACE toolkit type ServiceUsageRequest (thus, it is
possible to set arbitrary fields within message of these types).

Then the actual self-model specification starts. It comprises three Plans, named
setup, operate and finalize. The setup Plan starts with a service offer (reveal)
with the associated goal multiplex. The reveal directive actually reacts to a GN
message by sending an appropriate GA. The next line accepts an incoming contract
and stores it under the name multiplex.contract into the global execution session,
which is the context that an ACE maintains in its Executor organ. Then two
subsequent discover directives are executed for each of the individual subservices,
and respective GN messages are sent out. The inner select part is executed for
incoming GAs. The addresses of the ACEs that sent the GAs are stored within
the local execution session under the keys provider.date and provider.location,
respectively. After committing a contract with identifier server.contract (stored
in the global execution session), the execution switches to the Plan operate.

220

C ACElandic

In the operate plan, a start message is first expected from the client sent over the
multiplex.contract. After receiving it, a non-deterministic choice (controlled by
the client) is entered. In the first alternative, the ACE reacts on requests sent over
the multiplex.contract with the type field set to date. It forwards the request
by sending a request message with its type set to get to the date provider (which
has the role date in the server.contract). If no role expression is to be used in
this statement, the request message will be send to all roles in the contract. After
receiving a response, it stores the value of the field now in the local execution session
under the key answer. Finally, the field date is set to local/answer in the final
reply towards the client of the multiplexer service. The second alternative handles
incoming requests to the location provider. Finally, a stop message is expected in
the third alternative, which causes the enclosing loop to be terminated. The final
statement in the operate Plan causes a switch to the finalize Plan. There, all
contracts are cancelled and the setup Plan is re-invoked.

A compilation of the multiplexer self-model results in three self-models, one
for each plan. Figure B.1 depicts a visualisation of the generated structure for the
second plan operate, with transition labels omitted for brevity; compilation of the
other plans yields only a number of consecutive states that are “chained” along a
single path.

Figure B.1: Structural view of the compilation result for the operate Plan

221

Appendices

The choice construct (st-21, entered from st-19) defined in line 27, is clearly visible
in the structure, with each of the alternatives leaving via a different transition. The
first alternative (receipt of a date type message) leads to st-24, the second alternative
(receipt of a location type message) leads to st-31 and the final alternative (stopping
of the operation) leads to st-38. The first two alternatives meet in state st-22, from
which a switch to the finalize plan is triggered (see line 48). The forever loop
could now theoretically continue by following the transition to st-21, but as the plan
switch removes the old plan, this never occurs.

The ACElandic compiler is a first step into exploring the possibilities of BM
generation using high-level languages. Therefore, it lacks properties common to
mature tools, e. g. mechanisms for the optimisation of the final production artefact.
An example is the transition from st-19 to the final state. This transition is purely
an artefact resulting from the compilation mechanisms, it is never triggered (the
transition is annotated with a condition that evaluates the expression 1 6= 1) and is
therefore unnecessary for the model.

Extended Backus-Naur Forms

To describe the (context-free) syntax of ACElandic, a variant of EBNFs is used. EB-
NFs combine expressive means of context-free grammars and regular expressions (thus
the language which can be defined by an EBNF is still strictly context-free). Non-
terminal symbols are typeset in boldfaced letters, terminal symbols in typewriter

font or in single quotes in the case of literal symbols such as ‘{’ or ‘->’. EBNF rules
are of the form

nonterminal ::= α,

where α is a regular expression comprising terminal and nonterminal symbols (see
below). A string comprising terminal as well as non-terminal symbols is called a
sentence form, a string comprising only terminal symbols is a sentence. We talk
about a derivation step if we apply a rule of the above form to a sentence form.
Repeated derivation steps starting from a distinguished non-terminal symbol — the
so-called start symbol — form a derivation. A derivation is terminal if the resulting
sentence form is a sentence.

On the right hand side of rules, we use the following types of expressions:

• α? — α is an optional element

• α1|α2| . . . |αk — one of the expressions αi has to be selected

• α∗ — α is repeated zero or more times

• α+ — α is repeated zero or more times

222

C ACElandic

Parenthesises are used if necessary. We sometimes use the syntax q :nt, where nt
is a nonterminal symbol and q is an additional identifier that refers to the special
usage of the nonterminal symbol in the context of a given syntactic rule. So for
instance, we use goal:identifier to denote the nonterminal identifier and goal to
express that a particular identifier refers to the name of a goal.

Moreover, for the sake of brevity, we confuse a nonterminal symbol with the
set of sentences which can be derived from it. For instance, we might write “a
plan comprises a sequence of statements” when we mean that “all the sentences
which can be derived from the nonterminal plan comprise of sequences of sentences
derivable from statement”.

Syntax and Semantics

Vocabulary

ACElandic keywords are:
selfmodel, declare, xml, plan, initial, global, local, message, failure, recover,

self, receive, do, on, when, send, disseminate, reveal, call, wait, select,

contract, if, elsif, else, default, discover, accept, from, while, forever,

false, true, choice, cancel, alternative, exit, switch, run, halt, evaluate,

no-ace-type, repository, visible, guard, cancellation, emitting, write,

start-timer, stop-timer, timeout, repeat, try, minor, marginal, critical,

catastrophic.

Keywords may be written in uppercase letters, so plan is equivalent to PLAN but
Plan is an identifier (see below).
Identifiers have to comprise of the letters ‘a’ . . . ‘z’, ‘A’ . . . ‘Z’, ‘0’ . . . ‘9’, ‘ ’, ‘-’, ‘.’,
but may not start with a digit or dot. Thus, examples of identifiers are ‘my.contract’,
‘provider2-address’, etc., but not ‘contract’ or ‘1.goal’. Numbers are usually given by
non-empty sequences of digits (floats are not supported yet).

Headers, Self-Models and Plans

An ACElandic script can be headed by an XML header which is copied at the
beginning of the output file. XML headers are of the form
xml “xml-code”

where xml-code is a string. Quotes occurring in xml-code have to be preceded by \.

Declares are specified by the following rule
declare ::= declare ‘[’ id :identifier ‘<-’ def :identifier (‘,’ identifier ‘<-’ identifier)∗ ‘]’ ‘;’

A declare comprises a number of definitions of the form id <- def. In the subsequent
selfmodel specification, the identifier id will be replaced by the identifier def.

223

Appendices

Declares can be followed by an additional repository declaration section.
repository: repository ‘{’ function+ ‘}’
function : emitting? f :identifier (‘[’ ‘*’ | fparam (‘,’ fparam)∗ (‘,’ ‘*’)?) ‘]’)?

‘|->’ c:identifier ‘:’ m:identifier (‘=>’ o:identifier)?‘;’

fparam : v :identifier ‘:’ t :identifier

In the ACE toolkit, FCs are Java classes contained in a specific repository, and
consequently ACElandic provides features for specifying dependencies on these FC.
As all communication inside an ACE is based on events, also the execution of an
FC is triggered using specific events, and the FC may dispatch result events when
concluding execution. Notationally, FC bindings are specified with a repository
declaration, consisting of a sequence of function signatures. A signature is given
by a name f, an optional formal parameter specification and a mapping to its Java
implementation. A formal parameter specification consists of a parameter name v
and a (Java) type identifier t. The star symbol ‘*’ is used to indicate that the function
has a variable parameter list (varargs). The Java implementation is assumed to be
the method m of the class c (a fully qualified class name is required). If the keyword
emitting is used, the function is assumed to issue output events. In connection
with emitting, an output mapper class o can be identified. If o is missing, then the
SimpleOutputMapper class will be used.

A selfmodel is defined as
selfmodel ::= selfmodel id :identifier ‘{’ plan+ ‘}’

where id is the name of the selfmodel. A plan is given by a sequence of statements:
plan ::= initial? plan id :identifier ‘{’ statement+ ‘}’

where id is the name of the plan. The optional keyword initial marks a plan as
default plan which is executed right after the start-up of an ACE.

ACElandic statements are of the following syntactic categories:
statement ::= assignment | receive | cancel | cancellation | send | disseminate |

wait | discover | reveal | contract | accept | conditional | loop | switch | run |
halt | exit | choice | write | start timer | stop timer | timeout | failure |
recovery | guard | visible

Discovery and Contracting

To discover an ACE providing a service achieving a certain goal, the discover
directive is available:

discover ::= discover goal :identifier (‘{’
select provider :identifier ‘{’ (statement)+ ‘}’

‘}’)+

224

C ACElandic

A discover directive sends out a GN message with the specified goal and listens for
incoming GA messages in the subsequent select clauses. The statement sequence
performed within the select clauses is for each incoming GA with the specified
goal ; the sender address of the GA is stored in the local execution session under
the key provider. The intention is that the select code can be used to determine an
appropriate service provider.
On provider side, a reveal statement is available which responds to an incoming GN
message with a specified goal :

reveal ::= reveal goal :identifier

To contract a set of service providers, use the following directive:
contract ::= contract name:identifier (‘[’ role (‘,’ role)+ ‘]’)?

role ::= role:identifier ‘<-’ address:expression

Here, name is the key under which the contract is stored in the global execution
session. An optional role specification comprises a sequence of pairs of the form role
<- address, where role is the role of an ACE in the specified contract and address is
an expression evaluating to the address of an ACE which assumes that role.
To accept a contract, an accept directive can be used:

accept ::= accept (from contractor :expression)? (‘->’ name:identifier)?‘;’

If the optional contractor expression is given, it is evaluated to the address of an
ACE and the contract is accepted only if it is initiated by a contract directive on
the contractor’s side. If the optional name identifier is given, the contract is stored
under the key name in the global execution session.
A contract can be cancelled using the chancel directive:

cancel ::= cancel name:expression‘;’

This cancels a contract with name name. The corresponding cancellation event can
be caught using the cancellation directive:

cancellation : cancellation expression do ‘{’ statement+ ‘}’
This directive can be used as an alternative in a choice directive.

Communication

ACElandic supports two communication modes: Sending and receiving messages
within a contract (i. e. inter-ACE communication) and communication between plans
executed in parallel. For sending a message over a given contract, the send directive
has to be used:

send ::= send msg :identifier (‘[’ param (‘,’ param)+ ‘]’)?

‘=>’ name:expression (‘:’ role:expression)?‘;’

param ::= key :identifier ‘<-’ value:expression

This directive results in sending a message of Java type msg (fully qualified) over the
contract name to the ACE assuming the role role. If the last expression is omitted,
the message is send to all ACEs within the contract name. Additionally, a number
of key/value pairs can be set within the outgoing message.

225

Appendices

Note: msg has to be derived from the ACE Toolkit class ServiceUsageEvent.
Internal communication is achieved by the disseminate directive.

disseminate ::= disseminate msg :identifier (‘[’ param (‘,’ param)+ ‘]’)? ‘;’

As before, msg is the fully qualified name of a Java class.
To receive an (intra- or inter-ACE) message, the receive directive has to be used:

receive ::= (on)?receive msg :identifier (‘[’ store (‘,’ store)+ ‘]’)?

‘<=’ name:expression (‘:’ role:expression)?

when guard :condition

within time:expression

(‘;’ | do-part expire-part | expire-part)

do-part ::= do ‘{’ statement+ ‘}’
expire-part ::= on expire ‘{’ statement+ ‘}’
store ::= key1 :identifier ‘->’ key2 :identifier

The receive directive receives a message of type msg.

• If the optional keyword on is used, the statement does not block the execution
of a plan, but checks only if an appropriate message is available. If the on

keyword is not used, the do-part has to be omitted.

• If a store sequence of element of the form key1 -> key2 is used, the contents
of the message stored under the key key1 in the incoming message are stored
in the local execution session under the key key2.

• An optional guard condition can be used to control the processing of the
incoming message beyond the pure message type msg. To access the contents
of the message stored under a key, use the qualified expression message/key
(see below).

• If the keyword within is used, an additional time expression (evaluating
to an integer value) and an additional timer is initialised to time ms. If the
timeout occurs before a message is received, the expire-part is executed. An
expire-part cannot be used without a within clause. The keyword on cannot
be used in connection with a within clause.

• Finally, if a message is received, the optional do-part is executed.

Plan Execution

For plan execution, the following directives are available:
run ::= run plan:identifier ‘;’

switch ::= switch plan:identifier ‘;’

halt ::= halt ‘;’

A start directive starts a plan with name plan. A switch directive stops the current
plan execution and initiates the execution of a given plan. A stop directive stops the

226

C ACElandic

execution of the current plan. Thus
switch my.plan ;

is equivalent to
run my.plan; stop;

Simple Statements

An assignment is of the form
assignment ::= (global | local) key :identifier ‘<-’ value:expression ‘;’

It stores the value value under the key key in the global or local execution session,
depending whether the keyword global or local is used.
A call statement is specified by

call ::= call fun:identifier (‘[’ param (‘,’ param)+ ‘]’)? ‘;’

It calls the specific functionality fun from the ACE internal repository passing the
parameters specified in the param list.
To wait for time ms, use

wait ::= wait time:expression ‘;’

Finally, a write statement has been supported:
write ::= write ‘[‘ channel ‘<-‘string ‘]’

channel::= severe | warning | info | debug | fine | finer | finest | stdout | stderr
This directive writes out a string to a given channel. The first seven channels (severe
to finest) relate to the ACE logging mechanisms. The other two channels stdout

and stderr write to the console (buffered and un-buffered, respectively).

Compound Statements

Conditionals are of the form
conditional ::= if condition ‘{’ statement+ ‘}’

(elsif condition ‘{’ statement+ ‘}’)∗

(else ‘{’ statement+ ‘}’)?

with the usual semantics. There are two loop constructs, namely:
loop ::= while condition ‘{’ statement+ ‘}’ | forever ‘{’ statement+ ‘}’

To terminate a forever statement, an exit statement is available:
exit ::= exit ‘;’

Note: To terminate a while loop, use an appropriate condition.
The choice statement introduces non-determinism into ACElandic:

choice :: = choice (within time:expression)? ‘{’
(alternative ‘{’ statement+ ‘}’)+

(default ‘{’ statement+ ‘}’)?

(on expire ‘{’ statement+ ‘}’)?

An alternative is enabled if the first statement in the included statement sequence
does not wait for an incoming message (i. e. it is not a blocking receive directive for

227

Appendices

which no incoming matching message is queued). The choice statement selects one
of those enabled alternatives and executes the included statement sequence. If no
enabled alternative exists, the default part is executed. If used with the within
clause, an additional timer is initialised to time. If a timeout occurs, the expired

clause is executed. A expire clause can only be used if a within clause is given.

Sometimes, a condition needs to be tested in order to proceed with the execution
of a plan. For this purpose, a guard statement is available.

guard ::= guard c:condition (‘;’ | do ‘{’ statement+ ‘}’)

If the condition c evaluates to false, the execution of the next statement (or the
optional statement block in the body of the directive) is not done. The condition is
tested only once. The guard statement can (and should) be used as an alternative
for a choice statement.

