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Abstract Utilizing parallel algorithms is an established

way of increasing performance in systems that are bound to

real-time restrictions. Sensor-based sorting is a machine

vision application for which firm real-time requirements

need to be respected in order to reliably remove potentially

harmful entities from a material feed. Recently, employing

a predictive tracking approach using multitarget tracking in

order to decrease the error in the physical separation in

optical sorting has been proposed. For implementations

that use hard associations between measurements and

tracks, a linear assignment problem has to be solved for

each frame recorded by a camera. The auction algorithm

can be utilized for this purpose, which also has the

advantage of being well suited for parallel architectures. In

this paper, an improved implementation of this algorithm

for a graphics processing unit (GPU) is presented. The

resulting algorithm is implemented in both an OpenCL and

a CUDA based environment. By using an optimized data

structure, the presented algorithm outperforms recently

proposed implementations in terms of speed while retain-

ing the quality of output of the algorithm. Furthermore,

memory requirements are significantly decreased, which is

important for embedded systems. Experimental results are

provided for two different GPUs and six datasets. It is

shown that the proposed approach is of particular interest

for applications dealing with comparatively large problem

sizes.

Keywords Linear assignment problem � Sensor-based
sorting � Parallel algorithm � Graphics processing unit

1 Introduction

Sensor-based sorting is an important real-time application

in the field of machine vision. Corresponding systems

provide solutions to physically separate a material feed into

predefined classes. In many cases, the goal is to remove

low-quality parts from a material stream. Hence, the task

can be understood as executing an accept-or-reject deci-

sion. An impression of a sensor-based sorting system is

provided in Fig. 1. Typical setups include opto-pneumatic

separators [1], which consist of optical sensors for per-

ceiving the material and compressed air nozzles for phys-

ically separating it. Ordinarily, systems utilize scanning

sensors, such as line scan cameras, which allow two-di-

mensional images of objects passing through the field of

vision to be generated. For the purpose of transportation,

conveyor belts, slides, or chutes are commonly used.

A general challenge in sensor-based sorting lies in

minimizing the delay between perception and separation of

the material. This delay mainly exists due to the required

processing time of the evaluation system employed. In the

case of optical sorting, the evaluation is implemented in

terms of several image processing tasks. For instance,

systems handle the task of preprocessing the input data,
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extracting regions of the input image that contain objects,

calculating features for the individual objects, and classi-

fying them accordingly. Minimizing this delay is a neces-

sity for good sorting quality. An increased delay results in

increased imprecision in predicting the location of an

object when reaching the separation stage.

While conventional systems utilize scanning sensors, the

application of area scan cameras has recently been pro-

posed [2, 3]. Given a sufficiently high frame rate, multiple

measurements of individual objects can be obtained.

Utilizing multitarget tracking, the position and point in

time of an individual object reaching the separation stage

can be estimated more accurately [4]. An illustration of

such resulting tracks is provided in Fig. 2. However,

compared with conventional systems, this implies an

additional burden for the evaluation systems. Furthermore,

firm real-time requirements apply, since a sorting decision

is useless if it is derived after the object has already passed

the separation stage. Among other tasks, many established

multitarget tracking systems require solving the task of

assigning each obtained measurement in each new frame to

a track. In order to meet the firm real-time requirements,

efficient implementations are a necessity.

Bipartite graph matching, as performed in order to find

the assignments between measurements and tracks, is a

well-studied problem. In the field of computer vision,

numerous applications exist in which such assignment

tasks need to be solved. It is also used in scheduling tasks.

Bipartite graph matching can be regarded as a linear

assignment problem, and various algorithms to solve it

exist [5]. When dealing with applications that are required

to have real-time capabilities, the problem becomes even

harder since corresponding solvers typically pose a high

computational burden on the system whenever many cor-

respondences are to be found.

