
Vol. 50

Bastian Zimmer

l lo
l l o o o

Editor-in-Chief: Prof. Dr. Dieter Rombach
Editorial Board: Prof. Dr. Frank Bomarius

Prof. Dr. Peter Liggesmeyer
Prof. Dr. Dieter Rombach

FRAUNHOFER VERLAG

l

o

PhD Theses in Experimental Software Engineering
Volume 50

Editor-in-Chief: Prof. Dr. Dieter Rombach

Editorial Board: Prof. Dr. Frank Bomarius
Prof. Dr. Peter Liggesmeyer
Prof. Dr. Dieter Rombach

Zugl.: Kaiserslautern, Univ., Diss., 2014

Printing:
Mediendienstleistungen des
Fraunhofer-Informationszentrum Raum und Bau IRB, Stuttgart

Printed on acid-free and chlorine-free bleached paper.

All rights reserved; no part of this publication may be translated, reproduced, stored in a
retrieval system, or transmitted in any form or by any means, electronic, mechanical,
photocopying, recording, or otherwise, without the written permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. The quotation of those designations in whatever way does not
imply the conclusion that the use of those designations is legal without the consent of the
owner of the trademark.

© by Fraunhofer Verlag, 2014
ISBN (Print): 978-3-8396-0753-4
Fraunhofer-Informationszentrum Raum und Bau IRB
Postfach 800469, 70504 Stuttgart
Nobelstraße 12, 70569 Stuttgart
Telefon +49 711 9 70 - 25 00
Telefax +49 711 9 70 - 25 08
E-Mail verlag@fraunhofer.de
URL http://verlag.fraunhofer.de

Efficiently Deploying
Safety-Critical Applications

onto Open Integrated Architectures

Vom Fachbereich Informatik
der Technischen Universität Kaiserslautern
zur Verleihung des akademischen Grades

Doktor der Ingenieurwissenschaften (Dr.-Ing.)

genehmigte Dissertation
von

Dipl.-Inf. Bastian Zimmer

Fraunhofer-Institut für Experimentelles Software Engineering
(Fraunhofer IESE)

Kaiserslautern

Berichterstatter: Prof. Dr.-Ing. Peter Liggesmeyer
Prof. Dr.rer.nat. Karsten Berns

Dekan: Prof. Dr.rer.nat. Klaus Schneider

Tag der Wissenschaftlichen Aussprache: 21.02.2014

D 386

For my parents

iii

Abstract

Open integrated architectures such as AUTOSAR or IMA offer an
increased modularity and flexibility over more established federated
architectures. Using such a design, system developers can reuse and
exchange applications and execution platforms more flexibly, as costs for
migration and integration decrease. However, when developing systems
that are safety-critical, the traditionally monolithic approach of safety
engineering poses threats to the modularity that comes with the new
architecture. In fact, the safety has to be re-evaluated and argued
whenever the system changes. As a consequence, significant costs are
incurred every time a component is reused or replaced, which decreases
the desired flexibility of the open integrated architecture.

To address this problem, this thesis introduces a technique that allows
for the partial automation of the safety-related integration process. The
technique is built of three components:

The foundation of our approach is a model-based specification language
allowing developers to define the conditions for the valid integration of
platforms and applications. Our language follows a modular, contract-
based approach for the specification of demands and guarantees, which
together form a safety interface between application and platform. The
demands are specified by the application developer and define the
safety-related behavior of the platform as required for the safe execution
of the application. The guarantees, on the other hand, are specified by
the platform developer and define the actual safety-related capabilities
of the platform at hand.

Based on this language, we define a mediation algorithm that is capable
of automatically checking if the conditions specified in the safety
interfaces are met for a given application-platform deployment. This
automation decreases the effort for integrating safety-critical
applications and platforms, which sustains the flexibility of the design.

However, in order to perform the automated integration check, our
mediation algorithm requires the deployment of applications and
platforms as an input. To assist the integrator in identifying a valid
deployment, we present an objective function for evaluating safety-
related deployment criteria as a third and final component of our
solution approach.

v

Acknowledgements

I would like to thank my supervisor Prof. Dr.-Ing. Peter Liggesmeyer for
his counsel and support and the chance to obtain my doctorate at his
working group.

I am especially thankful towards my advisor Mario Trapp. His advice,
encouragement and overall support, from the very beginning to the very
end of my research, have been invaluable.

I would also like to thank my industrial colleagues at Bosch, Susanne
Bürklen and Jens Höfflinger, for their advice during the early phases of
my doctorate and their help with joint publications.

Last but not least, I would like to thank my current and former co-
workers and friends at Fraunhofer IESE, for their helpful comments and
productive discussions.

vii

Table of Contents

Table of Contents

1 Introduction ..1
1.1 Context and Motivation ...1
1.2 Problem Statement and Contribution ...4
1.3 Structure ..6

2 Related Work ..7
2.1 Open Integrated Architectures ...7

2.1.1 Platform-based Design .. 10
2.1.2 Example Platform 1: AUTOSAR 14
2.1.3 Example Platform 2: IMA – ARINC 653 17
2.1.4 Platform Service Types .. 19

2.2 Deployment Evaluation ... 22
2.2.1 Match ... 26
2.2.2 Replication and Reliability ... 27
2.2.3 Delay and Flow ... 29
2.2.4 Fixed and Diverse Assignment 30
2.2.5 Mixed Criticality .. 31

2.3 Modular Certification .. 32
2.3.1 Process-focused Approaches ... 37
2.3.2 Modular GSN .. 40
2.3.3 Rich Component Model .. 41
2.3.4 Safety Analysis of CRMS ... 41
2.3.5 Conditional Safety Certificates 43

3 Solution Overview .. 45
3.1 Interface Specification and Mediation 48
3.2 Deployment Evaluation ... 50

4 Interface Specification .. 53
4.1 Running Example .. 55
4.2 Language Design .. 58
4.3 Common Language – General Features 61

4.3.1 Demands and Guarantees ... 62
4.3.2 Conditions .. 63
4.3.3 Architecture Relations ... 65
4.3.4 Parameters .. 69

4.4 Common Language – Failures and Failure Reactions 77
4.4.1 Failure Analysis and Classification 78
4.4.2 Platform Service Failures.. 81
4.4.3 Application Failures ... 109
4.4.4 Platform Failure Reactions ... 113

4.5 Application Language ... 116

 ix

Table of Contents

4.5.1 Platform Service Demands ... 118
4.5.2 Health Monitoring Demands 123
4.5.3 Resource Protection Demands 128
4.5.4 Service Diversity Demands ... 131

4.6 Platform Language .. 134
4.6.1 Platform Service Guarantees 136
4.6.2 Health Monitoring Guarantees 141
4.6.3 Resource Protection Guarantees 147
4.6.4 Service Diversity Guarantees .. 149

5 Interface Mediation ... 153
5.1 Configuration.. 155

5.1.1 Platform Object Instantiation 156
5.1.2 Evaluation of Configuration-Dependent Conditions 157

5.2 System Integration .. 158
5.2.1 Evaluation of Deployment-Dependent Conditions 159

5.3 Manual Condition Evaluation .. 160
5.4 Interface Mediation ... 160

5.4.1 Mediation of Platform Service Demands 162
5.4.2 Mediation of Application Monitoring Demands........... 169
5.4.3 Mediation of Failure Reaction Demands 173
5.4.4 Mediation of Resource Protection Demands 178
5.4.5 Mediation of Service Diversity Demands 183
5.4.6 Mediation of Specific Parameters 185

5.5 Post Mediation .. 188
5.5.1 Visualizing Mediation Results 188

6 Deployment Evaluation .. 191
6.1 Problem Statement ... 192

6.1.1 Safety-Related Properties .. 194
6.1.2 Running Example .. 195

6.2 Objective Function... 196
6.2.1 Cohesion Metric ... 196
6.2.2 Coupling Metric .. 198
6.2.3 Constraints ... 200
6.2.4 Objective Function Assembly 201
6.2.5 Parameterization ... 201

6.3 Deployment Optimization ... 203

7 Implementation and Evaluation .. 207
7.1 VerSaI Evaluation... 207
7.2 Deployment Evaluation ... 214
7.3 VerSaI Implementation .. 217
7.4 Deployment Implementation ... 220

8 Conclusion .. 223
8.1 Contributions and Limitations ... 223
8.2 Future Work .. 225

 x

Table of Contents

8.3 Final Comment ... 226

9 References .. 227

Appendix A Architectural Meta-Model 237
A.1 System Meta-Model .. 238
A.2 Application Meta-Model ... 240
A.3 Platform Meta-Model .. 247
A.4 Deployment Meta.Model .. 252

Appendix B List of Common Failure Modes and Reactions 254

Appendix C NLR using EBNFs ... 258

 xi

List of Figures

List of Figures

Figure 1: Schematic of an open integrated architecture 2
Figure 2: Simplified example a platform software (PSW) architecture .. 10
Figure 3: A development process for open integrated systems 11
Figure 4: Mapping of a functional architecture onto a platform

topology .. 12
Figure 5: Interactions between abstraction layers in a platform-based

design .. 13
Figure 6: AUTOSAR methodology excerpt... 15
Figure 7: The layered platform software architecture of AUTOSAR 16
Figure 8: ARINC 653 software architecture and its relations 18
Figure 9: A classification of the different aspects of modular

certification. ... 33
Figure 10: Dependencies between different kinds of evidences 34
Figure 11: A more detailed version of the OIA development process 46
Figure 12: Overall process of interface specification and interface

mediation .. 48
Figure 13: The process of Solution Candidate Identification 51
Figure 14: The role of the VerSaI language in the VerSaI method.......... 54
Figure 15: This figure shows the top-level architecture of the VerSaI

language .. 54
Figure 16: An example cruise control application 55
Figure 17: An example platform ... 56
Figure 18: The four classes of safety dependencies in VerSaI 59
Figure 19: The high-level architecture of the VerSaI language 61
Figure 20: An excerpt of the VerSaI language’s classification tree 63
Figure 21: The VerSaI condition state machine 64
Figure 22: The VerSaI condition meta-model .. 65
Figure 23: Containment relations in VerSaI ... 67
Figure 24: Reference relations in VerSaI .. 68
Figure 25: Parameter assignments .. 70
Figure 26: The primitive data types of the VerSaI language 71
Figure 27: The meta-model of the composite time parameter 72
Figure 28: The meta-model of the time constraint classes 73
Figure 29: The meta-model of the physical quantity parameter 74
Figure 30: The meta-model of the composite error parameter 75
Figure 31: The meta-model of the integrity level parameter 76
Figure 32: The assignment of the integrity level parameter 77

 xiii

List of Figures

Figure 33: The failure mode taxonomy used in VerSaI 78
Figure 34: The state machine of a mutex .. 83
Figure 35: The meta-model of the synchronization failure model 84
Figure 36: Comparison of functional and technical communication

scenarios .. 87
Figure 37: The meta-model of the communication failure model 87
Figure 38: The different scenarios for accessing an input channel 91
Figure 39: The meta-model of the analog part of the input failure

model .. 93
Figure 40: The scenario for accessing an output peripheral 98
Figure 41: The meta-model of the output failure model........................ 99
Figure 42: The scenarios for using time-related services 101
Figure 43: The meta-model of the time services failure model 102
Figure 44: The scenario for accessing indirectly accessed memory 103
Figure 45: The meta-model of the memory service failure model 104
Figure 46: Events and intervals for task scheduling 106
Figure 47: The meta-model of the scheduling failure model 107
Figure 48: The meta-model of the basic computation failure model 109
Figure 49: An excerpt of the meta-model for application monitoring

demands .. 111
Figure 50: An excerpt of the platform failure reaction meta-model 114
Figure 51: The top-level meta-model of the application language 117
Figure 52: Flow chart showing the service failure demand design

options .. 119
Figure 53: The principal structure of the platform service demand

meta-model ... 121
Figure 54: The health monitoring meta-model 124
Figure 55: An excerpt of the resource protection meta-model 130
Figure 56: The service diversity meta-model .. 133
Figure 57: The top-level meta-model of the platform language 136
Figure 58: The top-level structure of the platform service guarantee

meta-model ... 138
Figure 59: The health monitoring guarantee meta-model 141
Figure 60: An overview of the resource protection guarantee model .. 148
Figure 61: The service diversity guarantee meta-model 151
Figure 62: An overview of the VerSaI mediation 154
Figure 63: The process of automatic platform object guarantee

generation ... 157
Figure 64: An overview of the automatic demand mediation process . 162
Figure 65: An overview of platform service demand mediation 164
Figure 66: The concept of related guarantees 166

 xiv

List of Figures

Figure 67: An overview of the application monitoring demand
mediation .. 171

Figure 68: An overview of failure reaction demand mediation 175
Figure 69: An overview of resource protection demand mediation 180
Figure 70: An overview of service diversity demand mediation 185
Figure 71: The structure of a mediation report.................................... 189
Figure 72: An overview of our deployment evaluation contribution 192
Figure 73: The meta-model to specify deployment problems 193
Figure 74: A running example for the deployment evaluation method 195
Figure 75: Two example deployments illustrating the cohesion metric 198
Figure 76: Two example deployments illustrating the coupling metric. 200
Figure 77: The tool-supported parameterization of the objective

function ... 203
Figure 78: The adapted GA optimization loop used for our objective

function ... 204
Figure 79: The open-loop evaluation of the objective function 215
Figure 80: The closed-loop evaluation of the objective function 217
Figure 81: An overview of the VerSaI editors 219
Figure 82: The system editor UI for controlling the mediation 220
Figure 83: The mediation report viewer .. 220
Figure 84: The tool chain used by our deployment optimization

prototype ... 221
Figure 85: A GMF based visualization of a solved deployment

problem ... 222
Figure 86: Relations between the VerSaI language and the

architecture model ... 237
Figure 87: The system meta-model ... 238
Figure 88: The top-level application meta-model 241
Figure 89: Application meta-model with a focus on the ASWC

element ... 243
Figure 90: Application meta-model with a focus on the ServiceNeed

element ... 245
Figure 91: Application meta-model with a focus on the Port element . 246
Figure 92: The top-level platform meta-model 248
Figure 93: Platform meta-model with a focus on the Device element.. 250
Figure 94: Platform meta-model with a focus on the Service element . 252
Figure 95: Excerpt of the deployment meta-mode 253

 xv

List of Tables

List of Tables

Table 1: Quality criteria of a given deployment solution. 25
Table 2: A mapping between quality criteria and references. 25
Table 3: A mapping of identifiers used inTable 2 to references. 26
Table 4: An overview of the modular certification aspects 36
Table 5: Mapping of identifiers used in Table 4 to references. 36
Table 6: The deployment of the running example 57
Table 7: A list of all platform service demands 121
Table 8: A list of all platform service demands 139
Table 9: A list of all platform service demands 145
Table 10: A list of parameters of our objective function 202
Table 11: Mapping of AUTOSAR services to services in VerSaI 208
Table 12: Mapping of ARINC 653 services to services in VerSaI 209
Table 13: Mapping of monitoring mechanisms to the VerSaI

language .. 210
Table 14: Mapping of platform failure reactions to the VerSaI

language .. 211
Table 15: An overview of the VerSaI testing 213
Table 16: All resource mappings specified in the deployment model . 252
Table 17: Failure modes specified in the common language 254
Table 18: Failure reaction specified in the common language 257
Table 19: The notational elements of the EBNF used in this

document .. 258

 xvii

Introduction

1 Introduction

1.1 Context and Motivation

More and more developers of distributed embedded systems choose to
design their product in accordance with the principles of integrated
architectures. Unlike federated architectures, where every function is
executed on a dedicated isolated computer platform, integrated
architectures allow multiple applications to share the same execution
node and to communicate with each other via shared communication
networks. As a consequence, functions can be integrated more tightly
and computer platforms can be saved. This integration allows for cost
and weight improvements, at the expense of fault isolation and error
containment [1].

The development of standards like ARINC 653 [2] and AUTOSAR [3] have
shown that the advantages of integrated architectures are further
enriched when there is a public and standardized interface between
application and execution platform. Architectures with a public
standardized Application Programming Interface (API) are often labeled
as open, since third-party manufacturers can develop compatible
components and contribute to the architecture. In the case of such an
open integrated architecture, separate manufacturers are able to
develop compatible applications and platforms and, ideally, the
organization responsible for system integration is capable of fitting the
emerging open integrated system together with little effort.

The API separates function-specific applications and general-purpose
execution platforms, and is realized by operating systems, drivers, or
more generally, by platform software (PSW) or middleware. The
middleware abstracts from the specifics of the underlying platform
hardware and provides a uniform interface to allow applications to
access the platform’s shared resources. Furthermore, the middleware
acts as a resource manager, allowing for a well-organized distribution of
resources. Figure 1 sketches the characteristics of open integrated
architectures described above.

This design has many advantages: First, it allows for a clear separation
between functional and technical design and thus provides a means for
abstraction and complexity management. Second, the roles of

 1

Introduction

application developer, platform developer1, and system integrator can
more easily be filled by different organizations, since the standardized
API fosters modularized development. This facilitates modular
contracting, which is beneficial for the distributed development of
complex embedded systems. Finally, the standardized API makes
applications as well as platforms more portable and exchangeable,
allowing the integrator to use them more flexibly.

PSW/Middleware

HW

ASWC
1-1

ASWC
2-1

ASWC
1-2

...

PSW/Middleware

HW
platform

HW-independent
technical interface

functional interfaces

Figure 1: Schematic of an open integrated architecture , showing several application software
components (ASWC) and two platforms. Each platform consists of middleware and
hardware (HW).

The aforementioned integrators benefit from this flexibility in multiple
ways. First, they are able to reuse established platforms and applications
in new systems, without having to spend an extensive amount of
resources on adaptation [4]. Second, they can, over the lifetime of a
system, exchange execution platforms to fight hardware obsolescence,
or integrate novel applications to expand or modify the system’s
functionality. Finally, system integrators are able to freely choose
efficient deployment of the system’s functional architecture, containing
several application software components (ASWC), onto the system’s
platform topology, consisting of execution platforms and communication
networks.

The integrator can optimize the allocation of ASWCs with regard to
multiple aspects. The most common optimization criterion is to closely
match the requirements of the applications to the capabilities of the
available platforms. This has the potential of reducing the number of
required platforms and thus to reduce hardware costs as well as weight,
space, and energy consumption. Yet, finding a beneficial deployment is
challenging for at least two reasons. First, the integrator has to consider
not only a multitude of criteria, but some of them are also conflicting in
nature, like the satisfaction of response time constraints and the

1 Often, platform development can be sub-divided into middleware and hardware
development. This thesis, however, regards the platform as a whole.

 2

Introduction

maximization of resource utilization. Second, the integrator is confronted
with a large solution space containing at least possible deployments,
assuming that there are platforms and applications.

The task of deployment becomes even more challenging if the system is
safety-critical. A system is called safety-critical if its malfunction/failure
may result in death or injury. Because of this, the development of safety-
critical systems is typically regulated by standards and norms, and in
some industries, standard compliance is checked by official certification
bodies. The enormous responsibility towards society and the resulting
strict development requirements make the general development of a
safety-critical system a challenging and, typically, expensive endeavor.

As far as deployment is concerned, we can regard safety as a source of
additional optimization criteria and constraints. The integrator, for
example, has to check whether a platform fulfills all safety-related
demands of the hosted applications and thus allows for safe execution.
Furthermore, platforms may introduce new sources of common cause
failure that may invalidate complete safety concepts or increase the
criticality classification of software-components. Consequently, the
safety aspect has to be taken into careful consideration in order not to
endanger the overall safety of the system or inflict additional costs.

Additionally, safety criticality poses a threat to the portability of an open
integrated system. In fact, the technical compatibility of applications and
platforms provided by the API does not guarantee per se the feasibility of
every possible platform-application combination. Especially in the context
of safety-critical systems, there has to be a rigorous check whether each
application software component is able to run safely on its dedicated
platform. Additionally, safety standards often demand the creation of a
seamless argument to demonstrate that a system is acceptably safe. In
sum, checking safety and creating the evidences leads to effort that has
to be spent every time an application is deployed to a different platform,
which reduces the desired flexibility significantly.

Therefore, this thesis introduces a technique for efficiently checking and
arguing the safety compatibility of an application-platform combination,
so as to decrease the integration costs, regain portability of applications,
and maintain the architecture’s flexibility. Based on the regained
flexibility, this thesis describes techniques for evaluating and optimizing a
given deployment with respect to safety in order to aid the integrator in
finding an optimal deployment and exploiting the advantages of an
open integrated architecture.

 3

Introduction

1.2 Problem Statement and Contribution

Usually, safety engineering starts with the identification and classification
of potential sources of harm posed by a system, which are called
hazards. Hazard analysis is often performed separately for each function
of the system, rather than for the system as a whole. Since in an
integrated architecture, functions are implemented by applications,
hazards can be identified for each application.

After hazard analysis, the safety engineer needs to identify all potential
causes that may lead to the previously identified hazards and develop a
strategy for controlling these inadvertent events. Since the application
depends on other system components, it is typically unable to implement
such a strategy in a completely self-supported way. For this reason, the
implementation of the strategy depends on the behavior of other system
elements. When examining an application in an open integrated
architecture, one can differentiate three classes of dependencies.

The first class contains dependencies among multiple applications. We
shall refer to this class as functional or horizontal dependency, in
accordance with the structure outlined in Figure 1. In order to exemplify
functional dependencies, let’s assume a car’s ESC2 application requires
knowing the precise vehicle speed to perform safely. Let’s further
assume that this information is provided by another application and can
be used for the ESC’s purposes. However, the ESC needs the other
application to safely indicate when a precise vehicle speed is unavailable
in order to be able to react accordingly and, e.g., deactivate the ESC to
control the potential hazard.

We call the second class of dependencies environmental, as it subsumes
all dependencies between the application and entities outside the E/E
(electric/electronic) domain. Take, as an example, the time that the
controlled system is able to tolerate a specific failure. In the case of the
aforementioned ESC, the fault tolerance time between a faulty braking
intervention and the hazardous destabilization of the car depends on the
dynamics of each specific vehicle. In this case, the fault tolerance time
might increase if the inertia of the vehicle increases.

The final class of dependencies is called vertical and contains the
dependencies between applications and platforms. A platform can act
both as a source of failure, for example when corrupting stored data,
and as a provider of mechanisms for controlling failures, for example
when detecting a crashed application through deadline monitoring. This
thesis focuses on vertical dependencies.

2 Electronic stability control (ESC) is a technology that improves the stability of a car by
detecting and controlling skids.

 4

Introduction

The vertical dependencies have to be analyzed when checking the safety
compatibility of an application and a platform. Since in an open
integrated system, applications and platforms are developed
independently, vertical dependencies have to be specified modularly. The
resulting two elements of the modular specification are first, the
demands of the application regarding the safety-related behavior of the
platform and second, the guarantees regarding the actual capabilities of
the platform. The vertical demands defined by the application developer
should contain requirements such that the fulfillment of these
requirements entails the platform behavior necessary for controlling the
application’s hazards. On the other hand, the guarantees specified by
the platform developer should contain all safety-related capabilities of
the platform, which can potentially be of use for an application. As a
consequence, checking the safety compatibility between an application
and a platform is a matter of checking whether the application demands
can be fulfilled with the actual guarantees of the host platform.

In our experience, performing such a check manually is time-consuming
and expensive, leading to the predicaments described in section 1.1.
Because of this, it is necessary to automate this process as far as
possible. However, in order to be able to do so, application demands
and platform guarantees have to be formalized. Therefore, the first
contribution of this thesis is defined as follows:

Contrib. 1 Interface Specification: Defining a formal language for the modular
specification of safety-related demands and guarantees between an
application and a platform in an open integrated architecture.

The ability to formally specify the vertical dependencies fulfills a
prerequisite for analyzing safety compatibility in an automated way.
However, since most safety standards demand a final safety assessment,
it is also necessary that the results of such an analysis can be used as
evidence to demonstrate that the system is acceptably safe. The
generation of evidences and the demonstration of safety is a difficult
and time-consuming task as well. Accordingly, the second contribution
of this thesis addresses the following research problem:

Contrib. 2 Interface Mediation: Developing an automated process for checking
the safety compatibility of an application and a platform in an open
integrated architecture.

We believe that this automated process lowers the costs that accrue
when deploying an application to a new platform and therefore enables
improved deployment flexibility. To optimally use this flexibility, an
appropriate deployment has to be identified. There are several safety-
related aspects in a multi-criteria deployment optimization. In order to

 5

Introduction

take the last step towards capitalizing on flexible deployment, this thesis
addresses the following problem:

Contrib. 3 Deployment Evaluation: Developing an objective function for
evaluating and optimizing the deployment of a functional architecture
onto a platform topology from a safety perspective.

This thesis explains the implementation of these three contributions and
demonstrates how our solutions can be used to increase the efficiency of
deploying safety-critical applications onto open integrated architectures.

1.3 Structure

In this chapter, we motivated the challenge of efficiently deploying
safety-critical applications onto open integrated architectures and
presented the research contributions proposed by this thesis, which aim
at increasing the aforementioned efficiency. Chapter 2 presents an
overview of related work in this field, so as to name the methods and
techniques our approach is based upon and to sketch the knowledge
gaps our approach tries to fill. Chapter 3 presents an overview of our
solution and briefly outlines the structure of our methods and
techniques. The following three chapters give an in-depth presentation
of our solutions, structured according to the three contributions
specified in section 1.2. Chapter 4 presents a language for specifying the
safety-related dependencies between applications and platform, whereas
chapter 5 describes a method for mediating those dependencies and, if
possible, arguing how the specified constraints are met. Chapter 6
presents two metrics for a safety-focused deployment evaluation. The
tools we implemented to evaluate our approach together with the
evaluation itself are shown in chapter 7. We conclude and present
possible future work in chapter 8.

 6

Related Work

2 Related Work

The previous chapter briefly introduced the challenges and the benefits
of efficiently deploying safety-critical applications onto open integrated
architectures and listed the contributions that will be presented in this
thesis. This chapter presents related work in the area of open integrated
architectures and deployment evaluation in order to explain the
foundations our work is based upon and to precisely identify the
knowledge gaps our methods and techniques try to fill.

Therefore, section 2.1 introduces open integrated architectures and the
adaptation of the typical embedded system design process that they
entail, and derives a common set of services provided by typical
platforms using two popular examples. Section 2.2 focuses on the topic
of deployment evaluation. We list several criteria that can be used to
evaluate a deployment solution and present corresponding approaches
to assess these criteria. Additionally, section 2.2 introduces the three
criteria that are addressed by our techniques. Two of these criteria are
assessed by our objective functions (see Contrib. 3) and the remaining
criterion is the one that can be formulated with our specification
language (see Contrib. 1) and checked with our mediation technique
(see Contrib. 2). The related work regarding this criterion of checking
whether the safety requirements of an application are fulfilled by the
capabilities of its host platform is introduced in section 2.3. Since this last
aspect evolves around the modular specification and integration of
safety capabilities, we will use the commonly used term modular
certification to headline this section.

2.1 Open Integrated Architectures

This section introduces the notion of open integrated architectures,
starting with an explanation of the more traditional federating
architectures and a presentation of the transitional solution of integrated
architectures before ending with an explanation of open integrated
architectures. After presenting the main characteristics of an open
integrated architecture, we will explain the necessary adaptations of the
traditional development lifecycle when developing open integrated
systems. After that we will introduce the two most important standards
for open integrated architectures before concluding this section with an
independent list of platform services derived from the example
standards.

 7

Related Work

In the past, the majority of distributed embedded systems were
federated. [5] and [1] describe a federated architecture as a collection of
computational nodes, where each node implements exactly one
dedicated function, such as controlling the air speed of an aircraft (auto-
throttle function) or the speed of a car (cruise-control function). Sensors
and effectors were typically not shared and communication between the
nodes, and thus the functions, was limited [6].

The following quote by Scott Gravelie, Director, Boeing 787 Programs
with GE Aviation Systems (formerly Smiths Aerospace) [5] summarizes
the shortcomings of federated architectures: “Add to this picture the fact
that some level of redundancy had to be built into each functional sub-
system, and you’re left with an overall system architecture that is
inefficient, heavy, and expensive to develop and maintain. It’s also void
of much of the interaction (between sub-systems) that is now deemed
essential in a true, modern system.”

In an integrated architecture, however, we treat function-specific
applications and general-purpose platforms as two separate building
blocks, instead of regarding each function as a monolith comprising
software and computational hardware. RTCA DO-297 [7] defines an
application as “software and/or application-specific hardware with a
defined set of interfaces that, when integrated with a platform, performs
a function”. On the other hand, platforms are defined as a combination
of software and hardware to “provide computational, communication,
and interface capabilities for hosting at least one application. […]
Platforms by themselves do not provide any […] functionality”.

Unlike federated architectures, integrated architectures allow hosting
several applications on one platform in order to share the platform’s
computational and communicational resources. This allows the system
developer to reduce the number of platforms and therefore, reduce the
system’s weight, energy consumption, and costs. The weight and space
savings of an integrated architecture in a passenger aircraft are, as an
example, equivalent to at least two seats including passengers [8]. In
addition to that, the sub-systems of an aircraft can more easily interact
with each other to provide enhanced functionality.

From the safety perspective, the major downside of stronger integration
is the loss of the natural fault containment barrier between separated
platforms. In an integrated architecture, failures of one application may
affect all applications hosted on the same platform, even if there are no
functional dependencies between the applications. Therefore, the
concept of integrated architectures is tightly coupled with the concept of
partitioning [9]. A partition provides fault containment capabilities such
that faults of an application in one partition cannot affect the platform's

 8

Related Work

capability to provide shared resources to applications in other partitions
in such a way that the other applications fail.

However, in an integrated architecture that is not open, platforms are
still developed for one specific system and application software is
typically developed for one specific type of hardware, i.e., for one
specific type of platform. In order to change this, the principle of open
architectures is applied. In an open architecture, there are public
standards that precisely specify the key interfaces between the modules
of the system [10, 11]. In case of an integrated architecture, this key
interface is the application programming interface (API) between
application and platform. Consequently, we call an integrated
architecture with a standardized API an open integrated architecture.

The API defines how the application interfaces with the platform in order
to use the platform’s shared resources. The common API of an open
integrated architecture facilitates modularity and portability, since it
allows the developers to reuse and replace platforms and applications
and add new applications over the lifetime of the system. The API and
the associated abstraction are provided by a collection of hardware-
dependent software. Some authors call this software operating system
(OS), whereas others use the term OS more restrictively to describe only
a subset of all the functionality necessary to implement the API. For this
reason, we refer to the software providing the API more generally as
middleware or platform software. We define platform software as
software that either directly (not via the API) accesses hardware or
directly accesses other platform software modules. Figure 2 shows a
platform software architecture example.

If an embedded system is designed as an integrated open architecture,
the process for designing the system changes. Traditionally, embedded
system design is a top-down process that starts with the specification of
the system’s functionality and continues with the specification of the
system architecture until the process reaches the step where software
and hardware are implemented in parallel. In an open integrated
architecture, however, the standardized API of an execution platform
allows decoupling the development of platforms from the function-
specific development of applications. This changes the top-down process
to a meet-in-the-middle process, as aptly described by [12]. In [12] this
process is called platform-based design and we will introduce it in
subsection 2.1.1.

 9

Related Work

Application
1

Application
2

API

HW

OS
Driver

1
Driver

2

File
System

PSW
Module

PSW
Module

Platform
Software

Application
Software

Figure 2: Simplified example a platform software (PSW) architecture in an open integrated
architecture. Application software components are shown as rectangles, platform software
modules are shown as ellipses.

The next subsections are going to introduce two very common open
integrated architecture platforms. The AUTomotive Open Software
ARchitecture (AUTOSAR) from the automotive domain will be presented
in subsection 2.1.2 and a civilian version of Integrated Modular Avionics
(IMA) from the aviation domain will be presented in subsection 2.1.3.
After that, we will present in subsection 2.1.4 a domain-independent
description of platform services in open integrated architectures, which
we will derive from the example platforms and use to define our
specification language in the later chapters.

AUTOSAR and IMA are the two most important and wide-spread
examples. There are, of course, other integrated architectures or
operating systems with a standardized API in the embedded domain,
such as VxWorks [13], QNX Neutrino RTOS [14], CodeSys RTE [15],
Integrity [16], L4 micro kernels, PikeOS [17], or OSEK-OS [18]. For
reasons of accessibility, we chose the two open and publicly available
specifications mentioned above. However, we believe that the abstract
platform services presented in 2.1.4 are able to cover most of the
services provided by the other middleware products as well, especially
since there are add-ons for some of the listed operating systems to make
them IMA- or AUTOSAR-compatible.

2.1.1 Platform-based Design

The most typical embedded system development process is an adapted
form of the traditional V-model. It is adapted in the sense that at a
certain point in time, the developer has to decide which functionality to
implement in hardware, which functionality to implement in software,
and how to connect hardware and software with each other via

 10

Related Work

interfaces. From this point onwards, the system development splits up
into hardware and software development running in parallel. In the
development of open integrated systems, this process changes.

The standardized API of an open integrated architecture predefines the
interface between application and platform as well as a large part of the
functionality provided by the platform and the hardware, respectively.
This fixed aspect in the design allows application and platform
developers to implement their products largely independent from each
other, and either development is possible without an embracing system
development. The task of finally integrating applications and platforms
into a system lies with the system integrator. First, the integrator defines
the system’s functional architecture by integrating all applications, and
defines the system’s platform topology by integrating the available
platforms. In the next step, the integrator maps the applications onto the
platforms during the so-called deployment phase yielding the integrated
system. This platform-based design process is illustrated in Figure 3.

On closer inspection, deploying a functional architecture onto the
platform topology is challenging for at least three reasons. First, the
abstraction gap between a function and a platform is usually too big to
directly map them to each other. Second, the deployment is constrained
by the requirements of the application and the available capabilities of
the platforms. And third, within the given constraints, it is still a
challenging problem to find a suitable deployment. While the third point
will be discussed in detail in section 2.2 of this chapter, we want to
elaborate on the first two points in this subsection.

System Integration

Functional
Architecture
Construction

Platform
Topology

Construction

Functional
Architecture

Platform
Topology

Deployment Integrated
System

Application DevelopmentApplication DevelopmentApplication Development

Application
Application

Development
Lifecycle

Platform DevelopmentPlatform DevelopmentPlatform Development

Platform
Platform

Development
Lifecycle

Figure 3: A development process for open integrated systems

If we regard an application as a stateful function, an application is simply
defined by its inputs, outputs, and a corresponding transfer function.
What we described earlier as functional architecture is created when the
outputs of one application are connected with the corresponding inputs
of other applications to model their interaction with each other. Such a

 11

Related Work

model does, for example, fall short of information about how and when
to execute a function and how to implement communication needed to
map the applications to the platforms. To bridge this gap, there has to
be an intermediate model that can be directly mapped to the platform
services. Such an intermediate model could, for example, map the
functions and signals of the functional architecture to tasks and
messages. These tasks and messages are then mapped to the execution
platforms and communication channels of the platform topology as
proposed in [19]. An example mapping is shown in Figure 5.

f1 f2

f3

f4

f5

s1

s2

s3

s4

s5

Functional
Architecture

task1

task2

task3

ECU1 ECU2

task4
msg1

msg2Intermediate
Model

Platform
Topology

Ch1

Figure 4: Mapping of a functional architecture onto a platform topology via the intermediate model
(figure is based on figure 4 of [19])

Coming back to our second point, the necessity of checking whether a
given platform meets the requirements of an application is an inherent
property of platform-based design. Whereas in traditional development,
the platform was tailored to the specific needs of the function, it is now
a general-purpose component developed without knowledge of all the
possible functions it may host. Therefore, the “top-down constraint
propagation and the bottom-up performance estimation” [20] is a key
aspect of platform-based design. The developer of an application
specifies certain constraints regarding the behavior of the platform,
whereas the platform developer has to specify the capabilities of the
platform, as shown in Figure 5. During deployment, the fulfillment of the
application’s constraints has to be checked against the capabilities of the
platform3. While this process is necessary for all kinds of dependencies
between platforms and applications, the specification of safety-related

3 The discussion of typical deployment constraints as well as deployment objective
functions is part of the next chapter.

 12

Related Work

application requirements and the corresponding platform capabilities, as
well as checking whether they match, is the key contribution of our
work (see Contribution 1 and Contribution 2).

Upper layer of abstraction
“functional model”

“Platform model”
Lower layer of abstraction
Perform

ance
estim

ationC
on

st
ra

in
t

pr
op

ag
at

io
n

Figure 5: Interactions between abstraction layers in a platform-based design [21]

As a last point in this subsection, we want to mention that the idea of
platform-based design can be used more generally than described so far.
A platform can be more generally defined as an abstraction layer that
hides the details of several possible implementation refinements of the
underlying layer [21]. With this definition it is possible to define a whole
platform stack looking at the development of a modern embedded
system.

An API platform as specified by us provides an abstraction from the
resources provided by the underlying hardware and hides its
implementation details as well as the implementation details of the
middleware. In addition to the API platform, there could also be a
microarchitecture platform. In simplified terms, the microarchitecture
platform provides a first layer of abstraction from the computation and
communication hardware, which by itself is not abstract enough to be
efficiently used by an application developer. Therefore, the API platform
uses the microarchitecture abstraction layer to provide yet another, more
convenient abstraction. Together, the API platform and the
microarchitecture platform form the aforementioned platform stack. In
this more general case, platform-based design is described as a meet-in-
the-middle process, where successive refinements of specifications meet
with abstractions of potential implementations.

We commonly find this kind of abstraction stack when we look at the
implementation of an open integrated architecture. AUTOSAR, for
example, defines a microcontroller abstraction layer that serves the sole
purpose of adapting the higher-level middleware services to the specifics
of the underlying microcontroller architecture. Many implementations of

 13

Related Work

the ARINC 653 API contain so-called microcontroller or microarchitecture
support packages that can be exchanged together with the underlying
hardware. The abstraction provided by such a microarchitecture layer,
however, is beyond the scope of our work.

2.1.2 Example Platform 1: AUTOSAR

AUTOSAR [3] is short for AUTomotive Open System Architecture and is
an open integrated architecture tailored to the needs of the automotive
domain. Its development officially started in 2003, when a group of
vehicle manufacturers and tier 1 suppliers signed the respective
partnership agreement. The goal of the AUTOSAR development is to
reduce hardware costs, manage the complexity of innovative functions,
and improve the portability and reusability of applications and platforms
[4]. Therefore, the development partnership defined a standardized
middleware architecture with a standardized API as well as a
development methodology for AUTOSAR-based applications. In this
subsection, we first give an overview of the development methodology
before introducing the AUTOSAR middleware architecture. Since the
AUTOSAR standard is still evolving, we need to mention that this
subsection addresses the third revision of the fourth version of the
AUTSAR specification, updated in January 2012.

Comparable to the development process described in subsection 2.1.1,
the main concern of the AUTOSAR development process is the
separation of application and platform development. To this end,
AUTOSAR uses a concept called the Virtual Functional Bus (VFB). To use
the VFB, application developers model their applications, structuring
them into application software components and defining the
components’ incoming and outgoing signals, as well as the middleware
services directly used by the components. The VFB then provides a virtual
communication channel allowing the developers to logically connect
application software components and to describe their interplay without
anticipating their deployment and the resulting physical implementation
of their communication. When finally deploying the application software
components to specific platforms, the integrator has to choose a suitable
implementation for the virtual bus, using available and applicable
communication mechanisms. One can regard the VFB as a mechanism
for defining a functional architecture.

In general, an AUTOSAR platform provides its services to applications via
standardized platform software components, called basic software
modules in the AUTOSAR context. Since application software
components and the basic software modules are compiled
independently, they have to be linked together via a third abstraction
layer, called the Runtime Environment (RTE). Typically, the integrator
generates the RTE automatically, using the information from the model-

 14

Related Work

based representation of the applications and the platforms. As of late,
the RTE has been implementing more and more functionality that can be
generated conveniently if the deployment is known. The AUTOSAR
development approach is illustrated in Figure 6.

ASWC 1 ASWC 2

Deployment and
RTE Generation

ASWC 1

RTE

Basic
Software

ECU 1

ASWC 2

RTE

Basic
Software

ECU 2

Virtual Functional Bus

CAN

Functional
Architecture

Technical
Architecture

Figure 6: AUTOSAR methodology excerpt : From VFB to configured RTE [22]

In the following paragraphs, we will describe the AUTOSAR platform
software. Even though we have learned that applications directly
interface with the RTE, the RTE is ill suited to analyzing the services of
the platform software. This is because the actual interface of the RTE is
generated dynamically during system configuration and the generic RTE
interface hides the functionality provided by the platform. In order to
identify the services provided by the AUTOSAR platform, we therefore
have to analyze the top-level interface of the basic software instead.

The basic AUTOSAR software consists of 66 individual modules, and
there is a detailed interface specification of each module. However, not
all interfaces are relevant to us, since most of them are not visible at the
application layer. In fact, the basic software is again divided into three
layers as shown in Figure 7. The lowest layer is called the microcontroller
abstraction layer. It mainly consists of device drivers, which provide an
abstraction from the differences of the underlying microcontroller
hardware and the ICs connected to the controller. The second layer is
called hardware abstraction layer and additionally abstracts from the
specific layout of the microcontroller board. It abstracts, for example,
from a CAN (Controller Area Network) channel that is implemented
directly by the μController or a channel that is implemented by a

 15

Related Work

separate CAN driver IC that is connected to the μController via SPI. The
third layer is called the service layer. This layer finally provides a
convenient set of system functions to access the platform resources. This
service layer is directly accessible for applications (via the RTE “glue
code”).

Application Layer

RTE

Complex
Device
Drivers

I/O
Hardware

Abstraction

I/O DriversCommunication
Drivers

Memory
Drivers

μController
Drivers

Communication
Hardware

Abstraction

Communication
Services

Memory
Hardware

Abstraction

Memory
Services

Onboard
Device

Abstraction

Hardware

System
Services

Service
Layer

Hardware
Abstraction

Layer

μController
Abstraction

Layer

Figure 7: The layered platform software architecture of AUTOSAR [23]. The layers are differentiated
by different shades of gray, from lighter to darker: the service layer, the hardware
abstraction layer, and the microcontroller abstraction layer. Complex drivers allow for the
integration into the platform software of software components that are not standardized
by AUTOSAR.

The horizontally layered architecture of the basic AUTOSAR software is
again sectioned vertically. Each of the four resulting vertical “stacks”
represents one key service class of an AUTOSAR platform. These four
service classes are:

System Services are used to manage, configure, and retrieve the status
of the platform, as well as to perform inter-partition communication,
diagnostics, and health management. The operating system is also part
of this service class.

Memory Services allow access to non-volatile memory (NV-RAM). This
class abstracts from the differences between EEPROM and Flash, and
allows accessing external memory ICs via SPI. It furthermore provides
convenience functions for storing redundant memory blocks and for
memory consistency checks.

Communication Services implement services to send and receive
messages to and from inter-platform communication busses. The layered
communication stack abstracts from different bus types like CAN, TT-
CAN, or Flex Ray and allows for large or multiplexed messages.

 16

Related Work

I/O Hardware Abstraction4 provides access to input and output
devices to read from sensors and to control effectors. There is support
for digital and analog I/O as well as for PWM signals.

Enabling safety is one the primary objectives of the AUTOSAR
development [24]. Therefore, the AUTOSAR standard contains a number
of safety mechanisms ranging from end-to-end communication
protection, logical program flow monitoring, or timing and memory
protection. A summary of the safety-related requirements and features
of an AUTOSAR platform is specified in the Technical Safety Concept
Status Report [25].

Consequently, one goal of our technique was to be able to cover the
AUTOSAR-specific safety requirements and to be able to automate the
process for checking and arguing the sufficiency of these requirements
in the face of a concrete application. In chapter 7, we will show how the
AUTOSAR safety mechanisms can be modeled using our approach.

2.1.3 Example Platform 2: IMA – ARINC 653

IMA [26] is short for Integrated Modular Avionics and represents the
overall movement of using integrated architectures in the avionics
domain. There is no such thing as one central IMA standard; rather,
there are several specifications that provide a standardized API that
follows the concepts of IMA. There is, for example, the ARINC 653 [2]
standard in civil aviation, the Def. Stan. 00-74[27] standard in the
military domain, or Honeywell’s DEOS (Digital Engine Operating System)
[28].

In this section, we will focus on describing the publicly available ARINC
653 specification, more specifically the first part of the standard, which
deals with the core services of the platform software5. The ARINC 653
specification calls its API the APplication/EXecutive (APEX) interface. The
APEX interface integrates the application software with the platform
software, called O/S kernel in the context of ARINC 653.

The application software is bundled into different application partitions
by the application developer. The software in each application partition
may only use the APEX interface, which makes this software platform-
independent. Additionally, the application developer may provide so-
called system partitions. The software in these partitions is allowed to
additionally call non-standardized system-specific middleware functions.
The software in application partitions as well as in system partitions is
protected from mutual interferences and runs in user mode. However,

4 AUTOSAR does not offer an I/O Service layer.
5 The second part contains an extension of the API for file and database handling.

 17

Related Work

since the software in the system partition does not exclusively call APEX
procedures, this software is not necessarily portable to other platforms,
since these platforms might not support these system-specific functions.
Figure 8 shows the relationships between the different types of software
in an ARINC 653 system.

APEX Interface

Application
Partition 1

Application
Partition 2

...

System
Partition 1

System
Partition 1...

O/S
Kernel

Hardware

System Specific
Functions

Core
Software

Layer

Application
Software

Layer

Figure 8: ARINC 653 software architecture and its relations [2]

The handling of communication between applications is comparable to
the AUTOSAR approach. The application developer does not know
whether communicating applications are on the same platform or not.
Therefore, the integrator has to configure the APEX appropriately after
the deployment is fixed. However, the handling of communication is
different from AUTOSAR in at least one aspect. The developer of an
application software component in an ARINC 653 scenario does know
whether the communication counterparts are in the same partition.
Therefore, there are different service calls for inter-partition and intra-
partition communication in ARINC 653, whereas there is only one
communication interface visible to AUTOSAR applications. The
differentiation between inter- and intra-partition communication is made
after the application interface in an AUTOSAR system

Just like we listed the AUTOSAR platform services by analyzing the API,
we extracted the following ARINC 653 service classes from analyzing the
APEX interface:

Partition management is used to retrieve and control the status of
partitions. A partition provides an area of fault containment as specified
in section 2.1.

Process management is used to create, stop, and restart processes as
well as to retrieve and control their status. A process in ARINC 653 has
its own memory area and may possess platform resources.

 18

Related Work

Time management is used to retrieve time information or wait until a
certain time interval. This service class includes functions for retrieving a
global time

Inter-partition communication is used for communication between
partitions on the same as well as on different platforms.

Intra-partition communication is used for communication and
synchronization between processes in the same partition (e.g.,
semaphores, events, and buffers)

Health monitoring is used for handling detected failures. This includes
default reactions like shutting down partitions or processes, as well as
invoking application call-back functions.

ARINC 653 addresses safety explicitly through the specification of robust
partitioning mechanisms as well as with its health monitoring services.
Just like the mechanisms introduced by the AUTOSAR standard, these
features must be describable with our specification language as we will
show in chapter 7. Additionally, there is a standard for certification in
the IMA domain, RTCA/DO-297 [7], which will be introduced in
subsection 2.3.1.

2.1.4 Platform Service Types

While there is a wide variety of platforms, most of the platforms provide
comparable services. Although specific services might be available (or
not) for specific platforms, and although the same service might differ in
aspects like performance or call syntax, the core of the provided services
is relatively stable. This circumstance is also the reason why industry was
able to standardize platforms in the first place. This subsection provides a
list of abstract platform services derived from the AUTOSAR and the
ARINC 653 examples. In this section, we introduce this list of standard
services that a platform typically provides. We derived this list from
standard platform specifications like AUTOSAR (subsection 2.1.2) or
ARINC 653 (subsection 2.1.3).

With the exception of the computational capabilities provided by the
CPU and the storage capabilities provided by the main memory,
applications access a platform’s services via the API provided by the
platform software. With regard to platform software or operating
systems, Tanenbaum [29] differentiates between two main tasks:

1. The platform software as an extended machine

2. The platform software as a resource manager

 19

Related Work

The first task regards the platform software as an extension of the
machine that is the underlying hardware. The hardware itself already
comes with an interface that allows the software to interact with the
CPU and its devices, but there are two main reasons why this interface is
extended by the platform software. The first reason is that the direct
hardware interface is usually complicated to use, which is why the
platform software provides an easier and more convenient interface for
accessing the platform’s resources than the direct HW interface does.
Second, the platform software abstracts from particularities of different
hardware implementations and therefore provides a hardware-
independent interface. The application software directly calls this
abstract/extended interface and does not see the actual hardware
anymore. This is why Tanenbaum refers to this as the top-down view on
platform software.

The second task becomes relevant if there are multiple applications
sharing the platform’s resources. In this case, the platform has to
manage and regulate the application’s resource usage, such that the
applications are able to share the common resources properly, which
enables what is usually called multiprogramming. In the context of
safety-critical systems, platform software must provide additional and
stricter guarantees with regard to the absence of interferences via shared
resources. We have referred to mechanisms providing freedom from
interference as partitioning earlier in our work (section 2.1). In contrast
to the services of the platform as an extended machine, the services that
manage and regulate concurrent resource usage are usually transparent
to applications. In fact, there is typically no direct interaction between
applications and these services, meaning that there is no explicit API to
influence these services. Therefore, Tanenbaum refers to this as the
bottom-up view on platform software.

This second task can be further differentiated according to the resource
that is shared and protected. There are those resources that are accessed
via the API, such as communication channels, I/O devices or files, and
there are resources like RAM and CPU, which are typically not accessed
via the platform software. In the latter case, the protection and
management of the resource has to be jointly implemented by platform
hardware and platform software since otherwise, the platform software
would have no means for controlling access.

In order to provide a more detailed view on a platform’s typical API, we
used the specification of AUTOSAR and ARINC 653, as well as the
structure proposed by [29] to split the services into eight different service
types. A mapping of the AUTOSAR and the ARINC 653 specifications to
these service classes can be found in section 7.1.

(1) Synchronization mechanisms providing measures for
synchronization between tasks and for the implementation of

 20

Related Work

critical regions: In the literature, the term inter-process communication
(IPC) is typically used as a collective term for mechanisms enabling
communication between processes running in different memory areas.
This includes services for synchronization, such as barriers or events,
services for realizing critical regions, such as spin-locks or binary
semaphores, and mechanisms for exchanging data, such as buffers.
Since we cannot assume that there is a memory management unit
(MMU) in every embedded platform, we do not want to use the pre-
allocated term IPC. Instead we use the term synchronization mechanisms
for our first service class, which includes mechanisms for synchronization
and for the implementation of critical regions. As we do not assume that
every μController supports the concept of processes, we do not
differentiate between inter-process and intra-process communication as
often done in literature. Communication in general is captured by the
next service class

(2) Communication for information exchange between tasks: This
service class contains all mechanisms that allow applications to exchange
data. Since we want to describe services only from the application’s
point of view, we do not differentiate between inter- and intra-process
communication, between inter- and intra-partition communication, and
between inter- and intra-platform communication. This kind of
differentiation is only made during deployment and is, therefore,
transparent for the application.

(3) I/O access for reading and writing from/to sensors/actuators:
This class is comprised of services to read from input devices such as A/D
converters or digital input channels and to write to output devices such
as PWM channels or digital output channels. We do not differentiate
between I/O channels that are on the chip of the μController (such as an
internal A/D converter) and external channels that are implemented by
external ICs attached via local busses, such as I²C or SPI.

(4) Time services for measuring and waiting a certain time: Time
services contain services for measuring relative time, for waiting a certain
time, as well as for retrieving a global time. Relative time is characterized
as a time interval between two events, e.g. between a start and a stop
timer call. Global time, on the other hand, provides a consistent and
comparable time base for the overall system.

(5) Memory services for accessing memory that is not directly
mapped onto the address space or for addressing mapped
memory more conveniently: This class aggregates services for
indirectly reading and writing to non-volatile memory. Unlike direct
memory access, indirect memory access is performed via the platform
software API and not directly on the memory bus. This can include
simple convenience functions for writing to or reading from Flash,

 21

Related Work

EEPROM, FeRAM, or a hard disk. This can also include more
sophisticated functions for storing and retrieving data in databases or via
a file-based service.