Conditions and Expression

ACElandic is not a fully fledged programming language, thus expressions and condi-
tions are somewhat restricted:

expression ::= integer | identifier | qualified | string

qualified ::= (global | local | self | message) ‘/’ id :identifier

Qualified expressions of the form global/id refer to the global execution session,
those of the form local/id to the local execution session, self/id relates to the
executing ACE itself (currently, only its address is supported and can be accessed
by self/address). Finally, message/id is only allowed in the guard condition of a
receive statement and related to its input message. Strings are given as usual by a
sequence of characters enclosed in quotes.

Conditions are:
condition ::= condition (‘&’ | ‘|’) condition | ‘!’ condition | relation

relation ::= expression (‘=’ | ‘#’ | ‘<’ | ‘<=’ | ‘>’ | ‘>=’) expression

Additional parenthesis are permitted. Logical and (&) binds stronger than logical or
(|). The symbol ! is used to denote negation.

Timer Handling

For timer handling, the following constructs are available:
start timer ::= start timer t:expression ‘<-’ v:expression ‘;’

stop timer ::= stop timer t:expression ‘;’

timeout ::= timeout t:expression (‘;’ | do ‘{’ statement+ ‘}’)

The start timer directive initialises a timer with name t to expire after v milli-
seconds. The stop timer directive stops the timer t. Finally, the timeout directive

228

C ACElandic

captures a timeout event for the timer t. It can be used as an alternative in a choice
statement.

Failure Management and Supervision

To communicate with an external supervisor or an internal failure handling routine,
a mechanism similar to the exception handling of modern programming language has
been implemented. ACElandic defines four failure classes, namely minor, marginal,
critical and catastrophic. A recovery block is described by the following syntax:

recovery ::= try ‘{’ statement+ ‘}’
(minor ‘{’ statement+ ‘}’)?

(marginal ‘{’ statement+ ‘}’)?

(critical ‘{’ statement+ ‘}’)?

(catastrophic ‘{’ statement+ ‘}’)?

The statement sequence in the try block has to contain a failure directive:
failure ::= failure (minor | marginal | critical | catastrophic) ‘;’

If a failure is raised by this directive, the corresponding recovery block in the sur-
rounding recovery directive is executed. Semantically, all states which belong to
one of the recovery block receive a desirability value specific to the failure mode
according to the following convention:

Failure Mode Desirability Value
minor 2

marginal 3
critical 4

catastrophic 5

Minor and marginal failures are interpreted as local errors (i. e. those problems
which can be resolved by the very ACE), while critical and catastrophic errors require
the involvement of an external supervisor.

An external supervisor may contain a planner component which produces a
coordinated course of actions concerning a number of ACEs to lead them back
into a desirable state (value = 1 for all local states of all plans executed by these
ACEs). Planning is done by means of a simulated execution of self-model plans.
Since this simulation gets unfeasible if all execution details are considered, only the
state/transition structure with trigger events of plans is used (i. e. no values from
execution and global sessions). Sometimes, however it is necessary to take values
into account in order to get a finer control over the evaluation of guard conditions of
transitions. For this purpose, a visibility directive has been implemented:

visible ::= visible ‘{’ id :identifier+ ‘}’ ‘;’

This directive declares a set of identifiers referring to key values in the global session.
If used, a planner is able to obtain this list and the global session and take the

229

Appendices

corresponding values into account while evaluating guard conditions, set parameter
values for messages, etc. Note that this directive has no impact to the actual plan
execution, but that such annotation of states enables recovery functionality that goes
far beyond conventional exception handling strategies.

D Values from Benchmark Measurements

The following table contains the measured performance indicators for the benchmark
using the three platform mappings. The name Rhapsody stands for the reference
benchmark implementation using generated C++with the Rational Rhapsody tool.
UML Interp. is the BM interpreter implementation using UML State Machines
and Ecore (see Section 4.4) and MPU refers to the MPU implementation in Java
and OSGi (see Section 4.5). If a value is below the specific measurement accuracy of
a platform, the entry is shown as < δ. The order of entries corresponds to the order
in which the scenarios have been introduced in Section 6.1.

Indicator Rhapsody UML Interp. MPU

SIZE.MEMORY.INIT 454.40 KB 28660.00 KB 35366.00 KB
SIZE.MEMORY.L0 465.52 KB 28715.00 KB 35368.00 KB
SIZE.MEMORY.L1 461.76 KB 29034.00 KB 35385.00 KB
SIZE.MEMORY.L2 457.28 KB 29183.00 KB 36795.00 KB
SIZE.MEMORY.L3 460.80 KB 30436.00 KB 38237.00 KB
SIZE.MEMORY.L4 465.76 KB 40192.00 KB 55509.00 KB
SIZE.MEMORY.GROW — 1.04 KB/State 1.81 KB/State
SIZE.EXECUTABLE.INIT 315.82 KB — —
SIZE.EXECUTABLE.L0 317.86 KB — —
SIZE.EXECUTABLE.L1 318.03 KB — —
SIZE.EXECUTABLE.L2 327.90 KB — —
SIZE.EXECUTABLE.L3 429.37 KB — —
SIZE.EXECUTABLE.L4 1423.20 KB — —
SIZE.EXECUTABLE — 100.67 KB 100.67 KB
SIZE.EXECUTABLE.GROW 0.10 KB/State — —

ALTERNATIVE.MIN 11.00 µs 37.00 µs 51.00 µs
ALTERNATIVE.AVG 12.20 µs 39.84 µs 53.20 µs
ALTERNATIVE.MAX 15.00 µs 65.00 µs 86.00 µs

EPSILON.MIN 0.33 µs 19.67 µs 13.33 µs
EPSILON.AVG 2.25 µs 25.33 µs 14.24 µs
EPSILON.MAX 4.67 µs 55.33 µs 26.67 µs

EVENT.MIN 1.00 µs 165.00 µs 64.00 µs
EVENT.AVG 23.38 µs 186.45 µs 70.06 µs
EVENT.MAX 128.00 µs 492.00 µs 233.00 µs

GUARD.MIN 2.00 µs 180.00 µs 183.00 µs
GUARD.AVG 24.16 µs 200.52 µs 191.96 µs
GUARD.MAX 198.00 µs 1140.00 µs 458.00 µs

COMPOUND.E02.MIN < δ 82.00 µs 52.00 µs

230

D Values from Benchmark Measurements

Indicator Rhapsody UML Interp. MPU
COMPOUND.E02.AVG 8.91 µs 95.06 µs 57.50 µs
COMPOUND.E02.MAX 858.00 µs 302.00 µs 157.00 µs
COMPOUND.E03.MIN < δ 92.00 µs 54.00 µs
COMPOUND.E03.AVG 8.90 µs 105.52 µs 59.74 µs
COMPOUND.E03.MAX 672.00 µs 279.00 µs 197.00 µs
COMPOUND.E04.MIN < δ 102.00 µs 58.00 µs
COMPOUND.E04.AVG 8.76 µs 115.38 µs 63.08 µs
COMPOUND.E04.MAX 148.00 µs 317.00 µs 166.00 µs
COMPOUND.E05.MIN < δ 95.00 µs 54.00 µs
COMPOUND.E05.AVG 8.78 µs 108.63 µs 59.52 µs
COMPOUND.E05.MAX 118.00 µs 327.00 µs 155.00 µs
COMPOUND.E06.MIN < δ 104.00 µs 57.00 µs
COMPOUND.E06.AVG 9.32 µs 118.23 µs 62.77 µs
COMPOUND.E06.MAX 2172.00 µs 284.00 µs 158.00 µs
COMPOUND.E07.MIN < δ 108.00 µs 56.00 µs
COMPOUND.E07.AVG 8.93 µs 121.45 µs 62.50 µs
COMPOUND.E07.MAX 107.00 µs 327.00 µs 143.00 µs
COMPOUND.E08.MIN < δ 91.00 µs 55.00 µs
COMPOUND.E08.AVG 8.88 µs 104.66 µs 59.57 µs
COMPOUND.E08.MAX 206.00 µs 260.00 µs 149.00 µs
COMPOUND.E09.MIN < δ 100.00 µs 57.00 µs
COMPOUND.E09.AVG 8.86 µs 113.29 µs 62.62 µs
COMPOUND.E09.MAX 122.00 µs 313.00 µs 171.00 µs
COMPOUND.MIN < δ 82.00 µs 52.00 µs
COMPOUND.AVG 8.92 µs 110.28 µs 60.91 µs
COMPOUND.MAX 2172.00 µs 327.00 µs 197.00 µs

EXPRESSION.COUNT.MIN 34.00 µs 2581.00 µs 6657.00 µs
EXPRESSION.COUNT.AVG 64.78 µs 3216.29 µs 6918.77 µs
EXPRESSION.COUNT.MAX 5924.00 µs 7804.00 µs 8603.00 µs
EXPRESSION.EVENT.MIN 2.00 µs 60.00 µs 62.00 µs
EXPRESSION.EVENT.AVG 3.01 µs 69.94 µs 68.99 µs
EXPRESSION.EVENT.MAX 7.00 µs 209.00 µs 97.00 µs
EXPRESSION.CALL.MIN < δ 48.00 µs 413.00 µs
EXPRESSION.CALL.AVG 1.04 µs 66.37 µs 479.21 µs
EXPRESSION.CALL.MAX 2.00 µs 1259.00 µs 821.00 µs
EXPRESSION.GUARD1.MIN < δ 25.00 µs 40.00 µs
EXPRESSION.GUARD1.AVG 1.03 µs 30.67 µs 44.92 µs
EXPRESSION.GUARD1.MAX 2.00 µs 69.00 µs 74.00 µs
EXPRESSION.GUARD2.MIN < δ 28.00 µs 57.00 µs
EXPRESSION.GUARD2.AVG 1.01 µs 34.20 µs 64.08 µs
EXPRESSION.GUARD2.MAX 2.00 µs 150.00 µs 110.00 µs
EXPRESSION.GUARD3.MIN < δ 29.00 µs 77.00 µs
EXPRESSION.GUARD3.AVG 1.03 µs 36.51 µs 93.23 µs
EXPRESSION.GUARD3.MAX 2.00 µs 251.00 µs 479.00 µs
EXPRESSION.GUARD.MIN < δ 25.00 µs 40.00 µs
EXPRESSION.GUARD.AVG 1.02 µs 33.79 µs 67.41 µs
EXPRESSION.GUARD.MAX 2.00 µs 251.00 µs 479.00 µs

231

Appendices

Indicator Rhapsody UML Interp. MPU

CONCURRENT.MIN 3.00 µs 704.00 µs 338.00 µs
CONCURRENT.AVG 3.92 µs 785.96 µs 358.76 µs
CONCURRENT.MAX 8.00 µs 1036.00 µs 471.00 µs
HISTORY.MIN 5.00 µs 973.00 µs 468.00 µs
HISTORY.AVG 6.20 µs 1094.72 µs 480.12 µs
HISTORY.MAX 10.00 µs 1448.00 µs 587.00 µs

CONFIGURATION.MIN 4.00 µs 14.00 µs 12.00 µs
CONFIGURATION.AVG 7.68 µs 44.38 µs 16.04 µs
CONFIGURATION.MAX 14.00 µs 139.00 µs 31.00 µs

LIFECYCLE.MEMORY.BEGIN 393.00 KB 7903.00 KB 35832.00 KB
LIFECYCLE.MEMORY.INIT 471.00 KB 27203.00 KB 35834.00 KB
LIFECYCLE.MEMORY.START 507.00 KB 27167.00 KB 35837.00 KB
LIFECYCLE.MEMORY.MIN 552.00 KB 26991.00 KB 35791.00 KB
LIFECYCLE.MEMORY.AVG 561.62 KB 28023.26 KB 35862.14 KB
LIFECYCLE.MEMORY.MAX 565.00 KB 38519.00 KB 35973.00 KB
LIFECYCLE.MEMORY.END 569.00 KB 27274.00 KB 35964.00 KB
LIFECYCLE.ENTER.MIN 4.00 µs 972.00 µs 12982.00 µs
LIFECYCLE.ENTER.AVG 6.04 µs 1073.52 µs 13697.42 µs
LIFECYCLE.ENTER.MAX 10.00 µs 1275.00 µs 16318.00 µs
LIFECYCLE.OVERALL.MIN 17.00 µs 1108.00 µs 13177.00 µs
LIFECYCLE.OVERALL.AVG 19.06 µs 1226.40 µs 13898.46 µs
LIFECYCLE.OVERALL.MAX 24.00 µs 1435.00 µs 16524.00 µs

TIMESTAMP.MIN < δ 3.00 µs < δ
TIMESTAMP.AVG 2.13 µs 3.64 µs 0.22 µs
TIMESTAMP.MAX 5.00 µs 9.00 µs 1.00 µs

SPEED 1 22.30 20.33
MEMORY 1 64.09 81.07

232

E Self-Models for the Dynamic Reconfiguration Scenario

E Self-Models for the Dynamic Reconfiguration
Scenario

This section contains self-models used in the dynamic reconfiguration scenario (see
Section 5.1.1). The self-models are described for the following five ACE types:
Supervisor, Corellator, Assesor, Sensor and Effector. The Client and Provider self-
models are not of interest, as the supervision functionality only relies on the heartbeat
messages transmitted between the GCO objects.