In this paper, a real-time multitarget tracking algorithm

for the computer vision task of sensor-based sorting is

presented. For this purpose, an enhanced solver for the

linear assignment problem is considered. More precisely, a

fast realization of the auction algorithm on a graphics

processing unit (GPU) is proposed. The algorithm is

implemented both using the OpenCL framework, which

Fig. 1 Setup of an optical belt sorter. The components as chrono-

logically passed by the material stream are shown as follows:

(1) vibrating feeder (2) conveyor belt (3) sensor (4) array of com-

pressed air nozzles

Fig. 2 Excerpt of an image recorded using a sorting system showing

rubber granulate. The image was recorded using a camera of the type

Bonito CL-400 running at approximately 192 Hz and a LED ring light

source. The resolution is approximately 0:13 mm per pixel. The

material is captured while being transported on a conveyor belt

running at 1:1 m s�1. a Plain image b Image including visualization

of the tracks. Each arrowed line represents the movement between

two successive frames. Information from prior frames is illustrated

with increasing transparency. The predictive tracking approach allows

the prediction of the position of objects for subsequent frames
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allows running the code on numerous state-of-the-art

GPUs, and using CUDA. This allows utilization of two

GPUs for experiments, further revealing the performance

of the implementations. The CUDA-based implementation

is based on the code published with [6]. The enhanced

algorithm includes two specific improvements which sig-

nificantly increase processing speed and also decrease

memory usage, which is of particular interest for embedded

systems. In order to demonstrate the success of this

method, its applicability in multitarget tracking used for an

evaluation system as included in sensor-based sorting is

shown. It is also compared with other recent work in the

field.

This paper is organized as follows. Following this

introduction, Sect. 2 briefly reviews the linear assignment

problem and the auction algorithm. Related work in the

field of sensor-based sorting and fast implementations of

the auction algorithm is then reviewed in Sect. 3. A general

description of the multitarget tracking system considered in

this paper is provided in Sect. 4. In Sect. 5, the improve-

ments proposed in this paper are presented. These are

further subject to experimental evaluation, which is pro-

vided in Sect. 6. Lastly, a conclusion is provided in Sect. 7.

2 Problem formulation

The linear assignment problem is typically formalized as

follows: Let N be the number of workers andM the number

of tasks. For cases when jNj 6¼ jMj, the smaller set is

typically expanded such that jNj ¼ jMj holds true. Fur-

thermore, let xi;j ¼ 1 in case worker i is assigned to task

j and xi;j ¼ 0 otherwise. The cost of assigning worker i to

task j is given by ai;j. Then, the optimization problem is

formulated as

min
XN

i¼1

XM

j¼1

ai;jxi;j

s:t:
XM

j¼1

xi;j ¼ 1 8i ¼ 1; . . .;N;

XN

i¼1

xi;j ¼ 1 8j ¼ 1; . . .;M:

ð1Þ

It is important to note that, due to the constraints, a one-to-

one assignment is guaranteed.

The auction algorithm [7] is a popular method of solv-

ing this kind of problem. As its name already indicates, the

assignments are determined by simulating an auction.

Although the algorithm is used to solve a maximization

problem, a minimization problem can easily be reformu-

lated as a maximization problem, for instance by negating

the cost function. The basic workflow is depicted in Fig. 3.

Here, N persons are competing over M objects by bidding

for them. The algorithm further requires that M�N holds

true. Whenever this is not the case, the sets are swapped.

Let pj denote the price of object j. During the bidding

phase, each person finds the object of maximum value as

given by ji 2 argmaxj fai;j � pjg, where ai;j is the utility of

object j to person i. It is important to note that ai;j now

denotes a utility instead of a cost, which represents the

reformulation from a minimization problem to a maxi-

mization problem. Having identified ji, the person offers a

bid denoted as ci in Eq. (2). Furthermore, vi denotes the

value of the most preferred object and wi of the second

most preferred object:

ci ¼vi � wi þ � with

vi ¼max
j

fai;j � pjg;

wi ¼max
j 6¼ji

fai;j � pjg;

�[ 0:

ð2Þ

From Eq. (2) it is clear that ci [ 0 holds. Without �, there

could be cases when ci ¼ 0 and the algorithm would not

terminate. To prevent this situation, ci is increased by �,

also known as �-complementary slackness. Basically, this

allows assignments between persons and objects when the

individual value differs from the maximum value by �.