(6) Health monitoring for detecting and handling application and
platform failures: This is a category for all services that address
detection of application as well as platform failures and failure handling
in general. Typical failure detection mechanisms include deadline
monitoring or logical sequence monitoring. Typical failure reactions
include restart or shutdown of partitions or the platform, as well as
setting default outputs or sending default messages. Besides that, health
monitoring contains services for self-testing, such as built-in self-tests of
the hardware like memory or computation logic checks.

(7) Basic computation: This category summarizes all services of the
platform that are not accessed via the platform software API. Typically,
these are the computation services of the CPU and the data storage
services of the main memory. Please note that the absence of an API
does not imply that the access to these resources is not coordinated by
the platform software.

These seven service classes identified by an analysis of the two most
common open integrated architectures are the foundation for the
definition of the specification language provided by this thesis (see
Contrib. 1). Please note that this implies that most open integrated
architectures are statically configured. It is, for example, not possible to
allocate memory or to create operating system objects dynamically
during runtime.

2.2 Deployment Evaluation

In the previous section, we presented the typical development lifecycle
for open integrated systems, which included a work step called
deployment. This section presents the topic of deployment evaluation.
Deployment evaluation has many different evaluation criteria, which is
why we will introduce every safety-related criterion in the following
subsection. Together with these criteria, we will present the
corresponding related approaches and name the criteria that our
approach evaluates and what is unique about what we do.

The term deployment describes the process of mapping a system’s
functional/logical architecture onto the system’s technical/physical
architecture. In this context, the latter is sometimes also called the target
environment of the deployment. A functional architecture consists of
functions interconnected by signals, whereas the physical architecture
consists of computational nodes interconnected by communication
channels and gateways that interconnect the communication channels.

 22

Related Work

Functions are implemented by software components6 that are mapped
to computational nodes, and signals are packed into messages that are
mapped to communication channels. Since functions are always
implemented by applications (see definition of application), we usually
refer to the software components implementing a function as
application software component (ASWC).

The idea of mapping ASWCs to platforms can be regarded as the top-
down view on deployment. From the bottom-up perspective, however,
the platform typically does not perceive the application as a collection of
components. Instead, the platform perceives applications as a collection
of schedulable entities, which we refer to as tasks. Therefore, in the
literature one may also find the term task allocation alternating with the
term deployment, depending on the author’s viewing angle.

In the previous subsection, we argued that there must be a standardized
interface between the functional and the physical architecture to enable
separate development of applications and platforms while maintaining
deployment compatibility. In the context of distributed embedded
systems, open integrated architectures contain such standardizations. In
the object-oriented domain, however, such standards have long been
made available by middleware standards like the Common Object
Request Broker Architecture (CORBA) [30] or comparable methods. A
well-known source for information about object-oriented deployment is
provided, for example, by the “Deployment and Configuration of
Component-based Distributed Applications Specification” [31] published
by the Object Management Group (OMG).

According to [31], a deployment process can be separated into five
steps. Even though our approach only focuses on the third work step,
we will, for reasons of demarcation, introduce the other four as well. (1)
The installation step is performed by the developer of an application and
describes the act of bringing an application’s software components into
a software repository. This does not include actually moving the software
to the target environment, but is a preparation step that enables the
second work step. Since we think that the installation step is not of
equal importance for embedded systems, we will not further elaborate
on it. (2) The configuration work step allows the developer to configure
the application in the repository, for example changing the acceleration
ramp of a cruise control application. In the embedded domain, this is
typically done by the application developer. Since we intend to define
deployment as a process that is performed by the system integrator, we
do not include configuration in our evaluation. (3) In the deployment
planning phase, the integrator plans the mapping of the system’s

6 Functions can also be implemented by hardware components. Hardware
components are, however, extraneous to deployment.

 23

Related Work

functional architecture to the system’s technical architecture, for
example the mapping of the software components to execution
platforms or the mapping of the logical signals to communication links.
The decisions made during the planning phase are specified in the
deployment plan. Deployment planning does not include actually moving
the compiled software to an execution node. (4) Preparation is the work
step in which the integrator configures the target environment such that
the planned deployment can be executed. We will refer to this step as
configuration, since in our experience this is more typical in the
embedded domain. (5) In the launch step, the application is finally
moved to its target and executed.

During deployment planning, there typically is a solution space
containing numerous possible solution candidates for mapping a given
functional architecture onto a given technical architecture. Deployment
evaluation is our term for the qualitative or quantitative assessment of
deployment solution candidates aimed at exploring the design space and
find the most suitable deployment plan.

Deployment has several different quality goals that can be evaluated.
The evaluation can be performed in a qualitative pass/fail manner using
constraints, or in a quantitative manner using objective functions.
Objective functions can again be divided into fitness functions, if the
assessed criterion has a positive nature and is to be maximized and cost
functions, if the regarded criterion is negative and is to be minimized.
Finally, an objective function can also be used to implement a constraint
if the user defines a pass/fail criterion using a minimum or a maximum
threshold, respectively, for the objective function.

Example: The workload of the platform must be lower than 67%.

In the following subsections, we will classify evaluation approaches with
regard to the criteria they evaluate. Table 1 shows an extended version
of a table taken from [32] listing the deployment criteria we used for the
classification of the related work. As the objective functions introduced
by this thesis perform a safety-related deployment evaluation, the related
work lists only safety-related approaches and the listed criteria have a
safety focus as well. Consequently, the evaluation criteria list is not
complete since there are other important, not directly safety-related
criteria, such as the exploitation of computational concurrency.

The following subsections will introduce the related work, classified
according to the evaluation criteria they address.

Table 2 provides an overview of the different deployment qualities
addressed by each approach we have analyzed.

 24

Related Work

Table 1: Quality criteria of a given deployment solution.

Criterion Description Desired

Match Analyzing how well application
requirements match platform capabilities
(e.g., schedulability)

Maximize

Delay Analyzing the end-to-end delay of an
application

Minimize

Flow Analyzing messaging traffic and network
capabilities

Minimize

Replication Analyzing the costs for replicating
components

Minimize

Reliability Analyzing the reliability or failure rate of
the application

Maximize

Mixed
criticality

Analyzing the criticality heterogeneity of
software components in one partition

Minimize

Fixed
assignment

Explicitly mapping a software
component to a specific node

Constraint

Diverse
assignment

Forbidding to map two or more
software components to the same node
(or node type)

Constraint

Table 2: A mapping between quality criteria and references. An “x” indicates that the approach

denoted by the column evaluates the criteria denoted by the row. An” x” in parentheses
indicates that the criteria are evaluated but without safety focus.

Quality \
Reference

A B C D E F G Our
approach

Match (x) (x) (x) (x) (x) x

Delay x x

Flow x x x x x

Replication x x x x

Reliability x x x

Mixed
criticality

 x

Fixed
assignment

x x x x

Diverse
assignment

 x x x x

 25

Related Work

Table 3: A mapping of identifiers used inTable 2 to references.

ID Name

A Fault-Tolerant Distributed Deployment of Embedded Control
Software [33]

B Automated Deployment of Distributed Software Components
with Fault Tolerance Guarantees [34]

C Two Optimization Techniques for Component-Based Systems
Deployment [35]

D Effective distribution of object-oriented applications [32]

E Task allocation in fault-tolerant distributed systems [36]

F Allocating hard real-time tasks: an NP-hard problem made easy
[37]

G Task allocation algorithms for maximizing reliability of
distributed computing systems [38]and

Models and algorithms for reliability-oriented task-allocation in
redundant distributed-computer systems [39] and

Safety and reliability driven task allocation in distributed
systems [40]

2.2.1 Match

The match criterion measures how well the capabilities of a platform
match with the requirements of an application7. A very typical
manifestation of this quality is measuring how well the computational
power of a platform’s processor(s) matches with the required
computational power of an application. Maximizing this particular aspect
equals maximizing the workload of processors, which again may result in
a lower number of required platforms. There are also approaches
working in the opposite direction, like equally balancing the workload of
all platforms as proposed by [36]. According to [36], this may lead to
more spare time for performing diagnosis functions and, therefore,
increasing reliability. These two views on processor work load can be
applied more generally to the match quality. The overfulfillment of
requirements typically leads to an inefficient use of available resources,
which is expensive. The plain underfulfillment of requirements leads to
failures, and a very close fulfillment of requirements might lack the
safety margin necessary for resilience against adverse circumstances.

So in order to check whether the platform fulfills the minimum
requirements of an application, the match quality is often used as a

7 The corresponding meet-in-the-middle development process is described in
subsection 2.1.1

 26

Related Work

constraint. Typical requirements ask for the availability of a floating-
point-unit (FPU), a certain amount of available primary and secondary
storage space, minimum computational power, support for concurrency,
or supported security levels as listed in [32]. Especially checking whether
the current deployment does not exceed the available memory capacity
[36, 37] or the available computational power [34] is very common.
Other approaches go one step further than just checking required
against available computational power. The techniques presented in [36]
and [37] try to automatically compute a schedule in order to check
whether the current deployment solution is valid with regard to the
available computational power and the deadlines of the applications.

The method defined in [35] allows the designer to specify classes of
nodes (like x86/Windows computer) and classes of software components
(like Windows application) and to define “supports” relations between
the classes. The deployment algorithm then checks whether the class of
each node instance supports the class of each hosted ASWC instance.
This technique allows for the specification of high-level match
constraints.

Regarding the example above, the match quality contains a lot of
aspects that are not directly safety-relevant. On the other hand, there are
numerous safety requirements that an application may demand from its
host platform. These include fault-tolerant communication, robust
partitioning, the detection of missed deadlines, and many more. Our
approach allows specifying the safety-related requirements and
capabilities of applications and platforms on a detailed level (see
Contrib. 1), as well as checking whether they match (see Contrib. 2),
which is unique in the field of deployment evaluation to the best of our
knowledge.

2.2.2 Replication and Reliability

Redundancy is a very common architectural pattern for safety-critical
systems. Critical functions are implemented and executed redundantly,
and an arbitration component chooses which of the redundantly
computed results to use, or how to integrate multiple valid results. In
case of a system that always fails silently, dual redundancy is sufficient to
tolerate single failures. If the system does not only fail silently, the system
requires triple redundancy to tolerate a single failure (byzantine failures
might even require a higher level of redundancy). A simple replication of
a software application is, however, not suitable for dealing with
systematic failures. These failures will most likely occur on all instances of
the redundant software simultaneously, rendering redundancy useless.
Nevertheless, random failures of the hardware platform can be tolerated
if using replicated application software components that are deployed to
different platforms. On the other hand, replication of software

 27

Related Work

components increases the required communicational and computational
capacity and can, therefore, have significant effects on a system’s
hardware costs. Consequently, it is important to make efficient use of
replication during deployment to find a suitable reliability/cost tradeoff,
which is modeled by the replication criterion.

Besides fault tolerance strategies, the designer can also choose to use
highly reliable components in order to decrease the failure rate of a
system to an acceptable level. If there are platforms and communication
channels that have relatively high and low failure rates, the deployment
has an effect on the overall reliability of the system. The effect of
deployment on quantitatively measured reliability is described by the
reliability criterion.

The approach described in [33] optimizes the reliability/cost tradeoff by
calculating the optimal number of software component replicas and by
deploying them efficiently to a given platform topology. To do so, the
designer has to specify the desired fault behavior of the application
together with the application’s fault scenarios. The desired fault behavior
is defined as a minimum set of functions that must remain available
under certain fault scenarios. Every fault scenario is defined as a set of
platform and network failures that must be tolerated by the application
simultaneously. Using these inputs, an optimization algorithm calculates
the number of required replicas, as well as a deployment plan to ensure
the desired fault behavior in the presence of the specified fault scenarios.

The method proposed in [34], on the other hand, minimizes the failure
rate resulting from a deployment by taking the failure rates of the
different platforms and communication channels into consideration. The
objective function estimates the failure rate of the system by summing
up the specific failure rates of the nodes and communication channels
needed to compute the application. If an application software
component is duplicated and the replicas are deployed to different
platforms, the corresponding failure rate is assumed to be zero, since the
fault model only considers single failures. The same is true for the
duplication of communication links. By summing up the failure rates in a
series connection, the algorithm approximates the overall failure rate.
Using the logical “or” would, however, yield the exact failure rate.

Building further on [39], a more precise failure rate calculation is
provided by [41]. The algorithm assumes that all hardware components,
computational nodes, and communication links have different but
constant failure rates. To calculate the mission failure rate, the algorithm
integrates the failure rate over the accumulated execution times of all
software components and the accumulated transmission times to
perform all necessary communication over the mission time of the
system. The reliability formula also accounts for redundancy in the
application model. The method proposed by [40] also builds on the

 28

Related Work

reliability function provided by [39] and adds a feature for modeling fail-
safe mechanisms. Instead of calculating only the system’s reliability, the
algorithm accounts for the probability of detecting failures and
transitioning into a safe-state, for example, by shutting the system
down.

2.2.3 Delay and Flow

Timing behavior is an important aspect of many embedded systems.
Many applications in the embedded domain are implemented as closed-
loop control. Such an application perceives its environment using
sensors, then uses this information to compute a control value, and
finally influences its environment via effectors such that a certain set
value is reached. Unexpectedly high delays or varying delays (jitters) are
not accounted for in the underlying control theory and are, therefore,
detrimental to the accuracy and stability of the control loop. Besides
closed-loop controls, safety mechanisms often have to react to failures
within a short time so that the fault tolerance time of the respective
system is not exceeded. The deployment has a notable effect on the
end-to-end delay and the jitter of an application. This is due to delays
introduced by software components that are executed asynchronously
on different nodes and the resulting wait times, as well as the delay
introduced by signal transmission. The delay criterion measures the
effect of the deployment on the jitter and the end-to-end delay of
applications.

Besides the resulting delay, communication is also restricted by the
bandwidth of communication links. In many modern cars, for example,
communication networks operate at their limit, and adding new
communication busses is avoided because of weight and costs. When
the communication link uses priority-based access arbitration, delay and
jitter are also affected if the workload of the bus increases. Quality
aspects regarding the total number of exchanged messages compared to
the available bandwidth of the communication channels are summarized
by the flow criterion. The most intuitive way to approach this aspect is to
compare the available bandwidth of the communication channels with
the required bandwidth resulting from the deployment as done in [37]
and [34].

The approach described in[33] allows a control theorist to specify the
maximum time (T_max) that is allowed to elapse between reading the
sensor values and controlling the effectors of a closed-loop control,
which is what we called end-to-end delay above. Knowing the required
and available computational power of each software component and
execution node, the proposed algorithm calculates a deployment plan
and a corresponding schedule, such that T_max is not exceeded. To
account for communication delay, the algorithm uses the worst-case

 29

Related Work

communication delay specified a priori for each communication link by
the developer.

Instead of using delay as a constraint, the method proposed by [34]
minimizes the end-to-end delay in a best effort way. Besides that, the
computation of the actual delay is comparable to the computation done
by [33] described above. Considering that a control loop should typically
not be computed as fast as possible but with the exact delay specified by
the control theorist, using delay as a constraint seems more favorable for
embedded systems than optimizing delay.

The modeling language specified in [35], on the other hand, allows
specifying the frequency of the messages exchanged by the software
components. The objective function then multiplies the frequency of
each message with the number of hops required to transmit the
message in order to calculate and optimize the number of messages sent
per second. A transmission requires several hops if a gateway is used to
route the message over multiple communication channels.

The approach presented in [32] also evaluates message traffic and thus
the flow criterion, but is based on the analysis of scenarios. Each
scenario is evaluated individually regarding the required communication
and the likelihood of the scenario. In a second step, the scenario specific
data are combined with the likelihood of each scenario in order to get
an estimation of the traffic encompassing all scenarios. Based on this
information, the communication is optimized on two levels, inter-site
and intra-site communication. Intra-site communication describes
message exchange between two computers that are located close to
each other and that are connected via a local communication channel.
Such a channel allows for cheap communication regarding the available
bandwidth and the transmission delay. Inter-site communication, on the
other hand, is expensive and must therefore be reduced with higher
priority.

The flow criterion is also regarded by our deployment evaluation
algorithm (see Contrib. 3). Instead of measuring the required bandwidth
or the number of messages per second, we evaluate the costs caused by
the safety mechanisms needed to protect against communication
failures. The algorithm differentiates between two levels of
communication as well, comparable to the inter-site/intra-site
differentiation.

2.2.4 Fixed and Diverse Assignment

Even though we assume that deployment is flexible, i.e., each platform
is, in principle, compatible with each application software component,
there are some reasons for restricting the deployment solution space.

 30

Related Work

We differentiate between two kinds of restrictions, fixed assignment and
diverse assignment. Fixed assignment allows the integrator to directly
assign a software component to a specific platform. This is necessary, for
example, to put the software component performing input conditioning
of a sensor value onto the same platform the sensor is attached to. Fixed
assignments are supported by [33], [37] and [35].

Diverse assignment or separated assignment [35–37], on the other hand,
allows the integrator to forbid putting a set of software components
onto the same platform. This is typically done to increase reliability by
forcing a mapping of software components replicas onto different
platforms.

Besides fixed and diverse assignment, [35] allow specifying the constraint
that two components must be placed on the same platform. This is
mainly done to avoid network communication between tightly coupled
applications. If communication traffic is already measured using the flow
criterion, this constraint might not be necessary.

Our evaluation approach (see Contrib. 3) allows fixed as well as diverse
assignment. In the case of diverse assignment, we differentiate between
diverse assignment for protecting against random failures and diverse
assignment for protecting against systematic failures. To protect against
systematic failures, application software components must not only be
deployed onto different instances of the same platforms, but the
platforms must be of different kinds.

2.2.5 Mixed Criticality

If there is the possibility that a set of software components interferes
with each other, safety standards typically demand that all software
components in the set are developed according to the highest integrity
level of all software components in the set. This is done to avoid that
failures of lower-criticality components, developed according to less strict
development requirements, cause higher-criticality applications to fail
and therefore, indirectly cause hazards with higher criticality.

We introduced the concept of partitioning in section 2.1. Partitioning
guarantees freedom from interference between software components
located in different partitions. If, however, software components with
mixed criticality are in the same partition, the aforementioned rule
applies and the criticality level of the applications is increased. This also
increases development costs and, therefore, should be avoided if
possible. These costs are evaluated using the mixed criticality criterion
and are assessed using our deployment evaluation technique (see
Contrib. 3). To the best of our knowledge, there is no other method that
allows optimizing this criterion.

 31

Related Work

2.3 Modular Certification

In the previous section, we discussed several criteria for evaluating a
deployment. The match criterion is one of them and is used to evaluate
how well the requirements of the application match the capabilities of
the platform. This process of matching application requirements with
platform capabilities, however, anticipates that the safety-related
dependencies between application and platform are specified modularly.
Traditionally, though, safety-critical systems are certified in their entirety.
This means that even though the system might be composed of
individual parts, the safety of the composite is argued monolithically.
Since certification is a significant matter of expense in the development
of a safety-critical system, the reuse of components is only efficient if a
large portion of their certification artifacts is reusable, too. Furthermore,
the deployment cannot be handled flexibly if the safety-related
dependencies between applications and platforms are not specified
modularly and, therefore, cannot be checked after deployment. Along
these lines, Rushby defines the concept of modular certification as “the
development of modular components that could be largely “precertified”
and used in several different contexts within a single system, or across
many different systems”8.

Modular certification is a wide field of interest. In the following section,
we will describe a classification containing the different aspects of
modular certification. We will use this classification to emphasize which
aspects of modular certification our work addresses. Furthermore, we
will use this classification to categorize the related approaches in order
to show how our work relates to existing approaches, and to isolate that
gap in the research landscape that we meant to fill with this thesis. The
classification contains three major branches: (1) The interface
constituents describe the different kinds of information that have to
be contained in the public certification artifacts of a product to make the
product reusable efficiently. We will call this public part of the
certification the interface of the modular certificate. (2) The interface
orientation describing the different kinds of interfaces a modular
certificate may have, especially in the context of open integrated
architectures. (3) The work steps involved in using a modular
certification. The classification is illustrated in Figure 9.

The typical way for specifying a component that is interconnected with
other entities in a self-contained, i.e., modular, manner is to capture its
dependencies to other entities using an interface specification. The first
aspect in our classification differentiates the different interface

8 The definition of modular certification has been slightly broadened. The term
airplane has been replaced with system, since the author was only referring to the
certification of airplanes in his original text.

 32

Related Work

constituents that must be captured in a modular certificate’s interface.
To identify the information that has to be captured in such an interface,
we examine the definition of fail-silent taken from the aviation standard
[42]. In the standard we find that certification requires (A) an assessment
of whether the design of the product is applicable to demonstrate an
acceptable level of safety, and (B) a judgment that confirms that the
product conforms to the afore-assessed design. In other words: (A)
checking whether the system is safe as specified and (B) checking
whether the system has actually been developed as specified, i.e.,
whether the system meets its specification.

modular
certification

interface
constituents

design
dependencies

product-
based

evidences

process-
based

evidences

interface
orientation

horizontal
interface

vertical
interface

application /
platform
interface

other vertical
interfaces

work steps

interface
specification

module
integration

Figure 9: A classification of the different aspects of modular certification. Aspects that are covered
by this thesis are depicted by dark gray boxes.

The first aspect (A) is analyzed and argued on the basis of design
documents such as requirements or architecture specifications that
describe how the system is structured and how it behaves. In order to
modularize such an argument, one must make assumptions about the
behavior of related components and give guarantees regarding its
behavior, which is what we summarized as design dependencies in our
classification The latter aspect (B) is argued on the basis of so-called
evidences, typically in the form of development records [43], [44], and
[45] differentiate between product-based evidence and process-based
evidence. Product-based evidence, such as testing, verification, or review
records, directly demonstrates the compliance of a product with its
design specification. Process-based evidence, such as lifecycle data or
staff training records, demonstrates compliance with a given
development process. The motivation for showing compliance with the
development process is the establishment of the validity and
trustworthiness of product-related evidence and therefore, indirect
support for the claim that a product meets its design. There are some

 33

Related Work

who believe that mature and strict processes have a direct effect on the
safety of a system, but there have been no empirical data to underpin
that claim. The dependencies between product-related evidences,
process-related evidences, and design specification are shown in Figure
10.

Consequently, the interface of a modular certificate has to cover the
three aspects process-based evidences, product-based evidences, and
design dependencies. With regard to processes, the system must
typically be developed according to the process demanded by the
relevant-safety standard. Sometimes, the respective process cannot be
performed completely by the developer of the component or the module
so that certain activities remain to be performed by the integrator. The
same is true for the generation of product-related evidence. Some
evidences, such as integration tests, have to be produced by the
integrator as well. Both residual product- and process-based evidences
must be specified at the certificate interface, so that it is known how to
complete the required set of evidences. In addition to that, the evidences
already generated by the module developer must typically be provided to
the integrator so that the integrator is able to present a compilation of
evidences to the certification body. Finally, the interfaces must also
contain the safety-critical design-related dependencies (structural as well
as behavioral) to other modules, specifying under which conditions the
module can be used safely. Our approach focuses only on the design-
related dependencies.

Process-based
evidences

Product-based
evidences

Design
specification

establishes validity and
trustworthiness of

demonstrates compliance of
the system with its

used to determine if the system
is acceptably safe to operate in
its environment

 strict processes
may have an
effect on the

system’s safety

Figure 10: Dependencies between different kinds of evidences in the development-lifecycle of a
safety-critical system.

As indicated at the beginning of this section, modular certification is a
general term. This means that it does not restrict the product that is

 34

Related Work

certified modularly. In this thesis, however, we focus on modular
certification of applications and platforms and the interface between
applications and platforms as described in subsection 2.1.4. To
demarcate this interface from other interfaces, we differentiate the
interface orientation.

A horizontal interface describes functional dependencies between two
entities on a peer level. In the context of integrated architectures, such
interfaces exist between applications. Assume that, for example, the ESC
of a car requires knowledge of the car’s velocity to operate safely.
Consequently, the ESC might demand that the provider of the
information indicate whenever the velocity is unreliable or unavailable.
Since there are an infinite number of possible dependencies between
functions, it is difficult to define a language for describing the
dependencies.

In contrast to that, the vertical interface describes dependencies between
a component implementing a system-level function and a component
providing a general, function-independent service. Those function-
independent components are typically developed for reuse, and one
might refer to them as COTS (commercial off the shelf). Examples are
libraries, communication protocols, or operation systems. The developers
of COTS do not know all future systems their product will be part of and
they do not know the functions they contribute to. Therefore, it is
impossible to perform a hazard and risk analysis for such a component.
On the other hand, the function using the general-purpose component
knows the kind of service provided by the component and can analyze
which failures of the component could cause a hazard. The interface
relevant for this thesis, which is the interface between an application and
a platform, is a special type of vertical interface.

Coming to the third branch of our classification, the specification of the
certificate interface is only the first step towards achieving the goal of
reusing certificates efficiently and flexibly. The second work step is the
integration of the module certificates into the system certificate. This
step includes checking the satisfaction of the mutual dependencies
between the module and system, as well as the necessary generation of
an argument that the dependencies are satisfied. In our classification, we
therefore differentiate between approaches that support interface
specification and those that also allow for the efficient integration of the
modules. Our method addresses the specification using a formal
language (see Contrib. 1) and the integration of modular certificates (see
Contrib. 2).

In the following subsections, we will use the classification presented
above to classify the related work in the context of modular certification.
Since there are many approaches that focus on the process-related

 35

Related Work

aspects of modular certification, these approaches are summarized in
one subsection. All other approaches are described in separate
subsections. An overview of the classification of related work is shown in
Table 4.

Table 4: An overview of the modular certification aspects addressed by the different approaches in
our related work. An “x” indicates that the approach denoted by the column addresses the
aspect denoted by the row. An” x” in parentheses indicates that the aspect is addressed
only marginally.

 Criterion \
Reference

A B C D E F G H Our
Approach

in
te

rf
ac

e
co

ns
tit

ue
nt

s design
dependencies

(x) x9 x x x

product-
based
evidences

 x x (x) x (x)

process-based
evidences

x x x (x) x

in
te

rf
ac

e
or

ie
nt

at
io

n general vert.
interface

x x x x x

app.\plat.
interface

 x x x x

horizontal
interface

 x x

w
or

ki
ng

st

ep
s

interface
specification

x x x x x x x x

interface
integration

x (x) x x

Table 5: Mapping of identifiers used in Table 4 to references.

ID name

A Road Vehicles – Functional safety; Part 10: Guideline; Chapter
10: Safety element out of context [46]

B AC 20-148 - Reusable Software Components [47]

C Open IEC 61508 Certification of Products [48]

D Modular certification support - The DECOS concept of generic
safety cases [49]

E DO-297: Integrated Modular Avionics (IMA) - Development

9 Only the specific design of the DECOS platform is addressed.

 36

Related Work

Guidance and Certification Considerations [7]

F The Goal Structuring Notation – A Safety Argument Notation
[50] and

Architectural Considerations in the Certification of Modular
Systems [51] and

Safety case architectures to complement a contract-based
approach to designing safe systems [52]

G Boosting Re-use of Embedded Automotive Applications
Through Rich Components [53]

H Safety Analysis of Computer Resource Management Software
[54]

Before the presentation of the state of the art, we want to clarify that
modular certification is not to be confused with the modular
specification of failure logic as done with Component Fault Trees (CFTs)
[55], the Failure Propagation and Transformation Notation (FPTN) [56],
Hierarchically Performed Hazard Origin and Propagation Studies (HiP-
HOPS) [57], or SafeComp Component Model (SaveCCM) [58]. Modular
certification evolves around the contract-like specification of demanded
requirements and guaranteed capabilities, which may include
information about produced, detected, or handled failures, but is not
limited to it.

2.3.1 Process-focused Approaches

This section provides a summary of five approaches that mostly address
the process-related issues of vertical modular certification. Some of them
provide guidelines regarding product-related evidences, too, but only
few and coarse-grained specification-related recommendations are
given. The first three approaches address general vertical modular
certification; the two remaining specifically address open integrated
architectures.

ISO 26262 [46] is a safety standard adapted from IEC 61508 [59] to fit
the specific needs of the automotive sector. Part ten of ISO 26262
contains non-mandatory development guidelines, and chapter ten of this
part introduces guidelines for the development of a Safety Element out
of Context (SEooC). The standard defines an SEooC as a safety-critical
element10 for which an item does not exist at the time of its
development. This definition complies with our definition of vertical
interfaces.

10 An element is the ISO 26262’s term for any kind of part of a larger hierarchical
entity, up to the system under development itself. The term was chosen to evade
pre-allocated terms like module, component, and such.

 37

Related Work

The guidelines presented suggest that the developer of an SEooC shall
make assumptions about the safety-related properties required from his
product and develop it accordingly. When using the SEooC, the
integrator shall check and provide evidence that the element as specified
fits into the system’s safety concept. The standard only provides a very
high-level guideline for addressing these process-related aspects.
Guidance on how the assumptions should be specified by the developer
or checked by the integrator is not given.

In the aviation domain, the Federal Aviation Administration (FAA)
advisory circular (AC11) 20-148 [47] describes a process that can be used
to acquire acceptance for a reusable software component to be used in
airborne systems. An accepted component can be used more easily as
part of a safety-critical system, since certification-relevant artifacts can be
reused in the context of the system’s certification. AC 20-148 specifically
deals with software components that are a part of an airborne system’s
software application but might not be a software application by itself. As
examples, the AC names libraries, operation systems, or communication
protocols. This puts the circular in the class of general approaches for
vertical modular certification.

The core idea of AC 20-148 is that the developer of a reusable software
component may fulfill only a subset of the objectives, or partially fulfill
single objectives of the RTCA/DO-178B12 [60]. The integrator may reuse
the credit of the fulfilled and partially fulfilled objectives, and perform
the remaining activities (e.g., integration tests) to comply with the
residual objectives. The circular focuses on guidelines for complying with
RTCA/DO-178B in a distributed and reuse-centered context, which is
why we classify the approach as process-related. However, there are
some specification-specific aspects that have to be defined by the
developer and checked by the integrator. These include features of the
component, such as error detection or partitioning, as well as constraints
for the use of the component, such as certain hardware failures that the
component cannot detect or control.

Open Certification [48] is an application-domain-independent method
for vertical modular certification in the context of IEC 61508 [59]. The
method is designed to produce two deliverables. First, the safety case
provided to the certification body and second, an open document
provided to the integrator of the product.

11 An AC never contains mandatory instruction, but advice. In this case, the AC
provides one, but not the only, possible means for developing reusable software
components.

12 RTCA/DO-178B is the most common standard for the certification of safety-critical
software in airborne systems.

 38

Related Work

The safety case contains a list of all requirements demanded by the IEC
61508 and either evidence for each requirement’s fulfillment, a rationale
why the requirement is not applicable to the specific product under
development, or why the requirement has to be fulfilled by the
integrator. The open document is called safety manual and contains the
information that is relevant for the integrator. Besides the remaining
process activities for the integrator, the safety manual also contains
probabilistic data like MTTF, maintenance requirements, and restrictions
for the safe application of the product. The method is process-heavy but
provides a distinction between the realization of the safety-critical
module (safety case) and its interface specification (safety manual). Using
this separation, the developer is able to protect intellectual property from
the customer while allowing the customer to integrate the product into
the system safety case.

The EU project DECOS (Dependable Embedded Component and
Systems) developed an eponymous open integrated architecture for
safety-critical embedded systems [61]. The method described in [49]
describes an approach for vertical modular certification in the specific
context of the DECOS architecture.

The method proposes modularization of the system’s safety case into
two generic and reusable safety cases for the platform (one for the core
services and one for higher-level services) and several application-specific
safety cases. Besides this methodological aspect, the authors describe
the specifics of the safety cases for the DECOS platform. The approach
does not provide any guidelines for checking the sufficiency of the
platform’s capabilities when faced with different kinds of applications
and does, therefore, not provide any guidance on integrating the
application and platform safety arguments. The general idea of splitting
application and platform safety cases aligns well with the approach
pursued by our method. Furthermore, the DECOS safety case can be
used for evaluating the specification language of this thesis, comparable
to the safety-related feature specifications of AUTOSAR and ARINC 653.

The safety standard RTCA/DO-297 [7] contains guidelines for the
certification of systems in the context of Integrated Modular Avionics
(IMA). The document describes processes for gathering incremental
assurance for the certification of an IMA system. The overall process is
called incremental acceptance and allows obtaining certification credit
for modules, platforms, and applications. Regarding applications, the
standard allows their certification on a specific platform, independent
from other applications if a robust partitioning is guaranteed. An
independent certification of application and platform, however, is not
supported.

There are four different tasks in the specified incremental acceptance
process. Task 1 allows the modular acceptance of certain parts of a

 39

Related Work

platform, called modules, and of the complete platform. Task 2 describes
the process for accepting applications in an IMA system. An application
may only be modularly accepted together with its future IMA platform,
but without considering the other applications hosted on the platforms.
Subsequently, these applications are incrementally integrated into an
IMA system in task 3. Task 4 deals with the integration of the IMA
system into the aircraft.

Since initially, applications may only be accepted together with the host
platform, a modular specification of the vertical demands of the
application is not needed. The standard requires the application
developer to check whether the health monitoring and fault
management services of the platform are sufficient; a more in-depth
guideline is not provided. Task 6 specifies the demands for reusing an
application in the context of another platform, but mostly refers to the
previously mentioned AC 20-148 and gives little further guidance.

2.3.2 Modular GSN

The Goal Structuring Notation (GSN) [50] is a graphical notation for
modeling safety cases. The same paper provides a widely accepted
definition for the term safety case:

“A safety case communicates a clear, comprehensive and defensible
argument that a system is acceptably safe to operate in a particular
context“

The argument contained within a safety case is meant to be used to
convince third-party assessors. With GSN, the argument is composed
hierarchically in a tree-like structure. A typical GSN architecture looks as
follows: The top part of the tree contains the hazards that have to be
controlled or the safety goals that have to be reached, respectively. Via a
logical chain of argumentation and via several layers of sub-goals, the
top-level goals are connected to product- and process-related evidences
in order to substantiate their fulfillment.

To cater for the modularity of open integrated architectures (especially
for IMA), [51] proposes an approach for modularly constructing safety
cases with the GSN. To this end, the approach allows specifying a
modular interface for a safety case, which may comprise goals,
evidences, or context definitions provided (outgoing) or needed
(incoming) by other modular safety cases. According to [51], the idea of
such an interface is comparable to the rely-guarantee approach, where
the provided goals (analogously evidences or context definitions) of a
safety case are guaranteed to be fulfilled only if the required goals of the
safety case are fulfilled, too. Besides the graphical notation, [52]
describes guidelines for the design of modular safety cases in general.

 40

Related Work

The guidelines for the design of modular safety cases and the idea of
specifying design dependencies between modular certificates in a rely-
guarantee like fashion provide a basis for our methods. In our approach,
we make use of this more generic idea, and tailor it to the specific needs
of the application/platform interface.

2.3.3 Rich Component Model

The Rich Component Model (RCM) [53] is a methodology for designing
embedded systems that focuses on modularity. RCM allows the
definition of module interfaces using a contract-like assume/guarantee
semantics. The interface specification of a module comprises several
views, covering functional as well as non-functional aspects including a
safety view. Furthermore, RCM supports the definition of horizontal as
well as of vertical interfaces.

The RCM methodology does not explicitly provide a language for the
specification of module interfaces, but most of the examples found use
an automaton-based specification approach [62], [53], [63]. It seems that
the focus of RCM does not lie on the specification language, but on
more general formalization of interface contracts. The methodology
contains formal specifications for logical operators to specify, for
example, the union or the intersection of multiple guarantees or
demands of a single module.

Considering module integration, the approach contains formal
specifications of operators for composing interfaces. Checking the
fulfillment of properties over a set of composed interfaces is non-trivial
and specific for the specification language chosen. [62], for example,
propose an approach using formal verification for a hybrid automata
specification language.

RCM is not tailored to a particular specification purpose. This versatility
usually requires a very powerful specification language, like hybrid
automata, to be able to model the variety of embedded systems. The
specification language proposed in this thesis, however, is a language
tailored specifically to the particularities of the vertical interface between
applications and platforms. Complicated dependencies between
applications and platforms that would have to be modeled using hybrid
automata are available directly in our method.

2.3.4 Safety Analysis of CRMS

The method presented in [54] allows performing a modular safety
analysis of Computer Resource Management Software (CRMS). The
author defines CRMS as “any software whose main function is to
provide dedicated software with access to generic computer hardware

 41

Related Work

resources”. We adopted this definition in our work, but referred to the
term CRMS as platform software. The developed safety analysis method
uses the guideword-based techniques SHARD [64] and LISA [65], as well
as patterns describing typical platform software services like
communication or scheduling.

Furthermore, [54] describes how to specify the results of the modular
safety analysis. The technique for capturing the analysis results is again
contract-based. Since the author found that there are dependencies
between platform software and applications on several levels of
abstraction, the specification technique allows the specification of
contracts on three levels: the architectural level, the behavioral level, and
the performance level. On each level, the technique includes the
specification of guarantees provided by the platform software and
demands that have to be met to validate the respective guarantees.

Finally, the method contains a two-step process describing how to use
the results of such an analysis for the development of a safety-critical
application that uses the analyzed platform. The first step requires the
application developer to show that the application fulfills the demands
specified by the platform developer. The second step of the process
describes how to integrate the platform guarantees into a system-level
safety case in order to show how they help to control the function-
specific hazards.

The most obvious distinguishing feature between the method proposed
in [54] and our method is that our method assumes that platforms as
well as applications are developed modularly and are integrated by a
third party, whereas [54] assumes that only the platform is reused. If the
application is to be reused, this entails the need for a modular
specification of the demands of the application in addition to modular
specification of the guarantees and demands of the platform. As a
second point, this thesis deals with the platform as a whole, consisting
of platform hardware and software, whereas platform hardware is
explicitly excluded in [54].

Apart from these two distinguishing points, we incorporated some ideas
described in [54], like the analysis technique and the contract-based
specification of dependencies. Along these lines, we developed a more
formal way of specifying the dependencies between application and
platform and an automated integration process for capitalizing on this
formalization. The method for “performing a modular safety analysis of
Computer Resource Management Software” introduced in this
subsection is completely based on natural language, whereas the Rich
Component Model introduced in the previous subsection is completely
formalized. Our method, on the other hand, takes an approach in the
middle between natural language and formalization to reach a trade-off
between automation and ease of use. This trade-off will be discussed

 42

Related Work

briefly in chapter 3 and in more detail in chapter 5, when our technique
is introduced in its entirety.

2.3.5 Conditional Safety Certificates

Open integrated architectures allow for a more flexible and dynamic
system architecture, which calls for modular specification of safety cases
and efficient methods for integrating these safety cases at the system
level. In open integrated systems, however, we have to deal with
architectures that change dynamically during design time, especially
during the deployment phase. Current trends such as ubiquitous
computing or cyber-physical systems will, however, produce “open”
embedded systems, like harvesting fleets combined from multiple
architectural vehicles or car2car applications. Those systems are
characterized by having an architecture that might even change during
runtime.

Nevertheless, if an open embedded system is safety critical, there is a
need to provide sound safety assurance. The idea behind the
Conditional Safety Certificates (ConSerts) approach [66] and the
Runtime Certification approach [67] is to shift parts of the safety
assurance to runtime when all elements of the architecture as well as
their capabilities and requirements are known. ConSerts allow
establishing predefined modular safety certificates for each entity of the
future system. Those certificates are conditional in the sense that they
define requirements on the behavior and the capabilities of other entities
as a condition before safe behavior is guaranteed. When each entity
provides such a modular runtime certificate, an algorithm is able to
check at runtime whether the current system combination fulfills the
predefined constraints and is therefore able to run safely.

ConSerts and our approach have the modular specification of certificates
as well as the automated integration check in common. ConSerts are,
however, different in two aspects. Besides being developed for runtime
application, ConSerts operate on the horizontal level between different
applications, whereas our approach modularizes the certificates along
the vertical axis between applications and platforms.

 43

Solution Overview

3 Solution Overview

In the previous chapter, we gave an overview of the current state of the
art in developing safety-critical open integrated systems, describing the
modular development of applications and platforms and their
subsequent integration. Following the presentation of existing
approaches as well as the remaining challenges in this field, we will now
present our solution for solving the challenges claimed by our
contributions with this chapter. For reasons of clarity and
comprehensibility, we have divided the detailed description of our
solution into three parts and will describe these separately in chapter 4,
chapter 5, and chapter 6. In this chapter, however, we will present the
different parts of our method jointly and will elaborate on their relations
and interactions in order to reach our overall goal of “efficiently
deploying safety-critical applications onto open integrated architectures”.

Since our approach addresses particular challenges introduced by the
development of open integrated systems, we introduce our solutions in
the context of the respective development process. An initial version of
that process was already sketched in subsection 2.1.1 (Figure 3).
However, the process model presented in chapter 2 gives a more general
overview of the development process of open integrated systems. Since
our work focuses on safety, we need to have a closer look at the safety-
specific process steps before we can summarize the core idea behind our
work. Therefore, we will discuss a more safety-focused process in this
section, as depicted by Figure 11.

The new process separates the development lifecycle of applications and
platforms into a product engineering activity and a safety engineering
activity. The application safety engineering activity produces one major
artifact that is relevant for our consideration: the vertical safety interface
of the application. The need for this particular artifact is due to the
stringent modularization of applications and platforms and contains the
demands on the safety-related behavior of the platform that are
necessary to argue the safety of the application in a modular way, i.e.,
isolated from the platform. With the demands specified in this interface,
the application developer is capable of arguing the soundness of the
application safety case under the assumption that the specified demands
are fulfilled. Comparable to the application development, the platform
developer produces a vertical safety interface for the platform.
Complementary to the application safety interface, which contains the
assumptions on the safety-related capabilities of the platform, this

 45

Solution Overview

document specifies the actual safety-related capabilities that the
platform provides towards the application.

Functional
Architecture

Platform
Topology

Platform DevelopmentPlatform Development
Platform

Platform Product
Engineering

Application

Application Product
Engineering

System Integration

Deployment
Planning

Deployment
Plan

Configuration
&

Deployment

Vertical Safety
Interface of the

Application

Platform Safety
Engineering

Vertical Safety
Interface of the

Platform

Application Development

Platform Development

yes

no

valid?

Specification of
Vertical Safety

Interface

Platform Safety
Engineering

Specification of
Vertical Safety

Interface

Integrated
System

Figure 11: A more detailed version of the OIA development process already illustrated in Figure 3.
Orange-colored elements mark the activities and products affected by our contributions.

The idea of separating safety case and safety interface is comparable to
the separation of realization and specification well known from
component-based development. There, the specification of a component
describes its required and provided services while hiding the realization
of the services. Analogously, the safety interface describes the safety-
related guarantees and demands of the product while hiding the
detailed design information, the arguments, as well as the evidences
contained in the safety case. The specification of safety interfaces for
modular development of safety-related systems is not new to our work.
Instead, it is a widely accepted practice in academia and, to a certain
extent, also in industry (see section 2.3 for more information on related
work w.r.t. modular certification).

A novelty, however, is our specification language for Vertical Safety
Interfaces, or VerSaI language for short. The VerSaI language allows
application and platform developers to specify their safety case interfaces
in a model-based and formal manner. The formality of the specification
is a prerequisite for the tool-supported and automated integration of
safety interfaces on the system level, which is the final goal of our
method. The VerSaI language implements the first contribution initially

 46

Solution Overview

introduced in chapter 1, which is repeated here for reasons of
convenience:

Contrib. 1 Interface Specification: Defining a formal language for the modular
specification of safety-related demands and guarantees between an
application and a platform in an open integrated architecture.

When an application is finally mapped onto its execution platform, the
system integrator uses the vertical safety interfaces of the application
and the platform to check whether the given application is capable of
executing safely on its specified host platform. This integration process is
where the second part of our solution comes into play. The VerSaI
mediator combines the vertical safety case interfaces specified with the
VerSaI language and checks whether the demands of the applications
can be fulfilled by the capabilities of the corresponding platform. This
mediation process is mostly automated and implements the second
contribution provided by our approach:

Contrib.2 Interface Mediation: Developing an automated process for checking
the safety compatibility of an application and a platform in an open
integrated architecture.

The VerSaI language for interface specification will be introduced in
detail in chapter 4, whereas the VerSaI mediator for interface mediation
will be presented in chapter 5. Yet, in the next subsection (3.1), we will
describe the relationships between both components and provide a
more detailed description of how the VerSaI method interfaces with the
development lifecycle.

As mentioned before, the VerSaI mediator assumes that the modular
developed applications and platforms are already mapped to each other
and, as shown later, this mapping information is a key input to the
automated mediation provided by the mediator. The system integration
step that determines the mapping of applications to platforms is called
deployment planning (see section 2.2 for more information). To assist in
the identification of suitable mappings / deployment plans, we
developed an objective function that can be used for deployment
evaluation and consequently for deployment optimization. This objective
function corresponds to our third contribution.

Contrib. 3 Deployment Evaluation: Developing a metric for evaluating the
deployment of a functional architecture onto a platform topology from a
safety perspective.

In the section after the next (3.2), we will give a short overview of this
contribution; a detailed description of the deployment evaluation will be
given in chapter 6.

 47

Solution Overview

3.1 Interface Specification and Mediation

In this section, we give a summary of the process for the specification of
vertical safety interfaces using the VerSaI language and the
consolidation of the resulting interfaces using the VerSaI mediator. The
overall approach is called the VerSaI method and is sketched in Figure
12.

In the first step of the VerSaI method, the application developer specifies
the vertical application interface using the VerSaI language and the
platform developer specifies the vertical platform interface with the
VerSaI language. The VerSaI language contains different classes of
language elements that allow for the specification of different kinds of
safety-related dependencies between an application and a platform. It
allows the application developer, for example, to demand the detection
or avoidance of typical platform failures, but it may equally demand the
provision of certain monitoring or failure reaction mechanisms by the
platform. When an application or platform developer specifies a safety-
related dependency, the developer selects one of these predefined
classes and instantiates and configures the class to his or her needs.

Vertical Safety
Interface of the

Application

Vertical Safety
Interface of the

Platform

Deployment
Plan Mediation Mediation

Result ...

Configuration and Deployment

Integrated
System

...

VerSaI
Language

VerSaI
mediator

Application
Model

Platform
Model

VerSaI
Language

specified
with

specified
with

performed
by

integrated with

integrated with

Figure 12: Overall process of interface specification and interface mediation with the VerSaI method.

Example 1 shows an example application demand regarding the
detection of a value failure of an analog output signal called a_set_fin.
Example 2, on the other hand, presents the corresponding guarantee
provided by an analog output channel called voltage_out. The
examples showcase certain parameters like failure mode, maximum
deviation, failure detection time, or integrity level, which can be variably

 48

Solution Overview

configured by the user. To mark these parameters, we underline them in
the following examples:

Example 1: A value failure of the output signal a_set_fin larger than 0.05V must be
detected within 0.05ms (ASIL C).

Example 2: A value failure of an output signal issued via voltage_out larger than
0.02V is detected within 0.03ms (ASIL C).

The examples allow us to observe another core feature of the VerSaI
language, namely the integration of the language into the model-based
design artifacts of applications and platforms. Referring to the examples
presented above, the application demand (example 1) is linked to the
model-based representation of the corresponding signal called
a_set_fin, and the platform guarantee regarding corruption detection
is linked to the model-based representation of the corresponding output
channel called voltage_out. This integration of safety model and
design model facilitates consistency between the safety model and the
design model, enables certain plausibility checks, and, most importantly,
is required by the VerSaI mediator to perform the automated interface
mediation.

Once the vertical interfaces of application and platform have been
specified, the aforementioned VerSaI mediator checks whether the
application demands can be fulfilled using the available platform
guarantees. During this step, the integration aspect of the VerSaI
language is used to match demands with their relevant guarantees. To
perform this matching, the mediator uses an additional piece of
information – the deployment. The deployment is an integral part of a
regular development process and specifies the mapping of application
elements (e.g., of output signals) to platform elements (e.g., output
channels). Since the demands and guarantees of the VerSaI language are
related to their corresponding language element, the deployment
information can be used to match a demand with the relevant
guarantees in a transitive fashion. The mediator navigates from a
demand to the related application element, via the deployment
information to the corresponding platform element, and finally from
there to the relevant guarantees.

If the guarantees that are relevant for the fulfillment of a demand are
found, the next step in the mediation process is to analyze whether the
demands can be met by these particular guarantees. The detailed
process describing the mediation of the different demand classes
provided by the VerSaI language is described in chapter 5. The VerSaI
language itself is described in chapter 4.

 49

Solution Overview

3.2 Deployment Evaluation

In the last section, we gave an overview of the process for specifying and
checking the fulfillment of safety-related dependencies between
applications and platforms using the VerSaI method. One of the required
inputs for the method is a deployment plan specifying the mapping of
the applications onto the platforms of the system. In this section, we will
describe how our third contribution, the objective function for
deployment evaluation, helps to find a suitable deployment plan.

The first challenge in identifying potential deployment candidates lies in
the size of the solution space. If we only regard the assignment of
applications to platforms, this results in possibilities, assuming that
there are applications and platforms. To handle the high number of
possibilities, the evaluation of the solutions is usually performed
automatically. The second challenge lies in the variety of design criteria
that influence the quality of a deployment plan. As we have shown in
chapter 2 (subsection 2.2), there are also conflicting criteria that are hard
to weight and compare with each other. In the context of this
automated multi-criteria deployment evaluation, we developed two
novel metrics for deployment evaluation.

The cohesion metric focuses on the aspect of unprotected shared
computational resources in a mixed-critical system, as the metric
evaluates the costs of interferences between ASWCs. The coupling
metric, on the other hand, evaluates the costs caused by safety
mechanisms to protect against communication failures, which are
incurred when separating tightly coupled components over the platforms
of a distributed system. It is important to note that in a real-world
application, our metrics have to be used together with other objective
functions, since there are multiple other quality criteria that have to be
evaluated as well.

Figure 13 illustrates the process of deployment optimization that involves
our metrics. The solution space of the deployment is defined by the
functional architecture specifying the elements that have to be deployed
and the platform topology specifying the target environment of the
deployment. The cohesion metric, the coupling metric, and some
additional constraints that can be specified using our approach are used
together with other objective functions and constraints to identify the
solution candidates. The cohesion metric, the coupling metric, and the
deployment constraints that can be modeled with our approach will be
introduced in chapter 6.

The deployment plan that is generated by this optimization specifies a
relatively high-level mapping of applications to platforms. It is important
to note that there is a manual step involved that refines this high-level

 50

Solution Overview

mapping before it reaches the level of detail required for the VerSaI
approach13.

As a final comment to this overview, we want to remark that there are
many approaches for optimization, such as Linear Programming [68] or
Genetic Algorithms [69]. Our contribution, however, does not focus on
the choice of the optimization algorithm but rather on the objective
functions for evaluating deployments. However, we have evaluated our
metrics with an example in the context of an optimization framework
using genetic algorithms, which will also be discussed in chapter 6.

Functional
Architecture

Platform
Topology

Solution
Space

Optimization
Procedure

Cohesion
Metric

Coupling
Metric

Deployment
Plan

uses

co
nta

ins

sp
ec

ifie
s

SolutionSolutionDeployment
Candidate

ConstraintConstraintDeployment
Constraints

Objective
Function

Objective
Function
Other

Criteria

Figure 13: The process of Solution Candidate Identification : Orange-colored elements mark the
activities and products affected by our contributions.

13 The difference between the high-level and low-level deployment model is best
observed by comparing the deployment as specified in Figure 73 with the
deployment as specified in Table 16

 51

Interface Specification

4 Interface Specification

This chapter is the first of three chapters describing our methods for
“Efficiently Deploying Safety-Critical Applications onto Open Integrated
Architectures”. In this particular chapter, we describe the realization of
our formal language for specifying the safety-related dependencies
between applications and platforms, which corresponds to the first
contribution specified in chapter 1.

Contrib. 1 Interface Specification: Defining a formal language for the modular
specification of safety-related demands and guarantees between an
application and a platform in an open integrated architecture.