Supervisor Self-Model

1 XML "<!DOCTYPE selfModel SYSTEM \"../../dtd/selfmodel.dtd\">"

2

3 declare [

4 Config <- cascadas.supervision.interaction.protocol.SupervisionConfigEvent,

5 Notification <-

6 cascadas.supervision.interaction.protocol.SupervisionNotification

7];

8

9 selfmodel supervisor {

10

11 initial plan control {

12 forever {

13

14 reveal supervision;

15 accept -> supervision-contract;

16 receive Config[seller -> client,

17 auction-center -> server,

18 service-contract -> service-contract] <= supervision-contract;

19

20 discover sensor {

21 select sensor.client;

22 select sensor.server;

23 }

24 discover effector {

25 select effector.client;

26 select effector.server;

27 }

28 discover correlator {

29 select correlator.server;

30 select correlator.receiver;

31 }

32 discover assessor {

33 select assessor;

34 }

35

36 contract internal.supervision-contract[

37 controller <- self/address,

233

Appendices

38 sensor.client <- local/sensor.client,

39 effector.client <- local/effector.client,

40 sensor.server <- local/sensor.server,

41 effector.server <- local/effector.server,

42 correlator.server <- local/correlator.server,

43 correlator.client <- local/correlator.receiver,

44 assessor <- local/assessor];

45

46 write[info <- "sending.config.message.to.sensor.client"];

47 send Config[effector <- local/effector.client,

48 supervisable <- local/client,

49 receiver <- local/server,

50 service-contract <- local/service-contract,

51 correlator.sender <- correlator.client,

52 correlator.receiver <- correlator.server]

53 => internal.supervision-contract : sensor.client;

54

55 write[info <- "sending.config.message.to.sensor.server"];

56 send Config[effector <- local/effector.server,

57 supervisable <- local/server,

58 receiver <- local/client,

59 service-contract <- local/service-contract,

60 correlator.sender <- correlator.server,

61 correlator.receiver <- correlator.client]

62 => internal.supervision-contract : sensor.server;

63

64 write[info <- "sending.config.message.to.effector.client"];

65 send Config[sender <- sensor.server, receiver <- sensor.client]

66 => internal.supervision-contract : correlator.server;

67 send Config[sender <- sensor.client, receiver <- sensor.server]

68 => internal.supervision-contract : correlator.client;

69

70 cancellation supervision-contract do {

71 cancel internal.supervision-contract;

72 }

73 }

74 }

75 }

Corellator Self-Model

1 XML "<!DOCTYPE selfModel SYSTEM \"../../dtd/selfmodel.dtd\">"

2

3 declare [

4 Config <- cascadas.supervision.interaction.protocol.SupervisionConfigEvent,

5 Notification <-

6 cascadas.supervision.interaction.protocol.SupervisionNotification

7];

8

9 repository {

234

E Self-Models for the Dynamic Reconfiguration Scenario

10 correlate[result : java.lang.String, last-sender : java.lang.String,

11 last-receiver : java.lang.String]

12 |-> heartbeat_validation.components.HeartbeatCorrelator:correlate;

13 start |-> heartbeat_validation.components.HeartbeatCorrelator:start;

14 }

15

16 selfmodel correlator {

17

18 initial plan correlate {

19 forever {

20 reveal correlator;

21 accept -> internal.supervision-contract;

22 write[info <- "internal.supervision.contract.accepted"];

23 receive Config[sender -> sensor.sender, receiver -> sensor.receiver]

24 <= internal.supervision-contract : controller;

25 write[info <- "got.config.message"];

26 global sensor.sender <- local/sensor.sender;

27 global sensor.receiver <- local/sensor.receiver;

28 call start;

29 forever {

30 choice {

31 alternative {

32 receive Notification[data -> last.sender]

33 <= internal.supervision-contract : global/sensor.sender;

34 write[info <- "got.notification.from.sender"];

35 }

36 alternative {

37 receive Notification[data -> last.receiver]

38 <= internal.supervision-contract : global/sensor.receiver;

39 write[info <- "got.notification.from.receiver"];

40 }

41 alternative {

42 cancellation internal.supervision-contract do {

43 exit;

44 }

45 }

46 } // choice

47 call correlate[result <- current-delay, last-sender <- last.sender,

48 last-receiver <- last.receiver];

49 send Notification[result <- local/current-delay]

50 => internal.supervision-contract : assessor;

51 } // forever

52 } // forever

53 } // plan

54 } // selfmodel

Assessor Self-Model

1 XML "<!DOCTYPE selfModel SYSTEM \"../../dtd/selfmodel.dtd\">"

2

235

Appendices

3 declare [

4 Config <- cascadas.supervision.interaction.protocol.SupervisionConfigEvent,

5 Notification <-

6 cascadas.supervision.interaction.protocol.SupervisionNotification

7];

8

9 selfmodel assessor {

10

11 initial plan setup {

12 forever {

13 reveal assessor;

14 accept -> internal.supervision-contract;

15 global THRESHOLD <- 4;

16 global UPPER <- 1000;

17 global current-delay.client <- 0;

18 global current-delay.server <- 0;

19 forever {

20 choice {

21 alternative {

22 receive Notification[result -> current-delay.client]

23 <= internal.supervision-contract : correlator.client;

24 global current-delay.client <- local/current-delay.client;

25 write[info <- "got.notification.from.client"];

26 }

27 alternative {

28 receive Notification[result -> current-delay.server]

29 <= internal.supervision-contract : correlator.server;

30 global current-delay.server <- local/current-delay.server;

31 write[info <- "got.notification.from.server"];

32 }

33 alternative {

34 cancellation internal.supervision-contract do {

35 exit;

36 }

37 }

38 } // choice

39 if global/current-delay.client > global/THRESHOLD &

40 global/current-delay.client < global/UPPER {

41 write[warning <- "threshold.exceeded.for.client"];

42 send Notification[type <- act]

43 => internal.supervision-contract : effector.client;

44 } elsif global/current-delay.server > global/THRESHOLD &

45 global/current-delay.client < global/UPPER {

46 write[warning <- "threshold.exceeded.for.server"];

47 send Notification[type <- act]

48 => internal.supervision-contract : effector.server;

49 } else {

50 write[warning <- "no.problem.detected"];

51 }

52 } // forever

236

E Self-Models for the Dynamic Reconfiguration Scenario

53 } // forever

54 } // plan

55 } // selfmodel

Effector Self-Model

1 XML "<!DOCTYPE selfModel SYSTEM \"../../dtd/selfmodel.dtd\">"

2

3 declare [

4 Config <- cascadas.supervision.interaction.protocol.SupervisionConfigEvent,

5 Notification <-

6 cascadas.supervision.interaction.protocol.SupervisionNotification,

7 GatewayMessage <- cascadas.ace.supervision.GatewaySupervisionEvent,

8 SupervisionMessage <- cascadas.ace.supervision.SupervisionEvent

9];

10

11 repository {

12 emitting connect[

13 supervision-contract : cascadas.ace.session.Contract] |->

14 heartbeat_validation.components.HeartbeatEffector:connect;

15 }

16

17 selfmodel effector {

18 initial plan setup {

19 forever {

20 reveal effector;

21 accept -> internal.supervision-contract;

22 accept -> external.supervision-contract;

23 call connect[supervision-contract

24 <- global/external.supervision-contract];

25 receive SupervisionMessage when message/type = ack;

26 forever {

27 choice {

28 alternative {

29 receive Notification <= internal.supervision-contract :

30 assessor when message/type = act do {

31 disseminate GatewayMessage[type <- act];

32 }

33 }

34 alternative {

35 cancellation internal.supervision-contract do {

36 exit;

37 }

38 }

39 }

40 }

41 }

42 }

43 }

237

Appendices

Sensor Self-Model

1 XML "<!DOCTYPE selfModel SYSTEM \"../../dtd/selfmodel.dtd\">"

2

3 declare [

4 Config <- cascadas.supervision.interaction.protocol.SupervisionConfigEvent,

5 Notification <-

6 cascadas.supervision.interaction.protocol.SupervisionNotification,

7 GatewayMessage <- cascadas.ace.supervision.GatewaySupervisionEvent,

8 Stop <- cascadas.ace.supervision.StopSupervisionEvent,

9 SupervisionMessage <- cascadas.ace.supervision.SupervisionEvent

10];

11

12 repository {

13 emitting deploy-supervision-hook[

14 supervision.contract : cascadas.ace.session.Contract,

15 sender : cascadas.ace.AceAddress,

16 receiver : cascadas.ace.AceAddress,

17 service-contract : cascadas.ace.session.Contract,

18 heartbeat-delay : java.lang.String]

19 |-> heartbeat_validation.components.HeartbeatSensor:deploySupervisionHookExt;

20 process[in : java.lang.String, out : java.lang.String]

21 |-> heartbeat_validation.components.HeartbeatSensor:process;

22 start |-> heartbeat_validation.components.HeartbeatSensor:start;

23 }

24

25 selfmodel sensor {

26

27 initial plan config {

28 forever {

29 reveal sensor;

30 write[info <- "sensing.revealed"];

31 accept -> internal.supervision-contract;

32 write[info <- "contracting.done.switching.to.setup"];

33 receive Config[effector -> effector,

34 supervisable -> supervisable, receiver -> receiver,

35 service-contract -> service-contract,

36 correlator.sender -> correlator.sender,

37 correlator.receiver -> correlator.receiver]

38 <= internal.supervision-contract : controller;

39 global correlator.sender <- local/correlator.sender;

40 global correlator.receiver <- local/correlator.receiver;

41 write[info <- "contracting.externally"];

42 contract external.supervision-contract [

43 supervisable <- local/supervisable,

44 sensor <- self/address, effector <- local/effector];

45 write[info <- "deploying.supervision.hook"];

46 call deploy-supervision-hook[

47 supervision.contract <- global/external.supervision-contract,

48 sensor <- self/address, effector <- local/effector,

238

E Self-Models for the Dynamic Reconfiguration Scenario

49 sender <- local/supervisable, receiver <- local/receiver,

50 supervisable <- local/supervisable,

51 service-contract <- local/service-contract,

52 heartbeat-delay <- 500];

53 receive SupervisionMessage when message/type = ack;

54 global running <- yes;

55 run monitor;

56 cancellation internal.supervision-contract do {

57 forever {

58 write[warning <- "wait.until.completion.of.monitor.plan"];

59 if global/waiting = yes {

60 global running <- no;

61 write[warning <- "monitoring.complete.-.stop"];

62 send Stop => external.supervision-contract;

63 cancel external.supervision-contract;

64 exit;

65 }

66 }

67 }

68 }

69 }

70

71 plan monitor {

72 global waiting <- no;

73 call start;

74 forever {

75 if global/running = yes {

76 disseminate GatewayMessage[type <- data-request.incoming];

77 receive SupervisionMessage[data -> raw-data.incoming]

78 when message/type = data-reply.incoming;

79 call process[in <- raw-data.incoming, out <- processed-data.incoming];

80 send Notification[data <- local/processed-data.incoming]

81 => internal.supervision-contract : global/correlator.sender;

82 disseminate GatewayMessage[type <- data-request.outgoing];

83 receive SupervisionMessage[data -> raw-data.outgoing]

84 when message/type = data-reply.outgoing;

85 call process[in <- raw-data.outgoing, out <- processed-data.outgoing];

86 send Notification[data <- local/processed-data.outgoing]

87 => internal.supervision-contract : global/correlator.receiver;

88 } else {

89 halt;

90 }

91 global waiting <- yes;

92 wait 1000;

93 global waiting <- no;

94 }

95 }

96 }

239

Appendices

F Behaviour Models for the Management in the
Network Scenario

In this section, we depict the BMs used in the management in the network use
case study (see Section 5.2) for both the troubleshooting as well as the router-load
monitoring scenarios.

Troubleshooting Models

Measure Performance JMX

Poll CPU

Poll RAM

Poll Disk

Poll User

Waiting

Classified

Reported

Init

ExitIdle

Process

after (1 minute)

start/prepare()

exit/exit()

stop/JMX logout(id)

exit/exit()

ready

/JMX poll CPU (v1)

/JMX poll RAM (v2)

/JMX poll disk (v3)

/JMX poll num. users (v4)

/process (v1..v4)

/report(target)

/init()

done

Behaviour Model A
Performance Audit of an
Application Server

Login

/JMX login(id)

Logout

/classify()

id: Server Computer Identity
target: (BM, CU) Identity

240

F Behaviour Models for the Management in the Network Scenario

Measure Performance of Route

Classified

Reported

Init

ExitIdle

start/prepare() exit/exit()

stop/classify()

exit/exit
ready

/report(target)

/init()

done

Behaviour Model B
Performance Audit
of a Network Route

Measure Performance Division A
Switch 1 via SNMP

Measure Performance Division A
Access Router via SNMP

Measure Performance Intranet
Distribution Router via SNMP

from: Device identity
to: Device identity
target: (BM, CU) identity

Mapping
of from - to
to individual
devices on
route

241

Appendices

Correlated

Init

Have
Alarms

/WS get alarms
(route, timespan, a)

/report
(target, a)

/init()

Behaviour Model C
Alarm Collection
for Network Route

/filter(a)

Filtered

/correlate(a)

route: List of IPs on path
timespan: The timespan observed
target: (BM, CU) Identity

242

F Behaviour Models for the Management in the Network Scenario

Measure Performance SNMP
Poll CPU

Poll RAM

Poll Disk

Waiting

Classified

Reported

Init

ExitIdle

Calculate
Statistics

after (1 minute)

start/prepare() exit/exit()

stop/classify()

exit/exit()

ready

/SNMP get (id, cpu_oid, v1)

/SNMP get (id, ram_oid, v2)

/SNMP get (id, disk_usage_oid, v3)

/process (v1..v3)

/report
(target)

/init()

done

Behaviour Model D
Performance Audit
of a Client Computer

id: Client Computer Identity
target: (BM, CU) Identity

243

Appendices

Overall Activity

Init

send(ready)

/init()

Behaviour Model E
Coordination

Idle

ipfix_flow_start[fid]
/send(start)

Auditing report
/collect()

ipfix_flow_end[fid]
/send(stop)

Combine
Reports

after (1 week)

De-
Registered

/collect()

Evaluate

/report_to
_admin

/send(exit)

End
Activity

Exit
do/exit()

done
Authenticated

/ipfix_register(flows, cid)

Finished

/ipfix_unregister
(flows, cid)

flows: IPFIX trigger flow identifier
cid: IPFIX Collector device identifier
fid: Flow identifier

244

F Behaviour Models for the Management in the Network Scenario

Behaviour Model for Router-Load Monitoring

This BM monitors router load for the scenario described in Section 5.2.2. It is
specified in the plan format used by the MPU (see Section 4.5) and corresponds
loosely to BM D, which is shown on page 243.

1 <?xml version="1.0"?>

2 <Plan id="MonitorRouterLoad" xmlns="http://fokus.fraunhofer.de/mbim/plan">

3

4 <Provides/>

5

6 <Requires>

7 <Capability targettype="x-mbim-invocation">

8 <FunctionalComponent id="Snmp" version="1.0"/>

9 </Capability>

10 <Capability targettype="x-mbim-invocation">

11 <FunctionalComponent id="StatisticsCalculator" version="1.0"/>

12 </Capability>

13 <Capability targettype="x-mbim-invocation">

14 <FunctionalComponent id="Classificator" version="1.0"/>

15 </Capability>

16 <ExternalPlan targettype="x-mbim-event" id="Collector"

17 location="jms://10.0.2.1/CoordinationPlan" />

18 </Requires>

19

20 <Behaviour>

21 <scxml xmlns="http://www.w3.org/2005/07/scxml" version="1.0"

22 xmlns:cs="http://commons.apache.org/scxml"

23 initial="Init" profile="xpath">

24

25 <datamodel>

26 <data id="Context">

27 <Values xmlns="">

28 <CPU>0</CPU>

29 <RAM>0</RAM>

30 </Values>

31 <Averages xmlns="">

32 <CPU>0</CPU>

33 <RAM>0</RAM>

34 </Averages>

35 <Classification xmlns="">Green</Classification>

36 </data>

37 </datamodel>

38

39 <state id="Init">

40 <transition event="ready" target="Idle"/>

41 </state>

42

43 <state id="Idle">

44 <transition event="start" target="MeasurePerformanceSNMP"/>

245

Appendices

45 <transition event="exit" target="Exit"/>

46 </state>

47

48 <state id="MeasurePerformanceSNMP" initial="PollCPU">

49

50 <transition event="stop" target="Classify"/>

51 <transition event="exit" target="Exit"/>

52

53 <state id="PollCPU">

54 <invoke targettype="x-mbim-invocation" src="FC://Snmp"

55 id="pollcpu">

56 <param name="address" expr="’udp:10.0.0.1/161’"/>

57 <param name="community" expr="’public’"/>

58 <param name="oid" expr="’1.3.6.1.2.1.25.3.3.1.2.768’"/>

59 </invoke>

60 <transition target="PollRAM" event="’done.invoke.pollcpu’">

61 <assign location="Data(Context, ’Values/CPU’)"

62 expr="_eventdatamap[’done.invoke.pollcpu’].Value"/>

63 </transition>

64 </state>

65

66 <state id="PollRAM">

67 <invoke targettype="x-mbim-invocation" src="FC://Snmp"

68 id="pollram">

69 <param name="address" expr="’udp:10.0.0.1/161’"/>

70 <param name="community" expr="’public’"/>

71 <param name="oid" expr="’1.3.6.1.2.1.25.2.3.1.6.1’"/>

72 </invoke>

73 <transition target="CalcStatistics" event="’done.invoke.pollram’">

74 <assign location="Data(Context, ’Values/RAM’)"

75 expr="_eventdatamap[’done.invoke.pollram’].Value"/>

76 </transition>

77 </state>

78

79 <state id="CalcStatistics">

80 <invoke targettype="x-mbim-invocation" src="FC://StatisticsCalculator"

81 id="calcstats" namelist="Context"/>

82 <transition target="Waiting" event="’done.invoke.calcstats’"/>

83 </state>

84

85 <state id="Waiting">

86 <onentry>

87 <send target="’#_internal’" event="’timeout’" delay="60s"/>

88 </onentry>

89 <transition target="PollCPU" event="’timeout’"/>

90 </state>

91

92 </state>

93

94 <state id="Classify">

246

F Behaviour Models for the Management in the Network Scenario

95 <invoke targettype="x-mbim-invocation" src="FC://Classificator"

96 id="classification" namelist="Context"/>

97 <transition target="Report" event="’done.invoke.classification’"/>

98 </state>

99

100 <state id="Report">

101 <onentry>

102 <send targettype="’x-mbim-event’" target="’plan://Collector’"

103 event="’report’">

104 <param name="classification"

105 expr="’Data(Context, ’Classification’)’"/>

106 </send>

107 </onentry>

108 <transition target="Idle"/>

109 </state>

110

111 <state id="Exit">

112 <transition event="done" target="End"/>

113 </state>

114

115 <final id="End"/>

116

117 </scxml>

118 </Behaviour>

119 </Plan>

247

Appendices

G Behaviour Models for the Intrinsic Monitoring
Scenario

This part of the appendix contains the BMs used for the intrinsic monitoring use
case study (see Section 5.3).