The set of persons having bid on object j is denoted as

P(j). During the assignment phase, each object j determines

the person having submitted the highest bid as given by

ij 2 argmaxi2PðjÞ ci. The new price of the object is then set

to pj þ cij .

In order to represent the ownership between a person

and an object as well as the current price, a N � N matrix is

Fig. 3 Program flow of the auction algorithm
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typically used. Generally, the algorithm provides an

approximation, since it is only guaranteed to find the

optimal solution if �\1=N and ai;j 2 N hold.

3 Related work

In this section, recent work from the field of sensor-based

sorting and parallel strategies for solving the linear

assignment problem is briefly reviewed.

3.1 Sensor-based sorting

Sensor-based sorting is typically used in the fields of food

processing [8], waste management [1], and sorting of

industrial minerals [9]. The process can be subdivided into

the tasks of feeding, preparation, presentation, examina-

tion, discrimination, and physical separation [10, 11].

Preparation and presentation are realized by means of

certain transport mechanisms, for instance conveyor belts,

slides, or chutes. Usually, the goal is to unscramble the

individual objects and achieve ideal flow control in terms

of having all objects move at a defined velocity. During the

examination, a task-specific sensor, possibly in combina-

tion with an appropriate illumination device, acquires the

data [12, 13]. For the purpose of discrimination, data

analysis is performed. For small, cohesive materials,

physical separation is performed using an array of com-

pressed air nozzles [14].

Conventional systems typically utilize scanning sensors.

Recently, applying an area scan camera in place of a line

scan camera has been proposed [2, 3]. The goal is to

decrease the error in physical separation by selecting the

nozzle(s) as well as the point in time to trigger the nozzle

based on the results of a predictive tracking approach.

In [15], it is shown that information derived from tracked

objects can also be exploited for discrimination of products

and hence be used to decrease the detection error. The

challenge of respecting real-time requirements regarding

multitarget tracking in sensor-based sorting is addressed

in [16]. The authors propose a framework that dynamically

selects an appropriate algorithm to solve the linear

assignment problem based on the current system load.

However, only a homogeneous hardware is assumed, and

all algorithms are executed on a conventional CPU.

3.2 Parallel strategies for solving the linear

assignment problem

Although this work focuses on the auction algorithm, it is

worth mentioning that numerous algorithms for solving the

linear assignment problem exist. An overview and com-

parison of some of the methods are provided in [5].

Due to its suitability for parallel processing, an imple-

mentation of the auction algorithm on a GPU is proposed

in [6]. The authors present an implementation based on

CUDA. They experimentally evaluate their implementa-

tion, comparing it with a sequential CPU implementation

using a computer vision task, namely correspondence

matching of 3D points. In [17], the authors present further

improvements of the implementation. By splitting the N �
N matrix into two unidimensional arrays, one holding the

object prices and the other one the bids, they achieve

lowering of memory usage. Results are presented in terms

of memory usage, showing how especially problems

involving huge datasets benefit from the approach.

An implementation of the auction algorithm on a field-

programmable gate array (FPGA) is presented in [18]. The

authors compare their experimental results with those

presented in [6] and claim to achieve results ten times

faster for certain problem sizes.

Parallel versions of two variants of the Hungarian

algorithm, a different method for solving the linear

assignment problem, are considered in [19]. The imple-

mentation is tailored to NVIDIA devices due to its

implementation using CUDA. Also, the authors state that

their implementation supports multi-GPU versions and

consider up to 16 GPUs.

4 Multitarget tracking in sensor-based sorting

As has been mentioned, sensor-based sorting systems are

typically designed according to a sorting task at hand.