Prior to describing the structure of the language and of this chapter, we
will summarize the role of the VerSaI language in the overall context of
our work. The VerSaI language is part of the VerSaI method and is used
by application developers and platform developers to specify the vertical
safety interface of applications and platforms, respectively. The VerSaI
language allows specifying the vertical safety case interface specified in a
model-based representation. The VerSaI language has been developed
with the idea of containing sufficient information so as to allow the
VerSaI mediator to decide (or support the decision-finding) about
whether a particular application can be executed safely on a particular
execution platform. Figure 14 depicts this role of the VerSaI language. It
shows the transition from the language specification to the mediation
phase, which begins with the configuration of the existing applications
and platforms. However, the mediation is beyond the scope of this
chapter and will be presented in chapter 5, “Interface Mediation”. In this
chapter, the focus is on the description of the VerSaI language14.

The structure of this chapter mirrors the top-level architecture of the
language. The VerSaI language is divided into three main packages
(Figure 15): the common language, the application language, and the
platform language. The common language defines types, properties, and
relations that are used across the application- and platform-specific
language parts. The application-specific part is used by the application
developer to specify the demands regarding the behavior of the
platform, whereas the platform-specific part is used by the platform
developer to specify the guarantees regarding the behavior of the
platform.

14 Please note that a complete overview of the VerSaI technique is given in the
previous chapter in section 3.1 (for a quick overview, see Figure 12).

 53

Interface Specification

This chapter is structured as follows. We begin with the introduction of a
running example that will be used across the upcoming sections to
exemplify the language concepts. The description of the language starts
in section 4.2 with an explanation of the key high-level design decisions
that have a cross-cutting influence on most components of the VerSaI
language. In Section 4.3, we introduce the first part of the common
language containing types, parameters, and relations. Section 4.4
describes the second part of the common language, which contains the
very core of the VerSaI language, the common set of failure modes and
failure reaction measures used to specify demands and guarantees.
Following this, the application-specific part of the language is introduced
in section 4.5, while the platform-specific part of the VerSaI language is
presented in section 4.6.

Application
Developer

specifies
Vertical Safety
Interface of the

Application

Vertical Safety
Interface of the

Platform

...

Validation of
Deployment Plan

Platform
Conifguration

Application
Configuration

...
VerSaI

Language

Platform
Developer

Specification of
Vertical Safety

Interface

Specification of
Vertical Safety

Interface

specifies

uses

us
es

model based

model based

Figure 14: The role of the VerSaI language in the VerSaI method

Figure 15: This figure shows the top-level architecture of the VerSaI language

 54

Interface Specification

4.1 Running Example

In this section, we introduce a running example that will be used across
the upcoming sections and chapters to exemplify the concepts of the
VerSaI language and the VerSaI mediator. The running example consists
of two parts: an example application shown in Figure 16 and an example
platform shown in Figure 17. The mapping/deployment of the
application to the platform is shown in Table 6. For more information
regarding the underlying meta-model, please refer to Appendix A15.

v_sensorSWC_A

v_sensorSWC_B

v_sensor_A

v_sensor_B

v_controller

monitoring

throttle

GUI

v_raw_B v_B

v_raw_A v_A v_A
v_B

v_ref

enable

a_set

throttleSWC
v_ref
enable

a_set

error

a_set_mon

a_set_mon
a_set_fin

v_A
v_B

statuserror

ASIL B

ASIL B
ASIL C

QM

ASIL C

ASIL C

communication signal

physical signal

service need

sn1

sn2

sn3 sn4

sn5

sn6

sn7

Figure 16: An example cruise control application : Software components are shown as blue

rectangles, actuators and sensors as black rectangles. The integrity level of software
components is shown in a red tag in the lower right corner of the rectangle.

The example application is an automotive cruise control application. The
goal of the application is to control the vehicle’s velocity to match a user-
defined reference velocity (v_ref). The main controller component in
our example is called v_controller. The controller reads the current
velocity of the car, compares it to the reference velocity, and calculates a
new set value for the throttle to match the future velocity with the
reference value. The current velocity of the car is provided by two
redundant sensors (v_sensor_A, v_sensor_B) and two sensor
software components (v_sensorSWC_A, v_sensorSWC_B). On the
actuator side, the acceleration is controlled by a single software
component (throttleSWC) and a single actuator (throttle). The
redundant sensor components are used by the application to tolerate
single sensor failures. Such a failure is detected by the monitoring
software component, which, upon detection, manipulates the values
sent to the actuator so as to transition the system into a safe state. In

15 Please note that, for reasons of clarity, the presented graphical representations of
the example do not show every detail of the model.

 55

Interface Specification

addition to the afore-mentioned components directly involved in the
control loop, the application contains another software component
called GUI, which provides the user with information regarding the
current status of the cruise control application.

Please note that the described example application is a mixed-critical
application, i.e., it contains software components of different degrees of
criticality. The redundantly constructed sensor components are
developed according to ASIL B16, whereas the residual components are
developed according to the higher ASIL C, with the exception of the GUI
component, which is developed according to QM.

Partitions

partition0 partition1

Peripherals Communication Links

current_in

Services
health monitoring

service
event servicepartition2

core0 core1 ram0 flash0

internal_
comLink

voltage_outvoltage_in can0

Figure 17: An example platform

The simple example platform hosts an operating system that provides
the concept of partitions for separating mixed-critical applications. The
platform is currently configured to have three partitions: partition0,
partition1, and partition2. In addition to the partitions, the
platform offers two software services, a health monitoring service
and an event service for inter-process communication. Regarding
peripherals, the example platform offers two input channels, one for
reading voltage-based (voltage_in) and one for reading current-based
signals (current_in), and a single output channel (voltage_out) for
providing voltage-based output signals. Additionally, the platform
provides two communication links: an internal communication link to
connect software components hosted on the platform
(internal_comLink) and one communication link for connecting the
software components with other platforms (can0). Please note that,
since we do not further separate platform software and platform
hardware, peripherals and communication links as specified in our
example consist of software (e.g., the com stack) as well as hardware
components (e.g., microcontroller peripherals).

16 ASIL stands for Automotive Safety Integrity Level. Further information is provided in
the glossary.

 56

Interface Specification

The deployment of the application to the example platform is shown in
the following table:

Table 6: The deployment of the running example : This is a deployment of the example application
onto the resources provided by our example platform.

Resource User Resource

ASWC : v_sensorSWC_A Partition : partition 0
ASWC : v_sensorSWC_B Partition : partition 0
ASWC : v_controller Partition : partition 1
ASWC : throttleSWC Partition : partition 1
ASWC : monitoring Partition : partition 1
ASWC : GUI Partition : partition 0
SignalInPort : v_raw_A InputChannel : voltage_in
SignalInPort : v_raw_B InputChannel : current_in
SignalOutPort : a_set_fin OutputChannel :

voltage_out
ComPort : enable ComLink : can0
ComPort : v_ref ComLink : can0
ComPort : v_A ComLink : internal_comLink
ComPort : v_B ComLink : internal_comLink
ComPort : a_set ComLink : internal_comLink
ComPort : error ComLink : internal_comLink
ComPort : a_set_mon ComLink : internal_comLink
ComPort : status ComLink : can0
ServiceNeed : sn1 Service : health

monitoring service
ServiceNeed : sn2 Service : health

monitoring service
ServiceNeed : sn3 Service : health

monitoring service
ServiceNeed : sn4 Service : health

monitoring service
ServiceNeed : sn5 Service : health

monitoring service
ServiceNeed : sn6 Service : event

service.error_event
ServiceNeed : sn7 Service : event

service.error_event

 57

Interface Specification

4.2 Language Design

In this section, we will discuss the core characteristics of the VerSaI
language’s design. This discussion is structured according to six main
characteristics of the VerSaI language, which are:

 semi-formal

 finite

 exhaustive

 extensible

 parameterizable

 integrated

The VerSaI language must be as formal as necessary so that the VerSaI
mediator can reason about whether the application demands are fulfilled
by the given platform guarantees. With our design approach, it is
sufficient to formalize the syntax of the language and specify some parts
of its semantics informally. The syntax is formalized by the meta-model
of the language. Conversely, the semantics of the language elements is
specified informally by the descriptions given in this chapter. As we will
show in the next chapter, this degree of formalism is sufficient for
automatically checking whether the demands and guarantees are
compatible.

The basic element of the aforementioned meta-model, and thus of the
VerSaI language, are safety requirements specified at the interface
between application and platform. Each requirement can either be typed
as a demand – if it specifies an expectation about the behavior of the
platform – or as a guarantee – if it specifies the realization of platform
behavior. When we say that the VerSaI language is finite, we mean that
there are a finite number of safety requirement types that can be used to
specify the vertical safety interface of a platform or application. Unlike a
specification language such as state machines, where a complex
semantic whole (the state machine) is composed by putting elementary
units into relations (states and transitions), a safety interface specified
using the VerSaI language consists of a set of independent requirements.
On the one hand, this simplicity allows for a mediation algorithm that
works with a semi-formal language. On the other hand, however, this
means that the expressiveness of the language is limited by the available
demand and guarantee types.

To achieve sufficient expressiveness using such a design, the language
must be exhaustive, which means that every possible safety-related
dependency between application and platform must be expressible with
the available demands and guarantees. This directly leads to the question
of whether it is feasible to enumerate all possible safety requirements

 58

Interface Specification

that can occur at the interface between application and platform. We
found that, with certain restrictions, this can be done due to one
fundamental reason: An execution platform mostly offers standard
services. If most platforms did not offer standardized services, one would
not have been able to standardize the API of the execution platform in
the first place. Based upon those services, we found that a platform and
an application share four different classes of safety-related
dependencies: (1) Platform Service Failures, (2) Health Monitoring, (3)
Service Diversity, and (4) Resource Protection.

Application Language

Platform Language
Platform

 Service
Failures

H
ealth M

onitoring

Service D
iversity

R
esource

Protection

Figure 18: The four classes of safety dependencies in VerSaI

The platform needs to provide dependable services to the application in
order to enable the application to provide its functions safely. The
platform service failure class enables the application and platform
developer to specify demands and guarantees regarding the detection or
avoidance of platform failures that would otherwise affect the safe
behavior of the application. In contrast, it is common practice to use the
platform as a means for detecting application failures and for executing
failure containment reactions. The health monitoring class allows
specifying the corresponding dependencies. The third class of safety-
related dependency is called service diversity. It allows specifying
demands regarding the diversity of provided services, which is the basis
for so-called integrity level decompositions offered by certain standards.
The fourth and last class is called resource protection and allows
specifying demands regarding the protection of services from
interference by other applications, which is demanded by most safety
standards when mixed-critical applications share common platform
resources and services.

Both the application and the platform language are structured according
to these four classes and contain corresponding demand and guarantee
prototypes. If the developer needs to specify a demand or a guarantee,

 59

Interface Specification

the demand or guarantee must be covered by one of the available types
for all features of the VerSaI language to be available. To deal with
demands and guarantees that are not covered, the VerSaI language
offers two possible solutions. The first is its extensibility and the second
the possibility to incorporate informal free-text demands and guarantees
into the interface specification. With regard to demands or guarantees
that are not covered by our language, we recommend that a developer
specifies the language element using an informal free-text requirement
when encountering the issue for the first time. If such a free-text
requirement is used, the automated interface mitigation is not available
for this particular requirement. Only if a certain kind of free-text
requirement is used more frequently, we suggest extending the VerSaI
method. This task of extending the method is supported by the modular
design of the VerSaI language and the VerSaI mediator.

However, during our evaluation (see 0) we found that the VerSaI
language is capable of expressing most of the required dependencies
between applications and platforms. One reason for this is that the user
of this language is able to tailor a demand or guarantee prototype to her
or his needs by specifying relations and properties.

The most important relation that can be specified is the safety
requirement’s architecture references. Architecture references specify the
integration of the language into the design model of the application and
of the platform. If a certain demand or guarantee relates to an
architectural element, this element must be referenced by the
corresponding safety requirement. As an example, a demand regarding
the detection of a signal corruption must reference the corresponding
signal (e.g., the signal a_set_fin in our example application) or a
platform guarantee regarding the detection of corruptions must
reference the corresponding communication link (e.g., the
internal_com_link or can0 in our example platform). With this
information, plausibility tests can be performed and the mediator can
automatically put demands and guarantees into relation if the
deployment specification is available.

Application demands relate only to elements of the application model
and platform guarantees relate only to elements of the platform model.
Furthermore, application and platform model are connected with each
other via the deployment model (the deployment model can be used to
specify deployment plans, see section 3.2). The application model, the
platform model, and the deployment model were inspired by existing
meta-models like the AUTOSAR or the EAST-ADL meta-model. We
present our architecture model in Appendix A. When you read the
language specification, you will encounter references to the architecture
model. If you consider it important to understand the meaning of certain
architectural elements, we recommend looking up the meaning of the

 60

Interface Specification

element in Appendix A. The high-level architecture of the VerSaI
language including the relation to the architecture model is shown in
Figure 19.

Figure 19: The high-level architecture of the VerSaI language and the architecture model

To tailor a safety requirement type during instantiation, each type has
certain quantitative and qualitative parameters. One mandatory
qualitative parameter is the criticality level of a requirement, which
classifies the risks caused by not meeting the requirement. Certain
requirements also need quantification. If, for example, the application
developer demands the detection of a failure mode, the application
developer has to specify the fault detection time, which is the time
between the occurrence and the indication of the failure.

4.3 Common Language – General Features

This first part of the common language package describes types,
relations, and parameters that are used in the application language and
in the platform language. Most of these common aspects describe
realizations of high-level design concepts that were introduced in section
4.2.

 61

Interface Specification

This section will successively introduce the realization of demands and
guarantees in subsection 4.3.1 and conditions in section 4.3.2. After
that, we will describe the modeling of architecture references in 4.3.3
and that of parameters in 4.3.4.

4.3.1 Demands and Guarantees

The main goal of the VerSaI language is to allow modular specification
of safety-related dependencies between applications and platforms. To
allow such modular specification of dependencies, the developers must
be capable of specifying assumptions/demands on the behavior of other
modules and guarantees regarding a module’s own behavior in a
contract-based manner. Therefore, the VerSaI language employs a
demand-guarantee concept for the specification of interface
requirements.

A demand is typically used by the application developer when the
application development gets to a point where it is impossible to argue
about the safety of the application without knowing about the behavior
of the platform. At such a point, demands regarding the characteristics
of the platform are used to complete the safety argument of the
application. With the demands in place, it is possible to assess the
soundness of the application safety case without knowing the actual
platform, under the assumption that the platform fulfills all demands.
When reviewing the safety case, the developer respectively the assessor
should come to the conclusion that the “application is safe under the
assumption that the application demands are fulfilled by its host
execution platform”.

A guarantee, on the other hand, is used by the platform developer as a
starting point for the safety-related development of the platform. The
developer of a general-purpose platform is unaware of the applications
that will later run on the platform. Hence, it is impossible to know in
advance the detailed demands regarding the behavior of the platform
that will be brought forward by the application developer. Therefore, the
platform developer must make assumptions about the required safety-
related behavior of the platform and develop the platform accordingly.
After the platform has been developed and assessed, the assumptions
about the required behavior turn into guarantees that can be used
during integration to satisfy the demands of the hosted applications.

Consequently, at the root of the VerSaI meta-model is the abstract
InterfaceRequirement class, which is divided into Demands and
Guarantees. Starting from this first classification, the VerSaI language is
further structured according to the dependency classes introduced in
section 4.2. In the leaves of the emerging classification are the
instantiable safety requirements that can be used to define a vertical

 62

Interface Specification

safety interface. The first three levels of the safety requirement
classification are shown in Figure 20. The remainder of the meta-model
will be introduced in the corresponding sections. Application-specific
refinements will be introduced in 4.5; platform-specific refinements in
4.6.

Figure 20: An excerpt of the VerSaI language’s classification tree

4.3.2 Conditions

Applications and platforms, but especially the latter, are highly
configurable and adaptable components. As a consequence, it is often
impossible to specify demands or guarantees in an absolute manner,
since a demand or guarantee often depends on the configuration of the
component. AUTOSAR, for example, provides numerous mechanisms for
protecting its operating system, but those mechanisms can be
deactivated for performance reasons or do not work as intended for
certain configurations. In order to deal with these situations, the VerSaI
language provides a mechanism for specifying conditions, which is
presented in this section.

From a technical point of view, a condition is an expression that the
mediation algorithm evaluates as true or false during the mediation
process. There are three different kinds of conditions: configuration-
dependent conditions (the main use case for conditions), deployment-
dependent conditions, and manual conditions. These different kinds of
conditions differ only in terms of the information required to evaluate
the condition. Configuration-dependent conditions can be evaluated as
true or false when the application or platform is configured.
Deployment-dependent conditions can be evaluated when the
deployment is specified. Manual conditions, however, cannot be
evaluated by the mediation algorithm and have to be checked by the

 63

Interface Specification

integrator. A condition has one variable called fulfillment that represents
the state of the condition. The variable can be set to three states: The
variable is set to “unchecked” if the condition has not been evaluated
yet. It is set to “fulfilled” if the condition has been evaluated to true, and
it is set to “violated” if it is evaluated to false. Figure 21 shows the
condition state machine.

The VerSaI language currently supports configuration-dependent
conditions with an “equals” semantics. The developer of the vertical
safety interface specifies a condition by referring to a configuration
parameter and by asserting a required value to the configuration
parameter. When the integrator has finished the configuration, the
mediation algorithm evaluates the condition to true if the corresponding
configuration parameter is set to the required values. The VerSaI
language currently does not support “greater than” or “less than”
configuration conditions.

unchecked

fulfilled violated

successful check unsuccessful check

unsuccessful
check

successful check

Figure 21: The VerSaI condition state machine

The developer specifies manual conditions by describing a condition as
plain text and by specifying the evidences that are required to support
the condition, if applicable. The integrator can link the evidences that
support the manual condition and set the manual condition to true or
false. Deployment-dependent conditions are envisaged and rudimentarily
implemented in the language and in the mediator, but have not been
implemented yet.

Figure 22 shows an excerpt of the meta-model that illustrates the design
of conditions.

 64

Interface Specification

Figure 22: The VerSaI condition meta-model

As mentioned above, the primary use case of the condition concept is
the specification of conditional demands and guarantees. In order to
specify such a conditional language element, the developer is allowed to
specify a list of conditions17. These conditions must be evaluated before
the mediation algorithm knows whether the interface requirement is
valid or not. For demands as well as for guarantees, all conditions must
be evaluated to true before the corresponding requirement is valid.
However, the semantics of invalid demands and guarantees differs
significantly: An invalid demand makes mediation easier, as an invalid
demand does not participate in the mediation, i.e., it is not needed and
does not have to be fulfilled. On the other hand, an invalid guarantee
hampers the overall mediation as an invalid guarantee is not available
and can therefore not be used to fulfill the demands at hand.

Another important use case for conditions is the specification of
conditional parameters, which will be introduced in section 4.3.4.

4.3.3 Architecture Relations

Although still a vibrant topic of research, many embedded systems are
already being developed using model-based techniques. In fact, some
embedded environments like AUTOSAR and ARINC 653 already require a
significant portion of the system to be modeled. In order to use the
advantages of model-based design, such as automatic generation of

17 Every type of condition (i.e., configuration, deployment, and manual condition) and
every combination of condition types is allowed.

 65

Interface Specification

development artifacts, the VerSaI language is model-based as well. In
order to make use of the information already provided in existing
models, the VerSaI language provides the architecture relation concept
as a plug-in mechanism for connecting the VerSaI model with existing
architecture models.

Technically speaking, an architecture reference is a link between a
vertical safety requirement and the architecture model of the
corresponding application or platform. Architecture relations realize the
integration of model-based demands and guarantees into the design
model of the integrated system. As already described in section 4.1,
application demands are always integrated into the application’s
architecture model and platform guarantees are always integrated into
the platform’s architecture model.

Architecture relations enable several features of the VerSaI language. On
the one hand, they foster consistency. If an architectural element
changes, the change is directly reflected or indicated at each safety
requirement that is related to the architectural element. Furthermore,
architecture relations allow for plausibility checks. If, for example, all but
one communication port of a software component contain safety-related
demands, the remaining port might have been forgotten by the
developer. But most importantly, architecture relations enable the
mediation algorithm to associate demands with mediation-relevant
guarantees. If an application element such as a communication port
contains demands, the mediation algorithm is able to identify the related
platform element via the deployment information of the communication
port, and the related guarantees of the communication link via its
architecture relations.

In the VerSaI language, there are two kinds of architecture relations:
containments and references.

A containment relation allows an architecture element to contain a
demand or a guarantee. The components/elements that form the
application (application elements) may contain demands and the
components/elements that constitute the platform (called platform
elements) may contain guarantees. An application element contains a
demand if the demand originates from that element: “If the element
was not there, there would also be no demand”. A communication port,
for example, contains demands regarding the detection or avoidance of
the signal received via the demand. If we want model a demand
regarding the correct reception of the signal v_ref in our running
example, this demand would be contained in the corresponding port of
the software component v_controller. A platform element, on the
other hand, contains a guarantee if the element is responsible for
providing the guarantee. Therefore, an element such as a
communication link contains guarantees regarding the control of

 66

Interface Specification

communication failures. In our running example, a guarantee regarding
the detection of corruptions of the signal v_ref is contained in the
communication link transporting the signal, in this case the
communication link labeled as can0.

One of our design goals was to design the VerSaI language such that it is
minimally invasive regarding the architecture model, i.e., the use of the
VerSaI language should impose minimal to no changes on the model of
the corresponding integrated system. Therefore we chose to
automatically generate one abstract class that is contained in every
application or platform element. Through inheritance of this abstract
class, interface requirements can be flexibly contained in architectural
elements without changing the meta-model of the integrated system.
An excerpt of the corresponding meta-model is shown in Figure 23.

Figure 23: Containment relations in VerSaI : The left side of the figure shows the modeling pattern
used to realize containment relations in a minimally invasive fashion. The right side shows
an example instantiation of the pattern for communication failure demands.

The second kind of architecture relation, i.e., references, are used if a
demand or guarantee needs to reference the respective element but the
semantic relation between interface requirement and architecture
element is not strong enough or is not suitable for a containment
relation. Architecture references are generally used if the precise
specification of a requirement involves an architecture element but the
requirement originates from a different element (which is realized by a
containment relation). If there is, for example, a requirement that
demands an output port to send a fail-safe signal when a failure has
occurred, the affected output port is referenced via an architecture
reference. As an example use case let us assume that the software
component throttleSWC has to deal with scheduling failures. If the
component is not scheduled in time, the throttle actuator is not
controlled appropriately, which results in a critical situation. Therefore,

 67

Interface Specification

the software component demands that the platform automatically sets
the signal a_set_fin to its fail-safe signal (no throttle demand) in case
the component misses its deadline. When specifying such a demand, the
demand is contained in the throttleSWC component but references the
a_set_fin port.

Figure 24: Reference relations in VerSaI : The left side of the figure shows the modeling pattern used
to realize reference relations. The right side shows an example instantiation of the pattern
for referencing ports or communication links that need to output a default message.

However, most of the architecture references do not directly originate
from a demand or guarantee, but rather from an element of the
common language. The challenge with those references is that,
depending on whether the common language element is used in the
application language or in the platform language, the target of the
reference changes. A send default message reaction, for example,
references a communication port in the application language and
references a communication link in the platform language. Therefore,
the meta-model of the language uses a modeling pattern that is similar
to the pattern used for containment relations. The common language
element contains an abstract class, which is inherited by different classes

 68

Interface Specification

in the application and platform language to realize different relation
targets from application and platform. The corresponding pattern is
depicted in Figure 24. Please note that the modeling pattern is again
minimally invasive regarding the meta-model of the integrated system,
as the meta-model is left unchanged.

4.3.4 Parameters

The demand and guarantee prototypes provided by the VerSaI language
have to be parameterized to adjust the prototypes for the needs of the
individual systems. VerSaI language parameters are always set during the
instantiation of a safety requirement. Example parameters are: the failure
detection time of a detection demand, the integrity level of a demand or
a guarantee, or the tolerable deviation of an analog signal. A demand
taken from our running example that incorporates all three of the afore-
mentioned parameters might read as follows: “A value failure of the
output signal a_set_fin larger than 0,2V must be detected within 0.5ms
(ASIL C)”.18

In the following subsections, we will introduce the different parameter
types provided by the VerSaI language. There are primitive parameter
types and there are composite parameters, which are composed of
primitive parameters. Altogether there are the following parameters:

 Primitive Parameter Types: Boolean, Integer, Float and String

 Time

 Physical Quantities

 Error

 Integrity Level

Before the introduction of the different parameters, an explanation is
needed as to how parameters are attached to language prototypes.
Parameters are not directly attached to a language element by means of
an attribute or a containment relation because we want to allow for
conditional parameters. A conditional parameter is a parameter whose
value depends on a condition (see section 4.3.2 for an introduction to
conditions), for example a configuration condition.

18 This example demand is a “platform service failure detection demand” (see section
4.5.1) of the “analog output value failure” failure mode (see section 4.4.2.4).

 69

Interface Specification

Figure 25: Parameter assignments : The left side of this figure shows the pattern for modeling
parameter assignments. The right side shows an example parameter assignment for Integer
parameters.

To realize conditional parameters, a parameterized interface requirement
contains an abstract class called ParameterAssignment. There is one of
these classes for every parameter (e.g., IntegerAssignment). Each
ParameterAssignment class is inherited by the parameter itself,
allowing direct unconditional parameter assignment, and by a class
called SwitchCaseParameterAssignment. As the name of the class
indicates, it allows for switch-case-like conditional parameter
assignment. A switch assignment consists of a list of
conditional/assignment tuples. The conditional part of such a tuple can
be evaluated during mediation; if it is evaluated to true, the assignment
part of the tuple describes which value should be assigned to the
parameter. The evaluation of the switch parameter assignment is
comparable to the evaluation of a switch statement in Java or C and is
performed by the mediation algorithm. A more detailed explanation of
the evaluation is provided in chapter 5. Figure 25 shows the modeling
pattern of parameter assignments.

Primitive Parameter Types

The VerSaI language contains four primitive parameter types: Integer,
Boolean, String, and Float. We chose these types as they represent a
sufficiently expressive starting point for modeling parameters. All
primitive parameters are implemented as simple wrappers of the
corresponding data types of the programming language used to

 70

Interface Specification

represent the meta-model (in our case this is Java). Figure 26 shows the
implementation of the primitive parameter types in the VerSaI language.

Figure 26: The primitive data types of the VerSaI language

We used these primitive parameters to create standard composite
parameters, which will be introduced in the following.

Time

A property that is often required to specify safety requirements is time.
Time is needed for specifying parameters such as the tolerable jitters or
latencies in signal transmission, or the tolerable detection intervals of
specific failures. In VerSaI, time is always modeled as an interval, i.e., the
time that has elapsed between the occurrences of two events. In VerSaI,
there is no need to specify absolute points in time, like “2pm CET,
August 8th, 2012”.

In VerSaI, the time parameter is a composite parameter that is composed
of two integer parameters. One integer defines the milliseconds and
the other integer defines the microseconds of the time interval. The
microseconds variable is not allowed to exceed the value of 999 in order
to preserve the parameter’s canonical form. Furthermore, both integer
variables have to be non-negative. Figure 27 shows the modeling of
Time as a composite parameter.

In addition to the Time parameter, the VerSaI language contains three
auxiliary classes that support modeling interface requirements that
require time parameters. These abstract classes are called
LatencyConstrained-InterfaceRequirement,
TimeDeviationConstrainedInterface-Requirement,
and JitterConstrainedInterfaceRequirement.

71

Interface Specification

Figure 27: The meta-model of the composite time parameter

The latency constraint and the time deviation constraint are used to
model interface requirements that depend on the specification of
intervals. An example requirement is the demand for detecting a
communication latency failure, which requires the specification of the
nominal communication latency in order to distinguish nominal latencies
from erroneous latencies. The latency constraint allows modeling the
acceptable time interval by specifying the acceptable lower bound (tl) of
the latency, in case an early failure19 is critical, or the acceptable upper
bound (tu) of the latency, in case a late failure is critical. In case the early
and the late failures are both critical, the corresponding acceptable time
interval ta, therefore, is tl<ta<tu. The time deviation constraint, on the
other hand, defines the acceptable latency as a deviation (td) from the
nominal latency (tn). Consequently, the acceptable time interval ta is
(tn-td)<ta<(tn+td).

Unlike the latency and the time deviation constraints, the jitter constraint
does not model a constraint regarding an arbitrary time interval, but
rather the interval between the occurrences of two subsequent instances
of the same periodical event. An example of such an event is the event
that triggers the periodical sampling of an ADC, the receive event of a
periodical message, or the scheduling of a periodical task. A period is
defined by its duration (tn), i.e., the nominal time between the
occurrence of two subsequent instances of the same event, and its jitter
(tj), i.e., the admissible deviation from the nominal duration. The
acceptable period pa between two occurrences of the periodical event is
(tn-tj)<pa<(tn+tj).

When an interface requirement inherits from one of the abstract time
constraint classes, it inherits all its time parameters and the semantics
that have just been specified. The events that specify the interval (i.e.,
the send event and the receive event of a message transmission define
the transmission latency) are specific for each requirement. They can
therefore not be inherited and have to be specified separately for each

19 The definition of late and early failure is provided in section 4.4.1.2.

72

Interface Specification

requirement. Figure 28 shows the meta-model that specifies the time
constraint classes introduced above.

Figure 28: The meta-model of the time constraint classes

It is important to note that the design of the time-related parameters is
based on existing model-based designs. The AUTOSAR standard, for
example, contains a document describing the specification of time-
related parameters in the AUTOSAR context. The “AUTOSAR
Specification of the Timing Extension” [70] describes the specification of
period and latency constraints in a way comparable to the VerSaI
language, together with many other AUTOSAR-specific timing
constraints.

Physical Quantities

According to [71], a physical quantity describes a property of a
phenomenon, body, or substance, where the property has a magnitude
that can be expressed as a number and a unit of measurement. In the
VerSaI language, a physical quantity is used to specify physical signals at
the interface between platform and application that have typically been
read or written via analog input or output channels. In this use case, the
relevant units typically are voltage, current, and frequency. However, the
VerSaI language does not restrict the user in the choice of units of
measurement.

This is mainly because the current version of the VerSaI language has no
unit system. A unit is expressed by a string and the VerSaI language only
allows comparing two physical quantities if they have the same unit, i.e.,
if the strings of quantities are equal. In case the strings are not equal, an
exception is thrown and the algorithm that issued the comparison has to
react appropriately20.

The number or value of the physical quantity is expressed by a floating
point number in the VerSaI language. Consequently, a physical quantity

20 In our case, an appropriate reaction is the reaction that is pessimistic regarding
mediation, i.e., makes mediation harder.

73

Interface Specification

parameter is a composite parameter composed of a string parameter
and a float parameter. The resulting meta-model is shown in Figure 29.

Figure 29: The meta-model of the physical quantity parameter

Error

An error parameter describes the admissible deviation of an actual value
of a signal from the nominal value of the signal. An example usage of
this parameter is the specification of a value failure of an analog input
channel, where the error is used to specify the admissible deviation from
the actual value returned by the ADC from the nominal value on the
analog line. Please note that in a different context, the term error is also
defined as the erroneous state of a component as a result of an internal
fault or a failure of an interacting component.

The VerSaI language allows the definition of absolute errors and relative
errors. An absolute error is specified as a physical quantity that
represents the absolute deviation of the actual value from the nominal
value (e.g., an error of 0.2V). A relative error, on the other hand,
describes the error from the nominal value relative to the quantity of the
nominal value in percent (e.g.,10%).

Consequently, the error parameter is modeled as an abstract parameter
with two sub-classes: the relative error and the absolute error parameter.
Both classes are modeled as composite parameters: The relative
parameter contains an integer parameter that must not be greater than
100, and the absolute parameter contains a physical quantity parameter.
The corresponding excerpt of the VerSaI meta-model is shown in Figure
30.

74

Interface Specification

Figure 30: The meta-model of the composite error parameter

Integrity Level

The development of a safety-critical system is based on the concept of
risk. The risk of a hazard is typically defined as the “product” of its
probability and its severity. The go-to strategy for reducing the risk to an
acceptable level includes reduction of the hazard’s probability of
occurrence. The incorrect behavior of the system, i.e., failures, account
for a certain part of the occurrence probability and must therefore be
reduced. This is done by adding safety measures and designing the
system in such a way that critical failures are avoided, contained, or
detected and mitigated. The focus of our work is on specifying these
design dependencies between applications and platforms and assessing
whether a specific measure setup is adequate. However, the adequacy of
a certain measure setup depends on the criticality of the failure that is
protected by the measures.

The failures of a system are typically divided into systematic and random
failures. Systematic failures are caused by design flaws, whereas random
failures are typically caused by physical effects, like wear-out. Systematic
failures are typically addressed by rigorous development processes and
random failures by constraints regarding their occurrence probability.

As already stated in the related work chapter (see section 2.3), there are
established methods like Component Fault Trees (CFTs) [55] for
specifying failure logic modularly and for calculating failure rates from
these modular specification. Therefore, our solution does not include
another modular failure logic specification to support the specification of
random failure rates. Instead, we suggest using an established method
like CFTs.

Regarding systematic failures, most safety standards across most
industrial domains regulate the rigor of their safety-related development
processes using so-called integrity levels. The higher the required level of
risk reduction, the higher the integrity level, and consequently, the more

75

Interface Specification

rigorous the development processes. Typical integrity level scales are the
safety integrity level (SIL) scale from IEC 61508 [59], the automotive
safety integrity level (ASIL) scale from ISO 26262 [46], or the
development assurance level (DAL) scale from DO-178C [60]. The
development process also regulates the generation of process- and
product-related evidences, which were introduced in section 2.3.

In accordance with the above-mentioned standards, each requirement
specified using the VerSaI language includes an integrity level
specification. In case of a demand, this means that failing to fulfill the
demand can lead to a hazard with the corresponding criticality. In case
of a guarantee, this means that the guarantee has been developed
according to the development process required for achieving the
specified integrity level. Typically, guarantees used to fulfill a demand
must be developed according to at least the same integrity level as the
demand21.

Figure 31 shows the integrity level parameters that are represented in
the meta-model. The part of the model describing integrity levels must
be adapted when using different standards, since different standards use
different integrity level scales. The figure shows a variant of the model
that was adapted for use in the context of the automotive domain and
the safety standard ISO 26262.

Figure 31: The meta-model of the integrity level parameter

The user of the VerSaI method must attach an integrity level demand to
every demand or guarantee, which is also the only use case of the
integrity level parameter in the VerSaI language. Figure 32 depicts the
corresponding excerpt of the VerSaI meta-model that shows the
assignment of the integrity level parameter.

21 Some safety standards allow reducing the required integrity level by so-called
decompositions, which is supported by the VerSaI language.

 76

Interface Specification

4.4 Common Language – Failures and Failure Reactions

Product-related safety engineering often focuses on failure modes and
safety mechanisms. Failure modes describe different ways in which the
system under development fails, whereas safety measures are techniques
and mechanisms that allow the system to control and tolerate these
failures. Consequently, to reach our goal of providing a language that
allows the specification of safety-related demands and guarantees
between applications and demands, we have to provide a way for the
specification of failure modes and safety measures. One of the core ideas
behind the VerSaI approach is to use the standardized services provided
by an open integrated system to derive a standardized failure model and
to use the most common safety measures to provide a standardized
catalogue of failure reactions provided by an execution platform.

Figure 32: The assignment of the integrity level parameter to the top-level interface requirement class.

In this second part of the common language description, we introduce
the standardized failure models and the failure reaction catalogue that
can be used for the specification of the interface requirements in the
VerSaI language. In the upcoming sections 4.5 and 4.6, we will see that
failure modes and failure reactions are used like types in the specification
of demands and guarantees. We will also find out in chapter 5 that the
standardization of the failure model and reaction types plays an essential
role in allowing the mediation algorithm to automatically check whether
a particular guarantee is suitable for fulfilling a given demand.

Since the failure model plays such a central role in the VerSaI language,
we dedicate section 4.4.1 to the description of the approach taken to
analyze and specify the failure model. We will then continue with the
introduction of our failure model, which differentiates between two
kinds of common failure modes. Platform service failure modes describe
failures of services that are offered by the platform, and will be
introduced in section 4.4.2. On the other hand, application failure
modes describe failures of the application that can be detected by a
potential monitoring facility provided by the platform, and will be
introduced in section 4.4.3. Section 4.4.4 finally describes the
standardized platform failure reaction model.

77

Interface Specification

4.4.1 Failure Analysis and Classification

A core part of the VerSaI language is the common failure model that is
used to specify demands and guarantees. We created the common
failure model by analyzing the common platform services introduced in
section 2.1.4 for failure modes. We performed the failure analysis using
the guideword-based analysis based on the methods proposed by [64]
and [72]. All things considered, both approaches introduce the same
guidewords. These are:

Service Value:

Coarse Incorrect

Subtle Incorrect

Service Timing:

Early

Late

Service Provision:

Omission

Commission

Together the guidewords form the failure mode topology shown in
Figure 33.

Service
Failure

Value Timing Provision

Coarse
Incorrect

Subtle
Incorrect Early Late Omission Commission

Figure 33: The failure mode taxonomy used in VerSaI . Classes depicted by gray rectangles are not
used in the language.

In the following sections, we will introduce the different failure classes:
value, timing, and provision. In the corresponding sections, we will
explain their original meaning as well as their interpretation and their
usage in the VerSaI language.

Service Value

Most services will eventually produce a value when invoked. However, it
is also possible that a service invocation only leads to a change of the
service’s internal state and produces no output. Furthermore, there are
services that do not only produce outputs when invoked but produce

78

Interface Specification

outputs, for example, at specific times. Whenever a service produces an
output that is not in the set of acceptable outputs for the current
situation, a value failure occurs.

Both [64] and [72] differentiate between coarsely incorrect and subtly
incorrect. A coarse incorrect value failure can be detected by the user,
whereas a subtle incorrect failure cannot. This differentiation is irrelevant
for the VerSaI language. Whether the application is able to detect a
failure is only implicitly visible at the safety interface. If the application
was able to detect the failure, there would usually not be a detection
demand for the platform. Whether the platform is able to detect a
failure is clearly specified by the availability of a corresponding
guarantee. If there is no guarantee, the failure is not detectable.
Accordingly, there is no need for the differentiation between coarse
incorrect and subtle incorrect in the context of the VerSaI language.

To specify a value failure, the user of the VerSaI language must be able
to distinguish acceptable from unacceptable outputs, and nominal
outputs from erroneous outputs. Consequently, every value failure mode
in the common language allows the user to make this distinction, usually
using the error parameter.

Service Timing

In the majority of safety-critical embedded systems, the timing of the
service is equally important as its correct value. When the correct output
is delivered either too early or too late, the value might be as hazardous
as or even more hazardous than an incorrect value at the correct time.

Since the services provided by the platform are usually invoked by the
application, most timing failures can be specified using the time interval
between the invocation of the service and the time when the service
produces its output or performs its reaction. If this interval is shorter than
allowed, there is an early timing failure, and if this is interval is longer
than allowed, there is a late timing failure.

Thus, in order to specify a timing failure, each failure has to include a
specification of the start event and the end event of the corresponding
interval, and the language user has to specify the timing thresholds that
distinguish an admissible timing from an erroneous timing. This is always
done using the abstract time constraints introduced in section 4.3.4
Time.

Please note that the language does not provide a late and early failure
mode for every possible API call. Sometimes the API call is only part of a
larger functionality provided by the service; in this case, the timing failure
is specified on the service level. Furthermore, if the functionality is
performed by one API call and that particular call is uninterrupted (there

 79

Interface Specification

is no wait involved) and synchronous, there will also be no timing failure.
The timing of such an API call that behaves like a regular function call is
already covered by the execution time of the calling ASWC.

In addition to late and early failures, we allow specifying so-called jitter
failures. A jitter is the deviation from the periodicity of a periodical event.
A jitter could also be replaced by a late and an early failure, but for
reasons of convenience, jitter failures are directly specifiable using the
VerSaI language.

Service Provision

Service provision is differentiated into omission and commission failure
modes. An omission failure occurs if the service produces no output even
though an output should have been produced. A commission failure
occurs if the service produces an output event though the output should
not have been produced. However, there are some difficulties regarding
omission failures.

First and foremost, neither the user nor the system can differentiate an
omission failure from an infinitely late failure. If the service has not
produced any output after a given time, the system has no chance of
knowing whether the service will eventually produce an output. In such
a case, the user has to specify a certain time interval, after which a
service omission is assumed. However, if the service is supposed to
eventually produce an output, the system might no longer be able to
associate the output with the correct invocation and treat the output as
a commission.

Furthermore, it is sometimes hard to differentiate an omission failure
from a value failure if there is no NIL representation in the service’s
output domain. As an example, let us examine an analog output channel
that produces a voltage signal. There is always a potential on the output
channel. Let us assume the actual potential is vcurrent. Let us further
assume that the application demands outputting a new potential vnew. If
the output channel still produces vcurrent after the time interval assigned to
an omission, there is no way of telling a value failure that produced
vcurrent from an omission failure. Consequently, we decided not to use
omission failures in case the analyzed service has no inherent NIL
representation.

Since a commission failure is specified as producing an output even
though the service should be inactive, in the VerSaI language a
commission failure is specified by the output or the reaction that should
not have been performed and the condition that nominally inhibits the
service. The specification of a commission failure follows the template
below:

80

Interface Specification

Example: Service X performs action Y even though condition A or
condition B or ... or condition C were true.

Since an omission failure is specified as not producing an output even
though the service should produce an output, in the VerSaI language an
omission failure is specified by the output or the reaction that should
have been performed and the conditions that nominally activate the
service. The specification of an omission failure follows the template
below:

Example: Service X does not perform action Y even though
condition A or condition B or ... or condition C were
true.

4.4.2 Platform Service Failures

The platform service failures package contains a standardized set of
configurable failure models of typical platform services. Each service-
specific failure model contains a set of failure modes that are commonly
used for both the specification of application demands and platform
guarantees. The VerSaI language supports failure models for the
platform services identified in section 2.1.4. These are:

 Synchronization Services

 Communication Services

 Input Services

 Output Services

 Time Services

 Memory Services

 Scheduling

 Basic Execution Services

In the following subsections, we will present a failure model for each
service class. Each failure model contains a set of failure modes
describing different ways of how the analyzed service can potentially fail.

Subsequently, we will introduce the failure models of the different
service classes. Each failure model specification starts with a description
of the corresponding service class including a description of the
functionality provided and the different use-case scenarios of the service
class. After the introduction of the service class we will illustrate the
different failure modes of the service class including parameters (see
section 4.3.4 for more information on parameters) and architecture
relations (see section 4.3.3 for more information on architecture
relations).

 81

Interface Specification

Please note that every failure mode in the platform service failure model
is a failure mode prototype or, in other words, a failure mode class,
rather than a specific failure mode. In order to turn the failure mode
prototype into a failure mode, it has to be “instantiated”. With
instantiation we mean that the failure mode has to be parameterized
and related to an architecture element. The relation to an architecture
element turns a failure mode type into a failure mode of that specific
architecture element. If, for instance, we relate a common
communication corruption failure to the v_ref communication port of
our running example, the failure mode type is instantiated as a failure
mode of the specific signal received via the v_ref port.

As a final remark before the introduction of the failure models, we note
that the VerSaI language does not allow specifying demands or
guarantees regarding 2nd level failures (failures of safety measures);
therefore, there are no failure modes of platform failure detection or
platform failure reaction mechanisms.

Synchronization Failure Model

The synchronization failure model describes the failure modes of a
platform’s synchronization mechanisms as introduced in section 2.1.4. A
synchronization mechanism allows the application developer to control
the execution sequence or, in other words, the control flow between
several runnables22. To do so, a synchronization mechanism contains at
least one so-called blocking call, which sets the task23 executing the
runnable to the waiting state. Instead of blocking calls provided, for
example, by the time services, the waiting task is not released to the
ready state by the operating system (at least in the nominal case) but by
another runnable.

There can be numerous types and implementations of synchronization
mechanisms in a modern operating system. We chose to cover simple
implementations of the two most common synchronization mechanisms
with the VerSaI language. Other mechanisms and more complex
implementations are left open for future extensions. The failure model
covers an abstract mutual exclusion (mutex) mechanism for
implementing critical regions and an event mechanism that allows
signaling between runnables.

A critical region refers to a sequence of instructions in which a program
accesses a shared resource (like a shared variable or a system register

22 A runnable is a schedulable entity of an ASWC. Refer to Annex A.2 for more
information about the application model.

23 A task is an atomic schedulable entity of the platform. A runnable runs in the
context of a task. Refer to Annex A.3 for more information about the platform
model.

82

Interface Specification

controlling a device) in a non-atomic way. If the program is interrupted
during this process and another program starts accessing the shared
resource, the resource might reach an undefined or inconsistent state,
jeopardizing the correct execution of both programs. To prevent this
predicament from happening, all programs accessing the shared
resource enter the afore-described critical region before they start to
manipulate the resource. The mutex mechanism ensures that only one
program is able to enter the same critical region at a time.

A mutex, as defined in the context of our language, contains two
procedures, enter mutex to enter the critical region and exit mutex
when the critical region is exited. Furthermore, the enter mutex
procedure allows the application to specify a timeout in order to define
the maximum amount of time the application wants to wait in case the
mutex is occupied. When enter mutex is called, the call directly returns
if the mutex is free and the call blocks the calling task if the mutex is
occupied. The waiting task is put into the ready state as soon as the
mutex is exited or the specified timeout has expired. In case the mutex
has been exited, the activated task makes another attempt to enter the
mutex. The described mutex mechanism is comparable to a binary
semaphore (a semaphore with only two states) and so are the failure
modes. However, failure modes of counting semaphores (semaphores
that allow an arbitrary resource count) are not covered by our language.
The mutex mechanism is illustrated in Figure 34.

unlocked locked

[enter mutex]

[exit mutex]
release waiting task(s)

[enter mutex]
block calling task

[timeout expired]
release

corresponding task

Figure 34: The state machine of a mutex

Contrary to the mutex mechanism, we have to differentiate two
different user roles when describing the event mechanism. First, there
are programs waiting for a particular event and second, there are
programs signaling the event. When a runnable calls wait event, the
corresponding task enters the waiting state (events are not stored). As
soon as another runnable calls signal event for the corresponding
event, all tasks waiting for the event are released into the ready state.
Comparable to the timeout feature of the mutex mechanisms, the event
mechanism contains a timeout feature as well.

83

Interface Specification

We will now continue describing the failure modes of the
synchronization failure model containing six different failure modes. An
overview of the synchronization failure mode is given in Figure 35. The
failure model consists of the following failure modes:

synchFM-1: Mutex Access Commission

synchFM-2: Mutex Access Omission

synchFM-3: Mutex Release Commission

synchFM-4: Mutex Release Omission

synchFM-5: Mutex Timeout Failure

synchFM-6: Event Signal Commission

synchFM-7: Event Signal Omission

synchFM-8: Event Timeout Failure

Figure 35: The meta-model of the synchronization failure model

synchFM-1: Mutex Access Commission

A mutex access commission occurs if a runnable calling enter mutex is
allowed to enter the critical region even though the region is occupied.

synchFM-2: Mutex Access Omission

A mutex access omission occurs if a runnable calling enter mutex is
blocked even though the region is not occupied.

synchFM-3: Mutex Release Commission

A mutex release commission occurs if a runnable is released even though
the region is not left.

Please note that this failure does not implicate that the released runnable
is allowed to enter the mutex even though the mutex is still occupied.

84

Interface Specification

synchFM-4: Mutex Release Omission

A mutex release omission occurs if a runnable is not released even
though the region is left.

synchFM-5: Mutex Timeout Failure

A mutex timeout failure occurs if a runnable that has been blocked for
calling enter mutex with a timeout parameter is released too early
before or too late after the timeout has expired.

In order to specify the tolerable deviation from the specified timeout
failure, the event timeout failure is parameterized according to the time
deviation constraint introduced in section 4.3.4 Time.

synchFM-6: Event Signal Commission

An event signal commission occurs if a runnable waiting for an event
gets released even though no runnable has called a corresponding
signal event operation.

synchFM-7: Event Signal Omission

An event signal omission occurs if a runnable waiting for an event gets
not released even though a runnable has called a corresponding signal
event operation.

synchFM-8: Event Timeout Failure

An event timeout failure occurs if a runnable that has been blocked for
calling wait event with a timeout parameter is released too early
before or too late after the timeout has expired.

In order to specify the tolerable deviation from the specified timeout
failure, the event timeout failure is parameterized according to the time
deviation constraint introduced in section 4.3.4 Time.

Communication Failure Model

This subsection describes the failure model of a platform’s
communication service as introduced in subsection 2.1.4. The
communication failure model was derived from existing failure models
introduced in common safety standards like [46] or [73].

In this context, communication means the exchange of information
between ASWCs, or in other words, the exchange of logical signals
between ASWCs. In such a communication scenario, the ASWC
providing the information is called the sender ASWC and the ASWC

85

Interface Specification

requiring the information is called the receiver ASWC. Since we examine
communication on a functional level, the communication process is
regarded as event-based rather than continuous, as we would have to
regard it on a physical level. The entity that is transmitted during one
communication instance is called a message; the payload of a message is
called data. The event at the beginning of the communication process is
called the send event, the event at the end of the communication
process is called the receive event. The send event is triggered as
soon as the data are available for communication at the PSW of the
sender ASWC. The receive event is triggered as soon as the PSW of the
receiver ASWC has made the data available to the receiver ASCE, which
includes an indication if receive notification is enabled. The described
scenario is depicted in Figure 36.

As discussed earlier, the deployment of applications is only determined
after the development of the application. Consequently, the
communication-related failure model must neither differentiate between
inter-process, inter-partition, or inter-platform failure modes, nor
between failure modes specific to a certain technical implementation like
CAN or FlexRay. Therefore, the presented communication failure model
contains all failures that can occur in an embedded systems
communication scenario.

The communication failure model contains six basic failure modes; an
overview of the failure model is shown in Figure 37. Each failure mode
type can be configured as a provided or as a required message failure
mode, so that sender ASWCs and receiver ASWCs alike are able to
specify demands regarding communication. The basic failure model
contains the following failure modes:

comFM-1: Message Corruption

comFM-2: Message Insertion

comFM-3: Message Loss

comFM-4: Incorrect Message Sequence

comFM-5: Late Transmission

comFM-6: Early Transmission

Prior to introducing the communication failure modes, two remarks are
in order, one on the design and one on the interpretation of the
communication failure model.

86

Interface Specification

PSW

HW

sender
ASWC

receiver
ASWC

PSW

HWGW

CAN
FlexRay

1: 2:

technical
level

functional
level

Figure 36: Comparison of functional and technical communication scenarios . Only the functional
level is regarded in the application language. GW stands for gateway. The following events
are shown in the figure. 1: the send event; 2: the receive event.

First, every demand, no matter whether it is specified on the sender or
on the receiver side, is targeted at the complete communication path.
When, for example, a receiver ASWC demands timely transmission of a
message, this does not only call for timely behavior of the receiving
platform, but of all other platforms involved in the communication
process. This design decision was made because the alternative design,
splitting responsibilities between sender and receiver, has two
disadvantages. First, there would be an implicit dependency between the
vertical interfaces of the sender and receiver ASWC, since neither the
receiver demand nor the sender demand would be meaningful without
the other. With such a dependency, the vertical interfaces would include
a “hidden horizontal interface”, as there would not only be a
dependency between one application and one platform but also
between the involved (sender and receiver) applications. The second
reason for not splitting responsibilities is the routing of a signal, which is
potentially very complex. Which demand (the sender or the receiver one)
would include the responsibility for the safe behavior of gateways?

Figure 37: The meta-model of the communication failure model

 87

Interface Specification

Second, we would like to clarify that every communication failure mode
is specified from the receiver’s point of view. Every failure mode
describes a deviation of a correct communication as perceived by the
receiver. To exemplify this, let us regard two scenarios. In both scenarios
the sender ASWC sends a message that gets transmitted faster than
specified. In the first scenario, the message overwrites an earlier message
at the port of the receiver ASWC before the ASWC has been able to
read the message that is now overwritten. In the second scenario, the
message reception triggers an early reaction of the receiver ASWC.
Unlike the second scenario, the first scenario is not considered to be an
early message failure. This is because the receiver perceives this failure
mode either as a deleted or as a corrupted message. In this case, the fast
or early transmission is a technical cause for a message corruption or a
message loss failure. Technical causes for failures are not regarded on
the level of the interface language.

comFM-1: Message Corruption

Message corruption occurs if the data received by the receiver ASWC are
not identical to the data originally sent by the sender ASWC.