Waiting for Trigger

Looking for Suitable PacketFound Packet

trigger

any [packet.size < MTU - Φ]
/ a := retrieve_packet()

/ insert_header(a, Φ)

Update Header
/ forward(a)a

Behaviour Model A
Insertion of an Extension Header at Ingress Router

Behaviour Model B
Extension Header Modification at Intermediary Routers

Waiting for Packet

any [packet.has_ext_header]
/ b := retrieve_packet()/ forward(b)

Update Header

b

248

G Behaviour Models for the Intrinsic Monitoring Scenario

Behaviour Model C
Final Report of Monitoring Data at Egress Router

Waiting for Packet

/ e := consolidate_values(d)

/ send_report(e)

any [packet.has_ext_header]
/ d := retrieve_packet()

Report Send

/ remove_header(d)

Stripped Extension Header
/ forward(d)

Ready to Report Update Header

d

Query Datum

Updated Extension Header

/ u := read_performance_datum()

Have Datum

/ update_ext_header(p, u)

p: IPv6 packet with
 extension header

Behaviour Model D
Update of an Extension Header with a Monitoring Datum

249

Appendices

250

Glossary

Behaviour Model A formalised description of system runtime behaviour, based
on statecharts. To interpret a BM, it needs to be associated with execution
information – this process is referred to as instantiation. A BM can have many
instances, this distinction is usually omitted in cases where it is not relevant
for the discussion.

Behaviour Model Interpreter A program that executes a BM by processing the
elements of a model instance at runtime. The BM Interpreter creates the
system behaviour at runtime. It supports the modification of an associated
BM during the runtime execution of instances of the model.

Behaviour Model Repository A management component responsible for persist-
ently storing BMs and providing access to them as part of the BM activation
process (see Section 2.3).

Collective A group of BMs that cooperate towards a common goal. The term is
also used to designate a group of interpreters or computational units, which
are executing the individual BM instances that form the collective.

Computational Unit A platform that is able to execute one, or more, interpreter
programs.

Context A collection of data, which is associated with a BM instance. It is also
referred to as session data or state data. Access to the context is done using
expressions.

Control Flow A single path through the state-transition structure in a BM. During
execution, an interpreter might process concurrent control flows within a BM
instance.

Control Interface A subsystem of the generic interpreter architecture that enables
access for the MA to the BM Interpreter (see Section 4.1.2).

Environment Everything that a BM instance interacts with, except the BM instance
itself. Interaction is conducted through the sending and receiving of messages,
which are referred to as events.

251

Glossary

Expression A statement used in a condition or action label. An expression needs
to be evaluable to a boolean result, when used in condition labels. For use in
action labels, the evaluation result is ignored.

Event Interface A subsystem found in the generic interpreter architecture for trans-
mitting messages that originate in an interpreted BM instance between the
BM Interpreter and it’s environment (see Section 4.1.2).

Event Queue A subsystem found in the generic interpreter architecture that stores
incoming event messages for later retrieval by the step-processing logic of the
Interpreter Engine (see Section 4.1.2).

Evolvability The ability of a system to not only scale in regard to resource utilisation,
but also in regard to functionality.

Functional Component A software component that enables or encapsulates the
execution of a function. FCs are invoked by a BM instance during its execution.

Functional Component Repository A management component that is responsible
for persistently storing FCs and providing access to them as part of the BM
activation process (see Section 2.3).

Homeostasis The ability of a system to continue to operate correctly in the face
of changes in the operational environmental and without human intervention
(also see Ashby’s definition [8, chapter 5/3]).

Interpreter Engine A subsystem of the generic interpreter architecture that contains
the logic for a stepwise interpretation of the BM instances (see Section 4.1.2).

Management Authority A management component responsible for deploying the
BMs used in a CU Collective and for maintaining the Collective itself (see
Section 2.3).

Run-To-Completion Semantics The strategy for stepwise processing of external
events dispatched to an Interpreter engine. RTC semantics makes sure that
a single event is processed completely before other events are taken from the
Event Queue. A general algorithm with RTC semantics is provided on page 24.

State Configuration During execution of a BM instance, each control flow is always
in a distinct state. A state configuration is a complete specification of the state
of each control flow in a BM. The active state configuration at a given time is
the current state configuration of an executing BM instance at that time.

252

List of Abbreviations

[...] Omission of text (used with cita-
tions)

∼ Approximately

µs Microseconds

ACE Autonomic Communication Ele-
ment

ACM Association for Computing Ma-
chinery

AI Artificial Intelligence

AJAX Asynchronous JavaScript and XML

API Application Programming Inter-
face

AS Autonomic System

ASF Apache Software Foundation

ASM Abstract State Machine

ASP Adaptive Systems Profile

AST Abstract Syntax Tree

ASTL Automaton Standard Template
Library

ATL ATLAS Transformation Language

AutoRM Autonomic Reliable Multicast

AXP Application eXtension Platform

B2B Business-to-Business

BCO Bus Checker Object

BM Behaviour Model

BML Behavioral Modeling Language

BPEL Business Process Execution Lan-
guage

BPMN Business Process Modeling Nota-
tion

CASE Computer-Aided Software Engin-
eering

CBE Common Base Event

CIL Common Intermediate Language

CIM Common Information Model

CMP CU Management Protocol

CORBA Common Object Request Broker
Architecture

CSP Communicating Sequential Pro-
cesses

CU Computational Unit

DEN-ng Directory Enabled Networks – next
generation

DFA Deterministic Finite Automata

DHT Distributed Hash Tables

DM Data Model

DMTF Distributed Management Task Force

DPI Deep Packet Inspection

E4X ECMAScript for XML

EBNF Extended Backus-Naur Form

ECA Event-Condition-Action

Ecore EMF core

EEPROM Electrically Erasable Programmable
Read Only Memory

EFSM Extended Finite State Machine

EHA Extended Hierarchical Automaton

EMF Eclipse Modelling Framework

ES-CP ECMAScript Compact Profile

ESB Enterprise Service Bus

253

List of Abbreviations

f. and the following page (used with
references)

FC Functional Component

ff. and the following pages (used with
references)

FOCALE Foundation, Observation, Com-
parison, Action and Learning En-
vironment

FPGA Field-Programmable Gate Array

FSM Finite State Machine

FXU Framework for Executable UML

GA Goal Achievable

GCC GNU Compiler Collection

GCO Gateway Checker Object

GEN Group Event Notification

GigE Gigabit Ethernet

GN Goal Needed

GPU Graphics Processing Unit

GUI Graphical User Interface

GXL Graph eXchange Language

HTTP Hypertext Transfer Protocol

I/O Input/Output

IEEE Institute of Electrical and Electronics
Engineers

IETF Internet Engineering Task Force

IM Information Model

IOS Internetwork Operating System

IP Internet Protocol

IPC Inter-Process Communication

IPv6 Internet Protocol, version 6

ISR Integrated Services Router

IT Information Technology

J2EE Java 2 Enterprise Edition

JEXL Java Expression Language

JIT Just In Time

JMS Java Message Service

JMX Java Management Extensions

JSON JavaScript Object Notation

KB Kilobyte

LAN Local Area Network

MA Management Authority

MB Megabyte

MBIM Model Based Integrated Manage-
ment

MCNC Microelectronics Center of North
Carolina

MDA Model Driven Architecture

MDT Model Development Tools

MIB Management Information Base

MOM Message Oriented Middleware

MPI Message Passing Interface

MPU Model Processing Unit

ms Milliseconds

MTU Maximum Transmission Unit

Mutex Mutual Exclusion

MVC Model View Controller

MVEL MVFLEX Expression Language

NETCONF Network Configuration Protocol

NFA Non-deterministic Finite Automata

OBR OSGi Bundle Repository

OCL4X OCL for Execution

ODM On-Demand Monitoring

OO Object Orientation

OPS4J Open Participation Software for
Java

254

OSGi A name (formerly known as “Open
Services Gateway initiative”)

PaaS Platform-as-a-Service

PBM Policy-Based Management

PDA Pushdown Automaton

PDU Protocol Data Unit

POSA Pattern-Oriented Software Archi-
tecture

POSIX Portable Operating System Inter-
face

PREP Programmable Electronics Per-
formance Corporation

PubSub Publish-Subscribe

QVT Query View Transformation

RAM Random-Access Memory

RFC Request For Comments

ROOM Real-Time Object Oriented Mod-
eling

RPC Remote Procedure Call

RSA Rational Software Architect

RTC Run-To-Completion

SAX Simple API for XML

SCTL Statechart Transformation Lan-
guage

SCXML State Chart XML

SDL Specification and Description Lan-
guage

SID Shared Information and Data Model

SIGDA Special Interest Group on Design
Automation

SMI Structure of Managed Informa-
tion

SPEC Standard Performance Evaluation
Corporation

SSH Secure Shell

STX Streaming Transformations for XML

SUS System Under Supervision

TM Forum TeleManagement Forum

TMPL Template Matching Processor Lan-
guage

TT Trouble Ticket

UDP User Datagram Protocol

UML Unified Modeling Language

USB Universal Serial Bus

VHDL Very High Speed Integrated Cir-
cuit Hardware Description Lan-
guage

VM Virtual Machine

Vol. Volume (used with references)

W3C World Wide Web Consortium

WBEM Web-Based Enterprise Manage-
ment

WS Web Service

WS-CDL Web Services Choreography De-
scription Language

XABSL Extensible Agent Behavior Speci-
fication Language

XDMS XML Document Management Server

XMI XML Metadata Interchange

XML eXtensible Markup Language

XPath XML Path Language

xUML Executable UML

255

256

Bibliography

[1] T. Abdellatif, E. Cecchet, and R. Lachaize. Evaluation of a Group Communication Middleware
for Clustered J2EE Application Servers. In Proc. of the 2004 International Symposium on
Distributed Objects and Applications, pages 1571–1589, 2004.

[2] M. Agarwal, V. Bhat, H. Liu, V. Matossian, V. Putty, C. Schmidt, G. Zhang, L. Zhen, and
M. Parashar. Automate: Enabling Autonomic Grid Applications. In Proc. 5th Annual Int.
Active Middleware Services Workshop, pages 48–57, June 2003.

[3] A. V. Aho, R. Sethi, and J. D. Ullmann. Compilerbau Teil 1 & Teil 2. Oldenbourg Verlag,
1999.

[4] I. Aib, N. Agoulmine, M. S. Fonseca, and G. Pujolle. Analysis of Policy Management Models
and Specification Languages. In Proc. 2nd Int. Conf. on Network Control and Engineering
for QoS, Security, and Mobility, pages 26–50, October 2003.

[5] L. Alfaro and T. Henzinger. Interface Automata. In Proc. 8th European Software Engineering
Conference, pages 109–120, September 2001.

[6] Y. Amir, C. Nita-Rotaru, J. Stanton, and G. Tsudik. Secure Spread: An Integrated
Architecture for Secure Group Communication. IEEE Transactions on Dependable and Secure
Computing, 2(3):248–261, July 2005.

[7] M. Andreolini, S. Casolari, and M. Colajanni. Self-Inspection Mechanisms for the Support of
Autonomic Decisions in Internet-Based Systems. In Proc. 3rd Int. Conf. on Autonomic and
Autonomous Systems, June 2007.

[8] W. R. Ashby. Design for a Brain. Chapman and Hall, 1960. ISBN 0-412-20090-2.

[9] P. C. Attie and N. A. Lynch. Dynamic Input/Output Automata: a Formal Model for Dynamic
Systems. In Proc. 12th Int. Conference on Concurrency Theory, pages 137–151, November
2001.

[10] Ö. Babaoğlu, G. Canright, A. Deutsch, G. D. Caro, F. Ducatelle, L. Gambardella, N. Ganguly,
M. Jelasity, R. Montemanni, and A. Montresor. Design Patterns from Biology for Distributed
Computing. ACM Transactions on Autonomous and Adaptive Systems, 1(1):26–66, 2006.

[11] Ö. Babaoğlu and M. Jelasity. Self-* Properties through Gossiping. Philosophical Transactions
of the Royal Society A: Mathematical, Physical and Engineering Sciences, 366(1881):3747–
3757, 2008.

[12] Ö. Babaoğlu, H. Meling, and A. Montresor. Anthill: A Framework for the Development
of Agent-Based Peer-to-Peer Systems. In Proc. 22nd int. Conf. on Distributed Computing
Systems, pages 15–22, July 2002.

257

Bibliography

[13] R. M. Bahati, M. A. Bauer, E. M. Vieira, O. K. Baek, and C.-W. Ahn. Mapping Policies
into Autonomic Management Actions. In Proc. Int. Conf. on Autonomic and Autonomous
Systems, pages 38–44, July 2006.

[14] A. Bailly, M. Clerbout, and I. Simplot-Ryl. Component Composition Preserving Behavioural
Contracts Based on Communication Traces. In Proc. 10th Int. Conference on Implementation
and Application of Automata, pages 54—65, November 2005.

[15] H. Balakrishnan, M. F. Kaashoek, D. Karger, R. Morris, and I. Stoica. Looking Up Data in
P2P Systems. Communications of the ACM, 46(2):48, February 2003.

[16] C. Ballagny. MOCAS: Un Modèle de Composants Basé États pour L’auto-Adaptation. PhD
thesis, University of Pau, France, 2010.