Materials to be sorted may strongly vary in terms of size,

ranging from only a few millimeters, e.g., seeds, up to

several centimeters, for instance minerals. For reasons of

efficiency, the throughput of the system should generally

be as high as possible while respecting quality require-

ments. Consequently, with respect to multitarget tracking,

as many as thousands of objects may need to be tracked

simultaneously. For systems using a conveyor belt for

transportation, the applied belt speed may also vary. Typ-

ically, it is configured within a range of 1–5 ms�1. Also,

the image resolution needs to be sufficient for detecting the

smallest possible characteristic that is of importance for

material characterization. In many cases, it is only a frac-

tion of a millimeter.

In many cases, the data retrieved by the sensor of a

sorting system can be represented as an image, e.g., in

optical sorting. Therefore, the measurements that serve as

the input for the tracking algorithm need to be detected in

the image data. This task is handled by various image
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processing routines, such as filtering and segmentation,

which are required during data evaluation in order to

characterize the individual objects. The centroids of the

extracted objects then represent a set of unlabeled mea-

surements for a received image in our case.

In our system, multitarget tracking can be subdivided

into four tasks, namely state estimation, gating, associa-

tion, and internal state management [16]. For the purpose

of state estimation, a standard Kalman filter is used.

Assuming the assignments between the measurements and

the tracks are given, we refine our knowledge about the

positions of the particles by performing a Kalman filter

update step for each individual particle. For the prediction

step of the Kalman filter, we assume that a constant

velocity model can be used to approximate the motion of

the particles and state variables are given by the x and y of

the measurement and the velocities in both directions, i.e.,

vx and vy. The prediction step has a complexity of O(n),

where,n denotes the number of current target tracks, which

is expected to be (almost) equal to the number of mea-

surements. The prediction yields the approximate position

of the individual particles in the next time step, which then

serve as the input for the gating and the association step at

the next time step. The goal of gating is to partition the

search space prior to association and hence split the

problem into several smaller subproblems. This also allows

for parallel processing during association. However, in this

paper, gating is not considered. During association, the

prediction of the existing tracks needs to be matched to the

current measurements. This requires solving a linear

assignment problem. Various algorithms exist, and they

differ both in terms of computational complexity and

whether they guarantee optimal results. In this paper, we

focus on the auction algorithm for this task.

With reference to the description provided in Sect. 2, the

sets N and M denote the predictions of the existing tracks

and the measurements of the current frame. Initially,

M contains the measurements (objects) and N the predic-

tions (persons). The bidding kernel is implemented from

the point of view of the persons, the assignment kernel

from the point of view of the objects. Thus, the corre-

sponding quantity indicates the problem size. However,

due to the restriction that jMj � jNj must hold true, the sets

are possibly swapped. In our scenario, the distance between

a measurement obtained and the prediction of a track is

used to determine which measurement is to be associated

with which track. The algorithm considered here utilizes a

cutoff distance denoted as dmax. Whenever the distance

between the position Mi of measurement i and the position

of the current prediction Nj of track j exceeds this distance,

the utility is set to zero:

ai;j ¼ dmax �min
�
dmax; dðMi;NjÞ

�
: ð3Þ

This transformation is advantageous for the improvements

discussed in Sect. 5.

Furthermore, an asymmetric problem is considered, i.e.,

it is not required that jNj ¼ jMj holds true. In our scenario,

tracks for which no measurement yielded a utility greater

than 0 are regarded as tracks to be erased. In the context of

sensor-based sorting, this means that an object has left the

observed area. However, due to possible occlusions, col-

lisions, or poor object detection, tracks are not deleted

immediately. Instead, a scoring system is applied. More

precisely, each new track is assigned an initial score.

Whenever a measurement is assigned to a track, the score

is increased until it reaches a defined maximum score.

Likewise, the score is decreased for frames in which no

measurement was assigned to the track. When the score

drops below zero, the track is finally deleted. Measure-

ments that have not been assigned to any track are regarded

as new tracks. These can be objects that just entered the

observed area or measurements of tracks that have already

been deleted. A more complex strategy for creation and

deletion of tracks that takes the position of a measurement

inside the observed area into account is presented in [4],

but not considered in this paper.