Since application demands are specified on a functional level, data
would still be considered as identical if they are changed for technical
reasons. This happens, for example, if receiver and sender use different
endianness. Message corruption is a common communication failure
mode, which may, for example, be caused by electro-magnetic
influences.

comFM-2: Message Insertion

Message insertion occurs if the receiver ASWC receives a message that
has not been sent by a valid sender ASWC.

Typically, one distinguishes two cases of this failure. In the first case, a
valid sender24 sends a superfluous message, or a valid message is
accidentally duplicated on the communication link. In the second case,
an unauthorized sender assumes the identity of a valid sender and sends
a message on its behalf. The latter case is typically labeled as
masquerading. Since one cannot distinguish between the two cases on
the application level, there is no additional failure mode to differentiate
masquerading in the application language. Both unintentional
duplication and masquerading are regarded as a message insertion.

24 A sender that is allowed to the send this type of message according to its
specification

 88

Interface Specification

comFM-3: Message Loss

Message loss occurs if the receiver ASWC does not receive a message
that has been properly sent by a valid sender ASWC.

comFM-4: Incorrect Message Sequence

An incorrect message sequence occurs if two messages that have been
sent successively by the sender ASWC are received out of order by the
receiver ASWC.

The specification of the incorrect message sequence failure has two
restrictions. First, it allows demanding the correct sequence of only two
sequential messages. With this demand, the designer is able to
pessimistically include failures in longer sequences, since any failure in a
sequence of more than two messages implies a sequence failure of at
least two messages. Second, the designer is only able to demand the
correct sequence of messages sent or received via the same port.

comFM-5: Late Transmission

A late transmission failure occurs if the transmission latency is too large.
Transmission latency is defined as the time interval between the send
event and the receive event.

At the point in time when a late message failure is detected one cannot
determine whether the message is really delayed or actually lost. A lost
message would not be in time either. This means that every measure for
detecting late messages is also effective for detecting lost messages. Yet
on the other hand, there are measures for detecting lost messages that
cannot detect late messages. Therefore, message loss is regarded
separately and not as a special case of the late message failure.

In order to specify the tolerable maximum transmission latency, the late
transmission failure is parameterized according to the latency constraint
introduced in section 4.3.4 Time.

comFM-6: Early Transmission

An early transmission failure occurs if the transmission latency is too
small. Transmission latency is defined as the time interval between the
send event and the receive event.

In order to specify the tolerable minimum transmission latency, the early
transmission failure is parameterized according to the latency constraint
introduced in section 4.3.4 Time.

 89

Interface Specification

Input Failure Model

This subsection describes the failure model of the input part of a
platform’s input/output functionality as described in subsection 2.1.4.
The input functionality allows an application to connect to sensors via
the platform’s input peripherals. We do not differentiate between on-
chip peripherals that are directly accessible via the platform’s processing
unit (on-chip peripherals) and on-board peripherals that are connected
via on-board communication busses like SPI or I²C.

The failure model does, however, differentiate between digital and
analog input channels. Digital input channels are typically implemented
by appropriately configured DIO (digital input/output) pins of a
microcontroller to read the status of digital switches connected to the
platform. DIO pins can also be used as a source for interrupt triggers, but
this functionality is covered by the scheduling failure model. Analog
input channels, on the other hand, are usually implemented using ADCs
(Analog-to-Digital Converter).

Analog input channels, i.e., ADCs, and digital input channels, i.e., DIOs,
are accessed differently. Since an ADC conversion takes many CPU
cycles, they are typically accessed asynchronously, whereas DIOs are
accessed synchronously (on modern microcontrollers with sophisticated
memory architectures, DIO access takes several CPU cycles as well, but
not nearly as many as ADC conversion). These different scenarios for
accessing digital and analog input peripherals result in different failure
modes, which is why the input failure model differentiates between
digital and analog input failure modes.

To elaborate on the failure model, we will first describe the different
input scenarios. We divide a typical input scenario into the data
acquisition phase and the data access phase. The data acquisition phase
begins with the ASWC requesting the input peripheral to read from the
physical input channel and ends when the input peripheral starts to read
from the physical input channel. The data access phase, on the other
hand, starts when the input peripheral has finished reading from the
physical input channel and ends when the acquired data is provided to
the respective ASWC. An overview of the different scenarios is shown in
Figure 38.

 90

Interface Specification

PSW

HW

requester
ASWC

P

input channel

PSW

HW

requester
ASWC

P

one-shot
platform
trigger

1:

1:

2:

PSW

HW

requester
ASWC

P

streaming

...

PSW

HWP

asynch. with
notification

2: 3:

B

4: 5:

6:

PSW

HWP

asynch. with
polling

2: 3:

B

4:

6:

A
: d

at
a

ac
qu

is
iti

on

ph
as

e
B

: d
at

a
ac

ce
ss

ph

as
e

2: 2:

input channel input channel

input channel input channel

PSW

HWP

synchronous

2: 3:

7:

input channel

requester
ASWC

requester
ASWC

requester
ASWC

1:

Figure 38: The different scenarios for accessing an input channel . The following events are shown in
the figure: 1: read/sampling requested; 2: read/sampling started; 3: read/sampling finished;
4: result copied; 5: notification sent; 6: result read; 7: returned with result.

There are three different kinds of read/sampling requests. When working
with a standard ADC, one has to differentiate between the so-called
one-shot mode, externally triggered sampling (in our case called
platform trigger), and streaming mode. In the first scenario, the
application triggers the ADC to sample the input channel one time by
calling the platform API. In the second scenario, the ADC is triggered by
the platform (for example by a timer), which is typically used to
implement periodical sampling. In the last scenario, the ADC runs in the
so-called streaming mode, where the ADC starts a new sampling
procedure as soon as the last one has ended. When reading from a DIO
channel, data acquisition is typically only triggered by the application in a
one-shot manner.

 91

Interface Specification

On the other hand, the data access phase begins with the completion of
the sampling procedure. Since the ADC sampling takes several CPU
cycles, samples are typically accessed asynchronously. When the
sampling is completed, the platform software copies the data into a data
buffer located in a memory area accessible to the ASWC (this memory
area could be a part of the ASWC’s private memory). After this common
step, we differentiate between asynchronous data access with and
without notification. In the first scenario, the platform notifies the ASWC
when the sampling has been completed and the data have been copied,
whereas in the second scenario, the ASWC is left without notification
and has to poll the buffer or the PSW for status information. On the
other hand, reading from a DIO channel is typically done synchronously,
which might, however, involve a trap and a switch to supervisor mode.

As we will explain later, certain failure modes of the input failure model
are interpreted differently or do not apply depending on the input
scenario relevant for the current input channel. In sum, the input failure
model contains fifteen different failure modes. The analog input failures
of the input failure model are depicted in Figure 39; the digital input
failure are modeled accordingly. The failure modes of the input failure
model are:

 inFM-1: Digital Input Read Omission

 inFM-2: Digital Input Late Read

 inFM-3: Digital Input Early Read

 inFM-4: Digital Input Late Return

 inFM-5: Digital Input Early Return

 inFM-6: Digital Input False Positive

 inFM-7: Digital Input False Negative

 inFM-8: Analog Input Omission

 inFM-9: Analog Input Commission

 inFM-10: Analog Input Late Sampling

 inFM-11: Analog Input Early Sampling

 inFM-12: Analog Input Sampling Jitter

 inFM-13: Analog Input Late Return

 inFM-14: Analog Input Early Return

 inFM-15: Analog Input Value Failure

Reading from a digital input is usually performed in a synchronous way.
As described in section 4.4.1 Service Timingsection, we usually do not
specify timing failure modes for those services. However, if a digital input
channel is read by a complex driver, the driver might perform the writing
asynchronously. Because of these cases, we have added timing failures
to the digital input failure model.

 92

Interface Specification

Figure 39: The meta-model of the analog part of the input failure model

inFM-1: Digital Input Read Omission

A digital input omission occurs if the read request does not return or
returns with an error value.

If the digital read is implemented in a truly synchronous way, the request
will always return if no exception occurs. If the read request returns with
an error code, this is considered as a detected read omission.

inFM-2: Digital Input Late Read

A digital input early read failure occurs if the delay between the read
requested event and the read started event is larger than the
tolerable maximum delay.

The delay between the read request and the start of the reading
procedure is relevant for determining the age of the data when the data
is returned to the requester ASWC.

In order to specify the tolerable maximum read delay, the digital input
late read failure is parameterized according to the latency constraint
introduced in section 4.3.4 Time.

inFM-3: Digital Input Early Read

A digital input early read failure occurs if the delay between the read
requested event and the read started event is smaller than the
tolerable minimum delay.

 93

Interface Specification

Usually, we assume that an early read is uncritical. Nevertheless, for
reasons of completeness, we added the early read failure mode to the
input failure model.

In order to specify the tolerable minimum read delay, the digital input
early read failure is parameterized according to the latency constraint
introduced in section 4.3.4 Time.

inFM-4: Digital Input Late Return

A digital input late return failure occurs if the end-to-end delay between
the request of the read procedure (read requested event) and the
return of the read procedure (returned with result event) is too
large.

The return delay is important for determining the end-to-end delay (from
sensor to actuator) of the corresponding application.

In order to specify the tolerable maximum return delay, the digital input
late return failure is parameterized according to the latency constraint
introduced in section 4.3.4 Time.

inFM-5: Digital Input Early Return

A digital input late return failure occurs if the end-to-end delay between
the request of the read procedure (read requested event) and the
return of the read procedure (returned with result event) is too
small.

In order to specify the tolerable minimum return delay, the digital input
early return failure is parameterized according to the latency constraint
introduced in section 4.3.4 Time.

inFM-6: Digital Input False Positive

A digital input false positive failure occurs if the Boolean value returned
to the requester ASWC is true, even though the value on the digital
input channel was false at the time the read process started.

inFM-7: Digital Input False Negative

A digital input false negative failure occurs if the Boolean value returned
to the requester ASWC is false, even though the value on the digital
input channel was true at the time the read process started.

 94

Interface Specification

inFM-8: Analog Input Omission

The semantics of the analog input omission failure depends on the
triggerType and the returnType parameter of the
AnalogSensorInPort or the AnalogInputChannel related to the
failure mode.

In case the ADC is triggered by the platform (triggerType =
PlatformTrigger) or operates in streaming mode (triggerType =
Streaming), an omission occurs if there is no trigger (sampling
request event) even though there should be a trigger regarding the
specification of the platform. In those scenarios, triggering the sampling
is not the responsibility of the ASWC.

Furthermore, a sampling omission occurs if the sampling has been
triggered but the platform omits copying the sampled value into the
respective result buffer of the requester ASWCs. In case notifications are
enabled (returnType = Notification), an omission also occurs if the
platform copies the sampled value into the buffer but omits to notify the
ASWC.

inFM-9: Analog Input Commission

The semantics of the analog input omission failure depends on the
returnType parameter of the AnalogSensorInPort or the
AnalogInputChannel related to the failure mode.

If notifications are disabled (returnType = Polling) an analog input
commission occurs if the platform copies a new value into the data
buffer even though there was no ASWC trigger or there should not have
been a trigger (in case trigger responsibility was with the platform). If
notifications are enabled (returnType = Polling), an analog input
commission occurs if the platform sends a notification even though there
was no ASWC trigger or there should not have been a trigger (in case
trigger responsibility was with the platform).

inFM-10: Analog Input Late Sampling

An analog input late sampling occurs if the delay between the
sampling requested event and the sampling started event is too
large.

The delay between the sampling request and the start of the sampling
procedure is relevant for determining the age of the data when the data
is returned to the requester ASWC.

The analog input late sampling failure mode only applies if the ADC is
triggered by the ASWC (triggerType = OneShot) or by the platform

 95

Interface Specification

(triggerType = PlatformTrigger), since there is no delay between
the trigger and the beginning of the sampling in streaming mode
(triggerType = Streaming).

In order to specify the tolerable maximum sampling delay, the analog
input late sampling failure is parameterized according to the latency
constraint introduced in section 4.3.4 Time.

inFM-11: Analog Input Early Sampling

An analog input early sampling occurs if the delay between the
sampling requested event and the sampling started event is too
small.

The delay between the sampling request and the start of the sampling
procedure is relevant for determining the age of the data when the data
is returned to the requester ASWC.

The analog input late sampling failure mode only applies if the ADC is
triggered by the ASWC (triggerType = OneShot) or by the platform
(triggerType = PlatformTrigger), since there is always no delay
between the trigger and the beginning of the sampling in streaming
mode (triggerType = Streaming).

In order to specify the tolerable minimum sampling delay, the analog
input early sampling failure is parameterized according to the latency
constraint introduced in section 4.3.4 Time.

inFM-12: Analog Input Sampling Jitter

An analog input sampling jitter failure occurs if the time between two
successive periodical sampling triggers (sampling requested event)
varies too much.

Such a variation has detrimental effects on the precision and the stability
of a closed loop control algorithm. To make a demand regarding the
end-to-end jitter of a periodical sampling procedure, the analog input
sampling jitter demand must be combined with a return latency failure
(see).

The analog input sampling jitter failure only applies if the ADC is
triggered by the platform (triggerType = PlatformTrigger), since
in one-shot mode, the ASWC has the trigger responsibility and in
streaming mode, periodical triggering is impossible.

In order to specify the tolerable jitter, the analog input sampling jitter
failure is parameterized according to the jitter constraint introduced in
section 4.3.4 Time.

 96

Interface Specification

inFM-13: Analog Input Late Return

The semantics of the analog input late return failure depends on the
returnType parameter of the AnalogSensorInPort.

In case of a polling return type (returnType = Polling), an analog
input late return occurs if the delay between the sampling requested
event and the result copied event is too large.

In case of a notification return type (returnType = Notification),
an analog input return latency failure occurs if the delay between the
sampling requested event and the notification send event is too
large.

In order to specify the tolerable maximum return delay, the analog input
late return failure is parameterized according to the latency constraint
introduced in section 4.3.4 Time.

inFM-14: Analog Input Early Return

The semantics of the analog input early return failure depends on the
returnType parameter of the AnalogSensorInPort.

In case of a polling return type (returnType = Polling), an analog
input late early occurs if the delay between the sampling requested
event and the result copied event is too small.

In case of a notification return type (returnType = Notification),
an analog input return latency failure occurs if the delay between the
sampling requested event and the notification send event is too
small.

In order to specify the tolerable minimum return delay, the analog input
early return failure is parameterized according to the latency constraint
introduced in section 4.3.4 Time.

inFM-15: Analog Input Value Failure

An analog input value failure occurs if the actual value on the analog
channel at the sampling started event and the value returned to the
requester ASWC deviate by more than the predefined error.

The error can be absolute (e.g., 0,5V) or relative (e.g., 10%). See section
4.3.4 Error for more information about modeling errors.

 97

Interface Specification

Output Failure Model

This subsection describes the failure model of the output part of a
platform’s input/output functionality as described in subsection 2.1.4. A
platform’s output functionality allows the application to access the
platform’s output peripherals in order to connect to the application’s
actuators. We assume that the application cannot differentiate between
output channels implemented by on-chip and on-board peripherals,
which is why the failure model in this subsection does not differentiate
between the two cases either.

Unlike the input failure model, the output failure model does not
differentiate between different scenarios of accessing an output
peripheral, resulting in a less complex failure model. This is mainly
because accessing an output peripheral does not include returning a
value, which is why we do not have to differentiate between
synchronous and an asynchronous access. The output scenario starts
with the output request event when the ASWC requests the output
peripheral to update the activation signal sent to the actuator, and ends
when the output peripheral has written the new value to the output
channel. The scenario for accessing an output peripheral is shown in
Figure 40.

Because of the reasons described in section 4.4.1 Service Provision, we
decided not to include an omission failure mode in our failure model
since an omission failure (not processing an output request) cannot be
differentiated from a value failure, as there is no NIL concept on a
physical channel. It is sufficient to demand that the correct value has to
appear on the channel after a certain period of time. Not processing the
output request at all is just a technical cause of this kind of failure.

PSW

HW

requester
ASWC

P

output channel

1:

2:

Figure 40: The scenario for accessing an output peripheral covered by this failure model. The
following events are shown in the figure: 1: output requested event, 2: output written
event.

 98

Interface Specification

The output failure model contains seven failure modes. Figure 41 gives
an overview of the output failure mores. The failure modes are:

 outFm-1: Digital Output Late

 outFm-2: Digital Output Early

 outFm-3: Digital Output False Positive

 outFm-4: Digital Output False Negative

 outFm-5: Analog Output Late

 outFm-6: Analog Output Early

 outFm-7: Analog Output Value Failure

The writing of digital output is usually performed in a synchronous way.
As described in section 4.3.1.2, we usually do not specify timing failure
modes for those services. However, if a digital output channel is written
by a complex driver, the driver might perform the writing
asynchronously. Because of these cases, we have added timing failures
to the digital output failure model.

outFm-1: Digital Output Late

A digital output late failure occurs if the delay between the output
requested event and the output written event is too large.

If writing to a digital output is always synchronous, the runtime of a
write request should be completely predictable (restrictions apply under
some conditions, for example if the memory access times are
unpredictable because of unfair memory interconnect arbitration).

In order to specify the tolerable maximum write delay, the digital output
late failure is parameterized according to the latency constraint
introduced in section 4.3.4 Time.

Figure 41: The meta-model of the output failure model

 99

Interface Specification

outFm-2: Digital Output Early

A digital output early failure occurs if the delay between the output
requested event and the output written event is too small.

The comment given for outFM-1 regarding the runtime of an output
request is valid for this failure mode.

In order to specify the tolerable minimum write delay, the digital output
early failure is parameterized according to the latency constraint
introduced in section 4.3.4 Time.

outFm-3: Digital Output False Positive

A digital output false positive failure occurs if the Boolean value written
to the output channel is true, even though the value requested by the
requester ASWC was false.

outFm-4: Digital Output False Negative

A digital output false positive failure occurs if the Boolean value written
to the output channel is false, even though the value requested by the
requester ASWC was true.

outFm-5: Analog Output Late

An analog output late failure occurs if the delay between the output
requested event and the output written event is too large.

In order to specify the tolerable maximum write delay, the analog output
late failure is parameterized according to the latency constraint
introduced in section 4.3.4 Time.

outFm-6: Analog Output Early

An analog output late failure occurs if the delay between the output
requested event and the output written event is too small.

In order to specify the tolerable minimum write delay, the analog output
early failure is parameterized according to the latency constraint
introduced in section 4.3.4 Time.

outFm-7: Analog Output Value Failure

An analog output value failure occurs if there is a larger deviation
between the actual value on the analog output channel after the
output written event and the value requested than specified by the
acceptable error.

 100

Interface Specification

The error can be absolute (e.g., 0,5V) or relative (e.g., 10%). See sub-
section 4.3.4 Error for more information about modeling errors.

Time Services Failure Model

This subsection describes the failure model of a platform’s time services
as described in 2.1.4. The time services include a timer service that
allows measuring relative time, a global time service that allows
accessing a global time base of the system, and a service that allows a
runnable entity of the ASWC to wait for a certain period of time.

Measuring a relative time using a timer typically revolves around three
different API calls: (1) starting the timer, (2) stopping the timer, and (3)
reading the elapsed time. The value returned when reading the elapsed
time is the time period since the last start of the timer if the timer has
not been stopped since. Otherwise it is the elapsed time between the
last start timer / stop timer call sequence. Retrieving a global time, on the
other hand, is a straightforward procedure of making a synchronous API
call and needs no further explanation. Waiting for a certain period of
time also involves a single call. After that call, the task that hosts the
runnable transitions into the waiting state until the requested time
interval is up. After that, the platform has to activate the thread, i.e., set
the task’s state to ready. The scenarios for measuring relative time and
for waiting a certain period of time is shown in Figure 42.

The time service failure model contains three failure modes, one for each
feature, which are listed below. An overview of the time services failure
model is given in Figure 43:

 timeFM-1: Global Time Failure

 timeFM-2: Relative Time Failure

 timeFM-3: Wait Time Failure

ASWC

1:

PSW

HW

2: 3:a 2: b

ta
b

measure
relative time

ASWC

PSW

HW

t

runnable

wait(m) activate

m

wait time

Figure 42: The scenarios for using time-related services as covered by this failure model. The following
events are shown in the figure: 1start timer, 2: read timer, 3: stop timer.

 101

Interface Specification

Figure 43: The meta-model of the time services failure model

All failure modes of the time service failure model are parameterized by
time deviation constraints (see 4.3.4 Time) to specify the tolerable
deviation from the correct time and the time produced by the
corresponding service.

timeFM-1: Global Time Failure

A global time failure occurs if the deviation between the correct global
time according to the platform’s specification and the time delivered as a
result by the global time service is bigger than the predefined maximum
deviation.

timeFM-2: Relative Time Failure

A relative time failure occurs if the deviation between the correct time
between the read timer call and the last start timer call, or the
correct time between the last start timer, stop timer sequence,
and the time returned by a read time call is bigger than the predefined
maximum deviation.

Start or stop timer omissions/commissions manifest themselves as
relative time failures at the platform API. Consequently, we did not
include these failures in the relative time failure model.

timeFM-3: Wait Time Failure

A wait time failure occurs if the time between the wait time call and
the activation of the runnable deviates from the correct time interval by
more than the predefined maximum deviation.

Memory Service Failure Model

This subsection specifies the failure model for a platform’s memory
services as introduced in subsection 2.1.4. Memory services allow the
application to access memory that cannot be directly accessed via the
CPUs memory bus, like a flash device connected via an on-board bus,
and provide convenience services for memory access, like a file system or

 102

Interface Specification

a comparable service as, for example, provided by the AUTOSAR NV-
Ram Manager [74].

The memory access service failure model differentiates between read
and write scenarios. Both scenarios begin with the application requesting
a read or write job. Typically, this job is not processed synchronously but
stored in a job queue since the corresponding service or the memory
itself might by busy and the process of reading or writing takes several
CPU cycles. Therefore, processing the job itself takes a certain period of
time as well. When a read job is finished, the data that have been stored
in the corresponding memory address are returned to the ASWC. If the
write job finishes, there might be a notification to identify the ASWC.
This process for using memory services is depicted in Figure 44.

In some platforms, there are also services for managing virtual memory,
memory mapping, or caches. These kinds of services are not regarded by
our language.

ASWC

1:

PSW

HW

td

read write

2:

Mem

3:

4:

ASWC

1:

PSW

HW

td

2:

Mem

3:

Figure 44: The scenario for accessing indirectly accessed memory : For reading (left side) and writing
(right side). The following events and intervals are shown in the left figure (read): 1: read
requested, 2: read started, 3: read finished, 4: result returned, d: read delay. The following
events are shown in the right figure (write): 1: write requested, 2 write started, 3: write
finished, d: write delay.

The memory access failure mode consists of six failure modes, listed in
the following and depicted in Figure 45:

 memFM-1: Memory Late Read

 memFM-2: Memory Read Access Denial

 memFM-3: Memory Read Data Failure

 memFM-4: Memory Write Delay

 memFM-5: Memory Write Access Denial

 memFM-6: Memory Write Data Failure

 103

Interface Specification

memFM-1: Memory Late Read

A memory read delay occurs if the time between the read request
event and the result returned event is larger than a predefined
threshold.

In order to specify the tolerable memory read delay, the memory read
delay failure is parameterized according to the latency constraint
introduced in 4.3.4 Time.

There are no early failures in the memory read failure model, since we
are convinced that an earlier read than expected will never be safety
critical.

memFM-2: Memory Read Access Denial

A memory read access denial occurs if the service denies the read
request to the memory address even though the requester ASWC is
allowed to read from that memory address, or if the service accepts the
request but does omit to return data.

Figure 45: The meta-model of the memory service failure model

memFM-3: Memory Read Data Failure

A memory read data failure occurs if the data that are returned to the
ASWC are not identical to the data that were written to the provided
memory address by the last write access.

This could mean that either the data have been corrupted since the last
write access (e.g., by other applications or by an SEU) or that the read
access does not return the data that were stored in the respective
memory address when the read was requested.

 104

Interface Specification

memFM-4: Memory Write Delay

A memory write delay occurs if the time between the write request
event and the write finished event is bigger than a predefined
threshold.

In order to specify the tolerable memory write delay, the memory write
delay failure is parameterized according to the latency constraint
introduced in 4.3.4 Time.

There are no early failures in the memory write failure model, since we
are convinced that an earlier write than expected will never be safety
critical.

memFM-5: Memory Write Access Denial

A memory write access denial occurs if the service denies write access to
the memory address even though the requester ASWC is allowed to
write into that memory address, or if the service accepts the request but
omits to write data.

A write to a wrong address would result in a denial of the intended write
request and a corruption of the data at the address that have been
written.

memFM-6: Memory Write Data Failure

A memory write data failure occurs if the data provided to the service
are not identical to the data that are stored at the provided memory
address directly after the write process has finished.

Scheduling Failure Model

The scheduling service of a platform is responsible for managing the
concurrent access of all ASWC to the platform’s CPU or CPUs. Several
tasks, and therefore the runnables that run in the context of the task,
compete for this shared resource. Scheduling is successful if each time-
critical runnable meets its specified deadline.

In accordance with most scheduling models and referring to [75], we
define a task’s timing model using three variables. The task request time
ri of task Ti is the point in time when the task execution is requested.
From this point in time, the task must finish its execution within a certain
time interval di, the task’s deadline. The third variable is the task’s (worst
case) execution time ei, which defines the time the task needs to
complete after it has been activated. If ei is correct, a task needs to be
activated the latest after the time interval li = di-ei, which is called the
laxity of the task.

 105

Interface Specification

From the point of scheduling, it is important to differentiate between
event-triggered and periodic time-triggered tasks. An event-triggered
task is triggered by a sporadic event, and triggering the task is therefore
not directly the platform’s job25. A periodically triggered task, on the
other hand, is re-requested periodically after a specified time interval pi.
As soon as the first task request ri is made, every future task request is
automatically made by the platform’s operating system.

To summarize: The scheduling requirements of a time-triggered task Ti
are specified by the triple Ti = (pi, di, ci), whereas the event-
triggered task Tj is specified by the tuple Tj = (di, ci). Figure 46
shows an overview of the events and time intervals relevant for the
scheduling process.

As a third function besides scheduling of time- and event-triggered
tasks, we consider the execution of interrupts as part of the scheduling
function. Unlike tasks, which are requested by software, interrupts are
requested by hardware. After the hardware has requested an interrupt,
an interrupt controller will eventually make the CPU call the software
that handles the interrupt, which is called interrupt service routine (ISR).
Other than that, an interrupt can be regarded much like an event-
triggered task and indeed, event-triggered tasks are often requested
from within an ISR. The time between an interrupt request and the
interrupt being served, i.e., the activation of the ISR, is called the
interrupt latency. This latency depends on multiple aspects, including the
design of the hardware and the operating system, as well as interrupt
masking policies and how they are enforced.

tei
execution time

Task Ti

ri,1
task request

task.state = ready

task activation
task.state = running

execution finished
task.state = stopped

deadlinedi
deadline interval

ri,2
task request

task.state = ready
pi

period

Figure 46: Events and intervals for task scheduling. The period pi is only relevant for periodically
triggered tasks.

25 It is, of course, the platform’s job to request the task after the event has occurred,
and some sporadic events might also be triggered by the platform.

 106

Interface Specification

Regarding the scheduling of time-triggered tasks, event-triggered tasks,
and interrupts, the scheduling failure model consists of the following
three failure modes, also in Figure 47:

 schedFM-1: Scheduling Jitter Failure

 schedFM-2: Scheduling Deadline Failure

 schedFM-3: Late Interrupt Execution

Figure 47 depicts two classes of runnable-related scheduling failures:
TimeTriggeredRunnableSchedulingFailure and
GeneralRunnableSchedulingFailure. Each failure mode inheriting
from the first class is only relevant for time-triggered runnables, whereas
each failure mode inheriting from the second class is relevant for every
kind of runnable (event- and time-triggered).

Figure 47: The meta-model of the scheduling failure model

Prior to the introduction of the failure models, we want to make some
comments regarding the design of the scheduling failure model. First of
all, the application language is meant to contain demands regarding the
behavior of the platform. Without additional measures, the platform
alone cannot guarantee compliance with scheduling demands, since this
depends on the execution time of the application. Therefore, the
presented scheduling failure modes do not cover the failure of another
runnable exceeding its WCET, meaning that every guarantee or demand
given using these failure modes implicitly assumes that the WCETs are
correct. In case the application requires protection from other ASWCs
exceeding their execution time, a protection demand has to be specified.
Protection demands are introduced in section 4.5.3, protection
guarantees in section 4.6.3.

Having said this, we must also note that the WCET of a runnable is not
completely in control of the runnable. The WCET depends on many
things, such as the context switching latency of the OS, the WCET of the
platform services used, and the performance of the computational
resources, like CPU or memory. In the current version of the VerSaI

 107

Interface Specification

language, demands regarding the trustworthiness of WCET computation
are not covered by our language.

schedFM-1: Scheduling Jitter Failure

A scheduling jitter failure occurs if the time between two successive
execution finished events of the same runnable deviates by more
than a predefined maximum value.

In order to specify the tolerable jitter, the scheduling jitter failure is
parameterized according to the jitter constraint introduced in section
4.3.4 Time.

schedFM-2: Scheduling Deadline Failure

A scheduling deadline failure occurs if the runnable finishes its execution
after its deadline has expired (the time between runnable requested
and runnable finished is bigger than di).

In order to specify the deadline, the scheduling deadline failure is
parameterized according to the latency constraint introduced in section
4.3.4 Time.

schedFM-3: Late Interrupt Execution

A late interrupt execution failure occurs if the time between interrupt
requested and execution of ISR is larger than a predefined
maximum delay.

In order to specify the maximum interrupt latency, the late interrupt
execution failure is parameterized according to the latency constraint
introduced in section 4.3.4 Time.

Basic Execution Failure Model

So far the failure model has been covering special-purpose services of a
platform. The basic execution failure model covers the failure modes of
platform hardware components that have a crosscutting effect on
almost any service a platform provides. Therefore, we suggest that every
safety-critical application specifies a detection or avoidance demand for
each of the failure modes listed below (this can also be done
automatically by our tool).

This failure model contains four failure modes, which are also depicted in
Figure 48:

 basExFM-1: CPU Failure

 108

Interface Specification

 basExFM-2: Main Memory Failure

 basExFM-3: CPU Clock Failure

 basExFM-4: Power Supply Failure

basExFM-1: CPU Failure

A CPU failure occurs if the behavior of the CPU deviates from its
specification.

basExFM-2: Main Memory Failure

A main memory failure occurs if the behavior of the main memory
(directly accessed memory like cache, RAM, flash) deviates from its
specification. Such a failure can also be caused by hardware components
like caches or interconnects used to connect the CPU to the main
memory.

Figure 48: The meta-model of the basic computation failure model

basExFM-3: CPU Clock Failure

A CPU clock failure occurs if the behavior of the CPU clock deviates from
its specification (i.e,. runs faster, runs slower than specified or stops).

basExFM-4: Power Supply Failure

A power supply failure occurs if the behavior of the power supply
deviates from its specification (i.e., voltage drops, rises, fluctuates or the
supply fails completely).

4.4.3 Application Failures

The application failure package contains the failure modes of an
application that can be detected by a platform. Unlike the platform
service failure modes, the application failure modes were not identified
by a failure analysis of an application. First, this would not be possible
since applications have no standardized behavior like standardized

 109

Interface Specification

execution platforms. Second, analyzing an application regarding its
failure modes would yield every failure mode and not only those that can
be potentially detected by a platform. Therefore, the platform-detectable
application failures were derived from standard detection mechanisms
available for typical platforms.

As a result of the analysis, this section introduces five different
application failure modes that can be detected by appropriate
monitoring facilities. These are:

 appFM-1: Arrival Rate Failure

 appFM-2: Inter-Arrival Time Failure

 appFM-3: Execution Time Deviation

 appFM-4: Logical Sequence Failure

 appFM-5: Runtime Failure

The first three and the last failure modes describe deviations from the
nominal timing-related behavior of an application. The fourth failure
mode describes a deviation from the application’s logical behavior. Since
a multi-purpose execution platform does not per se know the nominal
behavior of its guest applications, the platform’s monitoring facilities
must be adaptable, so that an integrator can enable them to detect the
application’s failures by configuring them appropriately.

A look at the list of failure modes reveals that there is no demand
regarding the detection of deadline or time-window misses. This is
because demands regarding the detection of these failures are specified
using the scheduling failure.

Every application failure mode specified in this package is observed on
the runnable level. Therefore, every application failure mode has an
architecture reference to a supervised element, which, on the application
level, points towards a runnable. Figure 49 shows the corresponding
meta-model including all platform detectable failure modes and their
architecture references.

A runnable is the smallest executable entity of an application, and
consequently, higher-level failures (for example on the ASWC level) can
usually be inferred by the application using runnable-level failures. If a
specific type of platform provides detection mechanisms on other
abstraction levels, this part of the VerSaI language must be extended or
adapted.

 110

Interface Specification

appFM-1: Arrival Rate Failure

An arrival rate failure occurs when the number of times a runnable is
executed during a certain time interval exceeds or falls below a specified
threshold.

To specify the minimum and maximum arrival rates, the arrival rate
failure contains two integer parameters (min and max). To specify the
supervision interval, the arrival rate failure contains a time parameter
(interval).

Arrival rate monitoring can be used to check for the aliveness of a
runnable. It is possible to check whether activation of the runnable is too
frequent or too scarce. The arrival rate is the reciprocal of the inter-
arrival time, as it measures the count of runnable activations per time
unit. The arrival rate is typically a more coarse-grained measure for the
aliveness of a runnable than the inter-arrival time, but its implementation
is also less resource consuming since the arrival rate has to be checked
only once per time interval.

Figure 49: An excerpt of the meta-model for application monitoring demands

appFM-2: Inter-Arrival Time Failure

An inter-arrival time failure occurs when the time between two
executions of a runnable exceeds or falls below a specified threshold.

In order to specify the acceptable inter-arrival time, the inter-arrival time
failure is parameterized according to the latency constraint introduced in
section 4.3.4 Time.

Inter-arrival time monitoring can be used to check the aliveness of a
runnable, but also to check its periodicity. It is possible to check whether
the inter-arrival time is too long or too short. The arrival time is the
reciprocal of the arrival rate. Arrival time monitoring is typically a more
precise measure for the aliveness of a runnable, but it is also more

 111

Interface Specification

resource consuming since it has to be checked every time a runnable is
activated.

appFM-3: Execution Time Deviation

An execution time deviation occurs when the time between the
activation of a runnable and the termination of the runnable exceeds or
falls below a specific threshold.

In order to specify the acceptable execution time, the execution time
deviation failure is parameterized according to the latency constraint
introduced in section 4.3.4 Time.

Execution time monitoring evaluates the time between the activation of
the runnable and the termination of the runnable. It is better suited for
detecting the root cause of a deadline miss than deadline monitoring.
Execution time monitoring is able to exactly identify the runnable that
exceeded its execution time. Conversely, when detecting a deadline
miss, it is impossible to say whether the runnable that missed its deadline
caused the scheduling failure or any runnable that was scheduled
before.

appFM-4: Logical Sequence Failure

A logical sequence failure occurs when the sequence of points in the
control flow of the runnable deviates from the possible sequences of a
nominally working runnable.

The valid logical sequences of a runnable are typically modeled as a
graph of checkpoints. If there is no edge between the previous and the
actual checkpoints, a logical sequence error is detected.

appFM-5: Runtime Failure

A runtime failure is an exception that is raised by the general
computation hardware or by the platform software during the execution
of the application. Examples of hardware-raised runtime failures are
divisions by zero, execution of kernel-level instructions in user-mode, or
access to a protected memory region. Typical runtime failures raised by
the platform software are invalid access to protected services, use of
uninitialized services, or invalid service calls (e.g., termination of a task
while blocking a shared resource).

The runtime failures available on a specific platform depend on the
microarchitecture and the platform software (OS and middleware
components).

 112

Interface Specification

4.4.4 Platform Failure Reactions

This section introduces the standardized platform failure reactions
provided by the VerSaI language. A platform failure reaction is a reaction
that the platform is able to perform whenever a failure occurs. In the
context of safety-critical systems, it is common to use the platform to
perform failure control since the application itself might be unreliable or
unable to perform a reaction after it has encountered a failure.
Furthermore, some failure reactions like shutting cannot be performed
by the application due to a lack of sufficient permissions.

Comparable to the application failures introduced in section 4.4.3, the
platform failure reactions presented in this section were also identified
by analyzing common standardized platforms, like AUTOSAR or IMA 653
compliant platforms. During our analysis we identified six types of
platform failure reactions. These are:

 Restart

 Shutdown

 Write Default Signal

 Send Default Message

 Indication

 Handler Execution

Restart and shut down are generalized reaction types. In order to
completely specify a shutdown or a restart, the application developer
needs to specify the object that is restarted or shut down. The options
are: (A) the task hosting the runnable that is referenced by the demand,
(B) the partition hosting the ASWC that is referenced by the demand, or
(C) the complete platform. The corresponding excerpt of the platform
failure reaction meta-model is shown in Figure 50.

Restart

Restart is an often used measure to react to a detected failure. A restart
basically deletes the current state of the system and puts the system into
a pre-defined initial state. If the system detects a failure, it is sometimes
unclear if the failure corrupted the state of the system and/or how to
repair the corrupted state. In such a case, a restart resets the system
state. If the failure was transient, the system might behave normally after
the restart.

We differentiate between three levels of restart. On the first level, we
allow demands regarding the restart of tasks. Restarting a task resets all
runnables that are executed in the context of the task. On the second
level, there are demands regarding the restart of a partition. A restart of
a partition will result in a restart of all tasks running in the context of the

 113

Interface Specification

partition as well as in a reset of all resources held by the partition. On
the last level, we allow demand for a restart of the platform. Such a
restart typically involves a restart of the MCU as well as a restart of all
stateful devices.

Figure 50: An excerpt of the platform failure reaction meta-model . The excerpt shows the part of the
model that specifies restart and shutdown reactions.

Shutdown

Like restarting, shutting the system down is a measure to roll the system
forward to a known state. However, in case of a shutdown the target
state is not the initial but the final state of the system. A shutdown is
typically performed if a failure is detected but there is reasonable
suspicion that the cause of the failure is permanent (e.g., if the system
has been restarted several times). Shutting the system down is a
standard means to put fail-safe systems into their safe state.

Again, we differentiate between three levels of restart. On the task level,
all runnables executed in the context of the task are shut down. On the
partition level, a shutdown affects all tasks running in the context as well
as all resources held by the partition. On the platform level, the MCU
and all devices are shut down.

 114

Interface Specification

Write Default Signal

Writing a default signal on an output channel is the standard means for
bringing an actuator to its safe state. Often, the default signal equals the
state that the output channel has if it is de-energized. In this way, the
actuator is automatically put into its safe sate if the platform is shut
down. However, putting the actuator into a safe state is not only
performed in the course of an overall shutdown but can also be
demanded if, for example, the ASWC driving the actuator fails. In such a
case, we allow demanding to write a default signal on a physical output
channel using the write default signal demand.

We differentiate between digital default signals and analog default
signals. A digital default signal can have the default value set to logical
zero or logical one, whereas an analog default signal can have a floating
point value combined with a unit (represented by a semantics-less
string).

Send Default Message

Sending a default signal via a communication channel is typically done to
inform other communication participants about a failure. In case the
application is unable to send the corresponding default message, the
platform can be used to perform this task, which is specified using the
send default message reaction.

The following EBNF production rules are used to specify demands
regarding the sending of default messages. The default message itself is
only represented by a semantics-less string. We show the example
production rule for a simple reaction demand to send a default message.
The corresponding complex reaction demand is designed analogously.

Indication

Indicating a failure is typically done when the ASWC is able to control
the failure by itself. In such a case, the platform first detects the failure
and then indicates the failure to the ASWC. The action to control the
failure is finally performed by the ASWC.

Handler Execution

Comparable to an indication reaction, the handler execution reaction
leaves the control of the failure to the application. But instead of
indicating the failure, the platform executes a pre-defined error handler,
a program written by the application developer. Compared to an
indication reaction, the handler execution allows for a much quicker
failure reaction time since the program controlling the failure does not
need to be scheduled first.

 115

Interface Specification

4.5 Application Language

In this section, we will introduce the application language. The
application language is used by the application developer to specify the
safety-critical demands regarding the behavior of the platform and is the
counterpart to the platform language, which will be introduced in
section 4.6. The specification of the application language uses the
common types, attributes, and relations that are part of the common
language introduced in sections 4.3 and 4.4; therefore, we recommend
reading the corresponding sections before studying the application
language.

The application developer uses the application language to specify the
vertical safety interface of the application. This safety interface contains
all the assumptions regarding the behavior of the application’s host
platform(s) that have to be met to validate the application’s safety case.
If one of these assumptions is not met by a platform, the application
safety case loses its soundness and deploying the application to such a
platform may result in an unsafe system. To stress their critical nature,
we call those assumptions demands. On the other hand, if all demands
are met by the host platform(s) and the application safety interface is
correct and complete, the application will execute safely. Correctness
and completeness of the application safety interface have to be assessed
and, where appropriate, certified before it can be used for credible
VerSaI mediation. Such an assessment shall conclude that the application
is fit for safety-critical execution on an execution platform, provided the
execution platform fulfills all demands specified in the application’s
vertical safety interface.

As mentioned briefly in section 4.2, the structure of the application and
platform language is based on the observation that there are four major
classes of safety-related dependencies between an application and a
platform. Analogously, the application language consists of four basic
types of identically named demands. These are: platform service
demands, health monitoring demands, resource protection demands,
and service diversity demands.

A platform service demand enables the application developer to specify
demands regarding the detection or avoidance of platform failures that
would otherwise affect the safe behavior of the application. In contrast
to seeing the platform’s role as a cause of failure, it is common practice
to use the platform as a means for detecting application failures and for
executing failure containment reactions. To specify the corresponding
demands, the application developer uses the so-called health monitoring
demand. In addition to these failure-centric demands, we also have to
cover the challenges posed by mixed-critical applications that share
common platform resources and services. To protect highly critical

 116

Interface Specification

applications from application with lower criticality, the platform must
provide certain protection mechanisms. The application developer
demands the availability of these mechanisms using resource protection
demands. Finally, the last demand class allows specifying service diversity
demands, which enable the application developer to demand that
different services are developed diversely/dissimilarly. This, on the other
hand, enables the application developer to use so-called integrity level
decompositions in the application-level safety case and to specify the
resulting demands in the vertical safety interface.

Figure 51 shows the top-level structure oaf the application language
meta-model including the different demand classes. You might realize
that the vertical application (safety) interface does not contain but
reference the application demands. This is because the application
demands are contained in appropriate architecture elements of the
application (see section 4.3.3 for more information on demand
containment). The mapping between demands and container elements
will be introduced in the next subsection.

The following subsections are ordered as follows: Platform service
demands are introduced in subsection 4.5.1, health monitoring demands
in subsection 4.5.2, resource protection demands in subsection 4.5.3,
and service diversity demands in subsection 4.5.4.

Figure 51: The top-level meta-model of the application language

 117

Interface Specification

4.5.1 Platform Service Demands

A platform service failure demand enables the application developer to
specify demands regarding the avoidance or detection of platform
service failures. It is the first in a series of four top-level demand classes
that constitute the application language.

Providing infrastructural services to an application is the primary task of
every execution platform. The application requires these services in order
to realize its functions. Consequently, the correct provision of a function
directly depends on the correct provision of the platform services
required to realize the function. Therefore, failure of a platform service
may lead to failure of all functions relying on the service. If one of these
functions is safety-critical, the consequence is that the platform service
becomes safety-critical, too. Platform service demands allow the
application developer to view a platform as a potential source of failure
and to specify demands regarding these.

Whenever the application developer uses a platform service, he or she
has to perform the following steps. First, the effects of the service’s
possible failure modes on the behavior of the application have to be
analyzed. To do so, the application developer uses the standardized
failure modes presented in section 4.4.2, for example as a starting point
of an FMEA analysis or as a possible basic failure event in an FTA. In case
a failure mode might lead to a safety-critical failure of the application,
the application developer has four options: (1) redesign the application
so that the failure is no longer safety critical; (2) introduce mechanisms
into the application that detect and control the failure mode in an
appropriate way; (3) specify a platform service demand that requests the
platform to detect the failure and either indicate it and leave the control
to the application, or perform a failure reaction (this is done using health
monitoring demands, see section 4.5.2); (4) specify an avoidance
demand. To fulfill an avoidance demand, the platform has to control the
failure so that there are no visible negative effects for the application.
Figure 52 gives an overview of an application developer’s design decision
when encountering a safety-critical platform service failure.

Figure 52 shows that when the application developer decides to specify
a platform service demand, the main decision is whether to specify a
detection or an avoidance demand. Therefore, we continue this section
by providing further details about the syntax and semantics of detection
and avoidance demands.

 118

Interface Specification

failure
mode X is

critical

design option?

redesign
application so that

X is no longer
safety-critical

implement a
mechanism

that detects X

implement a
mechanism

that controls X

specify a failure
reaction demand

(see section 4.4.2)

specify a
detection
demand

specify an
avoidance
demand

safe by design avoid failure

detection
by
platform

detection
by

application

where to perform
failure reaction?

application platform

Figure 52: Flow chart showing the service failure demand design options of an application developer
when encountering a platform service failure. Orange rectangles indicate that the
specification of an application demand is necessary.

A detection demand is fulfilled if the platform has the capability of
detecting the corresponding failure. Since detecting a failure is never
sufficient for controlling a failure, a detection demand must always be
accompanied by at least one appropriate reaction demand. If no reaction
demand is specified by the application developer, a default reaction
demand is generated, which demands that the detected failure must be
indicated to the application. This enables the application to control the
detected failure. If the application is unable to control the failure itself,
the application may use the failure reactions provided by the platform,
which are specified using health monitoring demands. If that does not
yield a safe application either, the only remaining option is to specify an
avoidance demand.

Furthermore, when specifying a detection demand, the application
developer has to specify the demanded failure detection time. The failure
detection time is the time between the occurrence of the failure and the
starting point of the failure reaction. If the application developer
specifies a failure detection time of “0 ms”, the corresponding failure
must be detected before it is able to affect the behavior of the

 119

Interface Specification

application. This is, for example, possible for any kind of data corruption
(e.g., signal corruption). In this case, the corrupted signal must be
detected before the application is able to use the data.

An avoidance demand is fulfilled if the chance for the corresponding
platform service failure to occur is acceptably low. Since the VerSaI
language focuses on systematic failures, the criterion for acceptability is
specified using integrity levels. Compared to detection demands,
avoidance demands are usually harder to fulfill. Consequently, when
specifying an avoidance demand, the chance for successful mediation
decreases. Furthermore, when an application developer decides to
specify an avoidance demand, there are two important issues regarding
its semantics: First, an avoidance demand is not absolute. To fulfill an
avoidance demand, there must be mechanisms in place that can prevent
the occurrence of the failure. Yet there might still be a certain probability
or some special scenarios where the failure mode cannot be avoided.
Deciding upon the sufficiency of an avoidance mechanism is done during
the interface mediation step and is based on the integrity level of the
avoidance demand. Second, an avoidance demand is no correctness
demand. The platform can fulfill an avoidance demand by transforming
the corresponding failure into another failure mode when it occurs. A
demand to avoid a signal corruption can, for example, be implemented
by detecting the signal corruption, discarding the signal, and thereby
transforming the corruption into an omission.

We will now continue with a detailed description of the modeling of
platform service demands, including additional parameters, the
integration of the demands into the architecture model of the
application, and the usage of the common platform service failure
model.

At the root of the platform service demand meta-model is the
differentiation between demands for detection
(PlatformServiceFailureDetectionDemand) and demands for
avoidance (PlatformServiceFailureAvoidanceDemand). Based on
this first differentiation, the meta-model contains different classes for
different types of failure demands (e.g.,
MutexFailureDetectionDemand). Each of these failure-mode-specific
demands is related to a specific element of the application model and to
the corresponding failure modes of the element. Figure 53 shows the
related part of the platform service demand meta-model.

Each failure-specific demand is contained26 by a different type of
application element (e.g., a mutex) and may contain one of the possible
failure modes of the element (e.g., mutex failures). Using this modeling

26 Please note that every demand containment is realized by the containment pattern
introduced in section 4.3.4 and depicted in Figure 23.

120

Interface Specification

pattern, an abstract platform service failure mode (e.g., a mutex access
commission) is related to a specific architecture element (mutex_1). This
turns the abstract failure mode into a failure mode of this specific
element (a mutex access commission of mutex_1). This pattern is
necessary since an application often utilizes the same service class in
several ways, e.g., it uses a communication link to send different signals.
Different utilizations of the same service may have different safety
requirements (one signal carries critical information, the other does not).
Using this modeling pattern, the application developer can specify
different demands for different utilizations of the same service. Of
course, when instantiating and parameterizing a platform service
demand, the application developer must also parameterize the related
failure mode (see section 4.4.2 for the failure modes of each parameter)
and the integrity level of the demand (a parameter inherited from the
abstract interface requirement class, see section 4.3.4 Integrity Level).

Figure 53: The principal structure of the platform service demand meta-model

Table 7 shows all failure-specific platform service demands including
their related application elements and failure modes.

Table 7: A list of all platform service demands including their related application elements and
failure modes.

Demand Related
application

element

Related failure
mode

Failure model

MutexFailureDemand MutexService-
Need

MutexFailure Synchron.-
FailureModel

EventFailureDemand EventService-
Need

EventFailure “

 121

Interface Specification

Communication-
FailureDemand

Communication-
Port

Communication-
Failure

Communication-
FailureModel

DigitalInput-
FailureDemand

DigitalSensorIn-
Port

DigitalInput-
Failure

InputFailure-
Model

AnalogInput-
FailureDemand

AnalogSensorIn-
Port

AnalogInput-
Failure

“

DigitalOutput-
FailureDemand

DigitalActuator-
OutPort

DigitalOutput-
Failure

OutputFailure-
Model

AnalogOutput-
FailureDemand

AnalogActuator-
OutPort

AnalogOutput-
Failure

“

GlobalTimeFailure-
Demand

GlobalTime-
ServiceNeed

GlobalTime-
Failure

TimeService-
FailureModel

RelativeTime-
FailureDemand

TimerService-
Need

RelativeTime-
Failure

“

WaitTimeFailure-
Demand

WaitService-Need WaitTime-
Failure

“

MemoryService-
FailureDemand

MemoryService-
Need

MemoryService-
Failure

MemoryService-
FailureModel

TTRunnableScheduling-
FailureDemand

TimeTriggered-
Runnable

TTRunnable-
Scheduling-
Failure

Scheduling-
FailureModel

RunnableScheduling-
FailureDemand

Runnable General-
Runnable-
Scheduling-
Failure

“

InterruptScheduling-
FailureDemand

ISR Interrupt-
Scheduling-
Failure

“

CoreRelatedFailure-
Demand

Runnable CoreRelated-
Failure

BasicExecution
-FailureModel

MainMemoryFailure-
Demand

MemorySection MainMemory-
Failure

“

PowerSupplyFailure-
Demand

ASWC PowerSupply-
Failure

“

In the following, we will introduce some example platform service
demands based on the running example introduced in section 4.1.

Example D1 presents a failure avoidance demand for a sampling latency
failure of the analog input signal v_raw_A.

Example D1: A sampling latency of the input signal v_raw_A larger than 0.2ms must
be avoided (ASIL B).

 122

Interface Specification

Example D2 presents a failure detection demand for a value failure of
the output signal a_set_fin.

Example D2: A value failure of the output signal a_set_fin larger than 0.05V must be
detected within 0.05ms (ASIL C).

Example D3 presents a corruption failure of the communication signal
v_ref without any specification of a failure detection time. The
semantics in this case is that the message corruption must be detected
before the message reaches the corresponding software component (in
this case v_controller).

Example D3: A corruption of the signal v_ref must be detected (ASIL C).

4.5.2 Health Monitoring Demands

A health monitoring demand enables the application developer to
specify demands regarding the detection of application failures and the
execution of failure reaction. This is the second in a series of four top-
level demand classes that constitute the application language.