[17] C. Ballagny, N. Hameurlain, and F. Barbier. Dynamic Adaptive Software Components: the
MOCAS Approach. In Proc. 5th Int. Conf. on Soft Computing as Transdisciplinary Science
and Technology, pages 517–524, 2008.

[18] C. Ballagny, N. Hameurlain, and F. Barbier. MOCAS: A Model-Based Approach for Building
Self-Adaptive Software Components. In Proc. 5th th European Conf. on Model-Driven
Architecture, pages 5–11, June 2009.

[19] B. Ban. JavaGroups – Group Communication Patterns in Java. Technical report, Department
of Computer Science, Cornell University, December 1998.

[20] S. Banerjee and B. Bhattacharjee. Scalable Secure Group Communication over IP Multicast.
IEEE Journal on Selected Areas in Communications, 20(8):1511–1527, 2002.

[21] S. Baron-Cohen, A. M. Leslie, and U. Frith. Does the Autistic Child have a “Theory of
Mind”? Cognition, 21:37–46, 1985.

[22] B. Baumgarten. Petri-Netze – Grundlagen und Anwendungen. Spektrum Akademischer
Verlag, 2nd edition, 1996.

[23] C. Becker, M. Handte, G. Schiele, and K. Rothermel. PCOM – A Component System for
Pervasive Computing. In Proc. 2nd Int. Conf. on Pervasive Computing and Communications,
pages 67–76, March 2004.

[24] O. Becker. Serielle Transformationen von XML – Probleme, Methoden, Lösungen. PhD
thesis, Humboldt Universität zu Berlin, 2004.

[25] S. Beer. Brain of the Firm. J. Wiley, 2nd edition, 1972. ISBN 978-0-471-94839-1.

[26] B. K. Benkő, N. Brgulja, E. Höfig, and R. Kusber. Adaptive Services in a Distributed
Environment. In Proc. 8th Int. Workshop on Applications and Services in Wireless Networks,
pages 66–75, May 2008.

[27] B. K. Benkő, A. D. Ferdinando, E. Höfig, M. Mamei, N. Brgulja, M. Giacometto, R. Kusber,
and C. Moiso. Autonomic Communication Elements: Design, Evaluation and Application.
ACM Transactions on Autonomous and Adaptive Systems, under submission.

[28] M. Born, E. Holz, and O. Kath. Softwareentwicklung mit UML 2. Addison-Wesley Verlag,
2004.

258

Bibliography

[29] A. Bottaro, J. Bourcier, C. Escoffier, and P. Lalanda. Autonomic Context-Aware Service
Composition. Proc. 2nd IEEE Int. Conf. on Pervasive Services, July 2007.

[30] S. Bouchenak, N. de Palma, D. Hagimont, and C. Taton. Autonomic Management of Clustered
Applications. In Proc. IEEE Int. Conf. on Cluster Computing, pages 1–11, September 2006.

[31] Z. Boudjemil, S. Davy, D. Muldowney, and C. Fahy. Deliverable 3.1 - Information Model.
Technical report, Autonomic Internet (AutoI) Project, January 2009.

[32] R. Boutaba and I. Aib. Policy-Based Management: A Historical Perspective. Journal of
Network and Systems Management, 15(4):447–480, November 2007.

[33] D. Brand and P. Zafiropulo. On Communicating Finite-State Machines. Journal of the ACM,
30(2):323–342, 1983.

[34] N. Brgulja, R. Kusber, B. K. Benkő, E. Höfig, P. H. Deussen, M. Giacometto, and M. Mamei.
Deliverable 1.5 - Integrated Prototype (Final Release). Technical report, EU IST Project
CASCADAS, December 2008.

[35] L. Broto, D. Hagimont, P. Stolf, N. Depalma, and S. Temate. Autonomic Management Policy
Specification in Tune. Proc. ACM Symposium on Applied Computing, pages 1658–1663, 2008.

[36] K. L. Calvert, J. Griffioen, and S. Wen. Scalable Network Management Using Lightweight
Programmable Network Services. Journal of Network and Systems Management, 14(1):15–47,
2006.

[37] R. Chaparadza. A Composition Language for Programmable Traffic Flow Monitoring in
Multi-Service Self-Managing Networks. Proc. 6th Int. Workshop on the Design of Reliable
Communication Networks, pages 1–8, Ocotber 2007.

[38] H. Chen, S. Hariri, and F. Rasul. An Innovative Self-Configuration Approach for Networked
Systems and Applications. In IEEE Int. Workshop on Computer Systems and Applications,
pages 537–544, March 2006.

[39] K.-T. Cheng and A. S. Krishnakumar. Automatic Functional Test Generation Using the
Extended Finite State Machine Model. In Proc. of the 30th Int. Conference on Design
Automation, December 1993.

[40] A. Clemm. Network Management Fundamentals. Cisco Press, May 2006. ISBN 978-1-58720-
137-0.

[41] D. Coleman, F. Hayes, and S. Bear. Introducing Objectcharts or How to Use Statecharts in
Object-Oriented Design. IEEE Transactions on Software Engineering, 18(1):9–18, January
1992.

[42] R. Colvin and I. J. Hayes. A Semantics for Behavior Trees. Technical Report ACCS-TR-07-01,
ARC Centre for Complex Systems, School of ITEE, The University of Queensland, Australia,
2007.

[43] D. E. Comer. Computer Networks and Internets. Pearson Prentice Hall, 4th edition, 2004.
ISBN 0-13-123-637-X.

259

Bibliography

[44] R. C. Conant and W. R. Ashby. Every Good Regulator of a System Must be a Model of that
System. International Journal of System Science, 1(2):89–97, 1970.

[45] M. L. Crane and J. Dingel. On the Semantics of UML State Machines: Categorization and
Comparison. Technical Report 2005-501, School of Computing, Queen’s University, Kingston,
Ontario, Canada, 2005.

[46] R. N. Cronk, P. H. Callahan, and L. Bernstein. Rule-Based Expert Systems For Network
Management and Operations: An Introduction. IEEE Network, 2(5):7–21, 1988.

[47] N. Damianou, N. Dulay, E. Lupu, and M. Sloman. The Ponder Policy Specification Language.
In Proc. Workshop on Policies for Distributed Systems and Networks, pages 18–38, January
2001.

[48] S. Davy, B. Jennings, and J. Strassner. The Policy Continuum – A Formal Model. In Proc.
2nd IEEE Int. Workshop on Modelling Autonomic Communications Environments, volume 6
of Lecture Notes, pages 65–78. Multicon, September 2007.

[49] J. E. L. de Vergara, V. A. Villagrá, J. I. Asensio, and J. Berrocal. Ontologies: Giving
Semantics to Network Management Models. IEEE Network, 17(3):15– 21, 2003.

[50] J. den Haan. Model driven development: Code generation or model inter-
pretation? “Birds of a Feather” session at the Code Generation 2010 con-
ference, June 2010. http://www.theenterprisearchitect.eu/archive/2010/06/28/

model-driven-development-code-generation-or-model-interpretation.

[51] G. Denaro, L. Mariani, M. Pezzè, and D. Tosi. Adaptive Runtime Verification for Autonomic
Communication Infrastructures. In Proc. 1st Int. IEEE WoWMoM Workshop on Autonomic
Communications and Computing, pages 553–557, June 2005.

[52] A. Derezińska and R. Pilitowski. Interpretation of History Pseudostates in Orthogonal States
of UML State Machines. In Proc. 7th Conf. on Next Generation Information Technologies
and Systems, pages 26—37, 2009.

[53] P. H. Deussen. Model Based Reactive Planning and Prediction for Autonomic Systems. In
Proc. Workshop on Innovative Service Technologies, pages 1–10, October 2007.

[54] P. H. Deussen, M. Baumgarten, M. Mulvenna, A. Manzalini, and C. Moiso. Autonomic
Re-configuration of Pervasive Supervision Services. In Proc. 1st Int. Conference on Emerging
Network Intelligence, pages 33–38, 2009.

[55] P. H. Deussen, C. Fahy, E. Höfig, and S. van der Meer. A Discussion on Fundamental
Approaches for the Engineering of Autonomic Systems. In Proc. 2nd Int. Conference on
Bio-Inspired Models of Network, Information, and Computing Systems, October 2007.

[56] P. H. Deussen and E. Höfig. Self-Organizing Service Supervision: Concept Demonstration. In
Proc. 2nd Int. Conference on Bio-Inspired Models of Network, Information, and Computing
Systems, pages 245–246, December 2007.

[57] P. H. Deussen, E. Höfig, M. Baumgarten, M. Mulvenna, C. Moiso, and A. Manzalini.
Component-ware for Autonomic Supervision Services - The CASCADAS Approach. Int.
Journal On Advances in Intelligent Systems, 3(1 & 2):87–105, 2010. Invited article.

260

http://www.theenterprisearchitect.eu/archive/2010/06/28/model-driven-development-code-generation-or-model-interpretation
http://www.theenterprisearchitect.eu/archive/2010/06/28/model-driven-development-code-generation-or-model-interpretation

Bibliography

[58] Y. Diao, J. L. Hellerstein, S. Parekh, R. Griffith, G. Kaiser, and D. Phung. Self-Managing
Systems: A Control Theory Foundation. In Proc. 12th IEEE Int. Conf. and Workshops on
the Engineering of Computer-Based Systems, pages 441–448, April 2005.

[59] Distributed Management Task Force. CIM System Virtualization Model White Paper.
Document Number DSP2013, Version 1.0.0, November 2007.

[60] K. R. Dittrich, S. Gatziu, and A. Geppert. Rules in Database Systems, volume 985, pages
1–17. Springer, 1995.

[61] W. Dong, J. Wang, X. Qi, and Z.-C. Qi. Model Checking UML Statecharts. In Proc. 8th

Asia-Pacific Software Engineering Conf., pages 363– 370, 2001.

[62] X. Dong, S. Hariri, L. Xue, H. Chen, M. Zhang, S. Pavuluri, and S. Rao. Autonomia: An
Autonomic Computing Environment. Proc IEEE Int. Conf. on Performance, Computing,
and Communications Conference, pages 61– 68, April 2003.

[63] S. Donikian. HPTS: A Behaviour Modelling Language for Autonomous Agents. In Proc. 5th

Int. Conf. on Autonomous Agents, pages 401–408, May 2001.

[64] G. Dromey. From Requirements to Design: Formalizing the Key Steps. In Proc. 1st Int.
Conf. Software Engineering and Formal Methods, pages 2–11, September 2003.

[65] J. Ebert. Efficient Interpretation of State Charts. In Proc. 9th Int. Symposium on Funda-
mentals of Computation Theory, pages 212–221, December 1993.

[66] X. Elkorobarrutia, M. Muxika, G. Sagardui, F. Barbier, and X. Aretxandieta. A Framework
for Statechart Based Component Reconfiguration. In Proc 5th IEEE Workshop on Engineering
of Autonomic and Autonomous Systems, pages 37–45, March 2008.

[67] W. Emmerich. Engineering Distributed Objects. John Wiley & Sons, Ltd, 2000.

[68] P. T. Eugster, P. A. Felber, R. Guerraoui, and A.-M. Kermarrec. The Many Faces of
Publish/Subscribe. ACM Computing Surveys, 35(2):114–131, June 2003.

[69] H. Fecher, M. Kyas, and J. Schönborn. Semantic Issues in UML 2.0 State Machines. Technical
Report 0507, Christians-Albrecht-Universität Kiel, Institut für Informatik und Praktische
Mathematik, June 2005.

[70] I. Ferdelja. Component Behavior Modeling. Master’s thesis, Faculty of Electrical Engineering
and Computing, University of Zagreb, Croatia, May 2009.

[71] A. G. F. Filho and H. Liesenberg. Transforming Statecharts into Reactive Systems. In Proc.
19th Conferencia Latinoamericana de Informática, pages 501–509, February 1993.

[72] S. Floyd, V. Jacobson, C.-G. Liu, S. McCanne, and L. Zhang. A Reliable Multicast Framework
for Light-Weight Sessions and Application Level Framing. IEEE/ACM Transactions on
Networking, 5(6):784–803, 1997.

[73] I. Foster and C. Kesselman, editors. The GRID – Blueprint for a New Computing Infrastruc-
ture. Morgan Kaufmann Publishers, 2nd edition, 2004. ISBN 1-55860-933-4.

[74] H. Frank and J. Eder. Equivalence Transformations on Statecharts. In Proc. 12th Int. Conf.
on Software Engineering and Knowledge Engineering, pages 150–158, July 2000.

261

Bibliography

[75] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Entwurfsmuster – Elemente Wiederver-
wendbarer Objektorientierter Software. Addison Wesley, 1996.

[76] D. Garlan, S.-W. Chengand, A.-C. Huang, B. Schmerl, and P. Steenkiste. Rainbow:
Architecture-Based Self-Adaptation with Reusable Infrastructure. IEEE Computer, 37(10):46–
54, 2004.

[77] J. J. Garrett. Ajax: A New Approach to Web Applications. http://www.adaptivepath.

com/ideas/essays/archives/000385.php.

[78] B. Gaudin and P. H. Deussen. Supervisory Control on Concurrent Discrete Event Systems
with Variables. In Proc. American Control Conference, pages 4274–4279, July 2007.

[79] S. Gnesi, D. Latella, and M. Massink. Model Checking UML Statechart Diagrams Using
JACK. In Proc. 4th IEEE Int. Symposium on High-Assurance Systems Engineering, pages
46–55, March 1999.

[80] S. Gnesi and F. Mazzanti. On the Fly Model Checking of Communicating UML State
Machines. In Proc. 2nd ACIS Int. Conf. on Software Engineering Research, Management and
Applications, pages 331–338, May 2004.

[81] C. Gonzalez-Perez, B. Henderson-Sellers, and G. Dromey. A Metamodel for the Behavior Trees
Modelling Technique. In Proc. 3rd Int. Conf. on Information Technology and Applications,
volume 1, pages 35–39, July 2005.

[82] P. Graham. The Hundred-Year Language. Keynote at PyCon DC, March 2003.

[83] T. J. Green, G. Miklau, M. Onizuka, and D. Suciu. Processing XML Streams with Determin-
istic Automata. In Proc. 9th Int. Conf. on Database Theory, pages 173–189, 2002.

[84] O. Grossman and D. Harel. On the Algorithmics of Higraphs. Technical Report CS97-15,
The Weizmann Institute of Science, December 1997.

[85] N. Guelfi and B. Ries. SCTL: A StateChart Transformation Language for Test Sets Reduction.
In Proc. ERCIM Workshop on Dependable Software Intensive Embedded Systems, August
2005.

[86] A. Gupta. Network Management: Current Trends and Future Perspectives. Journal of
Network and Systems Management, 14(4):483–491, 2006.

[87] F. Harary. Graph Theory. Westview Press, 1994. ISBN 978-0-201-41033-4.

[88] D. Harel. Statecharts: A Visual Formalism for Complex Systems. Science of Computer
Programming, 8(3):231–274, December 1987.

[89] D. Harel. On Visual Formalisms. Communications of the ACM, 31(5), May 1988.

[90] D. Harel and E. Gery. Executable Object Modeling with Statecharts. IEEE Computer,
30(7):31–42, 1996.