5 Enhanced implementation of the auction
algorithm

In this section, the proposed implementation of the auction

algorithm for multitarget tracking is presented. It contains

two improvements that increase the speed of the algorithm

and/or lower memory usage. These improvements are

integrated both in an OpenCL and CUDA implementation,

for which results are presented in Sect. 6. It mainly consists

of two kernels handling the bidding and assignment phase,

respectively, and a kernel containing both phases as well as

the convergence test. The latter is a necessity for the

improvement proposed in Sect. 5.2.

5.1 Replacing the bidding matrix by one 1D array

As has been discussed in Sect. 3, an approach replacing the

N �M matrix by two arrays has been proposed in [17].

Although it is successfully demonstrated how the approach

significantly lowers memory usage, no results on the

impact on processing time are presented. Also, the method

suffers from requiring synchronization whenever updating

the current owner and price of an object. This is due to

possible race conditions whenever multiple persons are

bidding on one and the same object concurrently. There-

fore, we propose to reduce the data structure to one array

only. This is made possible by encoding the bid as well as
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the person in a single value. More precisely, the higher

order bits of a value are used to store the current bid, while

the lower bits contain the person that placed the bid.

Context-specific fixed-point numbers are then a convenient

way of encoding the bid. An example considering a 32-bit

data type is provided in Fig. 4. This approach allows the

utilization of atomic functions for updating a value. For

instance, an atomic max function can be used to update the

value if a higher bid is posed. If two persons submit the

same bid, the person with the greater Person ID wins.

The approach is further designed such that it does not

yield any relevant restrictions regarding the highest possi-

ble bid. This is achieved by determining a factor K in

correspondence with dmax. In order to do so, the upper

bound of the possible bid increment can be calculated such

that

ci � cmax with

cmax ¼ dmax þ �; i 2 ½1; . . .;N�
ð4Þ

holds true. For a scaled bid c, Eq. (5) holds, where

K indicates the scaling factor. K is chosen such that the

number of available bits suffices for c for a given dmax and

�.

0� c�K � cmax ¼ Kðdmax þ �Þ ð5Þ

However, the presented approach implies a restriction

regarding the number of persons that can be considered.

For cases where high numbers are required, larger data

types can be used, for instance 64-bit instead of 32-bit.

This approach is advantageous for several reasons.

Firstly, memory usage and therefore the amount of data

that potentially requires transfer to GPU memory is sig-

nificantly reduced and can be formulated as follows. In

cases when jNj � jMj, the complete bidding matrix con-

sists of jNj2 entries. Applying the improvements from [17],

the number of entries can be decreased to 2|N|. The

improvement proposed in this paper reduces the amount of

required memory to |N|. This is particularly advantageous

for embedded systems, which are often used in sensor-

based sorting. Furthermore, compared to [17], the proposed

approach allows utilization of atomic functions instead of

locking two fields whenever an ownership is to be updated.

More precisely, using a mutex instead, at least one atomic

function would be necessary to receive the lock, followed

by at least two read/write operations, and another atomic

call to release the lock. In our case, only one atomic

function call is necessary. Also, fewer fields require

resetting, i.e., setting to zero, between the iterations.

Another advantage lies in avoiding inefficient access of

memory. The proposed approach enables memory coa-

lescing, which is not possible when using a bidding matrix,

because either the bidding or the assignment kernel (de-

pending on whether the sets were swapped) requires all

values from a column of the matrix to be accessed in one

time step. These elements are then not located consecu-

tively in memory. Lastly, identifying the highest bid during

the assignment phase is not required anymore, since the

information is directly stored in the corresponding field.

5.2 Synchronization on the GPU

An implementation of the auction algorithm requires the

bidding phase to be completed for all persons before the

assignment phase may start. Likewise, the assignment

phase must be completed before the convergence test can

be run. Consequently, this requires synchronization steps

between each of the phases.