As described in section 4.5.1, the execution platform can be regarded as
a source of failure. But it is also common for the platform to take the
opposing role and provide safety mechanisms to the application. To
some extent, the platform can be regarded as an independent
component that is able to keep track of most of the application’s
actions. This makes the platform a suitable candidate for monitoring
application failures. In addition to its partial independence of the
application, the platform has many rights for performing actions (like a
shutdown) that the application does not have, which allows the platform
to provide more powerful failure reactions.

To cover both aspects, the health monitoring demand model is divided
into two parts. The first part contains application monitoring demands,
allowing the developer to specify demands regarding the detection of
application failures. The second part contains failure reaction demands,
allowing the application developer to specify demands regarding the
execution of failure reactions. Figure 54 gives an overview of the health
monitoring model.

In the following two subsections, we will first introduce application
monitoring demands and then failure reaction demands.

 123

Interface Specification

Figure 54: The health monitoring meta-model

Application Monitoring Demands

The application developer specifies an application monitoring demand to
strengthen the fault tolerance of the application under development.
The application monitoring demand requires the platform to detect a
deviation from the application’s nominal behavior, i.e., an application
failure. The platform has the capability of monitoring the behavior of the
application since the platform is involved in the realization of most of the
application’s functionality. Of course, a plain execution platform cannot
generally tell an application’s nominal behavior from a failure; hence, the
platform provides general-purpose monitoring mechanisms that have to
be configured. This configuration is performed by the integrator, which
then enables the platform to detect the failures of guest applications.

There are many reasons for an application developer to specify an
application monitoring demand. The first is to protect the application
from design faults. Some standards demand the application to be
monitored if its criticality exceeds a certain level. But application
monitoring demands are also suitable to detect failures where the root
cause is not found in the application itself. It is also possible that a failure
external to the application may cause a failure that is perceived as a
deviation of the application’s behavior (the omission of another
application to trigger an event can easily lead to a timing failure of the
supervised application). Therefore, the application developer also
specifies application monitoring demands if the application uses
untrusted components and the failure of the untrusted component may
manifest itself as a detectable application failure.

If the application developer decides to specify an application monitoring
demand, an application monitoring demand is instantiated (see Figure
54). Unlike platform service demands, an application monitoring demand
is not directly contained in the element that shows the failure mode, i.e.,
the supervised runnable, but by an application monitoring need (see
annex A.2). The model is designed like this because an application
monitoring need is always deployed to an application monitoring service

 124

Interface Specification

(see annex A.3), allowing the mediation algorithm to directly check the
available monitoring capabilities for their sufficiency.

When the demand is instantiated, the developer chooses an application
failure mode from the application failure model specified in section
4.4.3. As described in section 4.4.3, application failures reference an
executable unit of the corresponding application to identify the
supervised entity. Where applicable, the application developer has to
parameterize the failure mode chosen. The parameters of the application
failure modes are also specified in section 4.4.3. Since avoiding
application failures does not lie within the power of the application,
every application monitoring demand is automatically a detection
demand, which requires the application developer to specify a failure
detection time (see section 4.5.1 for more information regarding failure
detection time).

In the following, we will introduce some example application monitoring
demands based on the running example introduced in section 4.1.

Assume that the v_controller software component contains one
executable/job called v_controller_main that has an execution time
of 0.015ms. Example D4 specifies an application monitoring demand
that demands the detection of deviations from this nominal execution
time with a small safety margin of 0.001ms.

Example D4: The platform must detect an execution time of the executable
v_controller_main of more than 0.016ms (ASIL C).

Example D5 specifies another application monitoring demand that
requires the supervision of the logical execution sequence of
v_controller_main. The prerequisite for configuring the
corresponding monitoring mechanism is specified in the corresponding
guarantee (see Example G4).

Example D5: The platform must detect a logical sequence failure of the executable
v_controller_main (ASIL C).

Failure Reaction Demands

The application developer specifies a failure reaction demand to request
a failure controlling reaction from the platform. In an integrated
architecture, the application is only allowed to use the platform API to
interact with the platform software and hardware. This design restriction
protects the platform and other applications from erroneous
applications, but also limits an application’s freedom to perform certain
failure recovery reactions. Therefore, an application uses the platform to
explicitly trigger these restricted recovery reactions. In addition to the

 125

Interface Specification

extended permissions of the platform, the platform can be seen as an
independent element to the application. When an application-related
failure occurs, this may render the affected application unable to
perform a reaction, whereas the platform might still be able to react.
Consequently, the platform can be used to perform recovery reactions
when the reliability of the application is in question.

As stated above, there are two reasons for an application developer to
specify a failure reaction demand: (1) if the application has insufficient
rights to perform the required reaction, and (2) if, as a consequence of a
failure, the application is unable or unreliable to recover from the failure
itself. Depending on whether the application is capable of performing or
triggering recovery reactions in case of failure, the VerSaI language
offers two types of failure reaction demands: request-triggered reaction
demands and detection-triggered reaction demands. The application
developer uses a request-triggered reaction demand if the application is
capable of triggering the reaction but is unable to autonomously
perform the recovery reaction. A request-triggered reaction is performed
by the platform but triggered by the application by calling the
corresponding API function. By using this kind of reaction demand, the
application is in full control of starting the recovery reaction.

The application developer uses a detection-triggered reaction demand if
the application is not reliable enough to trigger the reaction itself. In
case of a detection-triggered reaction demand, the platform
automatically performs the reaction as soon as the related failure occurs.
If it uses detection-triggered reaction demands, the application has no
responsibility in the process of starting or executing the failure recovery.
However, this kind of demand can only be used if the platform is aware
of the failure that triggers the reaction, which restricts these kinds of
demands to platform service failures and platform-detectable application
failures. Failures that are internal to an application cannot automatically
trigger platform reactions. But since internal application failures are
detected by the application, it is safe to assume that the application is
also able to reliably trigger the appropriate platform failure reaction.

When the application developer specifies a failure reaction demand, no
matter which type, he or she specifies the failure recovery reaction the
platform has to perform. This is done using the common recovery
reactions specified by the common platform failure reactions (see section
4.4.4). When a failure reaction contains parameters, the developer must
also configure the corresponding reaction appropriately.

Furthermore, every reaction demand requires the specification of a
failure reaction time. A failure reaction time specifies the maximum time
interval that may elapse between triggering the recovery reaction and
finishing the execution of the reaction. The application developer uses
the failure reaction time parameter together with the failure detection

 126

Interface Specification

time parameter to ensure that the time between failure occurrence and
failure recovery is smaller than the failure tolerance time given by the
physical process controlled by the application. In case the failure
tolerance time is particularly small, the application developer might
consider using detection-triggered reaction demands rather than
request-triggered reaction demands, as this type of demand usually
allows for quicker reaction time.

In case the application developer specifies a detection-triggered reaction
demand, he or she must specify which failure detection triggers the
reaction. This is done by referencing a corresponding detection demand,
i.e., a platform service detection demand or an application monitoring
demand that is already specified. This identifies the trigger condition of
the automatic recovery reaction and assures that the application
developer specifies a failure detection triggered reaction demand only if
the corresponding detection demand is specified as well. If the
application developer wants to specify that several failures trigger the
same reaction (e.g., a standard shutdown), several detection triggered
reaction demands must be specified.

In the following, we will introduce some example failure reaction
demands based on the running example introduced in section 4.1.

Examples D6 and D7 show two request-triggered reaction demands
owned by the software component monitoring. This software
component is capable of detecting deviations in the redundantly
measured vehicle velocity and demands the restart of both sensor
software components in case such a deviation is detected.

Example D6: Upon request, the platform must restart the task hosting executable
v_sensorSWC_A_main (ASIL C).

Example D7: Upon request, the platform must restart the task hosting executable
v_sensorSWC_B_main (ASIL C).

Example D8 specifies a detection-triggered reaction demand owned by
the software component throttleSWC. This software component
demands that upon detection of the previously specified output value
failure of a_set_fin (see Example D2), the platform automatically sets
the output signal to its safe default value. Please note that the output
value failure is unambiguously defined. The corresponding detection
demand that triggers the reaction is referenced in the meta-model (see
detectionDemand relation in Figure 54).

Example D8: Upon detection of the output value failure of signal a_set_fin, the
platform must set the signal to the default signal 0.0V within 0.05ms
(ASIL C).

 127

Interface Specification

4.5.3 Resource Protection Demands

A resource protection demand enables the application developer to
specify demands regarding protection from interferences. This is the
third in a series of four top-level demand classes that constitute the
application language.

When multiple applications share the resources of an execution
platform, so-called interferences can occur. An interference is a special
type of failure scenario, which is characterized by the following cause-
effect chain: At the beginning of an interference, an application uses a
shared platform resource, typically in an erroneous manner (e.g., it uses
it for too long or modifies it in the wrong way). This resource utilization
affects the resource in such a way that it is unable to provide its service
as demanded by another application. This other application is affected
by the misbehavior of the causative application, as it perceives a failure
of the platform resource, comparable to those specified in subsection
4.5.1 Via this additional failure propagation channel, applications can
interfere with each other even if there is no functional dependency
between the corresponding applications.

The possibility of an interference with no functional dependency is one
reason why interferences are hard to control by an application. An
application is per se unaware whether a resource is shared or not, since
in an integrated architecture, the deployment is specified only after the
application has been developed. Therefore, the application does not
know what kind of interference protection is required or if protection is
required at all. The other reason why interferences are hard to handle for
an application is that interferences directly affect the infrastructural
resources provided by the platform. In many cases, the application
depends on these resources to perform the most basic functionality
(think of the CPU or the main memory). A failure of such an
infrastructural resource leaves the application very badly equipped to
deal with abnormal situations. Therefore, interferences are typically
handled by the platform, which in most cases even prevents them.

Unhandled interferences are especially severe in a mixed-critical system.
A system is called mixed-critical if the same platform hosts applications
with different criticality/integrity levels. In such a scenario, interferences
open channels for a failure of a low-critical application to propagate to a
high-critical application, and potentially cause the high-critical
application to fail. To prevent such a scenario, most safety standards
demand that all applications running on the same platform are
developed according to the highest integrity level amongst them if the
platform is unable to prevent or control interferences.

To demand protection from such an interference, the application
developer specifies a resource protection demand. Specification of a

 128

Interface Specification

resource protection demand always includes specification of the resource
to be protected and the critical failure modes of the resource from the
perspective of the demanding application. A protection demand is
fulfilled if the platform is able to guarantee that all applications with
lower criticality than the demanding application are unable to cause one
of the critical failures of the corresponding resource. Which failures are
critical differs between applications and has to be specified by the
application developer. By specifying the failure modes that are actually
critical, the application developer facilitates mediation, as the platform
must only protect the resource regarding this limited number of failures.

In the literature, most authors differentiate between temporal and
spatial interferences. Temporal interferences can be encountered when
using a time-partitioned resource like the ECU. If overutilization of this
resource by a resource user occurs, other users of the resource are
affected by the resulting drop in the resource’s performance. Spatial
interferences, on the other hand, are encountered with space-
partitioned resources like memory. A spatial interference occurs when
one resource user manipulates a segment of a space-partitioned
resource belonging to another user. However, there are resources like
memory that have space- and time-partitioned aspects. Memory, for
example, is space-partitioned regarding its separation into address
regions, where a range of addresses represent a so-called memory
segment that can belong to a single program or a restricted set of
programs. On a system with different concurrent memory users, such as
in a multi-core system, memory is also time-partitioned, since usually
only one core is able to access a memory module at a time.

The VerSaI language differentiates between two kinds of resource
protection demands: protection demands for the basic execution
resources (memory and CPU) and protection demands for the standard
platform services, comparable to platform service demands. The
relatively coarse-grained failure classification of temporal and spatial
failures is only used for basic execution protection demands, whereas we
use the common failure model specified in section 4.4.2 for the service
protection demands to provide a more fine-grained differentiation of
failure modes. Figure 55 shows the principal structure of the resource
protection meta-model.

Regarding the integration of resource protection demands into the
architecture model of the application, we have to again differentiate
between basic execution resource protection demands and service
protection demands. Since memory and CPU utilization is not explicitly
modeled using service needs, a memory protection demand is contained
in the ASWC’s memory section that must be protected from
interferences and a CPU protection demand references the runnable
requiring protection. Other than that, the related architecture elements

 129

Interface Specification

of the other protection demands are the same as specified for platform
service demands in Table 7 of section 4.5.1.

Figure 55: An excerpt of the resource protection meta-model

To reduce redundant work for the application developer, the VerSaI
language allows for an automatic protection demand specification in
addition to manual protection demand specification. In case of a manual
specification, the application developer has to specify which resource
utilization requires protection and – a most tedious task – which failure
modes are critical. In case automatic specification is configured, the
VerSaI mediator will automatically generate a resource protection
demand for every service utilization including all critical failures. To do
so, the automatic service uses the already specified platform service
failure demands. The assumption underlying automatic specification is
that if a service failure is critical regarding platform failures, then it
should be critical regarding interference-related causes as well.

In the following, we will introduce some example resource protection
demands based on the running example introduced in section 4.1.

Example D9 introduces a typical but also simple protection demand. The
demand requires the protection from temporal interferences of the
executable v_controller_main via the shared resource CPU.

Example D9: The executable v_controller_main must be protected from temporal CPU
interferences (ASIL C).

Example D10 introduces a more complex protection demand owned by
the software component monitoring, which uses the event service
provided by the host platform. The requirement demands the protection
from interferences via this shared event service. The specification
includes a list identifying two failure modes that are not allowed to occur
as a result of an interference.

 130

Interface Specification

Example D10: The monitoring.error_event service need must be protected from
interferences that cause the failure modes Event Signal Commission,
Event Timeout Failure (ASIL C).

4.5.4 Service Diversity Demands

A service diversity demand enables the application developer to specify
demands regarding the diverse design and implementation of platform
services. This is the final demand class in a series of four top-level
demand classes that constitute the application language.

According to [76], Design diversity is a defense against “common mode”
or “common cause” development errors in safety critical systems. It is a
system design concept that attempts to reduce the possibility that the
failure stemming from a common development error in one functional
failure path will result in another functional failure path. This is
accomplished by designing a functional failure path to be sufficiently
different to minimize the likelihood that the error will manifest itself in
another functional failure path implementing the system function and,
then, allow an unacceptable failure event.

The concept of diversity is used in many safety standards like DO-178C
[60], IEC 61508[59], and [46], although the terminology differs as some
standards use the term dissimilarity or independence to describe the
same or a comparable concept. Recapitulating the above definition,
diversity is used so as to reduce the likelihood of common-cause
systematic failures in redundant components. Depending on the safety
standard, there are different demands that have to be fulfilled before
diversity can be assumed. Typically, safety standards ask at least for
diverse design of the relevant components and for independence
between the teams developing them. Please note that diverse design
and implementation are no guarantee for the freedom from common
cause systematic failures, but most certification authorities accept
diversity as a measure to support the corresponding claim.

In a federated architecture, diversity usually means that there is a
redundant functional architecture, where the redundant channels have
been implemented on the technical level using different platforms.
However, in an integrated architecture, it is also possible that the
redundant channels are deployed to the same platform. To support such
an architecture, services offered by the platform, like two input channels,
are sometimes designed and implemented diversely.

Overall, there are mainly two use cases for having diverse services on an
execution platform. First, diverse services can be combined into one
virtual service by the platform developer to provide a more reliable
service. This design pattern, however, is invisible to the application, since

 131

Interface Specification

the application only sees the emerging virtual reliable service. The second
use case applies, if the application is designed according to a redundant
architecture (e.g., 1 out of 2) and both channels of the redundant
application are deployed to the same platform. In this case, the services
used by the redundant channels must be developed diversely in order
not to introduce systematic common-cause failures via the platform. To
support this use case, the VerSaI language allows the application
developer to specify service diversity demands.

If service diversity demands are specified in a comprehensive manner, a
diversity demand is only fulfilled if the corresponding services fail
independently with regard to every failure mode of the relevant service
type. If we regard the communication service as an example, the VerSaI
language differentiates between five failure modes as specified in
subsection 4.4.2 Communication Failure Model. If an application
developer demands general diversity between two communication
channels, the demand can only be fulfilled if the corresponding channels
fail independently with regard to all five failure modes.

To specify diversity demands individually, the VerSaI language offers
failure-mode precise diversity demand specification. In this case, the
application developer first identifies the critical failure modes of a service
utilization, and then demands service diversity only regarding critical
failure modes. If, for example, the omission failure of a communication
channel was the only critical failure mode in a specific use case, it would
not matter if there were systematic common causes for message
corruptions on both diverse communication channels. Comparable to
the automatic specification of resource protection demands, the
application’s demands regarding platform service failures (see section
4.5.1) can be used to identify critical failure modes automatically and
specify the diversity demand accordingly.

In the VerSaI language, there are three kinds of service diversity
demands: input service diversity demands to demand the independence
of input services, communication service diversity demands to demand
the independence of communication links, and output service diversity
demands to demand the independence of output services. We allow
specifying diversity demands for only these service types since these are,
to the best of our knowledge, the only types that are usually developed
diversely on an execution platform.

When specifying a diversity demand, the application developer has to
specify two channels that have to be developed diversely. Of course, the
application developer is unable to directly specify a channel since the
channel is a platform element. As a consequence, the developer specifies
the corresponding ports of the application to demand in a transitive
manner that the channels the ports are going to be deployed to are
developed diversely. The VerSaI language only allows the specification of

 132

Interface Specification

two-channel diversity since it is uncommon to have more than two
diversely developed services on one platform.

In addition to the diverse channels, the application developer has to
specify the failure modes of the channels that need to be independent.
The application developer specifies this by picking a set of relevant
failure modes from the appropriate failure model presented in section
4.4.2. If the application developer specifies a set of failure modes, every
combination of failure modes must be independent. As a point in case,
assume that there is a diversity demand that refers to the channels ch1
and ch2 and contains the failure modes fm1 and fm2. In this case, all of
the following pairs of failure modes must be independent to fulfill the
demand: (ch1.fm1,ch2.fm1), (ch1.fm1,ch2.fm2),
(ch1.fm2,ch2.fm1) (ch1.fm2, ch2.fm2).

Finally, all service diversity demands are contained in the application itself
since the demand usually spans several ASWCs, leaving only the
application itself as a suitable container. Figure 56 shows the resulting
service diversity meta-model.

Figure 56: The service diversity meta-model

In the following, we will introduce some example service diversity
demands based on the running example introduced in section 4.1.

The running example application contains two redundant sensor
software components that read redundant vehicle velocity sensor values.
Example D11 specifies a service diversity demand for the redundant
sensor signals v_raw_A and v_raw_B. If this demand is fulfilled, the
application developer can design an application safety case based on the
assumption that the specified common cause failures are avoided by the
platform design.

Example D11: The analog input channels used to read the input signals v_raw_A and
v_raw_B must be developed diversely. The following common-cause
failure shall be avoided by means of diverse design: Analog Input Value
Failure (ASIL C).

 133

Interface Specification

4.6 Platform Language

In this section, we will introduce the platform language. The platform
developer uses the platform language for the specification of safety-
related guarantees regarding the behavior of the platform. These
guarantees can be used for the mediation of demands specified using
the VerSaI application language introduced in section 4.5. Just like the
application language, the specification of the platform language is based
on the common types, attributes, and relations specified by the common
language introduced in sections 4.3 and 4.4, and to some extent on the
platform model, which is presented in Annex A.3.

Prior to the description of the platform language we want to note that
the overall design of the platform language is in many aspects
comparable to the design of the application language, but also differs
significantly in other aspects. In order to avoid repeating things that
were already specified in the previous section, we will refer the reader to
the specification of the application language where appropriate.
However, this is not always possible in order to keep up the flow of
reading.

The platform developer uses the platform language to specify the vertical
safety interface of the platform. The platform safety interface contains all
the guarantees regarding the behavior of the platform that can be used
to fulfill the demands of the platform’s guest applications. In order to
provide a sufficient level of trustworthiness, the platform development
process must include steps that provide evidence about the reliability of
the guarantees. In certain industries, it might also be necessary for the
platform to undergo assessment or certification; the guarantees can then
be used to support the safety case of the guest applications.

The structure of the application and platform language is based on the
observation that there are four major classes of safety-related
dependencies between an application and a platform. Analogously to
the application language, the platform language consists of four basic
types of guarantees: platform service guarantees, health monitoring
guarantees, resource protection guarantees, and service diversity
guarantees.

With platform service guarantees, the platform developer specifies the
platform’s capabilities of providing reliable infrastructural services and
detecting failures should they occur. Health monitoring guarantees
enable the platform developer to specify the platform’s mechanisms for
detecting application failures and executing failure control reactions.
Resource protection guarantees, on the other hand, are used to specify
the platform’s capability of protecting resources from interferences.
Finally, using service diversity guarantees, the platform developer

 134

Interface Specification

specifies which platform services are developed diversely and can
therefore be used in various redundancy safety concepts.

Figure 57 shows the top-level structure of the platform language meta-
model including the different demand classes. If you compare this figure
with Figure 51 depicting the structure of the application language, you
will see the analog structure of both models, which simplifies mediation.
Just as in the application language, guarantees are also not contained in
the vertical platform interface, but in the corresponding service or
element that is mainly responsible for providing the guarantee. The
containment relations of the different guarantees will be introduced in
the following subsection.

Regarding the parameterization of demands, failure modes, and failure
reactions, the semantics of the platform language is completely different
than the semantics of the application language. In the case of the
application language, parameters are used to specify that single relevant
failure mode or reaction as precisely as possible. The platform developer,
however, does not want to specify one failure mode or reaction, but the
set or the range of failure modes/reactions that the platform is capable
of handling. To allow this, specifying parameters always spans a range of
possible failure modes or reactions. For instance, if a platform developer
specifies a failure detection time of x ms, this means that all failure
modes with a detection time equal to or longer than x ms can be
handled.

Platform service guarantees will be introduced in subsection 4.6.1,
health monitoring guarantees in subsection 4.6.2, resource protection
guarantees in subsection 4.6.3, and finally service diversity guarantees in
subsection 4.6.4.

 135

Interface Specification

Figure 57: The top-level meta-model of the platform language

4.6.1 Platform Service Guarantees

A platform service failure guarantee enables the platform developer to
specify guarantees regarding the platform’s capabilities of avoiding or
detecting failures of its provided services. This is the first in a series of
four top-level guarantee classes that constitute the platform language.

In order for a platform to be used in a safety-critical system, it must
provide safe services to enable an application to provide safe functions.
Safety is typically achieved by one of the following means [77]:

A) Fault tolerance is intended to preserve the delivery of safe service in
the presence of active faults. Fault tolerance is a design measure that
usually involves the development of mechanisms for performing error
detection and error handling. Regarding platform services, this means
that the platform must be able to detect erroneous services and allow
for appropriate error handling (the latter aspect is covered in the next
section). Error handling does not necessarily imply that the service user
perceives the service as failed. If the platform is able to perform error
handling in a fail-operation manner (e.g., using rollback or redundancy),
the service users might be able to perform their tasks uninterruptedly.

B) Fault avoidance or fault prevention is attained by quality control
techniques employed during the design and manufacturing of hardware
and software. They include structured programming, information hiding,

 136

Interface Specification

modularization, etc., for software, and rigorous design rules for
hardware.

C) Fault removal is performed both during the development phase, and
during the operational life of a system. Fault removal during the
development phase of a system life-cycle consists of three steps:
verification, diagnosis, correction. Verification is the process of checking
whether the system adheres to given properties, termed the verification
conditions. If it does not, the other two steps follow: diagnosing the
fault(s) that prevented the verification conditions from being fulfilled,
and then performing the necessary corrections. In other words, fault
removal includes verification and validation measures like testing,
inspection, static analyses, model checking, etc.

Just like platform service demands, platform guarantees are divided into
detection and avoidance guarantees (for more information regarding the
semantics of detection and avoidance, please refer to section 4.5.1). The
availability of a platform service guarantee, be it detection or avoidance,
is mainly determined by the implemented fault tolerance mechanisms.
The integrity level of the provided guarantee, however, is determined by
the fault avoidance and fault removal steps that the platform developer
performed during the platform development process. Which kind of
development process is sufficient to claim a certain level of integrity is
usually specified by the applicable safety standard. On the other hand,
determining whether a certain composition of mechanisms is sufficient
to claim the detection or avoidance of a failure must be argued by the
platform developer on a case by case basis27.

The steps involved in developing a certain behavior that is backed by
evidence and compliant with a safety standard is relevant for every kind
of execution platform. However, if the execution platform is part of an
integrated system it is always developed independent of the guest
applications. Consequently, the platform guarantees have to be chosen
before the applications and their demands are known. In order to pick
the right guarantees, the platform developer has to rely on experience or
on standardized safety concept patterns in the relevant industrial
domain. If the platform is developed for the automotive industry, it
should be capable of hosting an application that is safeguarded using
the standardized E-Gas monitoring concept.

We will now continue with a description of the modeling of platform
service guarantees, including additional parameters, the integration of
the demands into the architecture model of the application, and the
usage of the common platform service failure model.

27 There are some standards, like [59] and [46], that provide guidelines for the choice
of mechanisms that are appropriate for handling certain failure modes.

 137

Interface Specification

On the top level, platform service guarantees are separated into
guarantees for failure detection
(PlatformServiceFailureDetectionGuarantee) and for failure
avoidance (PlatformServiceFailureAvoidanceGuarantee). Those
abstract guarantees are further differentiated into failure- or element-
specific guarantees, like communication failure detection and avoidance
guarantees. The platform developer instantiates these guarantees to
specify the safety-related behavior of the platform. To configure the
guarantee, the platform developer chooses the related platform element
of the corresponding type (e.g., a communication link for
communication failure guarantees) and a failure from the matching
failure model (e.g., the corruption failure from the communication
failure mode). The related element and the related failure mode are
specified using containment relations. The guarantee is contained in the
related platform element and contains the related failure mode.

Regarding the parameterization of the guarantee, the platform
developer has to specify the integrity level of the guarantee (a parameter
inherited from the abstract interface requirement class, see section
4.3.4Integrity Level), the failure detection time of the guarantee in case it
is a detection guarantee (see section 4.5.1), and all the parameters of
the related failure-mode (see section 4.4.2 for the failure modes of each
parameter). The platform developer uses the parameters to describe the
range of detectable or avoidable failures. Specifying a failure detection
time of x ms means that failures with a failure detection time of x ms or
larger can be detected.

Figure 58 shows an excerpt of the platform service guarantee meta-
model.

Figure 58: The top-level structure of the platform service guarantee meta-model

 138

Interface Specification

Before we provide a list of all available platform service guarantees, an
explanation of a particularity of the platform model is in order. There are
certain platform elements called platform objects that are generated by
the integrator during platform configuration, as opposed to every other
kind of platform element (e.g., an input channel) that is modeled by the
platform developer during platform development. Every platform object
is a logical software object that can only be generated when the needs
of the host applications are known. Example platform objects are
software timers, semaphores, mutexes, events, partitions, etc.

Since these elements are only generated during integration, the platform
developer cannot directly specify guarantees for them. Instead, the
platform developer specifies a platform object guarantee template
containing the guarantees of the platform object. This guarantee
template is contained in the platform element or platform service that
provides the platform object. As an example, the mutex guarantee
template is contained in the mutex service. The VerSaI mediator will
automatically generate these object-related guarantees when the
integrator instantiates a platform object (see section 5.1.1).

As a consequence of this procedure, object-related guarantee types can
be contained in the service providing the platform object, and in the
platform object itself. Nevertheless, the object-related guarantees
contained in the service play no role in mediation. As soon as the
integration phase is finished, the mediation algorithm will only use the
guarantees generated for the platform object to fulfill the application
guarantees.

Table 8 shows all available platform service guarantees, including their
related platform elements and their related failure modes. Platform
object related platform service guarantees are distinguished by having
two related platform elements, the platform object container and the
platform object itself.

Table 8: A list of all platform service demands including their related application elements and
failure modes.

Guarantee Related
platform
element

Related failure
mode

Failure model

MutexFailure
Guarantee

MutexService
Mutex

MutexFailure Synchronization-
FailureModel

EventFailure
Guarantee

EventService
Event

EventFailure “

Communication
FailureGuarantee

Communication
Link

Communication-
Failure

Communication-
FailureModel

DigitalInput DigitalInput DigitalInput- InputFailure-

 139

Interface Specification

FailureGuarantee Channel Failure Model

AnalogInput
FailureGuarantee

AnalogInput
Channel

AnalogInput-
Failure

“

DigitalOutput
FailureGuarantee

DigitalOutput
Channel

DigitalOutput-
Failure

OutputFailure-
Model

AnalogOutput
FailureGuarantee

AnalogOutput
Channel

AnalogOutput-
Failure

“

GlobalTimeFailure
Guarantee

GlobalTime-
Service

GlobalTime-
Failure

TimeService-
FailureModel

RelativeTime
FailureGuarantee

TimerService
Timer

RelativeTime-
Failure

“

WaitTimeFailure
Guarantee

WaitService WaitTime-Failure “

MemoryService
FailureGuarantee

MemoryService
File

MemoryService-
Failure

MemoryService-
FailureModel

TTRunnable-
Scheduling
FailureGuarantee

TimeTriggered
Task

TTRunnable-
Scheduling-
Failure

Scheduling-
FailureModel

RunnableScheduling
FailureGuarantee

Task GeneralRunnable-
Scheduling-
Failure

“

Interrupt-
Scheduling-
FailureGuarantee

Interrupt Interrupt-
Scheduling-
Failure

“

CoreRelatedFailure
Guarantee

Core CoreRelated-
Failure

BasicExecution-
FailureModel

MainMemoryFailure
Guarantee

MemoryModule
MemorySegment

MainMemory-
Failure

“

PowerSupplyFailure
Guarantee

Platform PowerSupply-
Failure

“

In the following, we will introduce some example platform service
guarantees based on the running example introduced in section 4.1.

The platform service guarantee Example G1 specifies a guarantee
provided for the ADC input channel called voltage_in. Please note that
the input channel comprises hardware as well as software components,
such as drivers provided by the platform.

Example G1: A sampling latency of input signals received via voltage_in larger than
0.1ms can be avoided (ASIL B).

 140

Interface Specification

Example G2 specifies a guarantee provided by the can0 communication
link. Comparable to the previous guarantee, can0 comprises hardware
(controller and transceiver) as well the communication software stack
provided by the platform.

Example G2: Corruptions of messages transmitted via communication link can0 can
be detected (ASIL C).

4.6.2 Health Monitoring Guarantees

A health monitoring guarantee enables the platform developer to specify
the platform’s capabilities of detecting application failures and executing
failure recovery reactions. This is the second in a series of four top-level
guarantee classes that constitute the platform language.

Both mechanisms, failure detection and recovery, can be used to
improve the fault tolerance of an application. With an application
monitoring mechanism, the platform is able to detect erroneous
application behavior, and by providing a failure recovery mechanism, the
platform is even able to help the application recover from the situation.
Additionally, failure recovery mechanisms can be used by the platform to
recover from platform service failures (see previous section for additional
information regarding platform service failure guarantees).

Comparable to the health monitoring demand model, the corresponding
guarantee model is divided into two parts. The first part contains
guarantees regarding application monitoring and failure detection and
the second part contains guarantees regarding failure recovery
mechanisms. Figure 59 gives an overview of the health monitoring
model. This section shares the split structure of the model: Application
monitoring guarantees are introduced in the next subsection and failure
reaction guarantees are introduced after that.

Figure 59: The health monitoring guarantee meta-model

 141

Interface Specification

Application Monitoring Guarantees

The platform developer uses application monitoring guarantees to
specify the platform’s capability of monitoring the application behavior
and detecting deviations from the application’s specified behavior, i.e.,
application failures. For the specification of platform-detectable
application failures, the model references the common application failure
model presented in section 4.4.3.

Since in an integrated architecture the guest applications are unknown
during a platform’s development, the applications’ nominal behavior is
not known either. Therefore, application monitoring mechanisms have
to be configurable to enable the system integrator to adapt the
mechanisms to the specific behavior of the guest applications.
Consequently, the platform developer is only able to guarantee the
correct functioning of the monitoring mechanisms under the premise
that the mechanisms are configured correctly. The platform developer
models this premise by specifying a conditional application monitoring
guarantee.

An application monitoring guarantee inherits the possibility of containing
conditions from the general interface requirement class as specified in
section 4.3.2. At first glance, there are two types of conditions that are
qualified for specifying this kind of premise: configuration-dependent
conditions and manual conditions. However, upon closer examination,
configuration-dependent conditions are not suitable for automatically
checking for the correctness of a monitoring mechanism’s configuration.
A configuration-dependent condition cannot specify the required value
of a platform configuration parameter if the value depends on a
parameter of the application. To allow such a construct, all configuration
parameters of the application must be known during platform
development. This is not the case in the VerSaI language. If we adapt the
VerSaI language to a predefined standard like AUTOSAR, where the
application configuration parameters are fixed, such a mechanism would
be possible. For now, the platform developer has to specify a manual
condition to require the integrator to check the configuration for
correctness.

If the platform developer specifies an application monitoring guarantee,
the equally named class (see Figure 59) must be instantiated. Following
the containment rule of the platform language, all application
monitoring guarantees are contained in the platform’s application
monitoring service, since this service is responsible for providing
monitoring mechanisms. When the demand is instantiated, the platform
developer chooses the application failure that the monitoring facility can
detect from the common application failure model specified in section
4.4.3. If the application monitoring facility is capable of detecting more

 142

Interface Specification

than one application failure, the platform developer has to specify
several application monitoring demands.

As always, the next step in specifying the guarantees is to parameterize
the guarantee itself as well as the related common element, in this case
the related application failure. Since every application monitoring
guarantee is a detection guarantee, this includes the minimum failure
detection time. With regard to the parameterization of the application
failure mode, the developer has to parameterize the failure-mode-
specific parameters and the supervised entity or, in the case of the
platform, the supervisable entities. The VerSaI language provides the
developer with three choices: All executable entities are supervisable (ISR
and runnable), only runnables are supervisable, or only ISRs are
supervisable. To specify that no supervision is possible, the platform
developer does not specify the corresponding guarantee.

In the following, we will introduce some example application monitoring
guarantees based on the running example introduced in section 4.1.

Example G3 specifies the capabilities of the platform with respect to
detection execution time failures. As specified above, the platform
developer has to specify which types of executable entities can be
supervised.

Example G3: The platform is capable of detecting execution time failures of runnables
(ASIL C).

Example G4 specifies a guarantee with respect to the detection of logical
sequence failures. Furthermore, example G4 specifies a manual condition
which states that the guarantee is only valid if the monitoring facility is
configured appropriately. The manual condition further demands the
generation of an evidence. Since this condition is a manual condition,
the integrator has to manually set the status of the condition before the
mediator is capable of using the specified guarantee. For more
information regarding the specification of manual conditions and
conditions in general, please refer to section 4.3.2.

Example G4: The platform is capable of detecting logical sequence failures of
runnables and ISRs (ASIL C). Conditions apply: “The monitoring facility
must be configured appropriately”. Corresponding evidences must be
generated: ”Review of configuration file”.

Failure Reaction Guarantees

The platform developer uses failure reaction guarantees to specify the
platform’s capability of performing reactions that help application to
recover from application or platform service failures. For the specification

 143

Interface Specification

of recovery reactions, the guarantee model references the common
failure reactions presented in section 4.4.4.

The failure recovery reactions specified in section 4.4.4 are common
reactions found in many platforms. Comparable to application
monitoring facilities, some of the reactions are configurable to allow
adapting the reaction to the specific needs of the guest application. If
that is the case, the platform developer must specify a conditioned
guarantee in order to model that the corresponding failure reaction can
only be provided correctly under the premise that it is configured
correctly. For more information regarding conditional guarantees for
configurable platform mechanisms, please refer to section 4.3.2.

There are two kinds of failure reaction guarantees: request-triggered
reaction guarantees and detection-triggered reaction guarantees. The
platform developer models a request-triggered reaction guarantee to
specify that the platform is capable of performing a certain recovery
reaction on application request, i.e., via an API call. In contrast, the
platform developer models a detection-triggered reaction guarantee to
specify that the platform is capable of performing a recovery reaction as
an automatic result of a detected failure.

To model both kinds of guarantees, the platform developer must specify
the guarantee’s failure reaction time and related failure reaction. The
failure reaction time is the maximum time between the triggering of the
reaction, be that trigger a request via the API or a failure detection, and
the time when the execution of the reaction has finished. The related
failure reaction is chosen from the failure recovery model specified in the
previous section. Some of these failure reactions have parameters that
have to be set when the platform developer specifies a failure reaction
guarantee. When inspecting the failure model you will realize that some
reactions reference multiple parameters of the same type. The “issue
default signal” reaction can, for instance, contain several default signals.
For a reaction demand specified by the application this makes no sense,
which is why only the first default signal of the list is relevant in case the
reaction is specified in the context of a demand. For a reaction
guarantee, however, the platform developer is able to specify all default
signals the platform is able to send. In case there is no limitation on the
default signals, the platform developer sets the default signal list to
NULL. In case the platform is unable to issue default signals at all, the
platform developer specifies no such guarantee.

This pattern is also used to specify the architecture element of a failure
recovery reaction affected by a reaction. This kind of reference identifies,
for example, which partition can be shut down by a shutdown reaction
or which channel a default signal can be sent on (for more information,
refer to section 4.4.4). When used to specify a platform reaction
guarantee, the platform developer uses these references to specify all

 144

Interface Specification

possible reaction-affected architecture elements, for example, all output
channels that are able to issue a default signal. Table 9 shows a list of all
failure reactions and how their reaction-affected architecture reference
can be parameterized when the failure recovery reaction is used in the
context of a reaction guarantee.

Table 9: A list of all platform service demands including their related application elements and
failure modes.

Reaction Reaction-affected platform
element

RestartTask All Task Objects, Task

ShutDownTask “

RestartPartition All Partition Objects,
Partition

ShutDownPartition “

RestartPlatform ExecutionPlatform

ShutDownPlatform ExecutionPlatform

SendDefaultMessage All ComLinks, ComLink

IssueAnalogDefault-
Signal

All AnalogOutputChannels,
AnalogOutputChannel

IssueDigitalDefault-
Signal

All DigitalOutputChannels,
DigitalOutputChannel

Indication All ASWCs

HandlerExecution All Runnables

There are two more important aspects regarding the specification of
reaction-affected platform elements: Most of the references are
conditional, and there are wildcard references.

Using conditional references, the platform developer is able to specify
that a reaction can be executed on a specific element under the premise
that a certain condition is fulfilled. It is, for example, possible to specify
that the related element must be configured appropriately (e.g., a task
must have the property restart_enabled set to true before it can be
restarted) or the integrator must perform a manual check before the
element can be used (e.g., a partition may only be shut down if it has
been checked that it does not affect another application).

Wildcard references like “all runnables” allow the platform developer to
specify that a certain reaction can be performed on all elements of a
type. Conditional references can also be used together with platform
object wildcard references (partitions and tasks). If the platform

 145

Interface Specification

developer specifies such a reference, this means that every platform
object of that type is a potential reaction-affected element if the
specified condition holds.

The parameters described above have to be set for both kinds of
reaction guarantees, detection-triggered guarantees and request-
triggered guarantees. Thus, when modeling a detection-triggered
guarantee, the platform developer has to additionally specify which
failure detections are able to trigger the corresponding reaction. The
platform developer selects these failure detections via the list of specified
detection guarantees, which includes platform service detection
guarantees and application monitoring guarantees.

In the following, we will introduce some examples of the rather complex
specification of failure reaction guarantees. The example guarantees are
based on the running example introduced in section 4.1.

Example G5 specifies a guarantee that states that the platform is capable
of restarting tasks upon request. Since the guarantee is a request-
triggered reaction, the possible detection triggers do not have to be
specified. However, the possible targets of the restart have to be
specified by the platform developer. For simplicity’s sake, we chose to
use the wildcard “all tasks” for this guarantee, meaning that in
principle, every task can be restarted. However, a manual condition
applies, which states that the caller must have sufficient rights to restart
the task. Since this is a manual condition, the integrator would have to
check whether this is true for every user of this guarantee.

Example G5: The platform is capable of restarting tasks upon request. Possible restart
targets: all tasks. Conditions apply: “The caller must have sufficient rights
to request the restart” (ASIL C).

The second guarantee provided by example G6 is a detection-triggered
reaction guarantee. Consequently, the possible detection triggers have
to be specified. We use the wildcard “all detections” to specify that
every detection mechanism is capable of triggering this “shutdown
partition” reaction. With respect to the possible target partitions, there is
a condition that limits the targets to partitions that have the parameter
restart_enabled set to true. Additionally, the same manual condition
that applied for example G5 applies for example G6 as well.

Example G6: The platform is capable of shutting down partitions upon detection.
Possible triggers: all failure detection events. Possible restart targets:
partition objects with the configuration condition “restart_enabled ==
true”. Conditions apply: “The caller must have sufficient rights to request
the shutdown” (ASIL C).

 146

Interface Specification

4.6.3 Resource Protection Guarantees

A resource protection guarantee enables the platform developer to
specify the platform’s capabilities of protecting the application from
interferences. This is the third in a series of four top-level guarantee
classes that constitute the platform language.

An interference failure is rather a failure scenario than an actual failure
mode. In an interference scenario, an application is affected by a failure
of a platform resource, but this failure is not caused by the resource
provider, i.e., the platform, but by another resource user, i.e., another
application. Most safety standards demand that all applications that can
interfere with each other must be developed according to the same
integrity level. Hence, if the platform does not protect applications from
interferences, this will either lead to deployment incompatibilities (if the
applications cannot be developed according to a higher integrity level) or
to an increase in development costs (if the applications are developed
according to a higher level). More information regarding interferences is
found in section 4.5.3.

If the platform developer uses a resource protection guarantee to specify
the platform’s capability to offer protection from interference, the
platform developer has to choose from one of thirteen different
protection guarantee classes. Each class represents a guarantee to
protect a different type of resource, including cores, memory modules,
I/O- and com-channels, and the different services provided by a platform.
Since it is not always possible to provide comprehensive protection, the
platform developer has to additionally specify for each instantiated
guarantee which failure modes are protected from interference causes.
For most of the protection guarantee types, the platform developer uses
the detailed resource-specific failure models introduced in section 4.4.2.
However, for the specification of CPU and memory protection
guarantees, there is no refined failure model, which is why the developer
has to use the coarse-grained temporal/spatial interference
differentiation2829. Figure 60 provides an overview of the resource
protection guarantee meta-model.

28 On the abstraction level applicable to the VerSAI approach, a CPU poses only
temporal interference failures.

29 The difference between temporal and spatial interferences is described in section
4.5.3.

 147

Interface Specification

Figure 60: An overview of the resource protection guarantee model

We have already argued that comprehensive protection guarantees are
hard to achieve; this is also true regarding aspects other than the failure
modes to protect against. Therefore, the VerSaI language offers more
gradations for precisely specifying a platform’s protection capabilities.
First, many platforms offer so-called partitions. A partition is a logical
grouping of ASWCs, where ASWCs in different partitions are not able to
interfere with each other. Or put in other words, protection is only
provided between ASWCs that reside in different partitions. If that is the
case, the platform developer must set the
partitionSeparationRequired parameter of the corresponding
guarantee to true. The other gradation aspect regards the shared usage
of the protected resource. It is much easier for the platform to provide
protection from other users if the users are not allowed to access the
resource at all. However, in case protection is required for users that
share a resource, more sophisticated protection mechanisms are
required. To specify that protection is available even between shared
resource users, the platform developer must set the
sharedElementUsagePossible parameter to true. In case the
protected platform element is a platform object (e.g., a mutex), there are
even two levels of resource sharing. The first is sharing the object itself,
which is covered by the previously mentioned parameter. The second
level is sharing access to the service that provides the platform object
(e.g., the synchronization service). To specify if protection is provided for
users accessing the same service, there is an additional parameter called
sharedServiceUsagePossible for parameterizing platform-object-
related protection guarantees.

Comparable to platform service guarantees, resource protection
guarantees are always contained in the related platform element. In this
case, this is the protected resource. A CPU protection guarantee is, for
example, contained in one of the platform’s CPUs/cores.

 148

Interface Specification

In the following, we will introduce some examples resource protection
guarantees based on the running example introduced in section 4.1.

Example G7 shows a temporal CPU protection guarantee. The
partitionSeparationRequired parameter is set to true, meaning
that protection is only guaranteed if mixed-critical executables run in
different partitions. The sharedElementUsagePossible parameter is
set to false, which additionally demands that mixed-critical executables
have to be mapped to a different core as well.

Example G7: The platform is capable of protecting core0 from temporal interferences.
Mixed-critical users must be allocated to different partitions. Mixed-
critical users must be allocated to a different CPU (ASIL C).

Example G8 specifies a protection guarantee for the event_service
service provided by our example platform. Since an event service
manages platform objects (the events), we have an additional parameter
for precisely specifying the protection guarantee. In the example
guarantee, the partitionSeparationRequired parameter is set to
false. As a consequence, protection is still valid even if mixed-critical
software components are not separated by partition boundaries. The
new sharedServiceUsagePossible parameter is set to true, which
means that mixed-critical software components are even allowed to
share/use the service. However, the sharedElementUsagePossible
parameter is set to false, which means that protection cannot be
guaranteed if mixed-critical software components access the same event.

Example G8: The platform is capable of protecting the service event_service from
interferences that cause the failure modes Event Signal Commission,
Event Signal Omission, Event Timeout Failure. Mixed-critical users do not
have to be allocated to different partitions. Mixed-critical users are
allowed to use the same service. Mixed-critical users are not allowed to
use the same event (ASIL C).

4.6.4 Service Diversity Guarantees

A resource protection guarantee enables the platform developer to
specify guarantees regarding the availability of diversely designed and
implemented platform services. This is the final guarantee in a series of
four top-level guarantee classes that constitute the platform language.

The goal of diversely developed services is to reduce the probability of
common-cause systematic failures in both services. Consequently, design
diversity is only applied to two (or possibly more) services of the same
type, i.e., two input channels. A platform developer can use diversely
developed services to achieve two kinds of goals. On the one hand, a
platform developer can provide a high-integrity service by combining

 149

Interface Specification

two diversely developed services with lower integrity. Such integrity level
decomposition is done, for example, when developing systems according
to the automotive safety standard ISO 26262 [46]. However, such a
design is concealed from the eyes of the application developer, as the
developer would only see a platform service with high integrity.
Consequently, no service diversity guarantee is required in this case. On
the other hand, the application developer himself could follow the same
integrity level decomposition strategy and develop two functional
channels as well. In this case, the application developer must ensure that
there is sufficient reason for assuming that both channels have a low
probability of common-cause systematic failures. If both channels use
the same or two equally developed services, the possibility of a
systematic failure of the service(s) subverts the independence argument
of the application developer. To support diverse channels on the
application level that are both deployed to the same or the same kind of
platform, a platform provides diversely developed services.

Which development techniques and evidences are required before
dissimilarity can be claimed differs from standard to standard. Usually
the techniques evolve around: use of different compilers, linkers, and
loaders; use of different programming languages; design and
development performed by independent teams with restricted
interactions; designs that follow different principles (e.g., current and
voltage-based analog input channels).

When the platform developer specifies a service diversity guarantee, the
developer chooses from three kinds of guarantees: one for modeling
diverse input channels, one for modeling diverse communication links,
and one for modeling diverse output channels. Other platform service
types are commonly not provided in a diverse manner and the VerSaI
language therefore provides no such service diversity guarantees.

When modeling a diversity guarantee, the platform developer specifies
two diversely developed channels; the VerSaI language provides no
support for three-way diversity. Furthermore, the developer specifies all
failure modes of the diversely developed channels when there is
sufficient evidence to support the claim that there are no common-cause
systematic failures. When specifying a set of failure modes, every
possible combination of two failure modes must be free from common-
cause systematic failures (see section 4.5.4 for an example).

As a last point regarding the specification of diversity guarantees, all
diversity guarantees are contained in the platform itself. This is because a
diversity guarantee spans several channels, so that we chose the
container of both channels as a container for the reference. Figure 61
provides an overview of the service diversity guarantee meta-model.

 150

Interface Specification

Figure 61: The service diversity guarantee meta-model

In the following, we will introduce an example service diversity
guarantee based on the running example introduced in section 4.1.

Example G9 specifies a diversity guarantee that is analog to the example
demand D11 specified in section 4.5.4. The guarantee states that the
voltage measuring input channel voltage_in and the current
measuring input channel current_in are developed diversely and that
common-cause value failures are avoided.

Example G9: The analog input channels voltage_in and current_in are designed
diversely. There are no common-cause failures with respect to the
following failure mode: Analog Input Value Failure (ASIL C).

 151

Interface Mediation

5 Interface Mediation

This chapter is the second of three chapters describing our methods for
“Efficiently Deploying Safety-Critical Applications onto Open Integrated
Architectures”. In this particular chapter, we will describe the realization
of our mediation algorithm for checking if an application is capable of
executing safely on a particular execution platform. This corresponds to
the second contribution of this thesis as specified in chapter 1.

Contrib.2 Interface Mediation: Developing an automated process for checking
the safety compatibility of an application and a platform in an open
integrated architecture.

The automated mediation process provided by the VerSaI method is
embedded into the general task of configuration and deployment. Inputs
to this phase are the previously developed applications and platforms, as
well as the preliminary deployment plan. Generally speaking, the
integrator integrates the applications and platforms to build the final
system during configuration and deployment. With respect to the VerSaI
method, the integrator uses the previously specified vertical safety
interfaces of applications and platforms together with the VerSaI
mediator to decide whether the applications are capable of executing
safely on the given platforms. The configuration and deployment task is
divided into several steps. Since the VerSaI mediator performs automated
actions in several of these steps, we will discuss the different steps in the
following.

In the first step of the configuration and deployment task, the integrator
configures the general-purpose execution platforms, and sometimes also
the applications, so that the platform is capable of hosting the
application at hand. Since the vertical safety interfaces specified by the
platform developer and the application developer are integrated with the
application and platform model, the configuration automatically affects
the safety interfaces as well. After configuration, the integrator
implements the deployment plan by mapping the components of the
application onto the resources and services provided by the platform.
This step also affects certain elements of the safety interface, but
primarily, the mapping provides information required for the mediator.
The VerSaI mediator uses the deployment data to identify the guarantees
that are basically capable of fulfilling the individual demands and, in a
next step, for checking whether the identified guarantees are capable of
fulfilling the demand. After the mediator has performed this procedure
for every demand, the mediator provides the results of the mediation to
the integrator. If the mediation requires further manual decision making,

 153

Interface Mediation

the integrator is capable of performing the required actions and then
retriggers the mediation. When there are no more points that require
manual decision, the mediation is completed and can finally be assessed
as failed or successful. An overview of the configuration and integration
task is shown in Figure 6230.

Vertical Safety
Interface of the

Application

Vertical Safety
Interface of the

Platform

Deployment
Plan

Mediation Mediation
Result ...

Configuration & Integration

Platform
Conifguration

Application
Configuration

System
Integration

Integrated
System

Manual
Condition Eval

yes no

corrections
required?

AAA

A
A

VerSaI
mediator

Integrator

Figure 62: An overview of the VerSaI mediation in the context of the overall VerSaI method

In this chapter, we will introduce the afore-described process with a
focus on the automatic actions that are performed by the mediator. The
mediator’s main task is to perform the mediation itself, but it also assists
the integrator during several integration steps. The mediator performs
the following tasks:

 During and after configuration: automatic specification of platform
object guarantees and automatic evaluation of configuration
dependent conditions.

 After system integration: automatic evaluation of deployment-
dependent conditions.

 Before mediation: evaluation of manual conditions.

 Mediation: checking whether all application demands are met by the
available platform guarantees.

 After mediation: visualizing the mediation results and fixing fixable
issues.

30 The interface between this task and the residual development process is shown in
chapter 3.

 154

Interface Mediation

This chapter is structured in accordance with these tasks. Automatic
handling of platform objects and configuration-dependent conditions is
explained in 5.1. The evaluation of deployment-dependent conditions is
provided by section 5.2, whereas the evaluation of manual conditions is
shown in section 5.3. The main focus of this chapter is the specification
of the mediation algorithms in section 5.4. We conclude this chapter
with the visualization of the mediation results provided by the VerSaI
mediator in section 5.5.