[91] D. Harel and H. Kugler. The Rhapsody Semantics of Statecharts (or, on the Executable Core
of the UML). Integration of Software Specification Techniques for Applications in Engineering,
Lecture Notes in Computer Science, 3147:325–354, 2004.

262

http://www.adaptivepath.com/ideas/essays/archives/000385.php
http://www.adaptivepath.com/ideas/essays/archives/000385.php

Bibliography

[92] D. Harel, H. Lachover, A. Naamad, A. Pnueli, M. Politi, R. Sherman, A. Shtull-Trauring, and
M. Trakhtenbrot. STATEMATE: A Working Environment for the Development of Complex
Reactive Systems. IEEE Transactions on Software Engineering, 16(4):403–414, 1990.

[93] H.-G. Hegering, S. Abeck, and B. Neumair. Integrated Management of Networked Systems:
Concepts, Architectures and their Operational Application. Morgan Kaufmann Publishers,
August 1999. ISBN 978-1-55860-571-8.

[94] C. L. Heitmeyer, R. D. Jeffords, and B. G. Labaw. A Benchmark for Comparing Different
Approaches for Specifying and Verifying Real-time Systems. In Proc. 10th Int. Workshop on
Real-Time Operating Systems and Software, page n.p., May 1993.

[95] J. L. Hellerstein, Y. Diao, S. Parekh, and D. M. Tilbury. Feedback Control of Computing
Systems. Wiley-IEEE Press, 2004. ISBN: 978-0-471-26637-2.

[96] R. Helm, I. M. Holland, and D. Gangopadhyay. Contracts: Specifying Behavioral Compositions
in Object-Oriented Systems. In Proc. Conference on Object-Oriented Programming: Systems,
Languages, and Applications, pages 169–180, October 1990.

[97] C. Herring and S. Kaplan. Cybernetic Components: a Theoretical Basis for Component
Software Systems. In Proc. Component Oriented Software Engineering Workshop, November
1998.

[98] A. Hinnerichs and E. Höfig. An Efficient Mechanism for Matching Multiple Patterns on
XML Streams. In Proc. of the IASTED Int. Conference on Software Engineering 2007, pages
164–170, February 2007.

[99] C. A. R. Hoare. Communicating Sequential Processes. Communications of the ACM,
21(8):666–667, January 1978.

[100] E. Höfig. Dezentrale Verteilung von Daten in Heterogener Umgebung: Konzeption und
Realisierung einer Komponentenbasierten Infrastruktur. Master’s thesis, Technical University
of Berlin, December 2003.

[101] E. Höfig. Template Matching on XML Streams. In Proc. of the IASTED Int. Conference on
Software Engineering, pages 113–118, February 2006.

[102] E. Höfig. Autonomic Reliable Multicast: Application-Level Group Communication Using
Self-Organization Principles. In Proc. 2nd Int. Conference on Bio-Inspired Models of Network,
Information, and Computing Systems, December 2007.

[103] E. Höfig and H. Coşkun. Using Pattern Bound Policies to Construct Regulatory Mechanisms
for Autonomic Systems. In Proc. 10th Int. Conference on Quality Engineering in Software
Technology, pages 373–393, September 2007.

[104] E. Höfig and H. Coşkun. Intrinsic Monitoring Using Behaviour Models in IPv6 Networks.
In Proc. 4th Int. Workshop on Modelling Autonomic Communication Environments, pages
86–99, October 2009.

[105] E. Höfig and P. H. Deussen. Document-Based Network and System Management: Utilizing
Autonomic Capabilities for Enterprise Management Integration. In Proc. 2nd Int. Conference
on Autonomic Computing and Communication Systems, September 2008.

263

Bibliography

[106] E. Höfig and P. H. Deussen. Model-based Integrated Management: Applying Autonomic
Systems Engineering to Network and Systems Management. Int. Journal of Autonomous and
Adaptive Communiations Systems, 4(1):100–118, 2011. Invited article.

[107] E. Höfig, P. H. Deussen, and H. Coşkun. Statechart Interpretation on Resource Constrained
Platforms: a Performance Analysis. In Proc. 4th Int. Workshop models@run.time, October
2009.

[108] J. E. Hopcroft. Automata Theory: Its Past and Future. In A Half-Century of Automata
Theory: Celebration and Inspiration. World Scientific Publishing, 2001.

[109] J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Languages, and Compu-
tation. Addison-Wesley Publishing Company, 1979. ISBN 0-201-02988-X.

[110] M. Hosseini, D. T. Ahmed, S. Shirmohammadi, and N. D. Georganas. A Survey of Application-
Layer Multicast Protocols. IEEE Communications Surveys & Tutorials, 9(3):58–74, 2007.

[111] D. Huffman. The Synthesis of Sequential Switching Circuits. J. Franklin Inst, 257(3):161–190,
1953.

[112] IBM Corporation. An Architectural Blueprint for Autonomic Computing. White Pa-
per, 4th edition, June 2006. http://www.ibm.com/software/tivoli/autonomic/pdfs/AC_
Blueprint_White_Paper_4th.pdf.

[113] B. Jacob, R. Lanyon-Hogg, D. N. Nadgir, and A. F. Yassin. A Practical Guide to the IBM
Autonomic Computing Toolkit. IBM, April 2004. http://ibm.com/redbooks.

[114] B. Jennings, S. van der Meer, S. Balasubramaniam, D. Botvich, M. Ó. Foghlú, W. Donnelly,
and J. Strassner. Towards Autonomic Management of Communications Networks. IEEE
Communications Magazine, 45(10):112–121, 2007.

[115] Y. Jin, R. Esser, and J. W. Janneck. Describing the Syntax and Semantics of UML Statecharts
in a Heterogeneous Modelling Environment. In Proc. 2nd Int. Conf. on Diagrammatic
Representation and Inference, pages 320–334, April 2002.

[116] F. Jouault and I. Kurtev. On the Architectural Alignment of ATL and QVT. In Proceedings
of the 2006 ACM symposium on Applied computing, page 1195, April 2006.

[117] L. Jóźwiak, D. Gaw lowski, and A. Ślusarczyk. An Effective Solution of Benchmarking Problem
– FSM Benchmark Generator and Its Application to Analysis of State Assignment Methods.
In Proc. 7th EUROMICRO Systems on Digital System Design, pages 160–167, August 2004.

[118] S. Kliman. PREP Benchmarks Reveal Performance and Capacity Tradeoffs of Programmable
Logic Devices. In Proc. 7th Annual IEEE Int. ASIC Conf. and Exhibit, pages 376–382, 1994.

[119] A. Knapp and S. Merz. Model Checking and Code Generation for UML State Machines
and Collaborations. In Proc. 5th Workshop on Tools for System Design and Verification,
Technical Report, pages 59–64, 2002.

[120] A. Knapp and H. Störrle. Unified Modeling Language 2.0: Syntax, Semantics, Pragmatics.
Tutorial Session at the IASTED International Conference on Software Engineering, Innsbruck,
Austria, February 2007.

264

http://www.ibm.com/software/tivoli/autonomic/pdfs/AC_Blueprint_White_Paper_4th.pdf
http://www.ibm.com/software/tivoli/autonomic/pdfs/AC_Blueprint_White_Paper_4th.pdf
http://ibm.com/redbooks

Bibliography

[121] M. M. Kokar, K. Baclawski, and Y. A. Eracar. Control Theory-Based Foundations of
Self-Controlling Software. IEEE Intelligent Systems, 14(3):37–45, 1999.

[122] A. V. Konstantinou, D. Florissi, and Y. Yemini. Towards Self-Configuring Networks. In Proc.
DARPA Active Networks Conference and Exposition, pages 143–156, May 2002.

[123] G. P. Kumar and P. Venkataram. AI Approaches to Network Management: Recent Advances
and A Survey. Computer Communications, 20(1):1313–1322, 1997.

[124] D. Latella, I. Majzik, and M. Massink. Automatic Verification of a Behavioural Subset of
UML Statechart Diagrams Using the SPIN Model-Checker. Formal Aspects of Computing,
11(6):637–664, 1999.

[125] S. Lee and S. Sluizer. An Executable Language for Modeling Simple Behavior. IEEE
Transactions on Software Engineering, 17(6):527–543, 1991.

[126] L. H. Lehman, S. J. Garland, and D. L. Tennenhouse. Active Reliable Multicast. In Proc.
17th Annual Joint Conf. of the IEEE Computer and Communications Societies, volume 2,
pages 581 – 589, March 1998.

[127] H. Liu, M. Parashar, and S. Hariri. A Component Based Programming Framework for
Autonomic Applications. In Proc. Int. Conf. on Autonomic Computing, pages 10–17, May
2004.

[128] M. Lötzsch, M. Risler, and M. Jüngel. XABSL - A Pragmatic Approach to Behavior
Engineering. In Proc. of IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pages
5124–5129, October 2006.

[129] N. A. Lynch, R. Segala, and F. Vaandrager. Hybrid I/O Automata. Technical report, MIT
Laboratory for Computer Science, January 2003. MIT-LCS-TR-827d.

[130] N. A. Lynch and M. R. Tuttle. Hierarchical Correctness Proofs for Distributed Algorithms.
In Proc. 6th Annual ACM Symposium on Principles of Distributed Computing, pages 137–151,
August 1987.

[131] A. Maggiolo-Schettini and A. Peron. A Graph Rewriting Framework for Statecharts Semantics.
In Proc. 5th Int. Workshop on Graph Grammars and Their Application to Computer Science,
pages 107–121, November 1994.

[132] S. S. Manvi and P. Venkataram. A Method of Network Monitoring by Mobile Agents. In
Proc. Int. Conf. on Communications, Control, and Signal Processing, pages 214–218, July
2000.

[133] V. L. Maout. Tools to Implement Automata, a First Step: ASTL. In Proc. 2nd Int. Workshop
on Implementing Automata, pages 104—108, December 1997.

[134] V. L. Maout. Cursors. In Proc. 5th Int. Conference on Implementation and Application of
Automata, pages 195–207, May 2000.

[135] P. Marrow and M. Koubarakis. Self-Organising Applications Using Lightweight Agents. In
Proc. 3rd Int. Workshop on Engineering Self-Organising Systems, pages 120–129, July 2005.

265

Bibliography

[136] P. K. McKinley, S. M. Sadjadi, E. P. Kasten, and B. H. Cheng. Composing Adaptive Software.
IEEE Computer, 37(7):56–64, 2004.

[137] G. H. Mealy. A Method for Synthesizing Sequential Circuits. Bell System Technical Journal,
34(5):1045–1079, 1955.

[138] S. J. Mellor and M. J. Balcer. Executable UML: A Foundation for Model-Driven Architecture.
Addison-Wesley, 2002. ISBN 0-201-74804-5.

[139] B. Meyer. Applying ”Design by Contract”. IEEE Computer, 25(10):40–51, 1992.

[140] P. Michiardi, P. Marrow, R. Tateson, and F. Saffre. Aggregation Dynamics in Service Overlay
Networks. In Proc. 1st Int. Conf. on Self-Adaptive and Self-Organizing Systems, pages
129–140, July 2007.

[141] Z. Milosevic and G. Dromey. On Expressing and Monitoring Behaviour in Contracts. In
Proc. 6th Int. Enterprise Distributed Object Computing Conf., pages 3– 14, September 2002.

[142] K. Mochalski and H. Schulze. Deep Packet Inspection – Technology, Applications & Net
Neutrality. Whitepaper from ipoque GmbH, 2009. http://www.ipoque.com/userfiles/

file/DPI-Whitepaper.pdf.

[143] T. Modica. Eine Attributierte Getypte Graphgrammatik zum Syntaxgesteuerten Editieren
von UML State Machines. Master’s thesis, Technical University of Berlin, January 2006.

[144] E. F. Moore. Gedanken-Experiments on Sequential Machines. Automata studies, 34:129–153,
1956.

[145] R. Mortier and E. Kiciman. Autonomic Network Management: Some Pragmatic Con-
siderations. Proc. Workshop on Internet Network Management, pages 89–93, September
2006.

[146] L. E. Moser, P. M. M. Smith, D. A. Agarwal, R. K. Budhia, and C. A. Lingley-Papadopoulos.
Totem: a Fault-Tolerant Multicast Group Communication System. Communications of the
ACM, 39(4):54–63, April 1996.

[147] I. A. Niaz and J. Tanaka. Code Generation from UML Statecharts. In Proc. 7th IASTED
Int. Conf. on Software Engineering and Application, pages 315–321, 2003.

[148] S. Nordstrom, S. Shetty, D. Yao, S. Ahuja, S. Neema, and T. Bapty. The Action Language:
Refining a Behavioral Modeling Language. In Proc. 12th IEEE Int. Conf. and Workshops on
the Engineering of Computer-Based Systems, pages 315– 320, April 2005.

[149] O. Ozkasap, Z. Xiao, and K. P. Birman. Scalability of Two Reliable Multicast Protocols.
Technical Report TR99-1748, Cornell University, Dept. of Computer Science, 2001.

[150] B. Paech and B. Rumpe. A New Concept of Refinement used for Behaviour Modelling with
Automata. In Proc. 2nd Int. Symposium of Formal Methods, pages 154–174, October 1994.

[151] S. Paul, K. K. Sabnani, J. C. Lin, and S. Bhattacharyya. Reliable Multicast Transport
Protocol (RMTP). IEEE Journal on Selected Areas in Communications, 15(3):407–421, 1997.

[152] G. Pavlou. On the Evolution of Management Approaches, Frameworks and Protocols: A
Historical Perspective. Journal of Network and Systems Management, 15(4):425–445, 2007.

266

http://www.ipoque.com/userfiles/file/DPI-Whitepaper.pdf
http://www.ipoque.com/userfiles/file/DPI-Whitepaper.pdf

Bibliography

[153] C. A. Petri. Kommunikation mit Automaten. PhD thesis, University of Bonn, 1962.

[154] D. Pezaros, D. Hutchison, R. Gardner, F. Garcia, and J. Sventek. Inline Measurements: A Nat-
ive Measurement Technique for IPv6 Networks. In Proc. Int. Networking and Communications
Conf., pages 105 – 110, June 2004.

[155] R. Pilitowski and A. Derezińska. Code Generation and Execution Framework for UML 2.0
Classes and State Machines. In Innovations and Advanced Techniques in Computer and
Information Sciences and Engineering, pages 421–427. Springer Netherlands, 2007. ISBN
978-1-4020-6267-4.

[156] M. Pistore, A. Marconi, P. Traverso, and P. G. Bertoli. Automated Composition of Web
Services by Planning at the Knowledge Level. In Proc. 19th Int. Joint Conf. on Artificial
Intelligence, pages 1252–1259, July 2005.

[157] A. Pras, J. Schönwälder, M. Burgess, O. Festor, G. M. Pérez, R. Stadler, and B. Stiller. Key
Research Challenges in Network Management. IEEE Communications Magazine, 45(10):104–
110, 2007.

[158] C. M. Prashanth and K. C. Shet. Efficient Algorithms for Verification of UML Statechart
Models. Journal of Software, 4(3):175, 2009.