OpenCL enables synchronization of work-items which

are part of the same work-group on-GPU. We propose to

exploit this property, such that no synchronization handled

by the CPU is required. However, due to the restriction that

all work-items need to be part of the same work-group, the

extent to which this improvement can be used depends on

the hardware. Yet, it is important to note that this infor-

mation can be retrieved during run time and hence whether

to enable this feature or not can be dynamically decided for

each time step. Likewise, CUDA supports the concept of

several threads, which may be part of the same block.

Aforementioned synchronization procedures are realized in

the same way.

6 Test methodology and experimental results

In this section, the environment used for experimentation

and corresponding results are presented.

6.1 Setup and datasets

Results presented below were obtained using six datasets.

Four of these were generated using a particle-based simu-

lation of an optical belt sorter as described in [20]. Here,

the discrete element method (DEM) was employed to

accurately model the particle–particle and particle–wall

interactions within the sorting system. The DEM was first

introduced in 1979 by Cundall and Strack [21] and has

since found application in various engineering tasks

Fig. 4 Example of a partitioning of a value stored in the bidding

array. In this case, a 32-bit data type is assumed. The 20 highest bits

are used to store the current bid and the 12 lowest for the person
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concerned with granular materials. To calculate the precise

translational and rotational motion of every particle at a

predefined time step, Newton and Euler’s equations of

motion are used:

mi

d2xi
dt2

¼Fc
i þ Fg

i ; ð6Þ

Îi
dWi

dt
þWi � ðÎiWiÞ ¼K�1

i Mi; ð7Þ

In the translational equation, the particle mass mi multi-

plied with the particle acceleration d2xi=dt
2 equals the sum

of the contact force Fc
i and the gravitational force Fg

i . The

second equation gives the angular acceleration dWi=dt as a

function of the angular velocity Wi, the external moment

resulting out of the contact forces Mi, the inertia tensor

along the principal axis Îi, and the rotation matrix con-

verting a vector from the inertial into the body fixed frame

K�1
i . The contact forces between particles and between

particles and walls are separated into a normal and a tan-

gential component. The normal component is calculated

with a linear spring damper model and the tangential

contact force with a linear spring limited by the Coulomb

condition. In addition, the rolling friction of the spherical

particles is also included in the resulting external moment.

For the datasets obtained using the DEM simulation, the

simulated conveyor belt runs at 1.5 ms�1. The remaining

two datasets were recorded on an actual sorting system

with a conveyor belt speed of approximately 2.7 ms�1 and

a resolution of approximately 0.3 mm per pixel. A more

detailed description of all datasets is provided in Table 1.

The name of the dataset describes the type of objects that

were applied on the sorting system. For the simulated

datasets, detailed information regarding contact forces,

etc., is provided in [20]. As can be seen, they strongly

differ in terms of included measurements overall as well as

per frame. Additionally, it is noted that for dataset Spheres

1, spheres with a diameter of 5 mm were simulated, while

for Spheres 2, the diameter was reduced to 2.5 mm in order

to simulate an even higher throughput in terms of the

number of objects. This eventually leads to varying prob-

lem sizes considered in the linear assignment problem.

Generally, the parameters for the scoring system as

described in Sect. 4 need to be set carefully. However, with

respect to the datasets obtained via simulation, it is

important to note that the data is noise free. Therefore,

occlusions and missing measurements do not occur.

Although collisions might occur between the objects, the

input data for the tracking system is already reduced to the

centroids of the objects and two centroids can never occupy

the same point in space. Below, an initial track score of 5,

an increase of 2, decrease of 1, and maximum score of 10

are considered without further variation.