5.1 Configuration

During configuration, the integrator can adapt the applications and the
platforms to their new system context. However, the integrator cannot
adapt the behavior of applications and platforms freely; application and
platform behavior can only be adapted regarding the variation points
envisaged and designed by the developers. Besides configuration, there
are other stages in the life-cycle of a system that contain variation points.
However, with regard to the mediation of applications and platforms,
we only consider variation points resolved during configuration.

Usually, an application is not as configurable as an execution platform.
The reason is that a general-purpose execution platform draws its main
value from being adjustable and able to host as many kinds of
applications as possible, whereas applications are often developed for a
single kind of system, leaving no need for configuration-time adaptation.
Nevertheless, especially in the automotive domain, some software
applications are developed in an adaptable way, so as to efficiently and
flexibly use a product in different systems. Systems like the ESC or the
cruise control are often developed once and then adapted for individual
makes and models. This adaptation influences the internal behavior of
the component, like the controller parameters, but even changes at the
component’s interface are possible. Regarding the cruise control, for
example, most vendors have a different operation concept including
different kinds of levers and buttons that can result in different software
interfaces.

A different controller behavior can easily influence the parameters of an
application demand, such as the demand’s criticality (think, for example,
of a higher maximum velocity that the application is allowed to operate
at). Changes in the interface can even make certain demands obsolete,
for example, when a certain input channel is not even used in a
particular configuration. Modeling all these configuration dependencies
is possible using the configuration-dependent conditions provided by the
VerSaI language and introduced in section 4.3.2.

The concept of configuration-dependent guarantees is especially
valuable for specifying the vertical interface of a platform. On the one

 155

Interface Mediation

hand, several of a platform’s safety mechanisms can be deactivated for
the sake of performance when using the platform in a non-safety-critical
system. On the other hand, there are several safety mechanisms that
must be configured appropriately before their principal capabilities of
detecting or avoiding failures turn into actual guarantees.

As introduced in the preface to chapter 5, the first task of the integrator
is to configure the system’s applications and platforms. After the
configuration is completed, all configuration-dependent conditions can
be resolved. This step is automatically performed by the VerSaI mediator
in the transition between the configuration and the integration step. We
will describe how this is done in subsection 5.1.2.

However, in addition to configuration parameters, there is another way
to adapt a platform, which has to be covered by our approach. During
platform configuration, the integrator creates so-called platform objects.
A platform object is a logical31 component like a task or a software
timer, which is only instantiated when the needs of an application are
known, i.e., during configuration when the deployment is already
planned. Since platform objects are created during configuration, the
platform developer is unable to specify configuration parameters and
guarantees for them. Instead, the developer specifies configuration and
guarantee templates to specify the safety-related capabilities of platform
objects. These templates are used to automatically instantiate
configuration parameters and guarantees when the integrator
instantiates a platform object. The process of automatic platform object
support is introduced in section 5.1.1.

5.1.1 Platform Object Instantiation

In this section, we will specify the automatic mechanisms provided by
the mediator to support platform object instantiation.

Platform objects, which include the more specific operating system and
kernel objects, are logical objects provided by the platform. Platform
objects include task, semaphores/mutexes, message queues, etc. These
objects are usually created and used by the application dynamically.
However, in a system like an AUTOSAR or an ARINC 653 platform, the
objects cannot be created dynamically; instead, every application
developer has to specify which and how many objects of a type the
application requires. This information is then used by the integrator to
statically create the objects needed during platform configuration.

Since the objects are only created during integration, the developer is
unable to specify guarantees and configuration parameters for a

31 Logical in the sense that there is no counterpart in hardware

 156

Interface Mediation

platform object directly. Instead, the platform developer specifies
guarantee and configuration templates that describe the guarantees and
configuration parameters a specific type of platform object must contain.
The realization of this basic feature is provided by the mediator.

When the integrator specifies a new platform object, the mediator
checks the service that provides the platform object for configuration
and guarantee templates. If there are such templates, the mediator
automatically creates a copy of every existing configuration parameter
and every guarantee for the newly instantiated platform object. Now
that the platform object contains its own set of parameters and
guarantees, the mediator checks the guarantees for configuration-
dependent conditions that still reference a template configuration
parameter. If such a condition is found, the reference to the template
parameter is replaced with a reference to the corresponding parameter
of the platform object. After that, the platform integrator is able to
configure the newly created platform object.

Figure 63 illustrates the automatic generation of platform object
guarantees. The generation of configuration parameters is not shown,
but is performed analogously to the guarantee generation.

Mutex
Service

Mutex Access
Commission Avoidance
Mutex Time Out Failure
Detection

gu
ar

an
te

e
te

m
pl

at
e

Mutex
Service

Mutex Access
Commission Avoidance
Mutex Time Out Failure
Detectiongu

ar
an

te
e

te
m

pl
at

e

Mutex A

Mutex B

Mutex
Service

Mutex Access
Commission Avoidance
Mutex Time Out Failure
Detectiongu

ar
an

te
e

te
m

pl
at

e

Mutex A

Mutex B

m
ut

ex
es

Mutex Access
Commission Avoidance
Mutex Time Out Failure
Detectiongu

ar
an

te
es

Mutex Access
Commission Avoidance
Mutex Time Out Failure
Detectiongu

ar
an

te
es

m
ut

ex
es

after
development

before mediator
activity

after mediator
activity

Figure 63: The process of automatic platform object guarantee generation

5.1.2 Evaluation of Configuration-Dependent Conditions

When the integrator finishes the configuration of an application or a
platform, the application, respectively the platform, becomes ready for

 157

Interface Mediation

integration. However, before the transition is triggered, the mediator
checks the validity of the configuration; if the configuration is valid, the
mediator automatically evaluates all configuration-dependent conditions
specified in the corresponding safety interface.

The validity check basically validates that every configuration parameter
that is used for the specification of at least one demand or guarantee is
set to a valid value, which is a premise for evaluating configuration-
dependent conditions. If the configuration is invalid, the mediator will
not allow the transition to proceed to the integration phase.

However, if the configuration is valid, the transition is triggered and the
mediator checks for the fulfillment of configuration-dependent
conditions. The current version of the VerSaI language supports three
kinds of configuration-dependent conditions (see also section 4.3.2): an
equals condition for integer parameters, an equals condition for Boolean
parameters, and an equals condition for enumeration conditions. From
our experience, most configuration parameters of a platform or
application comply with one of the afore-mentioned types. However,
especially regarding integer parameters, the implementation of greater
than, less than, or “element of interval” conditions would be useful. Yet,
we believe that the implementation of these conditions would have
yielded no real research contribution, so we chose to omit this feature.

To check for fulfillment, the mediator checks for each configuration-
dependent condition whether the required configuration value matches
the actual configuration value. If it does, the status of the condition is set
to “fulfilled”; otherwise the status of the condition is set to “violated”.
However, the consequences of the condition evaluation are not analyzed
during this analysis. Since the conditions affect mediation, this is done
during interface mediation.

5.2 System Integration

The system integration step starts after the integrator has finished the
configuration of applications and platforms. Now that the platform is
appropriately configured to accommodate its guest applications, the
integrator has to design the detailed mapping of the application’s
resource needs to the resources provided by the platform. Thus, the
reader should regard system integration as a refinement of the
deployment plan. The deployment plan provides a coarse-grained
mapping of application components to platforms and logical signals to
communication links, whereas system integration specifies a much finer-
grained mapping of, for example, memory sections (like .text) to
memory regions or logical signals to bus messages.

 158

Interface Mediation

Since the integrator’s main task is to specify the afore-mentioned
mappings, we provide a list showing every type of mapping in Annex
A.4 (Table 16) in order to give the reader a feeling for the mapping’s
level of detail. The table specifies which application element (resource
user) is mapped to which platform element (resource). For a detailed
description of application and platform elements, we refer the reader to
Appendix A.

When the integrator has specified this mapping, the VerSaI mediator has
all the information necessary to relate an application demand to the
platform guarantees that can potentially fulfill this demand. This is
possible because of the VerSaI language’s design. A demand is always
attached to the application element that is directly affected by the
platform’s safety-related capabilities and a guarantee is always attached
to the platform element that directly provides the safety-related
guarantees. The mapping relates the application element to the
corresponding platform element so that demands and guarantees can be
related in a transitive manner as well. As an example, we look at an
input signal provided by a sensor. The application’s need for such a
signal is specified by an input port. The application’s demands regarding
the failure behavior of the signal are attached to the demand as well.
The deployment mapping, on the other hand, maps the input port to an
input channel provided by the platform to model that the sensor signal is
received via this particular channel. Finally, the platform’s capabilities
regarding the detection or avoidance of signal-related failure modes are
attached to the input channel. Consequently, the VerSaI mediator is
capable of relating the demands to the relevant guarantees via the
deployment mapping.

Before the mediator starts relating and evaluating demands and
guarantees, however, it has to evaluate the deployment-dependent
conditions, which will be described in section 5.2.1.

5.2.1 Evaluation of Deployment-Dependent Conditions

When the integrator finishes the system integration, the system becomes
ready for mediation. However, before integration is finished, the
mediator checks the validity of the mapping. Only if the integration is
valid does the mediator evaluate the deployment-dependent conditions
specified in the vertical interfaces of applications and platforms. A
deployment mapping is valid if there is a mapping for every application
element that must be mapped to a platform resource.

Regarding deployment-dependent conditions, the VerSaI language offers
dedicated extension points in the meta-model as well as in the
implementation to efficiently allow extending the VerSaI language.
However, at the current point in time, the VerSaI language does not

 159

Interface Mediation

provide implementation for any deployment-dependent conditions.
During our tests and during evaluation we did not need them, yet we
wanted to offer the user of the language the possibility to use
deployment-dependent conditions.

5.3 Manual Condition Evaluation

Conditions that cannot be evaluated automatically, like the generation
of sufficient evidences, are modeled as manual conditions. Manual
conditions have to be checked or directly fulfilled by the integrator.

A manual condition has to be sufficiently described by the creator of the
conditions so that the integrator is capable of understanding its
meaning. Additionally, the creator has to specify the required evidences
for the condition fulfillment if there are any. During manual condition
evaluation, the integrator then checks the description of the condition
and, if the fulfillment depends on evidences, the integrator has to check
the availability of the required evidences as well. In case the integrator is
in charge of fulfilling the condition, the integrator generates the required
evidences and, if possible, links the external document to the condition.
In case the condition is to be fulfilled by a third party, the integrator can
only check whether the condition has been successfully fulfilled or not.
After fulfilling or checking the fulfillment of the condition, the integrator
manually sets the status of the condition to “violated” or “fulfilled”. In
the subsequent mediation, the automatic mediator handles manual
conditions no different than other types of conditions.

5.4 Interface Mediation

The interface mediation step is triggered by the integrator after the
evaluation of manual conditions. Together with the information provided
during configuration and integration, the VerSaI mediator is now
capable of performing automatic demand mediation. The goal of the
mediation is to check if every required application demand is fulfilled by
the available platform guarantees and to provide information regarding
the fulfillment, respectively violation, of demands. In this section, we will
describe the process for checking demand fulfillment, while the
information regarding the mediation result will be introduced in section
5.5, where we will describe how the integrator makes use of this
information.

Mediation is performed separately for each application. Since an
application can be spread over multiple platforms, the mediation of an
application usually involves guarantees from several platforms. We want
to note that even though each application is mediated separately, all the
other applications in the system have to be configured and deployed

 160

Interface Mediation

before mediation starts for any application. This is because other
applications can influence the mediation of an application via shared
platform resources32.

Overall, the mediation of an application contains three work steps: (1)
demand assignment, (2) relevant guarantee retrieval, and (3) checking
the fulfillment of the demand. Figure 64 gives an overview of the
mediation process.

During demand assignment, the mediator retrieves an application
demand from the list of application demands that have not been
mediated yet, and identifies the type of the newly retrieved demand.
Regarding demand-level mediation, we differentiate between the
different demand classes known from chapter 4, which are platform
service demands (section 4.5.1), health monitoring demands (section
4.5.2), resource protection demands (section 4.5.3), and service diversity
demands (section 4.5.4). Since health monitoring demands are again
divided into Application Monitoring Demands and Failure Reaction
Demands, this leaves us with five different types of demands that have
to be mediated in different ways.

In the second step, the mediator retrieves the guarantees relevant for
fulfilling a particular demand. Relevant guarantees are mostly identified
via the additional deployment information generated during system
integration, but this process differs slightly from demand type to
demand type and will therefore be described later. After the retrieval of
the relevant guarantees, the mediator possesses all information to begin
checking demand fulfillment.

During demand fulfillment, the mediator checks whether there is at least
one guarantee in the set of relevant guarantees that is capable of
fulfilling the demand at hand. This check for fulfillment depends strongly
on the type of the demand as well, which is the main reason why we
separated the mediation algorithm into five different sub-algorithms.
However, all five mediation algorithms have in common that they are
sub-divided into so-called prerequisite checks. Each prerequisite
represents a certain characteristic that the guarantee has to fulfill in
order to fulfill the overall demand, for example, integrity level sufficiency.

To conclude this introduction to interface mediation, we summarize that
there are three different levels of mediation. Starting with the lowest
level, there are prerequisites, demands, and applications. These levels
interact as follows: A guarantee fulfills a demand if every demand-type-
specific prerequisite is fulfilled. A demand, on the other hand, is fulfilled
if there exists one guarantee that fulfills this particular demand. Finally,

32 Please note that only the architectural model of an application affects the
mediation of other applications, not its demands.

 161

Interface Mediation

the mediation of the application is successful if every required demand
of the application is fulfilled.

PSD*D*D...

RD

PSD

PSG

PSG

RD

AMD Mediation

RPD Mediation

SDD Mediation

PSD Mediation

...

...

RD Mediation

...

...

...

...

Application Demands

RD Buffer

PSG

PSG

*G*G

*G

*G

*G

*G

Platform Guarantees

Legend

D: demand
G: guarantee
*D: any type of demand
*G: any type of guarantee

PS(D/G): platform service (demand/guarantee)
AM(D/G): application monitoring (demand/guarantee)
RP(D/G): resource protection (demand/guarantee)
SD(D/G): service diversity (demand/guarantee)
R(D/G): reaction (demand/guarantee)

Figure 64: An overview of the automatic demand mediation process

In the following, we will describe the different mediation sub-algorithms
that describe in more detail how demand fulfillment is decided. In
section 5.4.1, we will describe the mediation of platform services.
Sections 5.4.2 and 5.4.3 describe the mediation of application
monitoring and reaction demands, both belonging to the health
monitoring demand category. Section 5.4.4 contains the description of
protection demand mediation, whereas section 5.4.5 describes resource
diversity demand mediation. Section 5.4.6 finally describes various
parameter-specific checks that are used in several instances.

5.4.1 Mediation of Platform Service Demands

In this section, we will describe the mediation of platform service
demands, i.e., the automatic process provided by the VerSaI mediator
that checks whether a platform service demand is fulfilled or violated by
the available platform guarantees.

To recapitulate, a platform service failure demand enables the
application developer to specify demands regarding the avoidance or
detection of platform service failures. The application developer can, for

 162

Interface Mediation

example, demand that the corruption of a certain logical signal is
detected or avoided. The mediation of a platform service demand is
successful if the corresponding platform service, e.g., the communication
link transporting the signals, provides a sufficient guarantee. Checking
for the availability of a sufficient guarantee involves checking ten
prerequisites, which are described in the following. An overview of
platform service demand mediation is provided in Figure 65.

 163

Interface Mediation

Figure 65: An overview of platform service demand mediation

 164

Interface Mediation

The first prerequisite that has to be checked when mediating a demand
is whether the demand is actually necessary. Since applications are
configurable, a demand might not be required in every possible
configuration of the application, which is why the VerSaI language
allows the application developer to specify conditional demands. The
conditions are directly attached to the demand and only if the conditions
evaluate to true is the demand necessary. If the conditions evaluate to
false, the demand is regarded as dispensable and does not have to be
mediated. This mediation semantics is represented by directly setting a
dispensable demand to “fulfilled” so that it does not interfere with the
mediation of the residual demands. Specifying a conditional demand is
optional, and if there are no conditions attached to a demand, the
demand is regarded as necessary and its fulfillment has to be checked.

The next step in mediating a platform service demand is the
identification of related guarantees. In brief, a guarantee is related to a
demand if the guarantee is provided by the service that the owner of the
demand is deployed to. As an example let us regard an input failure
demand. The input failure demand is owned by/contained in the
potentially faulty input signal. This signal is deployed to an input channel
during system integration, and this input channel provides guarantees.
These guarantees are called the related guarantees of our example
demand. Figure 66 visualizes this transitive relation dependency. In order
to retrieve related guarantees, the mediator checks the deployment
information of the demand owner. If the corresponding application
element is not deployed correctly, the demand cannot be mediated and
is considered as violated. The same is true if the resulting platform
element contains no guarantees. However, if there are related
guarantees, each of these guarantees is checked individually.

The first prerequisite that is checked for a guarantee is its relevance. A
related guarantee is labeled relevant if it possesses some basic
characteristics required for fulfilling the demand at hand. Since a
platform element can contain different kinds of guarantees, the
mediator first checks whether the type of the guarantee matches the
type of the demand, i.e., if the guarantee is also a platform service
guarantee and not, for example, a resource protection guarantee. In the
second step, the mediator checks if the failure mode of the guarantee
matches the failure mode of the demand. If the failure modes match,
the mediator knows that the platform element is generally capable of
handling the demanded failure mode. In the next steps, the mediator
has to check whether the guarantee allows handling the failure in a
sufficient way.

 165

Interface Mediation

VerSaI Language System Architecture

Application ElementDemand

Platform ElementGuarantee

contains

 provides

deployed torelated

Figure 66: The concept of related guarantees

Prior to assessing the specific guarantee capabilities, the mediator checks
whether the guarantee is available. Comparable to the conditional
necessity of a demand, certain platform guarantees have a conditional
availability, usually depending on the configuration parameters. If the
guarantee is conditional and the conditions are not fulfilled, the
guarantee is not available in the current configuration and therefore
incapable of fulfilling the demand. If the guarantee is available, the
mediator continues the mediation by checking the compatibility of the
guarantee’s failure handling type.

As described in section 4.5.1, the VerSaI language differentiates
between failure detection and failure avoidance. A failure detection
guarantee specifies the platform’s capabilities of detecting a failure,
which provides the basis for a certain reaction, e.g., a failure indication.
On the other hand, a failure avoidance guarantee specifies the capability
of completely avoiding a certain failure mode, for example, due to the
design of the corresponding platform service or the availability of
internal failure correction mechanisms. If the application demands
detection of a failure mode, this can be fulfilled by a detection guarantee
or by an avoidance guarantee, since the absence of a certain failure
renders the demand for its detection void. Conversely, an avoidance
demand can only be fulfilled by an avoidance guarantee. If the failure
handling type matches, i.e., if an avoidance demand is fulfilled by an
avoidance guarantee, the mediation continues with a check for integrity
level sufficiency.

Integrity level sufficiency requires that the integrity level of the guarantee
is at least as high as the integrity level of the demand. The integrity level
of a guarantee is a reflection of its trustworthiness and sometimes also
of certain capabilities of the guarantee. Regarding trustworthiness, the
integrity level defines the rigor with which the guarantee has been
implemented and verified. The higher the integrity level of the
guarantee, the higher the trustworthiness of its correct implementation.
In addition to trustworthiness, certain standards loosely attach

 166

Interface Mediation

capabilities to the integrity level as well, for example the likelihood with
which a failure is detected or avoided. Only if the guarantee at least
equally matches the demand’s integrity level is the guarantee capable of
adequately handling the demand.

The next prerequisite to be checked is the timeliness of the detection
mechanism promised by a detection guarantee. This check is, of course,
only relevant if the demand is a detection demand and if the current
guarantee is a detection guarantee. If a detection demand is to be
fulfilled by an avoidance demand, there will be no detection and
consequently, no detection time. In case this check is required, the
detection time specifies the maximum time between failure occurrence
and failure detection. The mediator has to assess whether the promised
detection time is lower than the required detection time. If the
guarantee passes this prerequisite check, the mediator has to check the
adequacy of the failure-mode-specific parameters.

Most failure modes of the VerSaI language have additional parameters
to allow the user to specify failure modes on a more detailed level. In
case the failure mode is used in the context of a demand, these
parameters allow the application developer to precisely specify the
border line between acceptable and erroneous behavior. In case the
failure mode is used in the context of a guarantee, these parameters
allow the platform developer to precisely specify the capabilities of the
platform regarding the detection or avoidance of the failure mode.
Example parameters are jitters, error levels (as a measure for the
deviation from the correct behavior), or delays. Since parameters are
failure-mode-dependent and different types of parameters are mediated
differently, we will describe parameter-specific mediation in a separate
section (see 5.4.6).

If the failure-mode-specific parameters of the guarantee are sufficient for
fulfilling the failure-mode-specific parameters of the demand, the
guarantee is finally assessed as being capable of fulfilling the demand.
The demand is tagged as fulfilled and the mediation algorithm continues
with the mediation of the next demand.

In order to exemplify the mediation of platform service demands, we will
use the example demand D2, which was defined in section 4.5.1. The
demand is contained in the output port a_set_fin of our running
example application and reads as follows:

Example D2: A value failure of the output signal a_set_fin larger than 0.05V must be
detected within 0.05ms (ASIL C).

As specified in section 4.1, a_set_fin is deployed to the platform
output channel voltage_out. Let us assume that this output port

 167

Interface Mediation

provides three different guarantees, a resource protection guarantee and
two platform service guarantees to address latency and value failures.

In the first step of the mediation, the mediator checks the necessity of
D2, but since D2 is unconditional, it is necessary per default. The second
step is the retrieval of related guarantees. To do so, the mediator queries
the architectural model of our example to retrieve the deployment
information of a_set_fin. In our case, the query returns with the
information that a_set_fin is deployed to the output channel
voltage_out. A subsequent query provides the mediator with the three
guarantees that are provided by voltage_out, which are individually
analyzed by the mediator.

If we assume that the mediator first selects the resource protection
guarantee for evaluation, the check for guarantee relevance fails, since a
platform service demand like D2 can never be fulfilled by a resource
protection guarantee. The second guarantee that the mediator checks
fails as well. The guarantee is a platform service guarantee, but the
failure modes do not match (output latency vs. value failures). However,
the final guarantee contained in voltage_out is a platform service
guarantee that addresses value failures and that reads as follows:

Example G10: A value failure of an output signal issued via voltage_out larger than
0.02V is detected within 0.03ms (ASIL C). Conditions apply: “The
configuration parameter enable_detection must be set to true”.

Since G10 is a platform service guarantee that addresses value failures, it
passes the relevance test. Following the relevance test, the mediator
checks the availability of G10. Since G10 is a conditional guarantee, it is
only available if the corresponding configuration parameter
enable_detection is set accordingly. Since we assume that the
configuration parameter is set to true, the condition is evaluated as
“fulfilled” and consequently, the guarantee is available.

The mediation continues with its sixth step, the failure handling
capability check, which is successful since D2 demands failure detection
and G10 provides failure detection. The integrity level check is also
successful as G10 is provided with ASIL C integrity and D2 demands
ASIL C integrity. Since G10 is a detection guarantee (as opposed to an
avoidance guarantee), the appropriateness of the detection time has to
be checked as well. As the provided time interval (0.03ms) is shorter
than the demanded time interval (0.05ms), the timeliness check is
successful and the mediation reaches its last stage, in which the failure-
mode-specific parameters are evaluated. In our example, the mediator
has to check the allowed deviation parameter of the analog value failure
mode. The tolerated deviation as specified by D2 is 0.05V, whereas the
maximum deviation provided by G10 is 0.02V. As a consequence, the

 168

Interface Mediation

mediator decides that the example demand D2 is adequately fulfilled by
G10.

5.4.2 Mediation of Application Monitoring Demands

In this section, we will describe the mediation of application monitoring
demands, i.e., the automatic process provided by the VerSaI mediator
that checks whether an application monitoring demand is fulfilled or
violated by the available platform guarantees.

To recapitulate, an application monitoring demand enables the
application developer to strengthen the fault tolerance of the application
at hand. The application monitoring demand requests the platform to
detect a deviation from the application’s nominal behavior, i.e., an
application failure. The platform has the capability of monitoring the
behavior of the application since the platform is involved in the
realization of most of the application’s functionality. The platform
typically provides general-purpose, configurable monitoring mechanisms.
These are adapted and configured by the integrator to detect the failures
of guest applications. The algorithm that checks for the availability of a
guarantee that is sufficient for fulfilling an application monitoring
demand involves checking eight prerequisites. This process will be
described in the following; an overview of the platform service demand
mediation is provided in Figure 67.

The mediation of an application monitoring demand is in many ways
comparable to the mediation of a platform service demand. More
precisely, it is comparable to the mediation of a platform service
detection demand, since there are no application monitoring avoidance
demands. This comparability is reflected by the fact that seven of the
eight prerequisite checks involved in application monitoring mediation
are also used for platform service demand mediation. Instead of
describing these checks redundantly, we will refer to the previous section
where applicable.

Application monitoring demand mediation starts with checking the
necessity of the demand at hand. Only if the demand is necessary does it
have to be mediated; otherwise it is automatically tagged as “fulfilled”
and taken out of the mediation. The mediator then identifies the related
guarantees via the deployment mapping of the demand owner and
begins the iterative assessment of the individual related guarantees. The
first step of guarantee-centric mediation is to verify that the related
guarantee is also relevant. Since application monitoring demands are
sub-typed via application failure modes (see section 4.4.3), the relevance
check involves checking if the guarantee is an application monitoring
guarantee and if the guarantee’s failure mode matches with the failure
mode provided by the demand. If that is the case, the guarantee is

 169

Interface Mediation

checked regarding its availability and the sufficiency of its integrity level.
These five prerequisite checks are performed during platform service
demand mediation as well, and a more detailed description of the
checks is found in section 5.4.1, where platform service demand
mediation is introduced.

 170

Interface Mediation

Figure 67: An overview of the application monitoring demand mediation

The check following thereafter is unique to application monitoring
demands. An application monitoring demand is not owned by the

 171

Interface Mediation

monitored/supervised entity but by a so-called application monitoring
need, which is deployed to an application monitoring service that
provides the corresponding monitoring guarantees. Therefore, the
supervised entity is identified via a reference from the guarantee. Every
executable entity can be supervised, which includes time-triggered
runnables, event-triggered runnables, and ISRs. However, the platform is
not necessarily capable of detecting the corresponding failure mode for
every executable. Therefore, the mediator has to check whether the
platform is capable of supervising the relevant executable before
mediation continues. If the required executable entity cannot be
supervised by the platform’s monitoring service, the guarantee is unable
to fulfill the demand.

In case the executable entity is supervisable, the mediator has to check
the sufficiency of the failure detection time specified by the guarantee.
Since the platform cannot guarantee the avoidance of application
failures, there are no avoidance demands for this demand type.
Consequently, the detection time check is mandatory for all demands of
this type. Since application failures have parameters as well (comparable
to platform service failures), the last step in application monitoring
demand mediation is to check the adequacy of the failure-mode-specific
parameters, which is described in a separate section of this chapter (see
5.4.6).

If the parameters of the guarantee are adequate, the demand is tagged
as fulfilled and the mediation continues with another demand.

The mediation of application monitoring demands is comparable to the
mediation of platform service demands, which is also shown by the
following example. The following example demand is specified by the
software component v_controller known from our running example.
The component contains a specific port for the specification of so-called
service needs, which again contains the example demand D4 already
specified in section 4.5.2.

Example D4: The platform must detect an execution time of the executable
v_controller_main of more than 0.016ms (ASIL C).

A service need specified by an application is always deployed to the
corresponding service provided by the platform. In this case, the
monitoring service need is deployed to the health monitoring
service provided by our example platform. With the help of this
deployment information, the mediator is capable of retrieving the related
guarantees contained in the corresponding service, one of which is
example guarantee G3 known from section 4.6.2.

 172

Interface Mediation

Example G3: The platform is capable of detecting execution time failures for
runnables (ASIL C).

From this point on out, the mediation of D4 is comparable to the
mediation of platform service demands. The mediator checks whether
the failure types match (in this, both failure types are “execution time
failures”), whether the guarantee is available (there is no condition and
therefore G3 is available), whether the integrity level is the same (both
ASIL C), whether timeliness is guaranteed (not relevant here), and
whether the failure-mode-specific parameters are fulfilled (the parameter
specified by D4 is fulfilled since G3 does not restrict the precision of its
monitoring facility).

However, in addition to these items, the supervisability of the supervised
element, in this case the executable v_controller_main, has to be
checked. In our case the platform is only capable of supervising the
execution of runnables, but not the execution of ISRs. Consequently, the
mediator has to check whether v_controller_main is of the type
runnable (which it is) before knowing whether D4 can be fulfilled by G3.

5.4.3 Mediation of Failure Reaction Demands

In this section, we will describe the mediation of failure reaction
demands, i.e., the automatic process provided by the VerSaI mediator
that checks whether a failure reaction demand is fulfilled or violated by
the available platform guarantees.

To refresh the basic semantics of a failure reaction demand, the
application developer specifies a failure reaction demand to request a
failure control reaction from the platform. In an integrated architecture,
the application is only allowed to use the platform API to interact with
the platform software and hardware. This design restriction protects the
system from erroneous applications but also limits the application’s
freedom to perform certain failure recovery reactions. Therefore the
application uses the platform to explicitly trigger these restricted recovery
reactions. In addition to this motivation for using failure reaction
demands, the platform can be seen as an element independent of the
application. When an application-related failure occurs, this may render
the affected application unable to perform a reaction, whereas the
platform might still be able to react. The algorithm for mediating
platform failure reactions is the most complicated of all five demand
classes and contains ten prerequisite checks. The algorithm is described
in the following and is depicted in Figure 68.

The mediation of a failure reaction demand starts with the regular check
for the demand’s necessity. If the demand is necessary, the subsequent
steps depend on how the reaction demand is triggered. As described in

 173

Interface Mediation

section 4.5.2, there are request-triggered reaction demands and
detection-triggered reaction demands. A request-triggered reaction is
triggered directly by the application by calling the respective API
function. Conversely, a detection-triggered reaction is automatically
triggered by the platform if a specific failure is detected. In the latter
case, the detection that triggers the reaction is identified via a reference
from the reaction demand to the corresponding detection demand.
Since the correct execution of the reaction depends on the correct
detection of the failure, the reaction demand can only be mediated if the
trigger demand has been successfully mediated as well. To be able to
check that, reaction demand mediation is delayed until potential
detection demands are mediated (see Figure 64).

If the corresponding trigger demand is successfully mediated, an
additional aspect related to the trigger demand has to be checked. If the
trigger demand is a platform service demand, we have to check whether
the trigger demand has been fulfilled by an avoidance guarantee. In this
case, the failure that is supposed to trigger the reaction will never occur,
which renders the detection-triggered reaction demand useless. Such a
reaction demand is regarded as dispensable, comparable to an
unnecessary conditional demand, and is marked as fulfilled by default.

 174

Interface Mediation

Figure 68: An overview of failure reaction demand mediation

 175

Interface Mediation

The next steps have to be performed equally for both request-triggered
and detection-triggered demands. First, the mediator retrieves the
related guarantees via the deployment of the demand’s failure reaction
need to one of the platform’s failure reaction services. Filtering for
relevant guarantees is performed via the demand’s platform failure
reaction type (see section 4.4.4), which has to match with the type of
the guarantee’s failure reaction. Following this filtering, the guarantees
are, as usual, checked individually regarding their ability to fulfill the
demand at hand.

At first, each guarantee is checked regarding its availability and its
integrity level sufficiency; both checks are described in more detail in
section 5.4.1. After that, the timeliness of the failure reaction time is
checked. The failure reaction time is the time between the detection of
the failure and the end of the failure reaction. The failure reaction time
and the failure detection time are usually chosen so that the sum of both
is smaller than the tolerance time of the failure. The failure reaction time
is regarded as sufficient if the failure reaction time assured by the
guarantee is smaller than the failure reaction time required by the
demand.

Every failure reaction specifies a so-called affected element. This platform
element is directly affected by the reaction, like a partition or a task that
is shut down as a result of the reaction, or an output channel that is set
to a fail-safe state. The affected platform element required by the
demand is identified via the demand’s affected application element. If,
for example, the demand specifies that a certain runnable or ASWC has
to be restarted, or that a logical signal has to be set to its default value,
this is translated into a restart of the task that hosts the runnable, a
restart of the partition that hosts the ASWC, or into setting the output
channel that emits the logical signal to its default value, respectively.

Since the platform developer may design the platform such that not
every element is capable of performing the required reaction, the
mediator has to check whether the required platform element is able to
perform the demanded reaction. This information is specified by the
guarantee since the failure reaction guarantee references every platform
element that is capable of performing the relevant reaction. Only if the
required platform element is in the list of the available platform elements
can the guarantee execute the demanded reaction and fulfill the
demand at hand.

Comparable to design restrictions regarding the platform elements
available for implementing reactions, there are certain platforms where
not every kind of failure is capable of triggering every kind of reaction. In
an ARINC 653 compatible platform, for example, failures are categorized
according to their potential influence and only the failures that are able
to harm the whole platform are allowed to trigger a restart of the

 176

Interface Mediation

platform. To model this behavior, a detection-triggered failure reaction
guarantee references all failures that are capable of triggering the
reaction. If the demand at hand is a detection-triggered failure reaction
demand, the mediator checks whether the failure specified by the
demand is capable of triggering the required guarantee, and only if this
is possible can the guarantee fulfill the demand.

If all the previous prerequisite checks have been successfully passed, the
mediator finally checks for the adequacy of the guarantee’s reaction-
specific parameters. If these parameters are suitable for fulfilling the
reaction-specific parameters of the demand, the guarantee is finally
marked as being able to fulfill the demand. Comparable to the
parameters of platform service failures and application failures, the
mediation of parameters specific for different types of reactions is
described in section 5.4.6.

To exemplify the mediation of failure reaction demands, we discuss the
mediation of example demand D12.

Example D12: Upon detection of the output value failure of signal a_set_fin, the
platform must shut down the partition that hosts the software
component throttleSWC within 0.05ms (ASIL C).

The requirement is contained in a service need of the software
component throttleSWC and demands the shutdown of its own
partition in case a value failure of the output signal a_set_fin is
detected. The first step in the mediation of this demand is to check
whether there is a corresponding trigger demand that requests the
detection of the value failure and, if such a demand exists, whether that
demand has been successfully fulfilled. As described in section 5.4.1,
there is such a demand, namely D2, and the demand has been
successfully mediated.

In the next step, the related guarantees are identified via the deployment
of throttleSWC’s service need port to the health monitoring
service of the example platform. This process yields the related and
relevant guarantee G6.

Example G6: The platform is capable of shutting down partitions upon detection.
Possible triggers: all failure detection events. Possible restart targets:
partition objects with the configuration condition “restart_enabled ==
true”. (ASIL C) Conditions apply: “The caller must have sufficient rights to
request the shutdown”.

The availability of the guarantee depends on a condition that has to be
manually checked by the integrator since the VerSaI method is not
capable of checking rights and permissions in its current version. Let us

 177

Interface Mediation

assume that the integrator marks this manual condition as fulfilled, so
that the mediator is capable of continuing with the subsequent checks.

The following checks for integrity level sufficiency and for timeliness of
fthe ailure reaction time (comparable to the check for timeliness of
failure detection time) were already covered by previous examples and
hold no special points of interest. In the next step, however, the
mediator has to check for the availability of the affected element. In our
case, the affected element is partition 2, since throttleSWC is
deployed to this partition. In order to find out whether partition 2 can be
shut down, the mediator has to evaluate whether the configuration
parameter restart_enabled is set to true.

If we assume that this is the case, the mediation continues by checking
whether an “output value failure”, as demanded by D12, is capable of
triggering a partition shutdown in our example platform. Since G6
specifies no restrictions regarding the possible trigger events of partition
shutdowns, D12 is fulfilled by our example platform.

5.4.4 Mediation of Resource Protection Demands

In this section, we will describe the mediation of resource protection
demands, i.e., the automatic process provided by the VerSaI mediator
that checks whether a resource protection demand is fulfilled or violated
by the available platform guarantees.

Resource protection demands are modeled by the application developer
to demand protection from so-called interferences caused by the sharing
of platform resources among mixed-critical applications. An interference
is a special type of failure scenario, which is characterized by the
following cause-effect chain: At the beginning of an interference, an
application uses a shared platform resource, typically in an erroneous
manner (e.g., it uses it for too long or modifies it in the wrong way). This
resource utilization affects the resource in such a way that it is unable to
provide its service as demanded by another application. This other
application is affected by the misbehavior of the causative application, as
it perceives a failure of the affected platform resource. These failures can
be comparable to those specified in subsection 4.5.1. Via this additional
failure propagation channel, applications can interfere with each other
even if there is no functional dependency between the corresponding
applications. To fulfill a resource protection demand, the platform has to
adequately protect shared resources from interferences. Whether the
provided protection mechanisms are adequate is checked by the
mediator by performing nine individual checks. An overview of the
resource protection demand mediation is provided in Figure 69.

 178

Interface Mediation

The mediation of a resource protection demand starts as usual, with a
check regarding the necessity of the demand. After that, the mediator
checks for the necessity of protection. Protection is only necessary if the
current application shares the platform with other applications that have
lower criticality than the application’s own criticality. Consequently, if
there are no other applications with lower criticality, protection is not
necessary and the mediator tags the demand as fulfilled by default.

If protection is necessary, the mediator assesses whether there are
related guarantees. Comparable to platform failure demands, protection
demands are contained in the application element that is affected by the
potential interference. Communication interference demands are, for
example, contained in communication ports just like communication
failure demands. Analogously, resource protection guarantees are
contained in the platform resource that is potentially affected by the
interference as well and that propagates the interference effect to the
application element using the resource. To stay with the previous
example, a communication protection guarantee is contained in a
communication link. Since every protection guarantee contained in the
related platform element is relevant for the mediation of the demand,
we do not differentiate between relevant and related demands as we did
for the mediation of the previous three demand types.

 179

Interface Mediation

Figure 69: An overview of resource protection demand mediation

 180

Interface Mediation

Subsequently, each relevant guarantee is, as usual, checked for its
integrity level sufficiency. If the integrity level is sufficient, the mediator
checks whether the platform is capable of protecting against every
relevant failure mode. If the application developer demands protection, it
is possible that protection is not required regarding every possible failure.
It is, for example, possible that a value failure is safety relevant, but a late
failure is not. Consequently, the platform does not have to provide
protection regarding every possible failure mode either to fulfill a
protection demand. To model the critical failure modes against which
protection is necessary, the application developer specifies a list of
related failure modes that are then contained in the demand.
Analogously, the platform developer specifies a list of failure modes that
are included in the protection. To do so, both developers choose from
the failure modes provided by the VerSaI language (see section 4.4.2). If
the specified set of demand failure modes is a subset of the guarantee’s
failure modes, the check is successful.

The last three checks of resource protection mediation assess the
sufficiency of the given protection on three levels: platform level, service
level, and resource level.

On the platform level, the check evaluates if the resource is automatically
protected from an ASWC with lower criticality or whether lower-
criticality ASWCs have to be allocated to a different partition than the
ASWC that owns the demand. From the previously performed protection
necessity check we know that there is at least one less critical ASWC
deployed to the platform. If the platform guarantee currently being
checked specifies that the resource can only be protected from ASWCs
that belong to another partition, we have to check if the partition of the
demand owner ASWC does not contain any less critical ASWCs. If
partitioning is not required or if there are no lower-criticality ASWCs in
the relevant partition, the mediator continues with the evaluation of the
protection on the service level.

On the previous level we checked for the protection of potentially
unrelated ASWCs, which are those ASWCs that neither directly use the
relevant resource nor the service that provides the resource. On the
service level, we check whether the platform is capable of protecting the
resource from interferences if there are less critical ASWCs that use the
same service that provides the resource. Please note that only those
resources that we label as platform object (mutexes, timers, tasks …) are
actually provided by services. Resources like cores or input channels are
directly provided by the platform, and service-level protection is not
applicable to those resources. If the platform is capable of providing
protection against lower-criticality ASWCs that share the service or if
there are no such lower-criticality ASWCs, the mediator continues with
the final resource-level protection check.

 181

Interface Mediation

During this last step, the mediator checks whether there are less critical
ASWCs that share the resource with the demand owner ASWC, and
whether the platform is capable of protecting the related resource from
interference by these ASWCs. If protection is available or if it is not
required (if there are no lower-criticality ASWCs that share the resource),
the guarantee is finally assessed as being capable of fulfilling the
demand at hand.

In the following, we will exemplify the mediation of resource protection
demand using the example demand D10 previously specified in section
4.5.1. D10 is contained in the monitoring ASWC, more precisely in
service need sn6, and reads as follows:

Example D10: The monitoring.error_event service need must be protected from
interferences that cause the failure modes Event Signal Commission,
Event Timeout Failure (ASIL C).

Unlike the previously described mediations, the mediation of resource
protection demands depends heavily on the deployment of other
application elements. Accordingly, in the first step of the mediation the
mediator checks whether there are less critical components deployed to
the same platform. In our case, there are such components, namely GUI,
v_sensorSWC_A, and v_sensorSWC_B. Consequently, protection is
principally necessary and D10 is not fulfilled by default. In the following
step, the mediator retrieves the relevant guarantees as usual via the
deployment of sn6 to the event service of our example platform,
which yields the following guarantee previously specified in section
4.6.3:

Example G8: The platform is capable of protecting the service event service from
interferences that cause the failure modes Event Signal Commission,
Event Signal Omission, Event Timeout Failure. Mixed-critical users do not
have to be allocated to different partitions. Mixed-critical users are
allowed to use the same service. Mixed-critical users are not allowed to
use the same event (ASIL C).

G8 is available since it is unconditional; it also has a sufficient integrity
level (ASIL C vs. ASIL C), which is why the guarantee passes the next two
standard mediation checks. In the following step, the mediator checks
whether the platform protects the event service from all relevant failure
modes. In our case, the protected failure modes are a true subset of the
failure modes that need to be protected and consequently, the
guarantee passes this test as well.

In the next three stages, the mediator has to inspect the deployment of
components more closely to decide whether G8 fulfills D10. On the
platform level, the mediator checks whether the provided protection

 182

Interface Mediation

requires partition separation and if it does, whether the relevant partition
contains mixed-critical components. In the current case, however, the
protection neither requires partition separation nor does monitoring’s
partition contain mixed-critical components. As a consequence, G8
passes the check on the platform level. On the service level, the mediator
checks whether the service can be protected from mixed-critical users.
According to G8, the event service can be protected from mixed-critical
users, which is also necessary since the QM-rated GUI ASWC uses the
event service as well. Finally, the mediator checks whether protection
can be guaranteed on the event level. For the example situation, the
mediator finds that the corresponding event called error_event is used
by both GUI and monitoring, but according to G8, element-level
protection is not guaranteed. Consequently, G8 is not capable of
fulfilling D10.

5.4.5 Mediation of Service Diversity Demands

In this section, we will describe the mediation of service diversity
demands, i.e., the automatic process provided by the VerSaI mediator
that checks whether a service diversity demand is fulfilled or violated by
the available platform guarantees.

The application developer specifies a service diversity demand to support
a redundant two-channel architecture of the application. With the
specification of a diversity demand, the developer demands that two
specific channels (input, output, or communication) used by the
application are developed diversely by the platform. Such a demand is
fulfilled if the platform is capable of providing the relevant channels
diversely, i.e., if the relevant channels fail independently with regard to
systematic failures. The corresponding mediation algorithm contains six
checks and is shown in Figure 70.

After the regular check for the necessity of the demand, the mediator
retrieves the demand’s related guarantees. However, the retrieval of
related guarantees is not as straightforward as it was for the previous
demand types. Service diversity demands are contained in applications
and the corresponding guarantees are contained in platforms. Since an
application is not directly deployed to a platform (the software
components of the application are), we cannot simply follow the
deployment of the demand owner to retrieve the related guarantees.
Instead, the demand references the application elements (e.g.,
communication ports) that have to be deployed to diverse channels (e.g.,
communication links). The mediator tries to retrieve the related
guarantees via the deployment of these application elements. Yet, it is
possible that both application elements are deployed to resources
provided by different platforms. Since there are no guarantees that span
different platforms, there are no matching diversity guarantees and the

 183

Interface Mediation

mediator cannot mediate the demand with the given deployment. In this
case, the mediator tags the demand as fulfilled under the premise that a
manual check shows the diversity of the redundant channels. In case a
single relevant platform can be identified, the related guarantees can be
retrieved.

In the next step, the mediator filters the relevant guarantees from the
related guarantees. Since there are three types of diversity demands
(input channel diversity, output channel diversity, and communication
channel diversity), the mediator assesses only those diversity guarantees
that match the type of the diversity demand.

After the usual check for the guarantee’s availability, the mediator
checks whether the channels provided by the guarantee match the
channels required by the demand. The required channels are identified
via the deployment of the application elements referenced by the
demand. If these required channels are identical to the channels
referenced by the guarantee, the relevant channels were indeed
developed diversely and the mediation continues.

Comparable to resource protection demands, service diversity demands
are also specified in a failure-mode-specific manner. When two platform
resources are developed diversely, it is also possible that the
independence of a certain failure mode cannot be guaranteed.
Analogously, it is possible that the application developer does not
demand independence with regard to every possible failure mode of the
related resource. Therefore, resource diversity demands as well as
resource diversity guarantees reference a list of failure modes, namely
those failure modes that are required to occur independently and those
failure modes that are guaranteed to occur independently. Only if the set
of required independent failure modes is a subset of the guaranteed
independent failure modes does the mediation of the guarantee
continue.

The last check the guarantee has to pass is the check for its integrity
level sufficiency. If the integrity level is sufficient, the guarantee is finally
assessed as being capable of fulfilling the demand at hand.

 184

Interface Mediation

Figure 70: An overview of service diversity demand mediation

5.4.6 Mediation of Specific Parameters

For the detailed specification of failure modes and failure reactions, the
VerSaI language allows parameterizing certain failure modes and
reactions. These parameters influence the mediation of platform service

 185

Interface Mediation

demands, application monitoring demands, and failure reaction
demands as described in the previous sections. In the following
paragraphs, we will describe how the mediator treats different kinds of
parameters.

Most of the failure modes and failure reactions are parameterized with
standard parameter sets that are reused throughout the specification of
the VerSaI language. These parameter sets are: time deviation, latency,
jitter, and error. However, to specify arrival rate failures, analog default
signal reactions, and digital default signal reactions, the VerSaI language
uses specific parameters. These parameters do not, however, influence
the mediation.

To find out which parameters are used for the definition of different
failure modes, please refer to Appendix B Table 17. To find out which
parameters are used for the definition of different failure reactions,
please refer to Appendix B Table 18.

Time Deviation

A time deviation parameter models a time constraint specifying the
acceptable deviation from a nominal latency. Consequently, this
constraint contains two time parameters, the nominal latency (tn) and
the acceptable deviation (td) from the nominal latency. For a time
deviation constraint, the acceptable time interval ta results to (tn-
td)<ta<(tn+td).

Nominal latency plays no role in the mediation of a deviation parameter.
In case the demand that is parameterized with the time deviation
constraint is to be fulfilled with a detection guarantee, the mediator
checks whether the smallest detectable deviation is smaller than the
acceptable deviation. In case the demand is to be fulfilled by a
guarantee, the mediator checks if the avoided deviation promised by the
guarantee is smaller than the acceptable deviation specified by the
demand.

Latency

The latency constraint allows modeling an acceptable time interval by
specifying the acceptable lower bound (tl) of the latency if an early
failure is critical, or the acceptable upper bound (tu) of the latency if a
late failure is critical. In case both early and late failures are critical, the
corresponding acceptable time interval ta therefore results to tl<ta<tu.

If either the acceptable lower bound or the acceptable upper bound is
not specified, this means that the corresponding failure is not relevant
regarding the current demand. Consequently, the mediator omits the
related check and only performs the other check. If, however, both

 186

Interface Mediation

bounds are undefined, the mediation of the latency parameters throws
an error and assesses the parameter as violated.

If an early failure is critical, the mediator checks whether the detectable
earliest deviation is smaller than or equal to the acceptable earliest
deviation, or if the guaranteed lowest deviation is larger than or equal to
the acceptable earliest deviation. Analogously, if a late failure is critical,
the mediator checks whether the detectable latest deviation is large than
or equal to the acceptable latest deviation, or if the guaranteed latest
deviation is smaller than or equal to the acceptable latest deviation.

Jitter

Constraints regarding jitters are specified using the period constraint. A
period constraint models the admissible deviation between two
occurrences of a periodical event. A period is defined by its duration (tn),
i.e., by the nominal time between the occurrence of the two subsequent
instances of the same periodical event, and by its jitter (tj), i.e., by the
admissible deviation from the nominal duration. The acceptable period
pa between two occurrences of the periodical event is (tn-
tj)<pa<(tn+tj).

If a period constraint is mediated, the mediator checks whether the
detectable jitter is bigger than the acceptable jitter or whether the
promised maximum jitter is smaller than the acceptable jitter.

Error

An error parameter describes the admissible deviation of an actual value
of a signal from the nominal value of the signal. In terms of mediation,
we have to differentiate between relative and absolute errors.

A relative error is specified using an integer parameter that ranges from
0 to 100, modeling the admissible deviation as a percentage. If the error
is to be detected, the mediator checks whether the smallest detectable
error is smaller than the admissible error. If the error is to be avoided, the
mediator checks whether the avoidable error is smaller than the
admissible error as well.

An absolute error is specified using a float parameter and a string
parameter. The float parameter specifies the admissible error value,
whereas the string parameter identifies the unit of the error. If the unit
of the demanded error-related capabilities is the same as the unit of the
guaranteed error-related capabilities, the mediator continues checking
whether the guaranteed value is sufficiently low. However, if the units
do not match, the mediator can only regard the parameter as violated
since the current version of the VerSaI method contains no mechanism
for unit conversion.

 187

Interface Mediation

5.5 Post Mediation

After the mediation is finished, the mediator processes the results of the
mediation to provide an overview to the integrator. This overview
contains all relevant information regarding the success or failure of the
mediation. Based on this information, the integrator decides whether a
different configuration, a different integration, or a rework of the
manual conditions is capable of transforming a failed mediation into a
successful one. Using the mediation results, the integrator is capable of
efficiently identifying the causes of a failed mediation, fix the issues, and
start a new mediation run.

In the following section, we will introduce the information provided by
the mediator after a mediation run.

5.5.1 Visualizing Mediation Results

The mediator visualizes the results of the mediation by generating a
separate mediation report for each application that is part of the system
and that contains at least one demand. The goal of the mediation report
is to explain for every demand why and how it is fulfilled or why the
mediator was unable to fulfill the demand. In case the demand is
violated, the mediation report should point out what made the
mediation fail in order to enable the integrator to quickly fix the
problem, if possible.

The mediation report is hierarchically structured. On the top level of the
hierarchy, the report contains a list of every interface demand specified
by the application. On this level, the mediation result provides a quick
overview regarding the fulfillment of the demand, and if the demand is
violated, a quick comment regarding the reasons, if possible.

On the second level, the report provides two kinds of information
regarding the mediation of the chosen demand. First, it shows the
results of the prerequisite checks on the demand level, like demand
necessity or the availability of related guarantees. Second, the report lists
every guarantee related to the demand, including a quick summary
regarding this guarantee’s capability of fulfilling the demand.

On the third and last level, the report illustrates the outcome of the
various checks performed to assess whether the guarantee at hand is
capable of fulfilling the demand. Every prerequisite that has to be
checked is listed, including the information regarding the outcome of
the check and, in case the guarantee is unable to fulfill the demand,
comments that explain why a certain prerequisite is not fulfilled.

 188

Interface Mediation

With this information, the integrator is not only able to identify which
prerequisite check caused a specific demand to be violated, but also to
gain additional, prerequisite-internal information via the comment field.
With this feature, the mediation report can point the integrator to single
conditions and configurations that can change the outcome of the
mediation. Figure 71 shows the structure of a mediation report.

demand necessity

Resource Protection Demand: ASWC_X.Memory

...

Platform Service Demand: ASWC_A.ComFailure.Omission

Platform Service Demand: ASWC_A.ComFailure.Corruption

related guarantee existence

protection necessity

Resource Protection Guarantee: MemoryModule_A

integrity level sufficiency

guarantee availability

...