[159] R. Quitadamo and F. Zambonelli. Autonomic Communication Services: a New Challenge for
Software Agents. Autonomous Agents and Multi-Agent Systems, 17(3):457–475, December
2008.

[160] S. Ramesh. Efficient translation of statecharts to hardware circuits. In Proc. 12th Int. Conf.
on VLSI Design, pages 384–389, January 1999.

[161] C. Reichert and D. Witaszek. An Implementation of the Group Event Notification Protocol.
Technical Report TR-2002-0301, Fraunhofer FOKUS, 2002.

[162] R. Renesse, K. Birman, and S. Maffeis. Horus: a Flexible Group Communication System.
Communications of the ACM, 39(4):76–83, April 1996.

[163] T. H. Romer, D. Lee, G. M. Voelker, A. Wolman, W. A. Wong, J.-L. Baer, B. N. Bershad,
and H. M. Levy. The Structure and Performance of Interpreters. Proc. 7th Int. Conf. on
Architectural Support for Programming Languages and Operating Systems, pages 150–159,
October 1996.

[164] B. Rumpe, M. Schoenmakers, A. Radermacher, and A. Schürr. UML+ROOM as a Standard
ADL? In Proc. 5th Int. Conference on Engineering of Complex Computer Systems, pages
43–53, 1999.

[165] F. Saffre and H. R. Blok. “SelfService”: A Theoretical Protocol for Autonomic Distribution
of Services in P2P Communities. In Proc. 12th IEEE Int. Conf. and Workshops on the
Engineering of Computer-Based Systems, pages 528–534, April 2005.

[166] M. Samek. Practical Statecharts in C/C++. Newnes, 2nd edition, 2008. ISBN 0-75068-706-1.

[167] M. Sánchez, I. Barrero, J. Villalobos, and D. Deridder. An Execution Platform for Extensible
Runtime Models. In Proc. 3rd Int. Workshop on models@run.time, pages 107–116, September
2008.

267

Bibliography

[168] I. Satoh. Building and Selecting Mobile Agents for Network Management. Journal of Network
and Systems Management, 14(1):147–169, May 2006.

[169] D. Schmidt, M. Stal, H. Rohnert, and F. Buschmann. Pattern-Oriented Software Architecture:
Patterns for Concurrent and Networked Objects. John Wiley & Sons, Ltd, 2000.

[170] M. Schrefl, G. Kappel, and P. Lang. Modeling Collaborative Behavior Using Cooperation
Contracts. Data & Knowledge Engineering, 26(2):191–224, 1998.

[171] A. Schumann and Y. Pencolé. Scalable Diagnosability Checking of Event-Driven Systems. In
Proc. 20th Int. Joint Conf. on Artificial Intelligence, pages 575–580, January 2007.

[172] B. Selic. An Efficient Object-Oriented Variation of the Statecharts Formalism for Distributed
Real-Time Systems. In Proc. 11th IFIP Conference on Hardware Description Languages and
Their Applications, pages 335–344, January 1993.

[173] G. D. M. Serugendo, N. Foukia, S. Hassas, A. Karageorgos, S. K. Mostéfaoui, O. F. Rana,
M. Ulieru, P. Valckenaers, and C. V. Aart. Self-Organisation: Paradigms and Applications.
In Proc. 2nd Int. Joint Conf. on Autonomous Agents & Multiagent Systems, pages 1–19, July
2003.

[174] A. Sharpanskykh and J. Treur. Modeling of Agent Behavior Using Behavioral Specifications.
Technical Report 06-02ASRAI, Vrije Universiteit Amsterdam, Department of Artificial
Intelligence, 2006.

[175] L. Shi and A. Davy. Security Considerations for Intrinsic Monitoring within IPv6 Networks.
In Proc. 9th Int. Workshop on IP Operations and Management, pages 167–172, September
2009.

[176] L. Shi and A. Davy. Intrinsic Monitoring within an IPv6 Network: Relating Traffic Flows to
Network Paths. In Proc. IEEE Int. Conf. on Communications, May 2010.

[177] L. Shi, A. Davy, D. Muldowney, E. Höfig, and X. Fu. Intrinsic Monitoring within an IPv6
Network: Mapping Node Information to Network Paths. In Proc. 6th Int. Conf. on Network
and Service Management, pages 370–373, October 2010.

[178] S. Shlaer and S. J. Mellor. Object Lifecycles: Modeling the World in States. Yourdon Press,
1991. ISBN 0-13-629940-7.

[179] M. Sloman. Policy Driven Management for Distributed Systems. Journal of Network and
Systems Management, 2(4):333–360, 1994.

[180] M. Smirnow. Autonomic Communication: Research Agenda for a New Communic-
ation Paradigm. White Paper from Fraunhofer Fokus, October 2004. http://www.

autonomic-communication.org/publications/doc/WP_v02.pdf.

[181] W. R. Stevens and S. A. Rago. Advanced Programming in the UNIX Environment. Addison
Wesley, 2nd edition, 2005.

[182] E. Stoyanov, M. Wischy, and D. Roller. Using Managed Communication Channels in Software
Components. Proc. 3rd Conf. on Computing Frontiers, pages 177–186, May 2006.

268

http://www.autonomic-communication.org/publications/doc/WP_v02.pdf
http://www.autonomic-communication.org/publications/doc/WP_v02.pdf

Bibliography

[183] J. Strassner. DEN-ng: Achieving Business-Driven Network Management. In Proc. IEEE/IFIP
Int. Network Operations and Management Symposium, pages 753–766, August 2002.

[184] J. Strassner. Policy-Based Network Management: Solutions for the Next Generation. Morgan
Kaufman Publishers, 2003. ISBN 1-55860-859-1.

[185] J. Strassner. Using Lifecycles and Contracts to Build Better Telecommunications Systems. In
Proc. 3rd European Conference on Universal Multiservice Networks, pages 483–497, October
2004.

[186] J. Strassner. Knowledge Management Issues for Autonomic Systems. In Proc. 16th Int.
Workshop on Database and Expert Systems Applications, pages 398–402, August 2005.

[187] J. Strassner, J. W.-K. Hong, and S. van der Meer. The Design of an Autonomic Element for
Managing Emerging Networks and Services. In Proc. 1st IEEE Int. Conf. on Ultra Modern
Telecommunications & Workshops, pages 1–8, October 2009.

[188] J. Strassner, D. O’Sullivan, and D. Lewis. Ontologies in the Engineering of Management
and Autonomic Systems: A Reality Check. Journal of Network and Systems Management,
15(1):5–11, March 2007.

[189] J. Strassner, J. N. Souza, S. van der Meer, S. Davy, K. Barrett, D. Raymer, and S. Samudrala.
The Design of a New Policy Model to Support Ontology-Driven Reasoning for Autonomic
Networking. Journal of Network and Systems Management, 17(1-2):5–32, 2009.

[190] J. Strassner, S. van der Meer, D. O’Sullivan, and S. Dobson. The Use of Context-Aware
Policies and Ontologies to Facilitate Business-Aware Network Management. Journal of
Network and Systems Management, pages 255–284, 2009.

[191] G. Sunyé, A. L. Guennec, and J.-M. Jézéquel. Using UML Action Semantics for Model
Execution and Transformation. Information Systems, 27(6):445–457, 2002.

[192] D. Sykes, W. Heaven, J. Magee, and J. Kramer. From Goals to Components: A Combined
Approach to Self-Management. Proc. Int. Workshop on Software Engineering for Adaptive
and Self-Managing Systems, pages 1–8, May 2008.

[193] C. Szyperski. Component Software – Beyond Object-Oriented Programming. Addison Wesley,
1999.

[194] G. Taentzer, K. Ehrig, E. Guerra, J. de Lara, L. Lengyel, T. Levendovszky, U. Prange, D. Varro,
and S. Varro-Gyapay. Model Transformation by Graph Transformation: A Comparative
Study. In Proc. Workshop Model Transformation in Practice, pages 120–127, October 2005.

[195] A. S. Tanenbaum and M. van Steen. Distributed Systems – Principles and Paradigms. Prentice
Hall, 2002. ISBN 0-13-088893-1.

[196] D. L. Tennenhouse and D. J. Wetherall. Towards an Active Network Architecture. In Proc.
DARPA Active NEtworks Conference and Exposition, pages 2–15, May 2002.

[197] X. Than, H. Miao, and L. Liu. Formalizing the Semantics of UML Statecharts with Z. In
Proc. 4th Int. Conf. on Computer and Information Technology, pages 1116– 1121, September
2004.

269

Bibliography

[198] H. H. To, S. Krishnaswamy, and B. Srinivasan. Mobile Agents for Network Management:
When and When Not! Proc. of the 2005 ACM Symposium on Applied Computing, pages
47–53, March 2005.

[199] S. Uchitel, J. Kramer, and J. Magee. Behaviour Model Elaboration using Partial Labelled
Transition Systems. In Proc. 9th European Software Engineering Conference, pages 19–27,
September 2003.

[200] G. Valetto and G. Kaiser. Using Process Technology to Control and Coordinate Software
Adaptation. In Proc. 25th Int. Conf. on Software Engineering, pages 262–272, May 2003.

[201] S. van der Meer, A. Davy, S. Davy, R. Carroll, B. Jennings, and J. Strassner. Autonomic
Networking: Prototype Implementation of the Policy Continuum. Proc. 1st Int. Workshop
on Broadband Convergence Networks, pages 163–172, April 2006.

[202] S. van der Meer, W. Donnelly, J. Strassner, B. Jennings, and M. Ó. Foghlu. Emerging
Principles of Autonomic Network Management. In Proc. 1st IEEE Workshop on Modelling
Autonomic Communicaiton Environments, pages 29–48, October 2006.

[203] M. Völter, A. Schmid, and E. Wolff. Server Component Patterns: Component Infrastructures
Illustrated with EJB. John Wiley & Sons, Ltd, 2002.

[204] R. P. Weicker. Dhrystone: A Synthetic Systems Programming Benchmark. Communications
of the ACM, 27(10):1013–1030, October 1984.

[205] A. Winter, B. Kullbach, and V. Riediger. An Overview of the GXL Graph Exchange Language.
In S. Diehl, editor, Software Visualization, volume 2269 of Lecture Notes in Computer Science,
pages 324–336. Springer, 2001.

[206] K. Winter. Formalising Behaviour Trees with CSP. In Proc. 4th Int. Conf. on Integrated
Formal Methods, pages 148–167, April 2004.

[207] N. Wirth. What can we do about the unnecessary diversity of notation for syntactic definitions?
Communications of the ACM, 20(11):822 – 823, November 1977.

[208] S. M. Yacoub and H. H. Ammar. A Pattern Language of Statecharts. In Proc. Conference
on Pattern Languages of Programs, August 1998.

[209] S. Yang. Logic Synthesis and Optimization Benchmarks User Guide Version 3.0. In Proc. 1st

Int. Workshop on Logic Synthesis, May 1991.

[210] B. D. Zakaria, N. Simoni, M. Chevanne, and S. Betge-Brezetz. An Information Model for
Service and Network Management Integration: from Needs Towards Solutions. In Proc. IEEE
/ IFIP Network Operations and Management Symposium, pages 527–540, April 2004.

[211] C. Zhang, M. Li, and Q. Pan. An ECA Rules Based Middleware Architecture for Wireless
Sensor Networks. In Proc. 6th Int. Conference on Parallel and Distributed Computing,
Applications and Technologies, pages 586–588, December 2005.

[212] P. Ziemann, K. Hölscher, and M. Gogolla. Coherently Explaining UML Statechart and
Collaboration Diagrams by Graph Transformations. Electronic Notes in Theoretical Computer
Science, 130:263–280, 2005.

270

Technical References

[213] T. Allweyer. BPMN 2.0. BoD, February 2010. ISBN 3-8391-4985-1.

[214] amazon.com. Amazon Simple Notification Service. http://aws.amazon.com/de/sns.

[215] Apache Software Foundation. Commons SCXML v0.9, December 2008. http://commons.

apache.org/scxml.

[216] Apache Software Foundation. Apache Felix 2.0.1, October 2009. http://felix.apache.org.

[217] Apache Software Foundation. Java Expression Language v1.1, November 2009. http:

//commons.apache.org/jexl.

[218] Apache Software Foundation. ActiveMQ 5.3.2, May 2010. http://activemq.apache.org.

[219] Apple, Inc. Xcode Developer Tools. http://developer.apple.com/technologies/xcode.
html.

[220] M. Banzi, D. Cuartielles, T. Igoe, G. Martino, and D. Mellis. Arduino Electronics Prototyping
Platform, 2010. http://www.arduino.cc.

[221] M. Bodell. SCXML. Presentation at the W3C Voice Browser Working Group, October 2006.
http://www.w3.org/Voice/2006/scxml-bodell.pdf.

[222] CASCADAS Consortium. ACE Toolkit, 2008. http://sourceforge.net/projects/

acetoolkit.

[223] D. A. Chappell. Enterprise Service Bus. O’Reilly Media, 2004. ISBN 978-0-596-00675-4.

[224] Cisco Systems. Cisco 2800 Series Integrated Services Routers, 2010. http://www.cisco.

com/en/US/products/ps5854.

[225] Cisco Systems. Cisco Application eXtension Platform, 2010. http://www.cisco.com/web/
go/axp.

[226] G. Cugola and G. P. Picco. REDS: A Reconfigurable Dispatching System. In Proc. 6th IEEE
Int. Workshop on Software Engineering and Middleware, pages 9–16, November 2006.

[227] C. v. B. Daniel Balasubramanian, Anantha Narayanan and G. Karsai. The Graph Rewriting
and Transformation Language: GReAT. In Proc. 3rd Int. Workshop on Graph Based Tools,
September 2006.

[228] Distributed Management Task Force. Representation of CIM in XML, Version 2.3.1. DSP0201,
August 2009.

[229] Distributed Management Task Force. Web-Based Enterprise Management. DMTF Standards,
2010. http://www.dmtf.org/standards/wbem.

271

http://aws.amazon.com/de/sns
http://commons.apache.org/scxml
http://commons.apache.org/scxml
http://felix.apache.org
http://commons.apache.org/jexl
http://commons.apache.org/jexl
http://activemq.apache.org
http://developer.apple.com/technologies/xcode.html
http://developer.apple.com/technologies/xcode.html
http://www.arduino.cc
http://www.w3.org/Voice/2006/scxml-bodell.pdf
http://sourceforge.net/projects/acetoolkit
http://sourceforge.net/projects/acetoolkit
http://www.cisco.com/en/US/products/ps5854
http://www.cisco.com/en/US/products/ps5854
http://www.cisco.com/web/go/axp
http://www.cisco.com/web/go/axp
http://www.dmtf.org/standards/wbem

Technical References

[230] J. Dubrovin. Jumbala — an Action Language for UML State Machines. Research Report
A101, Helsinki University of Technology, Laboratory for Theoretical Computer Science, 2006.

[231] ECMA International. ECMAScript 3rd Edition Compact Profile. ECMA-327 Standard, June
2001. http://www.ecma-international.org/publications/standards/Ecma-327.htm.

[232] ECMA International. ECMAScript for XML (E4X) Specification. ECMA-357 Stand-
ard, December 2005. http://www.ecma-international.org/publications/standards/

Ecma-357.htm.