All experiments presented were run on an Intel Core i7-

6700 with 16 GB DDR-4-2133 RAM. The operating sys-

tem was Microsoft Windows 10. The CUDA code was run

on a dedicated graphics card, namely NVIDIA Titan X

with Pascal architecture. CUDA compute capability ver-

sion 3.5 was used. With respect to the OpenCL imple-

mentation, results are presented for both the

aforementioned GPU and an integrated one, namely an

Intel HD 530. For OpenCL, version 1.2 was used. The

maximum work-group size for the Titan X GPU is 1024,

and for the Intel HD 530 GPU, it is 256. For all experi-

ments, the maximum possible work-group size was chosen,

i.e., either the problem size or the maximum size supported

by the hardware. It is important to note that for the

improvement discussed in Sect. 5.2 to apply, it is a

necessity that the problem size does not exceed the possible

work-group size.

In addition to absolute times reported, speedup values

are used for comparison with a reference in the remainder.

Values reported are defined as treference=tproposed. As a ref-

erence, the implementation published with [6] is used. For

the CUDA-based code, the original sources are used, and

for OpenCL a porting of the sources.

6.2 Experimental results

The improvements of the auction algorithm discussed in

Sect. 5 were implemented both in the CUDA framework

published with [6] and a corresponding OpenCL imple-

mentation. The results are presented in Fig. 5. In general,

as one might assume, the data show that the fastest pro-

cessing is achieved using CUDA on the Titan X graphics

card and the slowest using OpenCL in combination with

the integrated HD 530 GPU. Regarding the quality, it is

stated that the implementation under evaluation results in

equal associations as the one presented in [6]. Quantitative

results regarding the quality for datasets that were gener-

ated using DEM simulation are provided in Table 2. As

with the definition presented in [16], we regard an error to

have occurred whenever measurements of the same object

at different time points have been assigned to different

tracks. This definition of the error respects both the case

that a track of an actual object was interrupted, for instance

by missing measurements, and that an object was assigned

to a wrong track. In Table 2, we present the total number of

objects in the dataset for which an error occurred. The

number of interruptions or false assignments per object is

not considered.

As can be seen from Fig. 5, irrespective of the frame-

work and the hardware, a significant reduction in time

required can be achieved by the proposed improvements.

Although the absolute time required differs strongly, it can
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Table 1 Summary of the datasets considered for the experimental evaluation

Name Source Sample

rate (Hz)

No. of objects per frame

Pepper

corn 1

Camera 220

Pepper

corn 2

Camera 220

Spheres 1 Simulation 100

Spheres 2 Simulation 100

Spheres

and

plates

Simulation 100

Cylinders Simulation 200

The dotted lines indicate the average number of objects to be tracked per frame and the dashed lines the maximum number of objects to be

tracked in a single frame
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be stated that the decrease in the percentage is comparable

between the different setups. In all cases, our approach

outperforms the conventional implementation. A quantita-

tive comparison in terms of speedups is provided in

Table 3. For datasets with a comparatively low number of

(a)

(b)

(c)

Fig. 5 Processing times for the different platforms and hardware

components for the different datasets. The number in brackets for

each dataset shows the average number of objects to be tracked per

frame. a Processing times using the CUDA framework and the

Titan X dedicated graphics card. b Processing times using the

OpenCL framework and the Titan X dedicated graphics card.

c Processing times using the OpenCL framework and the integrated

HD 530 graphics unit

Table 2 Overview of the tracking quality for the datasets obtained

from simulation

Dataset Total objects Errors

Spheres 1 12134 130

Spheres 2 29693 19

Spheres and plates 3599 5

Cylinders 4412 0

Table 3 Speedup values compared with an implementation without

the proposed optimization

Dataset CUDA OpenCL OpenCL

Titan X HD 530

Pepper corn 1 1.04 1.21 1.27

Pepper corn 2 1.10 1.20 1.13

Spheres 1 1.38 1.36 1.52

Spheres 2 1.40 1.45 1.70

Spheres & Plates 1.04 1.09 1.11

Cylinders 1.12 1.20 1.28

(a)

(b)