Resource Protection Guarantee: MemoryModule_B

Name Fulfillment Comment

fulfilled

violated no related guarantees

fulfilled

fulfilled

fulfilled

fulfilled

violated

fulfilled

insufficient integrity level

violated insufficient integrity level (ASIL D > ASIL A)

fulfilled

Figure 71: The structure of a mediation report

 189

Deployment Evaluation

6 Deployment Evaluation

This chapter is the third and final chapter describing our method for
“Efficiently Deploying Safety-Critical Applications onto Open Integrated
Architectures”. In this particular chapter, we will describe our objective
function for evaluating and optimizing the high-level deployment
evaluation, which corresponds to the third contribution specified in
chapter 1.

Contrib. 3 Deployment Evaluation: Developing an objective function for
evaluating and optimizing the deployment of a functional architecture
onto a platform topology from a safety perspective.

As discussed before, open Integrated Architectures like AUTOSAR or IMA
enable flexible deployment, which can potentially help to reduce the
number of computer platforms in a distributed embedded system, and
therefore reduce weight, energy consumption, and costs. Finding a
beneficial deployment that yields the desired properties is, however, a
complicated multi-criteria optimization problem. One criterion that
requires exceptionally careful examination is safety, since an adverse
deployment can compromise system safety and inflict significant costs.

In section 2.2, we identified and listed several safety-related objective
functions that assist the integrator in finding a suitable deployment.
However, to the best of our knowledge, there is no function that allows
the integrator to weigh the costs of strict separation versus flexible
deployment in a mixed-critical system. Since mixed-critical systems are
gaining more and more importance in the automotive as well as in the
aviation industry, our method provides an objective function for
evaluating these costs. The objective function is based on two metrics
and additional constraints, which are assembled to form an adequate
objective function. The assembled objective function is finally
implemented and tested using a genetic algorithm (GA).

Figure 72 shows an overview of our deployment optimization
contribution as well as its interface to the residual VerSaI method.
Deployment optimization takes place during deployment planning,
before the VerSaI method comes into play. Our objective function assists
the integrator in finding a suitable deployment plan, i.e., a mapping of
ASWCs to platforms and signals to communication links. The generated
deployment serves as input to the VerSaI method, where the deployment
plan is used to configure the applications and platforms accordingly, and
as refinement of the deployment plan until the deployment can be
realized technically.

 191

Deployment Evaluation

The structure of this chapter is as follows. Section 6.1 provides a detailed
description of the problem addressed by our approach and introduces a
running example that is used to illustrate the working of our metrics and
constraints. We present the objective function for deployment evaluation
in section 6.2 and the deployment optimization with the GA in section
6.3.

Functional
Architecture

Platform
Topology

Solution
Space

Optimization
Procedure

Cohesion
Metric

Coupling
Metric

Deployment
Plan

uses

co
nta

ins

sp
ec

ifie
s

SolutionSolutionDeployment
Candidate

ConstraintConstraintDeployment
Constraints

Objective
Function

Objective
Function
Other

Criteria

Figure 72: An overview of our deployment evaluation contribution in the context of the overall VerSaI
method.

6.1 Problem Statement

In an integrated system, applications do not have to be deployed onto
platforms as a whole. Applications may consist of several individual
ASWCs, which can be deployed separately. To provide a certain degree
of separation between ASWCs from different applications, some
platforms provide not only one indivisible deployment target, but several
individual deployment compartments called partitions. Basically, a
partition provides fault containment capabilities such that faults of an
application in one partition cannot affect the platform's capability to
provide shared resources in such a way that there is an interference with
applications in other partitions. Resulting from this definition, we define
one aspect of deployment as the mapping of the application software
components (ASWCs) onto the partitions of the platforms. ASWCs are
further characterized by two attributes: their name and their complexity.
Complexity is determined by a three-stage scale (low, medium, high),
which provides a very coarse-grained model of the components’
implementation complexity and size.

A second aspect of deployment is the mapping of the logical signals
exchanged between ASWCs onto the communication channels
connecting the different platforms. Here, we differentiate between
channels that allow inter-platform communication and the local
communication channel that allows communication between ASWCs in
different partitions of the same platform. The stronger the separation
between interactive ASWCs, the higher the required communication
volume.

 192

Deployment Evaluation

We specify the target of a deployment as a collection of platforms,
where each platform is again capable of containing several partitions. If
a platform does not provide partitioning mechanisms, we model this by
specifying a platform with one virtual partition. The platforms are
connected with each other via communication channels. Platforms and
communication channels specify a type that will be used later for the
calculation of the objective function. A possible communication channel
type could be “CAN” or “FlexRay”, whereas a possible platform type
could be “vendor X AUTOSAR 4.0 running on hardware platform Y”.

We label the deployment target, i.e., the tuple consisting of the platform
set and the communication channel set, as platform topology. On the
other hand, we label the part of the system that has to be deployed, i.e.,
the ASWCs and the signals, as functional architecture. The goal of
deployment optimization is to find a suitable mapping (a deployment
plan) of a given functional architecture onto a given platform topology.
Figure 73 shows the meta-model we use to specify a deployment
problem and possible solution deployment plans.

Deployment Plan
PlatformTopology

IntegratedSystem

solution

1

FunctionalArchitecture

ASWC
- intLevel : IntLevel
- compLevel : CompLevel

Signal
- intLevel : IntLevel

ASWCMapping

SignalMapping

Platform
- type : PlatformType

ComChannel
- type : ChannelType

Partition

localChannel

connection
connect

1..*
*

channel
*

platform
*

partition 1..*channel1

0..* signalMapping

aswcMapping0..*

0..1

functional architecturetopology 11

aswc 1..*

outgoingSignal
from to1 1

*

1

partition

1

1

signal

aswc

Figure 73: The meta-model to specify deployment problems and possible solution deployment plans.

Please note that the initial deployment planning is performed very early
in the development cycle of the embedded system. Since platforms
require installation space and the availability of a communication
channel affects the wiring, the platform topology affects the
geographical design of the embedded system, which is again specified in
the early development phases. If it should turn out that the specified
platform topology is unable to host all required software components,
redesigning the topology becomes expensive. To avoid such a situation,
the initial deployment has to be specified early as well in order to show
the general feasibility of the platform topology.

During such an early development phase, the deployment is specified on
a relative coarse-grained level of detail. It is possible to describe

 193

Deployment Evaluation

deployment on a more fine-grained level such that the deployment
specifies, for example, the application's requirement on the capabilities
of specific platform resources like I/O devices, non-volatile memory
(NVRAM), or the assignment of signals to messages or ASWCs to
operating system (OS) tasks and so one. Since this information is only
available and necessary during the later development phases and our
objective function is meant to be used during the early design phase, our
objective function does not use this information. However, the more
detailed deployment information is safety relevant and has to be
checked, which is why we covered these aspects with our VerSaI method
described in chapter 4 and chapter 5.

6.1.1 Safety-Related Properties

The concept of safety integrity levels (SIL) [59], or comparable concepts
like development assurance levels (DAL) [60], is used in safety standards
across most domains. Integrity levels are a qualitative scale for the risk
posed by a system hazard. The higher the risk, the stronger the
requirements for the system to reduce the risk to an acceptable level.
Safety standards try to enforce this by tailoring the safety standards
using integrity levels. The higher the integrity level, the stronger, the
stricter, and the more numerous the demands of the standard. As a
consequence, the integrity level significantly influences the development
costs of a system. Depending on the criticality level, costs for DO-178C-
compliant software [60] development can increase by 300 to 500%.

During system development, while the system architecture is being
gradually refined, it is common to allocate integrity levels to components
if the safety requirements implemented by that component are required
to prevent a hazard that has the corresponding integrity level. Simply
tagging a component with an integrity level can be regarded as
simplification, as it abstracts from the specific requirement and the
specific failure that would actually lead to the hazard. Still, standards
specify deployment rules that are based upon integrity levels, where it is
common to assign integrity levels (IntLevel) to components, in our case
ASWCs.

The same is true for logical signals exchanged between ASWCs. We
assign integrity levels to signals if there is at least one failure mode
related to the transmission of the signal (like corruption, delay, insertion,
masquerading, etc.) that might lead to a hazard that poses the
corresponding level of risk.

Since this information is required for calculating our objective function,
we assume that the ASWCs and the signals contained in the given
functional network are all classified according to their criticality level.

 194

Deployment Evaluation

6.1.2 Running Example

Figure 74 shows the specific deployment problem that we will use as a
running example to illustrate our deployment evaluation method. The
example uses the safety integrity level (SIL) scale defined by the IEC
61508 [59]. The scale goes from QM for uncritical components to SIL 1 -
SIL 4, with SIL 4 being the category for the most critical components.

The functional architecture implements a two-channel comparator
architecture. Both channels are built of two SIL B ASWCs with medium
complexity exchanging two signals. The resulting signal of both channels
is then transmitted to the comparator component, which has low
complexity but a relatively high SIL C criticality level. In addition to the
two-channel comparator, the system contains two highly complex
components that implement an uncritical functionality.

The simple platform topology consists of two platforms that both
provide a partitioning mechanism. Both platforms provide two partitions.
The platforms are connected via one communication channel called
CH1.

channel 1.1
SIL 2

medium

channel 1.2
SIL 2

medium

channel 2.1
SIL 2

medium

channel 2.2
SIL 2

medium

uncritical 1
QM
high

uncritical 2
QM
high

u 1
QM

comparator
SIL 3
low

s 2.2
SIL 2

s 2.1
SIL 2

s 1.2
SIL 2

s 1.1
SIL 2

s 2.3

SIL 2

s 1.3SIL 2

ECU 1
part 1.2part 1.1

platform 2
part 2.2part 2.1

platform 1

CH 1

Figure 74: A running example for the deployment evaluation method . ASWCs are depicted as
rectangles containing three strings, from top to bottom: name, criticality, complexity.
Signals are depicted as arrows with two strings, from top to bottom: name, criticality.

 195

Deployment Evaluation

6.2 Objective Function

This chapter introduces two metrics for evaluating, from the safety
perspective, a solution for a specific deployment problem introduced in
section 6.1. The metrics implement a cost function that is minimized by
the optimization algorithm presented in section 6.3. In particular, both
metrics evaluate negative effects caused by two core characteristics of
integrated architectures.

The cohesion metric is presented in section 6.2.1 and focuses on the
aspect of shared computational resources, as the metric evaluates the
costs induced by unprotected interferences between mixed-critical
ASWCs. The coupling metric is presented in section 6.2.2 and evaluates
the costs caused by safety mechanisms required to protect against
communication failures. In addition to the quantitative evaluation using
these metrics, we allow for the specification of certain constraints that
are required to restrict the available deployment solution space to
sensible solutions. These constraints are introduced in section 6.2.3. The
assembly of the metrics and the constraints into a single objective
function is presented in section 6.2.4. Since the metrics and the objective
function are highly configurable, we conclude this chapter with a
mechanism to adequately parameterize the metrics in section 6.2.5.

6.2.1 Cohesion Metric

A major disadvantage of integrated architectures is the lack of natural
fault containment barriers. If an application fails in a federated
architecture, the failure propagates to other applications only via
functional dependencies because different applications are hosted on
separate platforms, which leaves almost no potential for fault
propagation via technical dependencies. However, in an integrated
architecture, failures of an application can affect the host platform, and
from thereon, affect other applications on the same platform even if the
concerned applications share no functional dependencies. This effect is
typically called interference.

If there is a possibility that a set of ASWCs will interfere with each other,
safety standards typically demand that all ASWCs in the set are
developed according to the highest integrity level amongst all ASWCs in
the set. This is done to prevent failures of lower-criticality components
developed according to less strict development requirements from
causing higher-criticality applications to fail and therefore indirectly
cause hazards with higher criticality. Conversely, if standards were not to
apply this rule, lower-criticality components would be capable of causing
highly critical hazards.

 196

Deployment Evaluation

In section 6.1.1 we already introduced the concept of partitioning.
Partitioning separates a platform into virtual compartments and prevents
interferences across the borders of partitions. Inside a partition, however,
there is no freedom from interference. As a consequence, ASWCs
allocated to the same partition or to a platform that provides no
partitioning mechanisms must be developed according to the highest
integrity level of all the ASWCS allocated to the partition as described
above.

If this rule causes a raise of the original integrity level of an ASWC,
development costs increase. The cohesion metric quantifies this effect
based on an estimation of the resulting additional costs. According to
our experience, the costs for safety-critical development are not added
to the regular development costs like a constant, but rather affect the
costs like a factor. Therefore, we define () to be the cost
factor for the development of an ASWC with integrity level " " ,
compared to the development of an identical but uncritical ASWC.

Let be the original integrity level of an ASWC and the
increased integrity level of the ASWC caused by deployment. Then the
cost factor difference is calculated as: , = () ()
To evaluate the impact of the cost factor difference, we have to estimate
the development costs of the affected component. To this end, we
define the complexity of an ASWC as a qualitative scale as described in
section 6.1, as the costs increase with increasing complexity of the
development of the component. We further define the function () as the cost factor for complexity level "y". The complexity
categorization of an ASWC is currently based on expert judgment.

If we let () be the integrity level and () the complexity
level of the ASWC "aswc", the cost difference for upgrading the
criticality of to level is defined as: (,) = ((),) (())
Finally, the cohesion metric results from summing up the cost differences
for all applications in all partitions. Let " " be the set of all partitions of
the platform topology and () the maximum integrity
level among the applications in the partition " ". Then cohesion is
calculated as: () = (, ())

 197

Deployment Evaluation

Figure 75 shows two solutions for deploying the running example side
by side. The solution on the left shows a deployment yielding no
cohesion costs, since there are only equally critical ASWCs in each
partition. The deployment shown on the right yields much worse
cohesion since both uncritical complex components are deployed to the
same partition as the critical comparator component. This would result in
two highly complex but uncritical components being developed
according to SIL C.

channel 1.1
SIL B

medium

channel 1.2
SIL B

medium

channel 2.1
SIL B

medium

channel 2.2
SIL B

medium

uncritical 1
QM
high

uncritical 2
QM
high

u 1
QM

comparator
SIL C
low

s 2.2
SIL B

s 2.1
SIL B

s 1.2
SIL B

s 1.1
SIL B

s 2.3

SIL B

s 1.3SIL B

part 1.2part 1.1
platform 2

part 2.2part 2.1
platform 1

channel 1.1
SIL B

medium

channel 1.2
SIL B

medium

channel 2.1
SIL B

medium

channel 2.2
SIL B

medium

uncritical 1
QM
high

uncritical 2
QM
high

u 1
QM

comparator
SIL C
low

s 2.2
SIL B

s 2.1
SIL B

s 1.2
SIL B

s 1.1
SIL B

s 2.3

SIL B

s 1.3SIL B

part 1.2part 1.1
platform 2

part 2.2part 2.1
platform 1

CH 1 CH 1

Figure 75: Two example deployments illustrating the cohesion metric . The deployment of an ASWC
to a partition is indicated by the same fill color and pattern of the respective shapes. The
deployment of signals is not indicated.

6.2.2 Coupling Metric

In an integrated architecture, computer platforms are interconnected via
communication buses. This allows the system developer to spread the
components of an application over multiple platforms and to integrate
applications in order to provide new or improved functionalities.
However, the increased information exchange caused by spreading an
application over multiple platforms is also an additional source of failure.

In a safety-critical system, communication failures can potentially cause
hazards, which is why protection mechanisms are necessary to detect
and control them. Typical protection mechanisms include sending
redundant information to detect corruptions, message counters to
detect lost messages, or deadline monitoring to detect delayed signals.
These mechanisms cause bus workload, use computational resources,
and may also increase end-to-end delay. Furthermore, communication
protection mechanisms typically detect, but do not prevent failures. The
necessary failure reaction often lowers the utility or availability of the
system. Therefore, the coupling metric evaluates these costs of safety-
critical communication.

 198

Deployment Evaluation

In section 6.1.1, we abstracted from specific communication failure
modes and classified each signal by assigning an integrity level to it. With
increasing risk, standards typically demand increasingly rigorous
protection mechanisms. To achieve high diagnostic coverage, for
example, ISO 26262 recommends complete bus redundancy, whereas
multiple redundant bits optimally allow for medium diagnostic coverage.
To represent this, we evaluate the costs for protecting a signal as a
function () of the signal's integrity level " ".
The costs for protecting signals from communication failures do not
solely depend on integrity levels. They also depend on the
communication channel that the signal is transmitted on. This is because
some types of channels already come with protection mechanisms or
have a design that makes certain failures less likely. In this dissertation,
we only differentiate between intra-platform communication (if the
collaborating ASWCs are located in different partitions of the same
platform) and inter-platform communication (if they are located on
different platforms). Channel-type-specific costs can be differentiated
further by adding more channel types to the meta-model and extending
the function (), which yields the cost factor of a channel
type .

If we let " " be the evaluated signal, () the type of the
communication channel that " " is assigned to, and () the integrity
level of " ", then the cost function for protecting the communication of " " is defined as: () = () (())
If we let be the set containing all applications and ()
the outgoing signals of the ASWC " ", then coupling is defined as: () = ()()

Figure 76 shows two solutions for deploying the running example side
by side. The deployment shown on the left side yields low coupling costs
since only the signal “s 2.3” with SIL B criticality is deployed to an
inter-platform channel. The second signal that requires communication is
the signal “s 1.3”, but this signal can be transmitted at lower costs via
the platform-internal communication channel. The deployment shown
on the right side, however, requires the inter-platform communication of
five additional signals, which results in much higher coupling costs.

 199

Deployment Evaluation

channel 1.1
SIL B

medium

channel 1.2
SIL B

medium

channel 2.1
SIL B

medium

channel 2.2
SIL B

medium

uncritical 1
QM
high

uncritical 2
QM
high

u 1
QM

comparator
SIL C
low

s 2.2
SIL B

s 2.1
SIL B

s 1.2
SIL B

s 1.1
SIL B

s 2.3

SIL B

s 1.3SIL B

ECU 1
part 1.2part 1.1

platform 2
part 2.2part 2.1

platform 1

channel 1.1
SIL B

medium

channel 1.2
SIL B

medium

channel 2.1
SIL B

medium

channel 2.2
SIL B

medium

uncritical 1
QM
high

uncritical 2
QM
high

u 1
QM

comparator
SIL C
low

s 2.2
SIL B

s 2.1
SIL B

s 1.2
SIL B

s 1.1
SIL B

s 2.3

SIL B

s 1.3SIL B

part 1.2part 1.1
platform 2

part 2.2part 2.1
platform 1

CH 1 CH 1

Figure 76: Two example deployments illustrating the coupling metric . The deployment of ASWCs is
indicated as in Figure 75. The deployment of a signal is indicated as follows: Locally
exchanged signals are shown with a dotted line. Signals deployed to the respective intra-
platform channel are shown with a dashed line. Signals deployed to the inter-platform
channel “CH 1” are shown with a solid line.

6.2.3 Constraints

This section introduces two constraints that allow the designer to restrict
the deployment solution space. Whereas the aspects evaluated in the
previous two sections have quantifiable effects on system development,
solutions that violate constraints are infeasible and will therefore be
discarded.

We mentioned before that our metrics operate during very early
development stages, where most of the software has not been
developed yet. This assumption is used for calculating the cohesion
metric, where we assume that we can still change the native integrity
level of components. However, if the component is reused from a
previous project or if it is a component off the shelf (COTS), the
component is already developed and its integrity level can no longer be
freely adapted. Therefore, the first constraint allows the designer to
specify that a certain ASWC has a fixed integrity level. Consequently, it
will be treated as a constraint that the ASWC does not share a partition
with lower-criticality ASWCs.

The second constraint is used to represent dissimilarity relations between
typically two or three ASWCs, which means that the corresponding
ASWCs have to be developed heterogeneously to avoid systematic
common-cause failures. This also means that the platforms the ASWCs
are deployed to must not have systematic common-cause failures either.
Consequently, the dissimilarity constraint is violated if the type of the
host platforms of at least two dissimilar ASWCs is the same.

 200

Deployment Evaluation

6.2.4 Objective Function Assembly

Since we intend to use a GA to evaluate our objective functions and GAs
typically work with fitness functions, we have to transform the cost
functions implemented by our metrics into a fitness function. To that
end, we define a function to pessimistically estimate the worst-case costs
for a specific deployment problem and subtract the cost functions to get
a non-negative fitness function. The pessimistic worst-case estimation
simply assumes that every ASWC is deployed onto the same partition
and every signal is transmitted via an inter-platform communication link.

Let " " be a specific deployment problem (a tuple consisting of a
platform topology and a functional network). Then () yields all
partitions of all platforms, and () yields all ASWCs in .
Furthermore, let () be defined as the corresponding worst-case
cost estimation and () as a function that yields "1" if no
constraint is violated and ”0” if at least one constraint is violated. Then
we define the fitness function as: () =() () () ()

Using a number of exemplary architectures and corresponding
deployments, we conducted a qualitative analysis of the fitness function
with practitioners in the automotive domain. During the analysis, several
iterations were necessary to adapt the problem description and the
metrics such that it became possible to model the relevant aspects of the
deployment and to evaluate them appropriately. After a final evaluation
of the technique, the metrics were identified as adequately expressive
and the expert estimations allowed for adequate parametrization of the
metrics.

6.2.5 Parameterization

Our objective function requires adequate parameterization to function
properly. If we assume three complexity levels, two kinds of
communication channels (inter- and intra-platform channels), and the
common number of five criticality levels (including the uncritical level) for
ASWCs as well as for signals, we end up with a total of fifteen
parameters for customizing the cost functions as shown in Table 10.

 201

Deployment Evaluation

Table 10: A list of parameters of our objective function

Number Parameter Description

1 () Cost factor for a ASWC
with a low complexity

2 () Cost factor for a ASWC
with a medium complexity

3 () Cost factor for a ASWC
with a high complexity

4 () Cost factor for a ASWC
with a QM risk estimation

5 (_1) Cost factor for a ASWC
with a SIL 1 risk estimation

6 (_2) Cost factor for a ASWC
with a SIL 2 risk estimation

7 (_3) Cost factor for a ASWC
with a SIL 3 risk estimation

8 (_4) Cost factor for a ASWC
with a SIL 4 risk estimation

9 () Cost factor for a ASWC
with a medium complexity

10 () Cost factor for a ASWC
with a high complexity

11 () Cost factor for a ASWC
with a QM risk estimation

12 (_1) Cost factor for a ASWC
with a SIL 1 risk estimation

13 (_2) Cost factor for a ASWC
with a SIL 2 risk estimation

14 (_3) Cost factor for a ASWC
with a SIL 3 risk estimation

15 (_4) Cost factor for a ASWC
with a SIL 4 risk estimation

We chose to design this flexibly since an exact acquisition of specific
safety-related costs is usually not available and different domains,
organizations, and sometimes different projects will most probably
require different kinds of parameterization regarding safety-related
costs.

 202

Deployment Evaluation

Since it is usually difficult for the developers to acquire the respective
cost relations, we allow for an alternative way to parameterize the
metrics: A deployment expert is confronted with an artificial but
humanly manageable calibration deployment problem. The deployment
expert is allowed to change the parameters, and after each change, the
optimizer immediately calculates a deployment solution and presents it
to the expert. This cycle is repeated until the optimizer arrives at a
solution that the expert expects.

The parameter set that produced the expected solution during the
calibration can then be used for real-world deployment problems. Please
note that the quality of the resulting parameters depends on the expert's
estimation and might not correlate with the real cost factors. According
to our experience, however, this process yields better parameters than
completely manual parameterization. Figure 77 illustrates this tool-
supported parameterization process.

expert enters
initial

parameters

compute
optimal

deployment

expert evaluates
computed

deployment

compute
optimal

deployment

use current
parameters

as
expected?

[yes]

[no]

Figure 77: The tool-supported parameterization of the objective function

6.3 Deployment Optimization

In this section, we present a deployment optimization algorithm based
on the introduced fitness function and a GA. It is important to note that
the focus of our work lies on the presented metrics and not on the
selection of this specific optimization algorithm. We used a GA to test
and evaluate our metrics because they were integrated into a larger-
scale optimization running a GA as well. Other techniques, such as linear
programming, however, are also suitable for deployment optimization.

A GA is a stochastic search algorithm that uses techniques adopted from
natural evolution to find near-optimal solutions for complex optimization
problems [69]. The optimization process starts with a number of
randomized solutions, the so-called initial population. After initialization,
each member of the population is evaluated for its fitness, and then a
new population is reproduced from the old population using techniques
like crossover, where chromosomes of one individual are mixed with
chromosomes of another individual, and mutation, where single
chromosomes are randomly altered. Members with higher fitness are
more likely to participate in this reproduction/generation of a new

 203

Deployment Evaluation

population than members with low fitness. After the new population is
generated, it is evaluated for its fitness, which is followed by another
reproduction of a new population. This optimization loop terminates, for
example, after a fixed number of cycles or when one individual has
reached a sufficient predefined fitness.

To be able to use standard algorithms like crossover and mutation,
solutions of the optimization problem have to be represented by so-
called chromosomes. A chromosome is divided into several genes, each
gene representing a distinct part of a potential solution. In our case, the
intuitive chromosome for a specific deployment problem with ASWCs
and signals would be an array of genes representing ASWC
mappings, concatenated with genes representing signal mappings.

However, we decided to include only the ASWC mappings onto the
chromosome and let the GA optimize only the ASWC mappings. This is
because the signal mapping highly depends on the ASWC mapping and
we are able to calculate the optimal signal mapping directly as soon as
the ASWC mapping has been determined. For a specific deployment
problem with ASWCs and partitions, our chromosome therefore
consists of the genes {1, … , }, {1, … , }. Each of the genes is
represented by an integer between 1 and , where = denotes that
ASWC is assigned to partition .

Using this chromosome layout results in a slightly adapted version of the
aforementioned GA optimization loop, since we have to add the signal
mappings to the ASWC mappings for calculating our fitness function.
The resulting loop consists of three steps: (1) calculate the fitness for
each individual, (2) reproduce a new set of ASWC mappings, (3)
calculate optimal signal mappings for each individual. The optimization
stops if the fitness improvement within the last 30 generations has been
below 5%. Figure 78 shows the modified optimization loop.

random generation of
initial population (only

ASWC mappings)

evaluation of
population

fitness

generation of new
population (only

ASWC mappings)

calculation of optimal
signal mappings for

initial population

calculation of optimal
signal mappings for

new population

termination
condition
fulfilled?

[yes]
[no]

Figure 78: The adapted GA optimization loop used for our objective function

 204

Deployment Evaluation

The optimal signal mapping can be determined in a straightforward
fashion since the costs for individual signal mappings do not influence
each other. First, we check the deployment of the receiver and sender
ASWC of each signal. If both are in the same partition, no channel is
needed, and if both are on the same platform, we deploy the signal to
the local channel. If both are hosted on different platforms, we search
for all available channels connecting the respective platforms. If there is
no such channel, we flag the ASWC mapping as invalid. If there is more
than one channel, we search for the channel that yields the lowest costs
and deploy the signal accordingly.

 205

Implementation and Evaluation

7 Implementation and Evaluation

In this chapter, we will describe the evaluation and the technical
implementation of our contributions described in the preceding
chapters. Comparable to the structure of the overall thesis, we
performed the evaluation in a modular way: In the first part of the
evaluation, we will assess the VerSaI technique, which includes the
VerSaI language as well as the VerSaI mediator. The VerSaI language was
specified earlier, in chapter 4, whereas the specification of the VerSaI
mediator is found in chapter 5. In the second part of the evaluation, we
will assess our objective function for deployment evaluation, which was
specified in chapter 6. The technical feasibility of our solution is
underpinned by two implementation prototypes that will be introduced
in the following as well.

This chapter is structured as follows. The evaluation of the VerSaI
technique is described in section 7.1; the evaluation of our approach for
deployment evaluation is described in section 7.2. The implemented
prototypes of the VerSaI technique and the deployment evaluation are
introduced in section 7.2 and section 7.4, respectively.

7.1 VerSaI Evaluation

The VerSaI technique comprises mainly two components. First, there is
the VerSaI language, which allows application and platform developers
to specify the demands regarding the safety-related behavior of the
platform and the correspondingly safety-related guarantees of the
platform. This part of the VerSaI technique corresponds to our first
contribution, in which we declared that we will “define a formal
language for the modular specification of safety-related demands and
guarantees between an application and a platform in an open integrated
architecture.” Second, there is the VerSaI mediator for automatically
checking if a set of application demands specified with the VerSaI
language is fulfilled given the guarantees provided by a specific platform.
This part of the VerSaI technique corresponds to our second
contribution, where we proclaim that we will “develop an automated
process for checking the safety compatibility of an application and a
platform in an open integrated architecture”.

In this section, we evaluate whether both of these contributions have
been achieved by the solutions presented in the previous chapters, i.e.,
whether it is actually possible to specify the relevant demands and
guarantees with the VerSaI language and whether the mediator is

 207

Implementation and Evaluation

capable of automatically checking the compatibility of demand and
guarantee interfaces specified with our language.

Our evaluation starts with the argument for the applicability of the
VerSaI language. The basic strategy behind this argument is to show that
the VerSaI language is capable of covering the safety-related
dependencies between a state-of-the-practice application and a state-of-
the-practice platform. This state of the practice in the development of
open integrated architectures is well represented by the most widely
used open integrated architectures, which are AUTOSAR in the
automotive domain and the civil IMA-derivate ARINC 653 in the aviation
domain. Consequently, to demonstrate that the VerSaI language is
capable of covering the relevant safety-related dependencies, we refer to
the most widely used open integrated architecture standards: AUTOSAR
and ARINC 653.

To show that our language covers AUTOSAR and ARINC 653, we
generated a mapping between these standards and the VerSaI language.
As described in section 4.2, the VerSaI language is structured into four
classes/packages of safety-related dependencies between applications
and platforms: (1) platform service failures, (2) health monitoring, (3)
resource protection, and (4) service diversity. In the following
paragraphs, we will iterate through each of these classes and discuss
their completeness with regard to AUTOSAR and ARINC 653
specification.

The first step in arguing the completeness of the platform service failures
covered by the VerSaI language is to argue the completeness of the
platform services covered by the VerSaI language. These are:
synchronization, communication, I/O access, time services, memory
services, and scheduling. In the following tables, we map the services
provided by ARINC 653 (see Table 11) and AUTOSAR (see Table 12) to
the VerSaI services. Please note that the mapping tables include the
mapping of “health monitoring” services. Health monitoring is not
relevant for the platform service failure class and will be discussed
separately shortly hereafter.

Table 11: Mapping of AUTOSAR services to services in VerSaI . An “x” in the matrix denotes that the
specific part of the ARINC API is addressed by the respective service class. Please not that
there are further directly accessible service components but those components are only
active during initialization or debugging and are therefore not included.

AUTOSAR \
Classification

Com NV-
RAM

Mngr.

OS Diagn.
Event
Mngr.

Funct.
Inhi.

Mngr.

RTE Watch
-dog
Mngr

IO
HW

Abstr.

Synchronization
Mechanisms x x

Communication x x x

 208

Implementation and Evaluation

I/O Access X

Time Services x

NV Memory
Access

 x

Scheduling x x

Health
Monitoring

 x x x

Table 12: Mapping of ARINC 653 services to services in VerSaI . An “x” in the matrix denotes that

the specific part of the ARINC API is addressed by the respective service class.

ARINC 653 \
Classification

Partition
Mgmt.

Process
Mgmt.

Time
Mgmt.

Inter-
Part
Com

Intra-
Part
Com

Health
Mgmt.

Synchronization
Mechanisms

 x

Communication x x

I/O Access is not directly covered by ARINC 653

Time Services x

NV Memory
Access

is covered by ARINC 653 Part 2

Scheduling x x scheduling implementation by OS

Health
Monitoring

x x x

As the tables show, the standard services are well covered by the VerSaI
approach. Based on these standard services, we identified the failure
modes included in the VerSaI language by performing a state-of-the-art
safety analysis. The analysis was conducted using a guide-word-driven
process widely used in academia and industry (see section 4.4.1 for more
information regarding the analysis technique). Where possible, we cross-
checked the results of our failure analysis with existing failure models
specified in the related safety standards (e.g., IEC 61508-2 Table A.1 [59]
and ISO 26262-5 Table D.1 [46]) to further align our failure models with
existing and accepted failure models. Of course, it is almost impossible to
identify a complete set of failure-modes for such a complicated set of
services. However, through various iterations in the SPES2020 and
ARAMiS project as well as through discussions with industrial partners,
we believe that we have reached a stable set of failure-modes for the
covered services. However, should the VerSaI language not cover a

 209

Implementation and Evaluation

certain aspect, the language can be extended as we discuss later in this
section.

The second dependency class, the health monitoring class, allows the
VerSaI user to specify demands and guarantees regarding mechanisms
for both application monitoring and failure control reactions provided by
a standard execution platform.

The completeness of the available application monitoring mechanisms
with regard to the application monitoring mechanisms available in
AUTOSAR and ARINC 653 is shown in Table 13, where we map the
VerSaI mechanisms to the AUTOSAR and ARINC 653 mechanisms. If the
reader is familiar with AUTOSAR or ARINC 653, he or she might notice
that the corresponding standards contain additional monitoring
mechanisms that are not listed in the table. These mechanisms, like ISR
disable budget monitoring in AUTOSAR or illegal OS service call
monitoring in ARINC 653, serve the protection of other applications
running on the same platform and do not assist the application safety
concept of the causative application. Therefore, these mechanisms are
not listed as application monitoring mechanisms in VerSaI but are
covered by the resource protection class.

Table 13: Mapping of monitoring mechanisms to the VerSaI language . This table lists the different
application monitoring mechanisms provided by AUTOSAR and ARINC 653 and maps them
to the platform failure reaction provided by the VerSaI health monitoring package (see
section 4.4.3)

AUTOSAR
OS

AUTOSAR
Watchdog
Manager

ARINC 653
Health

Monitoring

VerSaI Health
Monitoring

execution
time

 execution time

inter-arrival
time

 inter-arrival time

 alive inter-arrival rate

 sequence logical sequence

 deadline deadline deadline

The completeness of the available platform failure reactions is shown in
Table 14. Please note that some mechanisms are labeled differently in
AUTOSAR, ARINC, and our technique. Please note further that the
VerSaI language is not capable of differentiating between shutting down
the OS, restarting the MCU, and restarting the complete platform via
watchdog reset. Since this is a very AUTOSAR-specific differentiation we
chose to abstract and map them to the platform restart reaction.

 210

Implementation and Evaluation

Table 14: Mapping of platform failure reactions to the VerSaI language : This table lists the different
platform failure reactions provided by AUTOSAR and ARINC 653 and maps them to the
platform failure reaction provided by the VerSaI health monitoring package (see section
4.4.4). Acronyms in the table: FIM stands for Function Inhibition Manager. DEM stands for
Diagnostic Event Manager.

AUTOSAR
OS

AUTOSAR
Watchdog
Manager

AUTOSAR
FIM &
DEM

ARINC 653
Health

Monitoring

VerSaI
Health

Monitoring

shutdown
OS

 shutdown
platform

 stop module shutdown
platform

 restart
module

restart
platform

terminate
partition

terminate
partition

 stop
partition

shutdown
partition

restart
partition

 restart
partition

restart
partition

terminate
task

 stop process shutdown
task

restart task restart
process

restart task

call error
hook

 user
callback

handler
execution

 MCU reset shutdown
platform

 watchdog
reset

 shutdown
platform

 indication (rule-based)
indication

 indication

The resource protection package provided by the VerSaI language is the
third of four dependency classes and allows specifying demands and
guarantees regarding the protection of shared resources in order to
prevent inadvertent interferences between different application
components. The structure and completeness of this dependency class
were evaluated in an industrial context together with a tier-1 automotive
supplier. During a joint project we analyzed an example multicore
platform running AUTOSAR regarding potential interferences and
available protection mechanisms. Among other aspects, the analysis
included almost every AUTOSAR service directly accessible from the
application level (NVRAM Manager, Communication Manager,

 211

Implementation and Evaluation

Diagnostic Event Manager, Function Inhibition Manager, Watchdog
Manager, and BSW Mode Manager), as well as certain peripherals (ADC,
GPIO, timer, CAN controller, FlexRay controller, and DMA controller) and
the service, memory, and timing protection provided by the AUTOSAR
OS. The protection demands and guarantees resulting from the
interference analysis were used to refine and validate the soundness of
the resource protection package.

The final dependency class covered by the VerSaI language is called
service diversity. This class allows the user to demand or guarantee the
availability of diversely developed services to support a heterogeneous
redundancy concept on the application level. This class of dependency
represents a relatively special and rarely used case. Therefore, we did not
design it for completeness but rather so that it is suitable for covering
the relevant safety architectures that require this dependency class (e.g.,
certain implementations of the standardized e-gas safety concept from
the automotive domain). Should the advancement of integrated
architectures cause these architectures to be used more often, we need
to extend and refine this dependency class.

In the previous paragraphs, we argued that the VerSaI language covers
the standardized services specified in AUTOSAR and ARINC 653.
However, both standards further allow for non-standardized interfaces
between applications and platforms (see complex device drivers in
AUTOSAR or system partitions in ARINC 653). These non-standardized
interfaces allow the developer to introduce application-specific features
into the platform. Since these services are customary in nature, they are
not covered by the VerSaI language. However, both standards
discourage the use of these features as they impair application
portability. Yet, should the user require a specific custom service more
frequently, the VerSaI language can be extended to cover the service.

Now that we have argued the attainment of our first contribution by
showing that the VerSaI language covers the relevant parts of the
AUTOSAR and ARINC 653 standards, our evaluation continues with the
second contribution, the automated mediation of VerSaI interfaces. In
order to demonstrate that the concepts and algorithms for interface
mediation presented in chapter 5 can be implemented to produce an
automatic mediation tool, we developed a tool prototype. This prototype
was implemented based on Java, Eclipse, and the Eclipse modeling
framework. The prototype will be introduced in more detail in section
7.3.

Our VerSaI prototype was structurally tested with various example inputs
to evaluate the correctness of the proposed algorithms. The test set was
designed to achieve decision coverage of each of our five mediation
algorithms presented in section 5.4.1 to section 5.4.5. The reader can
best follow up on the various decision points involved in each algorithm

 212

Implementation and Evaluation

via the activity diagrams shown for each algorithm. In total, we required
54 test runs to achieve decision coverage as listed in Table 15. Naturally,
we found many software bugs during testing. Yet, more interestingly,
during the implementation of the algorithms we found several cases in
which we were not capable of retrieving information via the meta-model
as initially assumed during conception. Mostly this was because of
missing references that did not allow us to traverse the model as
intended. As a consequence, we had to adjust the meta-model in more
than one case.

Table 15: An overview of the VerSaI testing : This table lists the different test runs required to reach
decision coverage for the individual mediation algorithms. The table also provides a link to
the chapter where the corresponding mediation algorithm is described as well as a link to
the figure showing the activity diagram depicting the algorithm.

Mediation
Algorithm

Chapter Figure Decisions# Test
Runs#

Platform Service
Demand Mediation

5.4.1 Figure 65 10 11

Application
Monitoring Demand
Mediation

5.4.2 Figure 67 9 10

Reaction Demand
Mediation

5.4.3 Figure 68 12 13

Resource Protection
Demand Mediation

5.4.4 Figure 69 10 11

Service Diversity
Demand Mediation

5.4.5 Figure 70 8 9

We discussed the VerSaI technique in the context of several industrial
and research projects. Our approach was generally perceived as helpful,
but it was criticized for having solely model-based representation of
demands and guarantees, which does not fit into the current
development life-cycle of a safety-critical system.

In the development life-cycle of a safety-critical system, safety-related
demands and guarantees are represented by safety requirements. A
demand specifies the need for the implementation of a safety
requirement requested by a component that is otherwise unable to
execute safely. A guarantee, on the other hand, specifies that a specific
safety requirement has been successfully implemented. In the ideal case,
the model-based specification of the requirement with the VerSaI
language replaces the manual specification of the requirement entirely.
Yet, since developers and assessors require a natural-language
representation to read and understand the safety requirements, the
semi-formal specification of the requirement using VerSaI has to be

 213

Implementation and Evaluation

additional in nature, and cannot replace the natural language
specification.

In order to circumvent the expensive redundant specification of model-
based safety requirements, we evaluated an automatic import/export
function based on a structured-text-based approach known from
requirements engineering. In a prototypical implementation that
included approximately 40% of all demands and guarantees specifiable
with the VerSaI language, we showed that the demands and guarantees
can be transformed from a natural language representation into their
model-based VerSaI representation and vice versa. For the
implementation of the import function we used EBNF (Extended Backus-
Naur Form) rules and a structured text representation for the safety
requirements. Some example EBNF rules created during the evaluation
are shown in Appendix C. Since a VerSaI interface specification can be
imported automatically from a natural language specification, the
additional effort for generating a VerSaI interface can be reduced.

However, there are certain restrictions for the application of the VerSaI
approach: First, the specification of the demands and guarantees in
natural language has to follow the rules of predefined structured text
templates and the engineer cannot specify them freely. Second, to
specify a demand or a guarantee using the VerSaI language, and to
import it, too, there has to be a model-based representation of the
applications and the platforms involved in the system. For our approach
we assume that these models are already specified as a part of the
regular state-of-the-art engineering process, as, for example, demanded
by the AUTOSAR development methodology. Yet, if these models have
to be generated in an additional work step, the efficiency of the VerSaI
technique is reduced.

7.2 Deployment Evaluation

The VerSaI technique takes the deployment specification, i.e., the
mapping of the application to execution platforms, as input to match
application demands with their corresponding platform guarantees. To
assist the automated derivation of a suitable deployment plan, we
specified an objective function in chapter 6 to be used as a module in a
multi-criteria deployment optimization. The development of this
objective function corresponds to the third and last contribution of this
thesis, in which we stated our goal as “developing an objective function
for evaluating and optimizing the deployment of a functional
architecture onto a platform topology from a safety perspective.”

More precisely, the aim of our objective function is to evaluate the
additional costs of mapping mixed-critical functions into an open
integrated system. Such additional costs can either accumulate by not

 214

Implementation and Evaluation

strictly partitioning software components with different criticality levels,
or by additional communication protection mechanisms resulting from
the distribution of safety-critical functions over the nodes of the platform
topology. In this section, we will evaluate whether our objective function
produces valid assessments of a given deployment.

Our objective function was evaluated in an industrial context together
with experts of a major tier-1 automotive supplier. The evaluation was
performed in a two-stage process. In the first phase of the evaluation,
we assessed the objective function in an “open-loop” setting that did
not involve an iterative optimization; in the second phase, we integrated
and evaluated the objective function in an optimization setting that used
a genetic algorithm.

The “open loop” optimization was performed using an early prototype
that required the user to manually specify the deployment of a given
function network onto a give platform topology. Together with a set of
configuration parameters, the objective function would take the
specified deployment, calculate the costs of the given deployment, and
provide it as output to the user. Using this early prototype, the user was
capable of specifying several deployments, let the prototype calculate
the costs for each deployment, and compare the results of the objective
function to the expected results. This first open-loop evaluation of the
objective function is depicted in Figure 79.

application
model

platform
model

objective
function

.vsd

.xlsconfiguration
parameters

.class .txt

user

resultsdeployment

specifies /
modifies

observes

.xls

Figure 79: The open-loop evaluation of the objective function using our first prototype

 215

Implementation and Evaluation

We used the open-loop set-up to focus the evaluation on the objective
function itself. The evaluation was performed by an expert from the tier-
1 automotive supplier mentioned above. In the first step, the expert
specified a simple function network and platform topology. In the
second step, the expert specified several deployments and evaluated
each deployment manually to compare the expert judgment with the
assessment results produced by our objective function. This evaluation
revealed two major weaknesses of that early version of the objective
function.

The first weakness was related to the addition of both metrics (see
section 6.2.1 and section 6.2.2), which yields the result of our objective
function. This direct addition required the user to weight both metrics
carefully against each other, so that one metric would not superimpose
heavily on the other metric. Finding a good weight was very tedious,
since both metrics were influenced by a number of parameters that all
required simultaneous adjustment. We addressed this issue by
introducing an overall weight parameter that allowed the specification of
an amplification factor for a metric as introduced in chapter 6.

The second weakness was based on the cost calculation for protecting
safety-critical signals sent via communication links. In the original version
of the metric, costs would increase linearly with each additional signal. In
reality, however, certain costs (e.g., the acquisition or development of a
high integrity com stack) are only incurred once, whereas other costs are
incurred for every signal. As a result, we modified the cost function to
allow the user to specify that certain costs are only counted for the first
but not for every following signal that is transmitted via a
communication link.

After this first validation of the objective function, we developed a
second tool prototype that allowed us to evaluate the objective function
in the loop with an optimization algorithm. Since our industrial partner
was already evaluating genetic algorithms at that time, we selected
genetic algorithms as well. Unlike the previous evaluation phase, which
focused on the cost assessments produced by our objective function, this
second tool prototype directly provided the user with an optimized
deployment. This second evaluation set-up is shown in Figure 80.

Since our second and final prototype produced a deployment, we were
only able to judge the quality of the evaluation algorithm indirectly, i.e.,
based on the quality of the resulting deployment. However, the focus of
this second evaluation phase was not directly on the evaluation of the
objective function but on evaluating whether the objective function
could be used to optimize a real-world example.

The platform topology of our real-world example (taken from [78]) used
for evaluation was a replication of a power train platform topology of a

 216

Implementation and Evaluation

high-end vehicle consisting of 13 platforms connected via FlexRay and
CAN (some platforms were connected to both CAN and FlexRay). The
function network on the other side consisted of several mock-up
functions that were generated to the likeness of an example cruise
control application provided by our industrial partner. In order to test our
objective function with more than one example application, we took the
cruise control and modified it several times to yield comparable
applications.

The resulting function network comprised three applications consisting
of 27 ASWCs that exchanged 51 signals. According to the judgment of
our industrial partner, the optimizer calculated valid deployments for this
real-world example. However, even though the genetic algorithm
generated valid deployments most of the time, we also experienced
scenarios where the GA did not converge.

application
model

platform
model objective

function

.ecore

.xls

configuration
parameters

.class

user

results
deployment

observes

notifies

optimizer

.class

optimizes

terminate?

Figure 80: The closed-loop evaluation of the objective function using our second and final prototype.

On a commercially available mobile CPU running with 2.40 GHz, the
genetic algorithm terminated on average within 18.5 seconds for the
optimization of the above-described real-world example.

7.3 VerSaI Implementation

Our implementation of the VerSaI technique is based on Eclipse [79, 80]
and the Eclipse modeling framework (EMF) [81, 82]. Basically, Eclipse is
an extensible platform that is mainly used as a software development
environment. However, Eclipse also offers a plug-in development
environment to allow the user to develop extensions and integrate them
into the Eclipse environment. Our VerSaI mediator and the above-

 217

Implementation and Evaluation

mentioned Eeclipse modeling framework were both developed as Eclipse
plug-ins.

According to the authors of EMF, “the eclipse modeling framework is a
framework and code generation facility for building tools and other
application based on a structured data model.” To this end, EMF
provides a developer with the Ecore meta-model. Using Ecore, the
developer is able to specify a custom application model. For such an
Ecore-compliant model, EMF offers many automated features, like model
serialization, validation, or code generation. We used Ecore for the
specification of the VerSaI meta-model, which was introduced over the
course of chapter 4, and for the specification of the architectural model
specified in Appendix A.

Another feature of EMF is its capability of generating a simple but
extensible tree-based editor for a user model. We used this feature to
develop separate editors for application development and platform
development, and for integrating applications and platforms into an
open integrated system. The application editor allows an application
developer to specify the application’s architectural model together with
the application’s VerSaI interface. The platform editor offers an
analogous functionality to a platform developer. The separation of the
two editors allows simulating the separate development of applications
and platforms as performed in an open integrated architecture
development scenario. The editors use the serialization capability
provided by EMF to persist the models using the XML format. The
integrator is then capable of importing the XML models of applications
and platforms and integrates them using the integrated system editor.
Figure 81 shows this process using screenshots of the described editors.

 218

Implementation and Evaluation

Application Editior

Platform Editior

Integrated System Editor

<XML>

<X
ML>

Figure 81: An overview of the VerSaI editors provided by the EMF-based implementation of the VerSaI
technique.

The integrated system editor is the control center from which the
integrator controls the mediation. The system editor allows the
integrator to configure and integrate the applications and platforms and
to toggle the different states of the mediation shown in Figure 62 and
described in chapter 5. Whenever the integrator triggers a transition that
involves an automatic action of the VerSaI mediator, for example the
transition between configuration and integration, the system editor
automatically executes the appropriate mediator feature, e.g., the
automatic evaluation of configuration-dependent conditions.
Consequently, the integrator also triggers the actual interface mediation
from within the system editor as shown in Figure 82.

After the system editor triggers the interface mediation, the mediator
generates a separate mediation report for every application as described
in section 5.5.1. The mediation report itself is again based on an Ecore
model and is capable of directly referencing the elements of the
application and platform models for easy navigation from the report to
the model. The implementation of the report viewer is based on a table-
tree view provided by the Eclipse platform. Figure 83 shows a screenshot
of the mediation report viewer.

 219

Implementation and Evaluation

Figure 82: The system editor UI for controlling the mediation

Figure 83: The mediation report viewer provided by the EMF-based implementation of the VerSaI
technique.

7.4 Deployment Implementation

The implementation of our deployment evaluation prototype is based on
Eclipse and EMF33, comparable to the implementation of the VerSaI
prototype introduced in section 7.2. Among other advantages, sharing
the same technology basis will allow us to integrate both prototypes
more easily in the future. Comparable to the VerSaI meta-model, the
deployment evaluation meta-model introduced in section 6.1 Figure 73
was also specified using Ecore.

33 For more information regarding Eclipse or EMF, please refer to section 7.2.

 220

Implementation and Evaluation

The tree-based editor automatically generated by the EMF framework
provides the user of our prototype with a graphical user interface for
specifying deployment problems consisting of a functional architecture
and a platform topology. However, in order to find a suitable
deployment with the help of a genetic algorithm, we have to translate
the specified model-based Ecore representations into a chromosome-
based representation. Since we used the Java Genetic Algorithm Package
(JGAP) ([83]) to implement the optimization, we had to develop a
transformation from the Ecore models into a format predefined by the
JGAP developers. After an Ecore model is translated into a chromosome
format, JGAP is capable of generating an initial population and
performing fitness-based selections and genetic operators like crossover
and mutation. Besides some adaptations to our objective function that
were necessary to plug it into the JGAP framework, JGAP performed the
optimization without further assistance from our side. After the
optimization produces a deployment solution, we translate it back into
the Ecore format and display it in our EMF-generated editor. The whole
process is illustrated in Figure 84.

G1 G2 Gn... G1 G2 Gn...
JGAP

Optimization
Algorithm

EMF Editor: Model-based
representation of
deployment problem

EMF Editor: Model-based
representation of

deployment solution

JGAP format: chromosome-
based representation of
deployment problem

JGAP format: chromosome-
based representation of
deployment solution

transformation transformation

Figure 84: The tool chain used by our deployment optimization prototype

Since the tree-based EMF editor does not provide a good overview for
large models, we developed a prototypical graphical user interface using
the graphical modeling framework (GMF). Like EMF, GMF is part of the
Eclipse modeling project and allows developers to model and generate
graphical editors based on EMF and Ecore models. Figure 85 shows our
prototypical graphical editor. It illustrates the mapping of ASWCs to
partitions using colors. The mapping of signals to communication
channels is not depicted by the editor.

 221

Implementation and Evaluation

Figure 85: A GMF based visualization of a solved deployment problem (independence of redundant
channels has not been considered as a factor for the deployment)

 222

Conclusion

8 Conclusion

In this closing chapter, we will summarize and evaluate the contributions
and limitations of our approach (section 8.1), propose possible future
areas of work (section 8.2), and conclude this thesis with a final
comment (section 8.3).

8.1 Contributions and Limitations

Open integrated architectures like AUTOSAR and IMA allow for more
flexible composition of functionality-providing applications and general-
purpose execution platforms than traditional federated architectures. Yet
if the system is safety-critical, this flexibility is reduced significantly as the
safety of the integrated system has to be evaluated whenever the system
changes. Therefore, the aim of this thesis was to maintain the flexibility
of safety-critical open integrated systems by reducing the safety-related
costs when integrating applications and platforms. To this end, this
thesis specified and demonstrated a technique for automatically
checking the safety compatibility of an application-platform combination
as well as an objective function to support the identification of potential
application-platform combinations, i.e., deployments.