[233] ECMA International. Common Language Infrastructure (CLI), 4th edition. ECMA-335
Standard, June 2006. http://www.ecma-international.org/publications/standards/

Ecma-335.htm.

[234] R. Enns, ed. NETCONF Configuration Protocol. IETF Network Working Group, RFC 4741,
December 2006.

[235] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and T. Berners-Lee.
Hypertext Transfer Protocol – HTTP/1.1. IETF Network Working Group, RFC 2616, June
1999.

[236] Fraunhofer FOKUS. FOKUS XML Document Management Server. http://www.open-ims.
org/xdms.

[237] Google. Google Web Toolkit, 2010. http://code.google.com/webtoolkit.

[238] E. Höfig and A. Hinnerichs. Template Matching Specification Language, 2007. http:

//sourceforge.net/projects/tmpl.

[239] IBM Corporation. Rational Rhapsody. Product Web Page. http://www.ibm.com/software/
awdtools/rhapsody.

[240] Institute of Electrical and Electronics Engineers. Very High Speed Integrated Circuit Hardware
Description Language. IEEE Standard 1076-1993, 1993.

[241] Institute of Electrical and Electronics Engineers. Gigabit Ethernet over Twisted Pair. IEEE
Standard 802.3ab-1999, June 1999.

[242] K. Jiang, L. Zhang, and S. Miyake. OCL4X: An Action Semantics Language for UML Model
Execution. In Proc. 31st Int. Computer Software and Applications Conf., pages 633–636,
2007.

[243] F. Jouault and I. Kurtev. Transforming Models with ATL. In Proc. Satellite Events at the
MoDELS 2005 Conference, pages 128–138, January 2006.

[244] M. B. Jurič, B. Mathew, and P. Sarang. Business Process Execution Language for Web Services
BPEL and BPEL4WS. Packt Publishing, 2nd edition, January 2006. ISBN 1-904811-81-7.

[245] A. Kalnins, J. Barzdins, and E. Celms. Basics of Model Transformation Language MOLA.
In Proc. Workshop on Model Transformation and Execution in the Context of MDA, pages
62–76, June 2004.

272

http://www.ecma-international.org/publications/standards/Ecma-327.htm
http://www.ecma-international.org/publications/standards/Ecma-357.htm
http://www.ecma-international.org/publications/standards/Ecma-357.htm
http://www.ecma-international.org/publications/standards/Ecma-335.htm
http://www.ecma-international.org/publications/standards/Ecma-335.htm
http://www.open-ims.org/xdms
http://www.open-ims.org/xdms
http://code.google.com/webtoolkit
http://sourceforge.net/projects/tmpl
http://sourceforge.net/projects/tmpl
http://www.ibm.com/software/awdtools/rhapsody
http://www.ibm.com/software/awdtools/rhapsody

Technical References

[246] I. Kurtev. State of the Art of QVT: A Model Transformation Language Standard. In Proc.
Applications of Graph Transformations with Industrial Relevance, pages 377–393, October
2007.

[247] T. Lindholm and F. Yellin. The Java Virtual Machine Specification. Prentice Hall, 2nd

edition, April 1999. ISBN 978-0-201-43294-7.

[248] P. Marrow. The DIET Project: Building a Lightweight, Decentralized and Adaptable Agent
Platform. AgentLink News, (12):3–6, 2003. Network of Excellence for Agent Based Computing.

[249] Y. Matsumoto. The Ruby Programming Language. http://www.ruby-lang.org.

[250] K. McCloghrie, D. Perkins, and J. Schoenwaelder. Structure of Management Information
Version 2 (SMIv2). IETF Network Working Group, RFC 2578, April 1999.

[251] D. Megginson. Simple API for XML. http://www.saxproject.org.

[252] Message Passing Interface Forum. MPI: A Message-Passing Interface Standard Version 2.2.
MPI Forum Standard, September 2009. http://www.mpi-forum.org/docs/docs.html.

[253] Nokia Qt Labs. SCXML Importer for the Qt State-Machine Framework, January 2010.
http://qt.gitorious.org/qt-labs/scxml.

[254] North Carolina State University. The Benchmark Archives at CBL. http://www.cbl.ncsu.
edu:16080/benchmarks.

[255] Object Management Group. OMG Unified Modeling Language (OMG UML), Superstructure,
Version 2.2. OMG Specification, February 2002. http://www.omg.org/spec/UML/2.2/

Superstructure.

[256] Object Management Group. MDA Guide Version 1.0.1, June 2003. http://www.omg.org/
cgi-bin/doc?omg/03-06-01.pdf.

[257] Object Management Group. CORBA Notification Service, version 1.1. OMG Specifica-
tion, October 2004. http://www.omg.org/technology/documents/formal/notification_
service.htm.

[258] D. Ogle, H. Kreger, A. Salahshour, J. Cornpropst, E. Labadie, M. Chessell, B. Horn, J. Gerken,
J. Schoech, and M. Wamboldt. Canonical Situation Data Format: The Common Base Event
V1.0.1. IBM Specification, April 2003. http://www.ibm.com/developerworks/library/

specification/ws-cbe/.

[259] Open Participation Software for Java Project. Pax Web, 2010. http://wiki.ops4j.org/

display/paxweb/Pax+Web.

[260] Oracle. Java HotSpot Virtual Machine, 2010. http://java.sun.com/javase/

technologies/hotspot.

[261] OSGi Alliance. OSGi Bundle Repository. OSGI RFC-0112, February 2006. http://www.

osgi.org.

[262] OSGi Alliance. OSGi Service Platform Release 4.1, May 2007. http://www.osgi.org.

273

http://www.ruby-lang.org
http://www.saxproject.org
http://www.mpi-forum.org/docs/docs.html
http://qt.gitorious.org/qt-labs/scxml
http://www.cbl.ncsu.edu:16080/benchmarks
http://www.cbl.ncsu.edu:16080/benchmarks
http://www.omg.org/spec/UML/2.2/Superstructure
http://www.omg.org/spec/UML/2.2/Superstructure
http://www.omg.org/cgi-bin/doc?omg/03-06-01.pdf
http://www.omg.org/cgi-bin/doc?omg/03-06-01.pdf
http://www.omg.org/technology/documents/formal/notification_service.htm
http://www.omg.org/technology/documents/formal/notification_service.htm
http://www.ibm.com/developerworks/library/specification/ws-cbe/
http://www.ibm.com/developerworks/library/specification/ws-cbe/
http://wiki.ops4j.org/display/paxweb/Pax+Web
http://wiki.ops4j.org/display/paxweb/Pax+Web
http://java.sun.com/javase/technologies/hotspot
http://java.sun.com/javase/technologies/hotspot
http://www.osgi.org
http://www.osgi.org
http://www.osgi.org

Technical References

[263] POSTECH Software Engineering Laboratory. ASADAL CASE Tool. http://http://selab.
postech.ac.kr/asadal/index.html.

[264] A. Pras and J. Schoenwaelder. On the Difference between Information Models and Data
Models. IETF Network Working Group, RFC 3444, January 2003.

[265] C. Raistrick, P. Francis, J. Wright, C. Carter, and I. Wilkie. Model Driven Architecture with
Executable UML. Cambridge University Press, 2004. ISBN 0-521-53771-1.

[266] W. C. Richardson, D. Avondolio, S. Schrager, M. W. Mitchell, and J. Scanlon. Professional
Java JDK 6 Edition. Wiley Publishing, 2007. ISBN 978-0-471-77710-6.

[267] D. Saff, E. Gamma, E. G. H. Meade, and K. Beck. JUnit – Java Unit Testing Framework.
http://sourceforge.net/projects/junit.

[268] H. Schildt. C – the Complete Reference. Osborne, 3rd edition, 1995. ISBN 0-07-882101-0.

[269] Standard Performance Evaluation Corporation. SPEC CPU2006 Benchmark Suite. http:

//www.spec.org/cpu2006.

[270] F. Strauss and J. Schoenwaelder. SMIng - Next Generation Structure of Management
Information. IETF Network Working Group, RFC 3780, May 2004.

[271] B. Stroustrup. Die C++ Programmiersprache. Addison-Wesley, 3rd edition, 1998. ISBN
0-201-88954-4.

[272] S. T. Taft, R. A. Duff, R. L. Brukardt, E. Ploedereder, and P. Leroy. Ada 2005 Reference
Manual, volume 4348 of Lecture Notes in Computer Science. Springer, May 2007.

[273] TeleManagement Forum. Shared Information/Data (SID) Model - Business View Concepts,
Principles, and Domains. NGOSS Release 6.1, November 2005.

[274] TGI group, University of Hamburg. Petri Nets World. http://www.informatik.

uni-hamburg.de/TGI/PetriNets.

[275] The Codehaus. MVFLEX Expression Language, October 2009. http://mvel.codehaus.org.

[276] The Codehaus. Performance of MVEL 2.0, June 2010. http://mvel.codehaus.org/

Performance+of+MVEL+2.0.

[277] The DaCapo Project. DaCapo Benchmark Suite. http://www.dacapobench.org.

[278] The Eclipse Foundation. Eclipse Modeling Framework v2.5.0, Juni 2009. http://www.

eclipse.org/modeling/emf/.

[279] The Eclipse Foundation. Equinox, Version 3.5, June 2009. http://www.eclipse.org/

equinox.

[280] The Eclipse Foundation. UML2 Implementation v3.0.1 from the Model Development Tools
Project, August 2009. http://www.eclipse.org/modeling/mdt.

[281] The Knopflerfish Project. Knopflerfish, Version 2, June 2010. http://www.knopflerfish.
org.

274

http://http://selab.postech.ac.kr/asadal/index.html
http://http://selab.postech.ac.kr/asadal/index.html
http://sourceforge.net/projects/junit
http://www.spec.org/cpu2006
http://www.spec.org/cpu2006
http://www.informatik.uni-hamburg.de/TGI/PetriNets
http://www.informatik.uni-hamburg.de/TGI/PetriNets
http://mvel.codehaus.org
http://mvel.codehaus.org/Performance+of+MVEL+2.0
http://mvel.codehaus.org/Performance+of+MVEL+2.0
http://www.dacapobench.org
http://www.eclipse.org/modeling/emf/
http://www.eclipse.org/modeling/emf/
http://www.eclipse.org/equinox
http://www.eclipse.org/equinox
http://www.eclipse.org/modeling/mdt
http://www.knopflerfish.org
http://www.knopflerfish.org

Technical References

[282] Topcased Consortium. The Topcased Project. http://www.topcased.org.

[283] USB Implementers Forum, Inc. Universal Serial Bus Revision 2.0 Specification. http:

//www.usb.org.

[284] G. van Rossum. The Python Programming Language. http://www.python.org.

[285] E. D. Willink. UMLX: A Graphical Transformation Language for MDA. In Proc. 2nd

OOPSLA Workshop on Generative Techniques in the context of Model Driven Architecture,
pages 13–24, October 2003.

[286] World Wide Web Consortium. Web Services Architecture. W3C Working Group Note,
February 2004. http://www.w3.org/TR/ws-arch.

[287] World Wide Web Consortium. Web Services Choreography Description Language Version 1.0.
W3C Candidate Recommendation, November 2005. http://www.w3.org/TR/ws-cdl-10.

[288] World Wide Web Consortium. XML Path Language v2.0. W3C Recommendation, January
2007. http://www.w3.org/TR/xpath20.

[289] World Wide Web Consortium. State Chart XML (SCXML): State Machine Notation for
Control Abstraction. W3C Working Draft, October 2009. http://www.w3.org/TR/2009/

WD-scxml-20091029.

[290] T. Ylonen and C. Lonvick, ed. The Secure Shell (SSH) Protocol Architecture. IETF Network
Working Group, RFC 4251, January 2006.

275

http://www.topcased.org
http://www.usb.org
http://www.usb.org
http://www.python.org
http://www.w3.org/TR/ws-arch
http://www.w3.org/TR/ws-cdl-10
http://www.w3.org/TR/xpath20
http://www.w3.org/TR/2009/WD-scxml-20091029
http://www.w3.org/TR/2009/WD-scxml-20091029

	Introduction
	Subject of Research
	Problem Statement
	Research Hypothesis

	Methodology
	Scientific Contributions
	Document Structure

	Concepts
	Modelling Runtime Behaviour
	States as Fundamental Building Blocks
	Changing States: Transitions
	Executing Actions
	Creating Structure by Composition
	Manipulating the Control Flow Cardinality
	Remembering Control Flow State

	Interpretation of Behaviour Models
	Initialisation from Model Specification
	Event Processing
	Concurrency
	Expression and Action Evaluation
	Functional Components
	Communication Mechanisms

	Distributed Model Management
	Summary

	Related Work
	State-Transition Systems
	Automata Theory
	Statecharts

	Behaviour Models
	Interpretation and Execution
	Operations on Behaviour Models
	Tool Support
	Alternatives for Behaviour Modelling and Execution

	Autonomic Systems Engineering
	Dynamic System Adaptation
	Communication Mechanisms
	Frameworks

	Network and Systems Management
	System Regulation
	Information and Data Models
	Management in the Network
	Towards Autonomic Network Management

	Performance Benchmarking
	Summary

	Implementations
	An Interpreter for Behaviour Models
	Fundamental Behaviour Model Features
	Generic Interpreter Architecture

	The TMPL Engine
	Architecture and Operation
	Major Challenges and Key Results

	The ACE Toolkit
	Architecture and Operation
	Major Challenges and Key Results

	The UML State Machine Interpreter
	Architecture and Operation
	Major Challenges and Key Results

	The Model Processing Unit
	Architecture and Operation
	Major Challenges and Key Results

	Summary

	Use Case Studies
	Service Supervision with ACEs
	Dynamic Reconfiguration Scenario

	Management in the Network
	Performance Troubleshooting Scenario
	Monitoring Router-Load Using MBIM

	Intrinsic Monitoring
	Execution of Monitoring Behaviour

	An Application to Embedded Systems
	Summary

	Performance Benchmark
	The Benchmark Suite
	SIZE Scenario
	ALTERNATIVE Scenario
	EPSILON Scenario
	EVENT Scenario
	GUARD Scenario
	COMPOUND Scenario
	EXPRESSION Scenario
	CONCURRENT Scenario
	CONFIG Scenario
	LIFECYCLE Scenario
	The General Benchmark Process
	Comparing the Results

	Execution Platform Mappings
	Mapping to the UML Adaptive Systems Profile and Ecore
	Mapping to State Chart XML and JEXL
	Mapping to UML and Generated C.33ex++1000

	Quantitative Assessment of the Approach
	Performance of the UML Interpreter
	Performance of the Model Processing Unit
	Determination of Baseline Performance

	Summary

	Conclusion
	Feasibility of the Approach
	Encountered Challenges and Lessons Learned
	BM Interpretation
	Platform Integration
	The Benchmark

	Relevance of the Results
	Future Work

	Appendices
	UML State Machines
	State Chart XML
	ACElandic
	Values from Benchmark Measurements
	Self-Models for the Dynamic Reconfiguration Scenario
	Behaviour Models for the Management in the Network Scenario
	Behaviour Models for the Intrinsic Monitoring Scenario

	Glossary
	List of Abbreviations
	Bibliography
	Technical References