Fig. 6 Time per frame required by the implementation based on

CUDA with and without the proposed improvements. Additionally to

the exact measurements, a fitted trend curve is shown. a Dataset

Pepper corn 2 b Dataset Spheres 2
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average measurements per frame, such as Spher-

es & Plates, rather low speedups ranging from 1.04 for the

CUDA-based implementation up to 1.11 utilizing OpenCL

and the HD 530 graphics chip are obtained. However, for

the dataset including the highest number of average mea-

surements, namely Spheres 2, a speedup of 1.4 is reported

for CUDA on the Titan X, 1.45 for OpenCL on the

Titan X, and even 1.7 for OpenCL on the HD 530. Also,

from the description of the datasets as provided in Table 1,

it can be observed that especially for comparatively large

problem sizes, our improvements are fully effective. The

latter can further be observed from Fig. 6. Here, two

examples of the required time per frame are provided.

Solving the linear assignment problem is one of many

steps that must be performed during data analysis in sen-

sor-based sorting. Additional steps include pre-processing

of the image, detecting regions containing objects, and

classification of those objects, which can be implemented

exploiting pipeline parallelism. Therefore, it is of particular

interest how much of the available time, which is defined in

terms of the camera acquisition rate, is consumed by

solving the linear assignment problem. In this way, it can

be stated whether real-time requirements can be fulfilled by

the system. Below, we assume a camera operating at

200 Hz and hence 5 ms of available processing time per

frame. The ratio of time required by the auction algorithm

for this scenario, both conventional and including the

proposed improvements, is provided in Table 4. Here, it

can also be seen that the time required can be reduced

significantly for datasets causing high work load, such as

both Spheres datasets. Considering the Spheres 2 dataset,

the ratio is reduced by 26 percentage points in the CUDA

implementation running on the Titan X graphics card and

by as much as 31 percentage points using OpenCL on the

same hardware. With respect to the HD 530 hardware, it

becomes clear that large problem sizes cannot be handled

under the given time constraint. Further, it is important to

note that these numbers are based on the average pro-

cessing time per frame for the individual datasets. From

Fig. 6, it becomes clear that not exceeding 5 ms of pro-

cessing time is not possible for each individual frame.

7 Conclusion

In this paper, improvements to a GPU-based implementa-

tion of the auction algorithm were proposed that result in

lower memory usage as well as increased speed. Regarding

the latter, it was demonstrated that the approach outper-

forms conventional implementations of the algorithm. In

the best case, it performs 1.7 times as fast and the geo-

metric average of the speedup is 1.24 when averaged over

all platforms. With respect to the different hardware con-

sidered, the geometric average of the speedup using CUDA

is 1.17 and 1.25 for OpenCL when run on the Titan X GPU

and even 1.32 using OpenCL in combination with the

HD 530 GPU. Also, it was shown that, especially for huge

problem sizes, the proposed approach can support fulfilling

firm real-time requirements. This was further elaborated in

the example of data analysis in sensor-based sorting.

Regarding future work, the aim is to focus on particu-

larly challenging situations in terms of computational

burden. The experimental results presented reveal that

although the run time can be significantly reduced and

acceptable processing times can be achieved on average,

the real-time requirement cannot be fulfilled for certain

individual frames. This problem may be tackled by

dynamically adapting � such that it becomes more likely

that fewer auction iterations are required. Also, a hard

threshold regarding the maximum number of allowed

iterations may be introduced. However, it is important to

note that the output quality of the auction algorithm does

not increase monotonically over the iterations. Therefore,

the approach would result in a loss of quality, which is not

the case for the approach presented in this paper.

Table 4 Ratio of the average required and the available processing time for the auction algorithm considering a camera operating at 200 Hz

Dataset CUDA Titan X OpenCL Titan X OpenCL HD 530

No optimization (%) Proposed (%) No optimization (%) Proposed (%) No optimization (%) Proposed (%)

Pepper corn 1 13 13 18 15 33 26

Pepper corn 2 20 18 20 20 41 36

Spheres 1 43 32 48 36 120 79

Spheres 2 91 65 100 69 288 170

Spheres and plates 7 7 9 9 10 8

Cylinders 8 7 10 8 21 17

For each dataset, best results are achieved using CUDA and the Titan X GPU
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