The technique presented for checking the safety compatibility of
application-platform combinations is called VerSaI, which stands for
Vertical Safety Interface. The first of the two parts that constitute our
VerSaI technique is the VerSaI language, which allows for formalized
model-based specification of the afore-mentioned vertical safety
interfaces. In chapter 4, we showed that the VerSaI language provides
an application-specific component that enables the application developer
to modularly specify the application’s safety-related demands regarding
the behavior of a platform and a complementary platform-specific
component allowing the platform developer to specify the safety-related
features provided by a platform. Consequently, the VerSaI language
constitutes our first contribution, which was specified as follows:

Contrib. 1 Interface Specification: Defining a formal language for the modular
specification of safety-related demands and guarantees between an
application and a platform in an open integrated architecture.

One main characteristic of the model-based VerSaI language is its
integration into the design models of applications and platforms. This
feature is the key in allowing the second part of the VerSaI technique,
called the VerSaI mediatior, to automatically reason about the safety

 223

Conclusion

compatibility of an application and a platform. We described in chapter
5 how the VerSaI mediator uses the model integration of the VerSaI
language to navigate from an application demand to an application
component, then via the deployment model to a platform resource, and,
finally, from this resource via the language integration to the relevant
platform guarantees. In the next step, the VerSaI mediator checks
whether the corresponding demand can be fulfilled using the relevant
platform guarantees and displays the result to the system integrator.
Overall, the VerSaI mediator provides our second contribution, which
was specified as:

Contrib. 2 Interface Mediation: Developing an automated process for checking
the safety compatibility of an application and a platform in an open
integrated architecture.

As mentioned above, the VerSaI mediator requires the planned mapping
of application and platform, i.e., the deployment, as input to match
demands with their related guarantees. To support the identification of
suitable deployment candidates, we introduced a novel objective
function for deployment evaluation in chapter 6. This objective function
evaluates the aspects of mixed criticality and distribution of safety-critical
applications, both inherently tied to the design of an integrated system.
The objective function forms our third and final contribution:

Contrib. 3 Deployment Evaluation: Developing an objective function for
evaluating and optimizing the deployment of a functional architecture
onto a platform topology from a safety perspective.

While still involving the user, our overall approach automates safety-
related aspects of the integration of applications and platforms.
However, certain limitations to the approach apply.

In chapter 7, we showed that our language covers the relevant parts of
AUTOSAR and ARINC 653. Yet, it is also possible to add application- or
domain-specific services to these platforms that are not covered by the
public standard. The VerSaI language as specified is not capable of
covering such services. We addressed this issue by allowing the
specification of “free-text” requirements that have to be manually
mediated by the user, and by designing the VerSaI language and
mediator in an extensible way whenever possible.

A second issue is that the VerSaI language also does not cover the
modular specification of demands and guarantees regarding random
failure rates. This is because there already exist various approaches, such
as component fault trees [55], that cover this aspect.

 224

Conclusion

As a third limitation, we want to mention that the integration of the
VerSaI language into the model-based design artifacts of applications
and platforms also specifies a requirement for the residual development
process. If the product-related design process used does not work with
appropriate model-based techniques, the VerSaI technique cannot be
applied. However, standards like AUTOSAR already prescribe a model-
based design methodology, which is why we believe that the market
penetration of model-based techniques will further increase.

The fourth and last limitation is the focus of the VerSaI approach on
vertical safety dependencies, i.e. dependencies between applications and
platforms. However, when integrating various applications with each
other, we have to check the safety-compatibility on the horizontal level,
i.e. between applications as well, which is not covered by VerSaI. We
think that achieving a comparable level of automation for horizontal
safety-dependencies is much more challenging than automatically
mediating vertical dependencies as we did. This is because interfaces on
functional level are not as standardized as interfaces we find between
applications and platforms.

8.2 Future Work

In this section, we will specify two possible future areas of work based
on the solutions already provided by this thesis. One addresses the tool-
supported integration of deployment optimization and VerSaI, the other
a problem solver that assists the integrator in case a VerSaI mediation
fails, i.e., if demands cannot be fulfilled by the given platform.

Currently, deployment evaluation and optimization are decoupled from
the VerSaI mediation. Deployment optimization identifies potential
solution candidates; in the second step, the integrator uses the VerSaI
technique to check if the given deployment allows for the fulfillment of
all safety-related application demands. However, if the mediator fails,
there is no automatic feedback for the deployment optimization that
filters or reevaluates the incompatible deployment candidates. Here, it
would be possible to use the automated VerSaI approach for evaluation,
transform the currently qualitative answer into a quantitative result, and
feed it back as input for the deployment optimizer.

We see three major challenges for this approach: The first is to find a
sensible transformation of the qualitative yes/no answers of the mediator
to a quantitative result. The second is the scalability of the current
mediation algorithm, since the algorithm might be too time-consuming
for the evaluation of a large solution space. The third and maybe most
difficult challenge lies in bridging the gap between the output of the
deployment optimization and the required input of the VerSaI mediator.
On the one hand, the deployment optimizer produces a mapping of

 225

Conclusion

software components to partitions and signals to busses. The mediator,
however, requires a partially configured execution platform. In order to
automate this process, a tool would have to automatically configure the
platform before being able to use the VerSaI mediation.

Such an automated configuration would also help to solve the
challenges introduced by the second area of potential future work. In
the current system, the mediator produces a result that provides the user
with detailed information about why a certain demand is treated as
fulfilled or violated. In case a demand is violated, the mediator will also
point towards a configuration parameter or a model property that might
have “caused” the demand violation. However, the current mediator is
not capable of suggesting changes to the configuration, the
deployment, or maybe even the implementation of a platform that
would help to solve the failed mediation. We think that the development
of a component that would help the integrator find solutions for solving
a failed mediation would be a challenging yet interesting topic for future
research.

8.3 Final Comment

In order to ultimately demonstrate the validity of the VerSaI technique, it
would need to be applied in an industrial setting. No such direct
evidence was produced. Nevertheless, we showed the applicability of the
technique through extensive matching of our language to state-of-the
practice standards like AUTOSAR and ARINC 653 and by applying the
method using industral examples provided by our partners. These
successful applications and the fact that we automated a process that
was performed manually before allow the conclusion that our work is a
step towards “efficiently deploying safety-critical applications onto open-
integrated architectures.”

 226

References

9 References

[1] R. Obermaisser, C. El Salloum, B. Huber, and H. Kopetz, “From a
Federated to an Integrated Automotive Architecture,” TCAD, vol. 28, no.
7, pp. 956–965, 2009.

[2] ARINC Specification 653 P1-2, Avionic Application Software Standard
Interface, Part 1 - Required Services, ARINC 653 P1-2, 2005.

[3] AUTOSAR development partnership, Website of the AUTOSAR Standard.
Available: http://www.autosar.org/ (2010, Feb. 05).

[4] H. Fennel, D. K.-P. Schnelle, and P. H. Heinecke, “Achievements and
exploitation of the AUTOSAR development partnership,” in Proceedings
of the SAE Convergence 2006: SAE, 2006.

[5] R. Warrilow, “The avionics platform,” Smiths Aerospace, 2004.

[6] R. Hammett, “Flight-critical distributed systems: design considerations
[avionics],” Aerospace and Electronic Systems Magazine, IEEE, vol. 18,
no. 6, pp. 30–36, 2003.

[7] DO-297: Integrated Modular Avionics (IMA) - Development Guidance
and Certification Considerations, RTCA/DO-297, 2005.

[8] G. Romanski, “Safe and Secure Partitioned Systems and Their
Certification,” in Proceedings of the 30th IFAC Workshop on Real-Time
Programming and 4th International Workshop on Real-Time Software
(WRTP/RTS'09): IEEE, 2009, pp. 167–172.

[9] J. Rushby, “Partitioning in Avionics Architectures: Requirements,
Mechanisms and Assurance,” SRI International - Computer Science
Laboratory, 1999.

[10] US Department of Defense, Mandatory Procedures for Major Defense
Acquisition Programs (MDAPS) and Major Automated Information
System (MAIS) Acquisition Programs: DoD 5000.2-R, 2002.

[11] Peter Henderson, Modular Open Systems Architecture. Available:
http://openpdq.com/MOSAoverview (2012, Feb. 13).

 227

References

[12] A. Sangiovanni-Vincentelli, “Quo Vadis, SLD? Reasoning About the
Trends and Challenges of System Level Design,” Proceedings of the IEEE,
vol. 95, no. 3, pp. 467–506, 2007.

[13] Wind River, “Wind River VxWorks Platforms 6.9 - Product Overview,”
Feb. 2011.

[14] QNX Software Systems Limited, Company website. Available:
http://www.qnx.com/ (2012, Jun. 03).

[15] 3S-Smart Software Solutions GmbH, Company website. Available:
http://www.3s-software.com (2013, Jun. 03).

[16] David N. Kleidermacher, “Real-time Operating System Requirements for
Use in Safety Critical Systems,” in EETimes Embedded
Systems Conference 2006 (ESC'06), 2006.

[17] SYSGO AG, Company website. Available: http://www.sysgo.com (2013,
Jun. 03).

[18] ISO 17356-3: Road vehicles -- Open interface for embedded automotive
applications -- Part 3: OSEK/VDX Operating System (OS), 2005.

[19] A. Sangiovanni-Vincentelli and M. Di Natale, “Embedded System Design
for Automotive Applications,” IEEE Computer, vol. 40, no. 10, pp. 42–
51, 2007.

[20] A. Sangiovanni-Vincentelli, L. Carloni, F. de Bernardinis, and M. Sgroi,
“Benefits and challenges for platform-based design,” in Proceedings of
the 41st annual Design Automation Conference, New York, NY, USA:
ACM, 2004, pp. 409-414.

[21] L. Carloni, D. de Bernardinis, C. Pinello, A. Sangiovanni-Vincentelli, and
M. Sgroi, “Platform-Based Design for Embedded Systems,” in Embedded
systems handbook, R. Zurawski, Ed, Boca Raton: Taylor & Francis, 2006.

[22] AUTOSAR development partnership, “Virtual Functional Bus (v 2.2.0),”
AUTOSAR, Oct. 2011.

[23] AUTOSAR development partnership, “Layered Software Architecture (v
3.2.0),” Oct. 2011.

[24] P. Johannessen, “AUTOSAR Safety Approach,” in Proceedings of the
SAE Convergence 2006: SAE, 2006.

[25] AUTOSAR development partnership, “Technical Safety Concept Status
Report (v 1.1.0),” Oct. 2010.

 228

References

[26] ARINC Report 651 - "Design Guidance For Integrated Modular Avionics",
ARINC 651, 1997.

[27] Def Stan 00-74: ASAAC Standards Part 1: Standards for Software, 2008.

[28] P. Binns, “A robust high-performance time partitioning algorithm: the
digital engine operating system (DEOS) approach,” in Digital Avionics
Systems, 2001. DASC. 20th Conference, 2001, pp. 1B6/1 -1B6/12 vol.1.

[29] A. S. Tanenbaum, Modern operating systems, 3rd ed. Upper Saddle
River, N.J: Pearson Prentice Hall, 2008.

[30] Common Object Request Broker Architecture (CORBA) Specification -
Part 1: CORBA Interfaces, 2011.

[31] Deployment and Configuration of Component-based Distributed
Applications Specification, 2006.

[32] S. Purao, H. Jain, and D. Narareth, “Effective distribution of object-
oriented applications,” Communications of the ACM, vol. 41, pp. 100-
108, 1998.

[33] C. Pinello, L. Carloni, and A. Sangiovanni-Vincentelli, “Fault-Tolerant
Distributed Deployment of Embedded Control Software,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 27, no. 5, pp. 906–919, 2008.

[34] B. Boone, F. de Turck, and B. Dhoedt, “Automated Deployment of
Distributed Software Components with Fault Tolerance Guarantees,” in
Proc. of the Sixth International Conference on Software Engineering
Research, Management and Applications, 2008. SERA ’08, 2008, pp.
21–27.

[35] M. C. Bastarrica, R. E. Caballero, S. A. Demurjian, and A. A. Shvartsman,
“Two Optimization Techniques for Component-Based Systems
Deployment,” in Proceedings of the Thirteenth International Conference
on Software Engineering & Knowledge Engineering (SEKE’2001), 2001,
pp. 153–162.

[36] J. A. Bannister and K. S. Trivedi, “Task allocation in fault-tolerant
distributed systems,” Acta Informatica, vol. 20, pp. 261–281, 1983.

[37] K. W. Tindell, A. Burns, and A. J. Wellings, “Allocating hard real-time
tasks: an NP-hard problem made easy,” Real-Time Syst, vol. 4, no. 2, pp.
145-165, 1992.

 229

References

[38] S. Kartik and C. S. R. Murthy, “Task allocation algorithms for maximizing
reliability of distributed computing systems,” IEEE Transactions on
Computers, vol. 46, no. 6, pp. 719–724, 1997.

[39] S. Shatz and J.-P. Wang, “Models and algorithms for reliability-oriented
task-allocation in redundant distributed-computer systems,” Reliability,
IEEE Transactions on, vol. 38, no. 1, pp. 16–27, 1989.

[40] S. Srinivasan and N. Jha, “Safety and reliability driven task allocation in
distributed systems,” IEEE Transactions on Parallel and Distributed
Systems, vol. 10, no. 3, pp. 238–251, 1999.

[41] S. Kartik and C. Siva Ram Murthy, “Improved task-allocation algorithms
to maximize reliability of redundant distributed computing systems,”
IEEE Transactions on Reliability, vol. 44, no. 4, pp. 575–586, 1995.

[42] ARP4754A - Guidelines for Development of Civil Aircraft and Systems,
ARP4754A, 2010.

[43] I. Habli and T. Kelly, “Process and Product Certification Arguments -
Getting the Balance Right,” ACM SIGBED Review, vol. 3, no. 4, pp. 1-8,
2006.

[44] J. Krodel, “Commercial Off-The-Shelf (COTS) Avionics Software Study,”
FAA, 2001.

[45] John M. Rushby, “New challenges in certification for aircraft software,”
in Proceedings of the 11th International Conference on Embedded
Software, EMSOFT 2011, part of the Seventh Embedded Systems Week,
ESWeek 2011, Taipei, Taiwan, October 9-14, 2011: ACM, 2011, pp.
211–218.

[46] Road vehicles - Functional safety, ISO 26262, 2011.

[47] AC 20-148 - Reusable Software Components, AC 20-148, 2004.

[48] R. Faller and W. M. Dr. Goble, “Open IEC 61508 Certification of
Products,” exida GmbH, 2007.

[49] E. Althammer, E. Schoitsch, G. Sonneck, H. Eriksson, and J. Vinter,
“Modular certification support - The DECOS concept of generic safety
cases,” in Proceedings of the 6th IEEE International Conference on
Industrial Informatics (INDIN'08): IEEE, 2008, pp. 258–263.

[50] T. Kelly and R. Weaver, “The Goal Structuring Notation – A Safety
Argument Notation,” in Proceedings of the 34th International
Conference on Dependable Systems and Networks (DSN'04): IEEE, 2004.

 230

References

[51] I. Bate and T. Kelly, “Architectural Considerations in the Certification of
Modular Systems,” in Proceedings of the 21 st International Conference
on Computer Safety, Reliability and Security (SAFECOMP‘02): Springer,
2002, pp. 303-324.

[52] I. Bate, S. Bates, R. Hawkins, T. Kelly, and J. McDermid, “Safety case
architectures to complement a contract-based approach to designing
safe systems,” in Proceedings of the 21st International System Safety
Conference (ISSC'03): System Safety Society, 2003, pp. 182–192.

[53] W. Damm, A. Metzner, T. Peikenkamp, and A. Votintseva, “Boosting Re-
use of Embedded Automative Applications Through Rich Components,”
in Proceedings of the Workshop on Foundations of Interface
Technologies 2005 (FIT'05), 2005.

[54] P. Conmy, “Safety Analysis of Computer Resource Management
Software,” University of York, York, 2005.

[55] D. Domis and M. Trapp, “Integrating Safety Analyses and Component-
Based Design,” in Proceedings of the 27th International Conference on
Computer Safety, Reliability, and Security (SAFECOMP'08): Springer,
2008, pp. 58–71.

[56] P. Fenelon, J. A. McDermid, M. Nicolson, and D. J. Pumfrey, “Towards
integrated safety analysis and design,” ACM SIGAPP Applied Computing
Review - Special issue on saftey-critical software, vol. 2, pp. 21-32, 1994.

[57] Y. Papadopoulos, J. McDermid, R. Sasse, and G. Heiner, “Analysis and
synthesis of the behaviour of complex programmable electronic systems
in conditions of failure,” Elsevier RESS, no. 71, pp. 229–247, 2001.

[58] L. Grunske, “Towards an integration of standard component-based
safety evaluation techniques with SaveCCM,” in Proceedings of the 2nd
International Conference on Quality of Software Architectures
(QoSA'06): Springer, 2006, pp. 199–213.

[59] Functional safety of electrical/electronic/programmable electronic safety-
related systems, IEC 61508, 2010.

[60] DO-178C: Software Consideration in Airborne Systems and Equipment
Certification, RTCA/DO-178C, 1993.

[61] R. Obermaisser, P. Peti, B. Huber, and C. El Salloum, “DECOS: An
Integrated Time-Triggered Architecture,” e&i journal, vol. 123, no. 3, pp.
83–95, 2006.

 231

References

[62] A. Benveniste, B. Caillaud, A. Ferrari, L. Mangeruca, R. Passerone, and C.
Sofronis, “Multiple Viewpoint Contract-Based Specification and Design,”
in Lecture Notes in Computer Science, Formal Methods for Components
and Objects, F. de Boer, M. Bonsangue, S. Graf, and W.-P. de Roever,
Eds.: Springer, 2008, pp. 200–225.

[63] L. Benvenuti, A. Ferrari, L. Mangeruca, E. Mazzi, R. Passerone, and C.
Sofronis, “A Contract-Based Formalism for the Specification of
Heterogeneous Systems,” in Proccedings of the Forum on Specification,
Verification and Design Languages (FDL'08).: IEEE, 2008, pp. 142–147.

[64] J. McDermid and D. Pumfrey, “A Development of Hazard Analysis to aid
Software Design,” in Proceedings of the 9th Annual Conference on
Computer Assurance (COMPASS '94): IEEE, 1994, pp. 17–25.

[65] J. McDermid and D. Pumfrey, “Assessing the safety of integrity level
partitioning in software,” in Proceedings of the 8th Safety-Critical
Systems Symposium (SSS'00): Springer, 2000, pp. 134-152.

[66] D. Schneider and M. Trapp, “Conditional safety certificates in open
systems,” in Proceedings of the 1st Workshop on Critical Automotive
Applications: Robustness & Safety (CARS'10): ACM, 2010.

[67] John M. Rushby, “Runtime Certification,” in Runtime Verification, 8th
International Workshop, RV 2008, Budapest, Hungary, March 30, 2008.
Selected Papers: Springer, 2008, pp. 21–35.

[68] A. Schrijver, Theory of linear and integer programming. Chichester, New-
York: Wiley, 1998.

[69] D. E. Goldberg, Genetic algorithms in search, optimization, and machine
learning: Addison-Wesley, 1989.

[70] Specification of Timing Extension (v 1.2.0).

[71] International vocabulary of metrology -- Basic and general concepts and
associated terms (VIM), ISO/IEC Guide 99, 2007.

[72] A. Bondavalli and L. Simoncini, “Failure classification with respect to
detection,” in Proceedings of the Second IEEE Workshop on Future
Trends of Distributed Computing Systems, 1990, pp. 47–53.

[73] DIN EN 50159 - Railway applications - Communication, signalling and
processing systems - Safety-related communication in transmission
systems, 2011.

[74] Specification of NVRAM Manager (v 3.2.0).

 232

References

[75] H. Kopetz, Real-Time Systems: Design Principles for Distributed
Embedded Applications (The International Series in Engineering and
Computer Science): Springer, 1997.

[76] Certification Authorities Software Team (CAST), “Reliance on
Development Assurance Alone When Performing a complex and Full-
Time Critical Function: Position Paper CAST-24,” FAA, 2006.

[77] A. Avizienis, J.-C. Laprie, and B. Randell, “Fundamental Concepts of
Dependability,” LAAS-CNRS, 2001.

[78] H. Kellermann, G. Németh, J. Kostelezky, K. Barbehön, F. El-Dwaik, and
M. Haneberg, “E/E-Architektur der nächsten Generation,” Elektronik
Automotive, vol. Oktober, no. Sonderausgabe BMW 7er, pp. 8–13,
2008.

[79] E. Gamma and K. Beck, Contributing to Eclipse: Principles, patterns, and
plug-ins. Boston: Addison-Wesley, 2004.

[80] Eclipse Project, Project website. Available: http://www.eclipse.org/ (2013,
Jun. 03).

[81] D. Steinberg, EMF: Eclipse Modeling Framework, 2nd ed. Upper Saddle
River, NJ: Addison-Wesley, 2009.

[82] Eclipse Modeling Project, Project website. Available:
http://www.eclipse.org/modeling/ (2013, Jun. 03).

[83] JGAP project, Project website. Available: http://jgap.sourceforge.net/
(2013, Jun. 03).

[84] EAST-ADL Association, “Homepage of the EAST-ADL,”

[85] ISO/IEC 14977: Information technology - Syntactic metalanguage -
Extended BNF, ISO/IEC 14977, 1996.

 233

Appendix

Appendix

 235

Appendix A - Architectural Meta-Model

Appendix A Architectural Meta-Model

In this Annex we describe our architectural meta-model for the
specification of applications and platforms. The architecture model is
inspired by existing meta-models like the AUTOSAR meta-model [3] or
the EAST-ADL meta-model [84]. Our architecture meta-model is
referenced from the VerSaI language as shown in Figure 86.

The architecture meta-model consists of four packages that are
described separately in the following: First, there is the container
architecture meta-model that defines the system-level aspects, which is
described in A.1. Second, we introduce the application meta-model that
defines application-specific elements in A.2. Third, we sketch the
platform meta-model that defines platform-specific elements in A.3. And
fourth, we introduce the deployment meta-model that specifies the
modeling of the deployment in A.4.

Figure 86: Relations between the VerSaI language and the architecture model

 237

Appendix A - Architectural Meta-Model

In the following we describe the individual classes of the meta-model. In
the process we use the following specification conventions: (1) The string
“classA -> classB” notates that the classA inherits from classB. (2)
If a class is abstract it is written in italics “abstractClass”.

Most of the classes inherit from a class called NamedElement, which
provides a String attribute called name. For reasons of clarity, this
repreated inheritance is not denoted in the following.

A.1 System Meta-Model

The system meta-model integrates the platform and application models,
as well as the deployment model that links the application with the
platform models. It further allows specifying external communication
links (i.e. field busses) that connect the different platforms in our system
together with the signals that are exchanged between applications. The
system meta-model is shown in Figure 87.

Figure 87: The system meta-model

System

The System class is the top-level container class in our meta-model. It
contains the execution platforms (see relation platforms) and the
applications (see relation applications) involved in the system, as well
as the deployment plan (see relation deploymentPlan). It further
contains all elements that are not directly assignable to a single platform
or application. These are the external communications links (see relation

 238

Appendix A - Architectural Meta-Model

busses), and the signals that are exchanged between applications (via
container class SignalContainer, see relation signalContainer).

The System class further contains a member called status that tracks
the development status of the system. This status variable controls the
different mediation steps as described in chapter 5.

SignalContainer

The class SignalContainer is a container for signals (see relation
signals) that are exchanged between different applications. Signals
that are exchanged internally by one application are contained by the
corresponding application itself.

Signal

The abstract class Signal represents a logical unit of information that is
exchanged between components of an application. There are three
different types of signals: SensorSignals, ComSignals and
ActivationSignals.

SensorSignal -> Signal

A SensorSignal is a signal that is produced by a Sensor component
(e.g. a position sensor, an acceleration sensor …) and consumed by an
ASWC (application software component).

ComSignal -> Signal

A ComSignal is a signal that is produced by an ASWC (application
software component) and consumed by an ASWC.

ActivationSignal -> Signal

An ActivationSignal is a signal that is produced by an ASWC
(application software component) and consumed by an Actuator (e.g a
throttle, a valve …).

CommunicationLink

A CommunicationLink is an abstract class representing an element that
is capable of transmitting a Message. There are two types of
CommunicationLink: ExternalCommunicationLink and
InternalCommunicationLink (see platform model A.3).

 239

Appendix A - Architectural Meta-Model

ExternalComLinkInterface

An ExternalComLinkInterface is a special type of
CommunicationLink that connects different platforms (e.g. a CAN
bus). The platforms that are connected by an
ExternalComLinkInterface are identified via the connects relation.

DevelopmentStatus

DevelopmentStatus is an enumeration that lists the different
development stages of a System, a Platform or an Application. The
different development stages of a system, platform or application are
introduced in chapter 5.

A.2 Application Meta-Model

In this section we describe the meta-model used to specify applications.
A top-level overview of the application meta-model is shown in Figure
88.

Application

The Application class represents an application as defined in RTCA
DO-297 [7]: An application is a set of “software and/or application-
specific hardware with a defined set of interfaces that, when integrated
with a platform, performs a function”.

In accordance with this definition an Application contains Actuators
(see relation actuators), Sensors (see relation sensors) and ASWCs
(see relation swComponents). An application further contains a
SignalContainer (see relation signalContainer) comparable to a
System. The signal container of an application contains the Signals
exchanged internally by the respective application.

 240

Appendix A - Architectural Meta-Model

Figure 88: The top-level application meta-model

Actuator

An Actuator is a component of an application used to affect its
environment (e.g. a motor or a valve). The Actuator class contains
ActuatorSignalInPorts (see relation activationSignalInPorts)
to model the activation signals expected as input by the actuator
component.

Sensor

A Sensor is a component of an application used to get information
about its environment (e.g. a temperature, pressure or acceleration
sensor). The Sensor class contains SensorSignalOutPorts (see
relation sensorSignalOutPorts) to model the sensor signals produced
as output by the sensor component.

ASWC

An ASWC class models a software component of the application
containing the ASWC. An ASWC as represented by our meta-model is
atomic w.r.t. to its deployment. This means that there can be logical sub-
components of an ASWC, but these are of no interest in our case. An
overview of the ASWC class and its relation is shown in Figure 89.

The interface of the ASWC to other application-level components (i.e.
ASWCs, sensors and actuators) is specified by the application’s ports. An
ASWC has four types of ports: (1) ActuatorSignalOutPorts (via
reference activationSignalOutPorts) to model the interface
between the ASWC and actuators. (2) ComSignalOutPorts (via

 241

Appendix A - Architectural Meta-Model

reference comSignalOutPorts) to model the signals provided by the
ASWC for other ASWCs. (3) ComSignalInPorts (via reference
comSignalInPorts) to model signals consumed by the ASWC provided
by other ASWCs. (4) SensorSignalInPorts (via reference
sensorSignalInPorts) to model the interface between the ASCW and
sensors.

The ExecutableEntities provided by the ASWC are modeled via
separate containment references for Runnables (see reference
runnables), and interrupt service routines (ISR; see reference ISRs).

The direct memory usage of the ASWC is modeled via containment
relations of MemorySections. We differentiate between memory
sections containing code (CodeSections; see reference codeSections)
and memory sections containing data (DataSection; see reference
dataSections). Usually, memory usage is defined directly by an
ExecutableEntity. However, if code is shared between different
ExecutableEntities (e.g. a library) or if data are shared between
different ExecutableEntities (e.g. global variables) this is modeled by
a memory section contained by the ASWC.

ServiceNeeds of the ASWC are modeled via the serviceNeeds
containment reference.

 242

Appendix A - Architectural Meta-Model

Figure 89: Application meta-model with a focus on the ASWC element

ExecutableEntity

An ExecutableEntity represents a function provided by the ASWC
that can be individually/concurrently executed by the platform. We
differentiate between two kinds of ExecutableEntities: Runnables
and ISRs.

The memory usage of an executable entity is modeled by a containment
of MemorySections (see reference memorySections).

ISR -> ExecutableEntity

An ISR represents an interrupt service routine, i.e. a software function
that can be mapped to a hardware Interrupt. This software function
is executed when the corresponding interrupt triggers.

 243

Appendix A - Architectural Meta-Model

Runnable -> ExecutableEntity

A Runnable is an abstract class that represents a software function
provided by the ASWC that can be individually scheduled by the
platform’s operating system. We differentiate between two kinds of
Runnable: (1) ETRunnables and (2) TTRunnables.

ETRunnable -> Runnable

An ETRunnable represents an event-triggered runnable, i.e. a runnable
that is activated by an event.

TTRunnable -> Runnable

A TTRunnable represents a time-triggered runnable, i.e. a runnable that
is periodically activated.

MemorySection

The abstract class MemorySection represents a memory section as
specified in the object file of the application. We differentiate between
three kinds of memory sections: (1) CodeSection, (2) DataSection, (3)
StackSection (stack is not defined in the object file but dynamically
used and managed by the operating system).

CodeSection -> MemorySection

A CodeSection is a memory section containing code (i.e. a set of
instructions).

StackSection -> MemorySection

A StackSection is a dynamic memory section containing the stack of
an executable entity.

DataSection -> MemorySection

A DataSection is a memory section containing the data of the
application (we do not further differentiate between initialized or
uninitialized data. We do not take into account heap memory, since
safety-critical systems as regarded by our approach do not allow for
dynamic memory allocation).

ServiceNeed

A ServiceNeed is an abstract class representing the applications need
for a Service provided by the platform. In total there are currently eight

 244

Appendix A - Architectural Meta-Model

different kinds of ServiceNeeds specifiable with the VerSaI language. An
overview is given in Figure 90. Since the different kinds of
ServiceNeeds are mostly self-explanatory, we will not introduce them
separately.

Figure 90: Application meta-model with a focus on the ServiceNeed element

Port

A Port is an abstract class representing a part of the application’s
interface to other application elements. Signals are exchanged via ports.
We differentiate between InPorts and OutPorts.

An overview of the meta-model for specifying ports is shown in Figure
91.

 245

Appendix A - Architectural Meta-Model

Figure 91: Application meta-model with a focus on the Port element

InPort -> Port

An InPort is an abstract class representing a piece of information / a
signal that is required/consumed by the corresponding ASWC.

OutPort -> Port

An OutPort is an abstract class representing a piece of information / a
signal that is provided/produced by the corresponding ASWC.

CommunicationPort -> Port

A CommunicationPort is an abstract class specifying that the
corresponding port transports ComSignals.

SensorSignalInPort -> InPort

A SensorSignalInPort is a class used to model required/consumed
SensorSignals (via reference requiredSignal) of an ASWC.

 246

Appendix A - Architectural Meta-Model

SensorSignalOutPort -> OutPort

A SensorSignalOutPort is a class used to model provided/produced
SensorSignals (via reference providedSignal) of a Sensor.

ComSignalInPort -> InPort, CommunicationPort

A ComSignalInPort is a class used to model required/consumed
ComSignals (via reference requiredSignal) of an ASWC.

ComSignalOutPort -> OutPort, CommunicationPort

A ComSignalOutPort is a class used to model provided/produced
ComSignals (via reference providedSignal) of an ASWC.

ActuatorSignalInPort -> InPort

An ActuatorSignalInPort is a class used to model
required/consumed ActuatorSignals (via reference requiredSignal)
of an Actuator.

ActuatorSignalOutPort -> OutPort

An ActuatorSignalOutPort is a class used to model
provided/produced ActuatorSignals (via reference providedSignal)
of an ASWC.

A.3 Platform Meta-Model

In this section we describe the meta-model used to specify platforms. A
top-level overview of the application meta-model is shown in Figure 92.

 247

Appendix A - Architectural Meta-Model

Figure 92: The top-level platform meta-model

Execution Platform

The ExecutionPlatform class represents a platform as defined in RTCA
DO-297 [7]: A platform as a combination of software and hardware to
“provide computational, communication, and interface capabilities for
hosting at least one application. […] Platforms by themselves do not
provide any […] functionality”.

An execution platform on the top-level contains Devices (via devices
reference), Interrupts (via interrupts reference),
ProcessingCores (via cores reference), MemoryModules (via
reference memoryModule), Partitions (via partitions reference) and
Services (via services reference).

Interrupt

An Interrupt is a signal produced by a CPU (synchronously) or by a
device (asynchronously), which triggers the execution of an ISR.

ProcessingCore

The ProcessingCore class represents a CPU/core.

MemoryModule

The MemoryModule class represents an individual hardware component
providing memory to the system (e.g. a flash, RAM or EEPROM module).

 248

Appendix A - Architectural Meta-Model

A MemoryModule can be logically separated into different
MemoryRegions (via memoryRegion reference).

MemoryRegion

A MemoryRegion is a logical compartment of a MemoryModule.
MemoryRegions can, for example, be used to configure a MPU or a
MMU to separate and protect different memory regions.

Partition

A Partition is a logical compartment that is capable of hosting
ASWCs. ASWCs in different Partitions can be protected from each other.

Task

A Task is a logical entity that can be individually scheduled by the
platform’s operating system. Runnables of an ASWC can be mapped to
Tasks.

Device

A Device is an abstract class that represents a hardware module that is
peripheral to the CPU together with a software stack required to access
the device from application level.

Figure 93 gives an overview of the different devices in the platform
meta-model.

OutputChannel -> Device

An OutputChannel is an abstract class that represents a device together
with the software stack needed to physically connect an ASWC to an
actuator.

 249

Appendix A - Architectural Meta-Model

Figure 93: Platform meta-model with a focus on the Device element

AnalogOutputChannel -> OutputChannel

An AnalogOutputChannel is an abstract class that represents a device
together with the software stack needed to physically connect an ASWC
to an actuator driven by an analog signal.

PWMOutputChannel -> AnalogOutputChannel

A PWMOutputChannel is a class that represents a device together with
the software stack needed to physically connect an ASWC to an actuator
driven by a PWM signal.

DigitalOutputChannel -> OutputChannel

A DigitalOutputChannel is a class that represents a device together
with the software stack needed to physically connect an ASWC to an
actuator driven by a digital signal.

ComLinkInterface -> Device

A ComLinkInterface is an abstract class that represents a device
together with the software stack needed to physically connect an ASWC
to a CommunicationLink.

A ComLinkInterface contains Message (see messages reference)

Message

A Message is an element that transports signals on a communication
link. A Message can contain several signals.

 250

Appendix A - Architectural Meta-Model

ExternalComLinkInterface -> ComLinkInterface

An ExternalComLinkInterface is a special type of
ComLinkInterface that allows connecting a platform to an
ExternalCommunicationLink.

InternalComLink -> ComLinkInterface -> ComLink

An InternalComLink is a special type of ComLinkInterface and
ComLink that allows transporting messages between ASWCs deployed
to the same platform.

InputChannel

An InputChannel is an abstract class that represents a device together
with the software stack needed to physically connect an ASWC to a
sensor.

DigitalInputChannel -> InputChannel

A DigitalInputChannel is a class that represents a device together
with the software stack needed to physically connect an ASWC to a
sensor that produces a digital signal.

AnalogInputChannel -> InputChannel

An AnalogInputChannel is an abstract class that represents a device
together with the software stack needed to physically connect an ASWC
to a sensor that produces an analog signal.

CurrentInputChannel -> AnalogInputChannel

A CurrentInputChannel is a special type of AnalogInputChannel
class that represents a device plus software the stack needed to
physically connect an ASWC to a sensor that produces a current signal.

VoltageInputChannel -> AnalogInputChannel

A VoltageInputChannel is a special type of AnalogInputChannel
class that represents a device together with the software stack needed to
physically connect an ASWC to a sensor that produces a voltage signal.

Service

The Service class is an abstract class that represents a mostly software-
based functionality provided by an execution platform.

 251

Appendix A - Architectural Meta-Model

Figure 94 gives an overview of the eight services currently specifiable
with the VerSaI language. Since the different kinds of Services are
mostly self-explanatory, we will not introduce them separately.

Figure 94: Platform meta-model with a focus on the Service element

A.4 Deployment Meta.Model

In this section we describe the meta-model used to specify a deployment
plan. An excerpt of the deployment plan meta-model is shown in Figure
95. Since the model is relatively generic, we only show an excerpt of the
model and provide the information w.r.t. the mapping of the different
elements in Table 16.

DeploymentPlan

The DeploymentPlan class is the central container that holds all
mappings between resource users (application elements) and resources
(platform elements).

Table 16: All resource mappings specified in the deployment model

Application Element
Resource User

Platform Element
Resource

ASWC Partition

MemorySection MemoryRegion

ExecutableEntity Task

ISR Interrupt

CommunicationPort Message

DigitalSensorInPort DigitalInputChannel

CurrentSensorInPort CurrentInputChannel

 252

Appendix A - Architectural Meta-Model

VoltageSensorInPort VoltageInputChannel

PWMActuatorOutPort PWMOutputChannel

DigitalActuatorOutPort DigitalOutputChannel

TimerServiceNeed Timer

GlobalTimeServiceNeed Message

WaitServiceNeed DigitalInputChannel

MutexServiceNeed CurrentInputChannel

EventServiceNeed Event

ApplicationMonitoringNeed ApplicationMonitoringService

PlatformFailureReaction-
Need

PlatformFailureReactio-
nService

Figure 95: Excerpt of the deployment meta-mode

 253

Appendix B - List of Common Failure Modes and Reactions

Appendix B List of Common Failure Modes and
Reactions

Table 17 lists all failure modes, platform service failure modes as well as
application failure modes, that have been specified in sections 4.4.2 and
4.4.3. Table 18 lists the failure reactions specified in secion 4.4.4.

Table 17: Failure modes specified in the common language

Service Id Name Failure Class Parameter

Synchronization synchFM-1 MutexAccess-
Commission

Mutex Failure

 synchFM-2 MutexAccess-
Omission

Mutex Failure

 synchFM-3 MutexRelease-
Commission

Mutex Failure

 synchFM-4 MutexRelease-
Omission

Mutex Failure

 synchFM-5 MutexTimeout-
Failure

Mutex Failure TimeDeviat

 synchFM-6 EventIndication-
Commission

Event Failure

 synchFM-7 EventIndication-
Omission

Event Failure

 synchFM-8 EventTimeout-
Failure

Event Failure TimeDeviat

Communication comFM-1 MessageCorruption Communication
Failure

 comFM-2 MessageInsertion Communication
Failure

 comFM-3 MessageLoss Communication
Failure

 comFM-4 IncorrectMessage-
Sequence

Communication
Failure

 comFM-5 LateTransmission Communication
Failure

Latency

 comFM-6 EarlyTransmission Communication Latency

 254

Appendix B - List of Common Failure Modes and Reactions

Failure

Input inFM-1 DigitalInput-
Omission

DigitalInput
Failure

 inFM-2 DigitalInputLate-
Read

DigitalInput
Failure

Latency

 inFM-3 DigitalInputEarly-
Read

DigitalInput
Failure

Latency

 inFM-4 DigitalInputLate-
Return

DigitalInput
Failure

Latency

 inFM-5 DigitalInputEarly-
Return

DigitalInput
Failure

Latency

 inFM-6 DigitalInputFalse-
Positive

DigitalInput
Failure

 inFM-7 DigitalInputFalse-
Negative

DigitalInput
Failure

 inFM-8 AnalogInput-
Omission

AnalogInput
Failure

 inFM-9 AnalogInput-
Commission

AnalogInput
Failure

 inFM-10 AnalogInputLate-
Sampling

AnalogInput
Failure

Latency

 inFM-11 AnalogInputEarly-
Sampling

AnalogInput
Failure

Latency

 inFM-12 AnalogInput-
SamplingJitter

AnalogInput
Failure

Jitter

 inFM-13 AnalogInputLate-
Return

AnalogInput
Failure

Latency

 inFM-14 AnalogInputEarly-
Return

AnalogInput
Failure

Latency

 inFM-15 AnalogInputValue-
Failure

AnalogInput
Failure

Error

Output outFM-1 DigitalOutputLate DigitalOutput
Failure

Latency

 outFM-2 DigitalOutputEarly DigitalOutput
Failure

Latency

 outFM-3 DigitalOutputFalse-
Positive

DigitalOutput
Failure

 255

Appendix B - List of Common Failure Modes and Reactions

 outFM-4 DigitalOutput-
FalseNegative

DigitalOutput
Failure

 outFM-5 AnalogOutput-Late AnalogOutput
Failure

Latency

 outFM-6 AnalogOutput-Early AnalogOutput
Failure

Latency

 outFM-7 AnalogOutput-
ValueFailure

AnalogOutput
Failure

Error

Time timeFM-1 GlobalTimeFailure TimeService
Failure

TimeDeviat

 timeFM-2 TimerFailure TimeService
Failure

TimeDeviat

 timeFM-3 WaitTimeFailure TimeService
Failure

TimeDeviat

Memory memFM-1 MemoryLateRead MemoryService
Failure

Latency

 memFM-2 MemoryRead-
AccessDenial

MemoryService
Failure

 memFM-3 MemoryRead-
DataFailure

MemoryService
Failure

 memFM-4 MemoryLate-Write MemoryService
Failure

Latency

 memFM-5 MemoryWrite-
AccessDenial

MemoryService
Failure

 memFM-6 MemoryWrite-
DataFailure

MemoryService
Failure

Scheduling schedFM-1 SchedulingJitter-
Failure

Scheduling
Failure

Jitter

 schedFM-2 Scheduling-
DeadlineFailure

Scheduling
Failure

Latency

 schedFM-3 LateInterrupt-
Execution

Scheduling
Failure

Latency

Basic basExFM-1 CPUFailure CPU Failure

 basExFM-2 MainMemory-
Failure

Main Memory
Failure

 basExFM-3 CPUClockFailure Clock Failure

 basExFM-4 PowerSupply- Platform Failure

 256

Appendix B - List of Common Failure Modes and Reactions

Failure

Application
Monitoring

appFM-1 ArrivalRateFailure Application
Failure

specific

 appFM-2 InterArivalTime-
Failure

Application
Failure

Latency

 appFM-3 LogicalSequence-
Failure

Application
Failure

 appFM-4 ExecutionTime-
Deviation

Application
Failure

Latency

Table 18: Failure reaction specified in the common language

Service Id Name Reaction Class Parameter

Failure
Reactions

react-1 Restart Process Process Reaction

 react-2 Restart Partition Partition Reaction

 react-3 Restart Platform Platform Reaction

 react-4 Shutdown Process Process Reaction

 react-5 Shutdown
Partition

Partition Reaction

 react-6 Shutdown
Platform

Platform Reaction

 react-7 SendDefault
Message

Com-Link
Reaction

 react-8 IssueAnalog
Default Signal

AnalogOutput
Reaction

specific

 react-9 IssueDigital
Default Signal

DigitalOutput
Reaction

specific

 react-10 Indicate Failure ASWC Reaction

 react-11 Trigger Handler Executable
Reaction

 257

Appendix C - NLR using EBNFs

Appendix C NLR using EBNFs

To enable importing and exporting requirements written in structured
text into and from the model-based VerSaI language, we developed an
example natural language representation (NLR) of the VerSaI language.
The natural language representation is implemented using the Extended
Backus-Naur Form (EBNF).

The principal structure of an EBNF of an interface requirement is as
follows:

uniqueID = “Text describing the requirement followed by one or
many”, nonTerminalSymbols, nonTSymbol “describing
properties and relations”;

nonTSymbol = “Production rule of the non-terminal Symbol”;

Each specification of an interface requirement starts with the unique ID
of the requirement followed by an equal sign and the definition of the
production rule of the requirement. The production rule consists of
terminal strings, which are printed in normal face and are encompassed
by quotes, and non-terminal symbols which are printed in bold face. The
non-terminal symbols are used to specify properties and architectural
relations of the requirement. An example of the EBNF of a safety
requirement regarding a failure mode of a digital input signal can be
found in the following paragraph.

inFM-1 = “A read omission of the digital input signal”,
PortName, “must be”, DemandType, “.”

Since the naming of non-terminal symbols as well as their production
rules align well with the naming and the structure of the meta-model,
we will not describe the algorithm for transforming natural language
requirements to their model-based representation and back.

The following table gives an overview of the notation of EBNFs that we
have used in this document. For further information regarding EBNFs we
recommend reading the following standard: [85].

Table 19: The notational elements of the EBNF used in this document

Usage Notation

definition =

 258

Appendix C - NLR using EBNFs

concatenation ,

termination ;

alternation |

option [...]

repetition { ... }

grouping (...)

terminal string " ... "

comment (* ... *)

Time

In order to specify time-related constraints using the natural language
representations of a requirement, we define the following EBNF
production rules:

Latency = CompBound | UpperBound | LowerBound;

CompBound = LowerBound, “or”, UpperBound;

UpperBound = “of more than”, Time;

LowerBound = “of less than”, Time;

Period = “of more than”, Duration, “+-“, Jitter;

IntvalDev = “of more than”, Time;

Duration = Time;

Jitter = Time;

Time = Millisec, [“,”, Microsec], ”ms”;

Millisec = digit, {digit};

Microsec = digit, [digit], [digit];

Example: (*a latency*) of more than 9ms or less than 10,999ms

Example: (*a jitter*) of more than 20ms +- 0,5ms

Example: (*a deviation*) of more than 0,5ms

 259

Appendix C - NLR using EBNFs

Error

In order to specify error-related constraints using the natural language
representations of a requirement, we define the following EBNF
production rules:

Error = “larger than”, AbsoluteErr | RelativeErr;

AbsoluteErr = AbErrValue, Unit;

RelativeErr = RelErrValue, “%”;

AbErrValue = double;

Unit = string;

RelErrValue = integer;

Integrity Level

In order to specify integrity level demands using the natural language
representations, we define the following EBNF production rules:

intLevel = “(“, (“QM” | “ASIL A” | “ASIL B” | “ASIL C” | “ASIL
D”), “)”;

Platform Service Demands

In the following subsections we will introduce the failure models of the
different service classes. Each failure model specification starts with a
description of the corresponding service class including a description of
the provided functionality and different use-case scenarios of the service
class. After the introduction of the service class we illustrate the meta-
model that describes the failure model, which includes parameters and
architectural references. Before we start describing the individual failure
modes of the failure model, we specify the EBNF production rules for the
natural language description that are common for all failure modes of
the failure model.

Demand = “must be”, DemandType, “.”

DemandType = Detection | Avoidance

Detection = “detected” [“within” Time]

Avoidance = “avoided”

 260

Appendix C - NLR using EBNFs

Every failure mode has a corresponding EBNF production rule. An
exemplary production could look like this:

comFM = “corruption of a message received via port” PortName;

The production rule of the failure mode is than always combined with
the Demand production rule we have specified before, yielding the
following production:

comFM-D = “A”, comFM, Demand;

Example: A corruption of a message received via port v_act must
be detected within 3ms.

Examples

synchFM-1 = “mutex access commission of”, SNeedName”;

synchFM-1D = “A”, synchFM-1, Demand;

Example: A mutex access commission of mutex_0 must be avoided.

synchFM-2 = “mutex access omission of”, SNeedName;

synchFM-2D = “A”, synchFM-2, Demand;

Example: A mutex access omission of mutex_0 must be avoided.

comFM-2 = “insertion of a”, PortType, “message”, PortAction,
“via port” PortName;

comFM-2D = “An”, comFM-2, Demand;

Example: An insertion of a required message received via port
esc_available must be detected.

comFM-5 = “transmission latency of the”, PortType, “message”,
PortAction, “via port” PortName;

comFM-5D = “A”, comFM-5, Latency, Demand;

 261

Appendix C - NLR using EBNFs

Example: A transmission latency of the required message received
via port esc_Available larger than 2ms must be avoided.

inFM-7 = A sampling latency of the analog input signal”,
PortName;

inFM-7D = “A”, inFM-7, Latency, Demand;

Example: A sampling latency of the input signal throttle_act
larger than 0,1ms must be avoided.

inFM-10 = A value failure of the analog input signal”, PortName;

inFM-10D =“A” inFM-10, Error, Demand;

Example: A value failure of the input signal throttle_act larger
than 0,2V must be detected.

memFM-2 = “denial of a read request entered via”, SNeedName;

memFM-2D = “A”, memFM-2, Demand;

Example: A denial of a read request entered via getErrorCode must be avoided.

 262

Lebenslauf

Zur Person

Name: Bastian Zimmer

Anschrift: Königstraße 91
67655 Kaiserslautern

Geburtsdatum: 06.04.1983

Geburtsort: Zweibrücken

Familienstand: Ledig

Arbeit

Seit 10/2008: Wissenschaftlicher Mitarbeiter am
Fraunhofer-Institut für Experimentelles
Software Engineering (IESE)

Studium

10/2003 – 09/2008: Studium der Angewandten Informatik an
der Technischen Universität Kaiserslautern
Abschluss: Diplom Informatiker (Note: 1,3)

Zivildienst

01/2003 – 10/2003: Zivildienst bei der Verbandsgemeinde
Schönenberg-Kübelberg

Schule

08/1995 – 03/2002: Besuch des Gymnasiums Kusel
Abschluss: Allg. Hochschulreife

08/1993 – 06/1995: Besuch der Realschule Kusel

 263

PhD Theses in Experimental Software Engineering

Volume 1 Oliver Laitenberger (2000), Cost-Effective Detection of Software Defects
Through Perspective-based Inspections

Volume 2 Christian Bunse (2000), Pattern-Based Refinement and Translation of
Object-Oriented Models to Code

Volume 3 Andreas Birk (2000), A Knowledge Management Infrastructure for
Systematic Improvement in Software Engineering

Volume 4 Carsten Tautz (2000), Customizing Software Engineering Experience
Management Systems to Organizational Needs

Volume 5 Erik Kamsties (2001), Surfacing Ambiguity in Natural Language
Requirements

Volume 6 Christiane Differding (2001), Adaptive Measurement Plans for Software
Development

Volume 7 Isabella Wieczorek (2001), Improved Software Cost Estimation
A Robust and Interpretable Modeling Method and a Comprehensive
Empirical Investigation

Volume 8 Dietmar Pfahl (2001), An Integrated Approach to Simulation-Based
Learning in Support of Strategic and Project Management in Software
Organisations

Volume 9 Antje von Knethen (2001), Change-Oriented Requirements Traceability
Support for Evolution of Embedded Systems

Volume 10 Jürgen Münch (2001), Muster-basierte Erstellung von Software-
Projektplänen

Volume 11 Dirk Muthig (2002), A Light-weight Approach Facilitating an Evolutionary
Transition Towards Software Product Lines

Volume 12 Klaus Schmid (2003), Planning Software Reuse – A Disciplined Scoping
Approach for Software Product Lines

Volume 13 Jörg Zettel (2003), Anpassbare Methodenassistenz in CASE-Werkzeugen

Volume 14 Ulrike Becker-Kornstaedt (2004), Prospect: a Method for Systematic
Elicitation of Software Processes

Volume 15 Joachim Bayer (2004), View-Based Software Documentation

Volume 16 Markus Nick (2005), Experience Maintenance through Closed-Loop
Feedback

Volume 17 Jean-François Girard (2005), ADORE-AR: Software Architecture
Reconstruction with Partitioning and Clustering

Volume 18 Ramin Tavakoli Kolagari (2006), Requirements Engineering für Software-
Produktlinien eingebetteter, technischer Systeme

Volume 19 Dirk Hamann (2006), Towards an Integrated Approach for Software
Process Improvement: Combining Software Process Assessment and
Software Process Modeling

Volume 20 Bernd Freimut (2006), MAGIC: A Hybrid Modeling Approach for
Optimizing Inspection Cost-Effectiveness

Volume 21 Mark Müller (2006), Analyzing Software Quality Assurance Strategies
through Simulation. Development and Empirical Validation of a Simulation
Model in an Industrial Software Product Line Organization

Volume 22 Holger Diekmann (2008), Software Resource Consumption Engineering for
Mass Produced Embedded System Families

Volume 23 Adam Trendowicz (2008), Software Effort Estimation with Well-Founded
Causal Models

Volume 24 Jens Heidrich (2008), Goal-oriented Quantitative Software Project Control

Volume 25 Alexis Ocampo (2008), The REMIS Approach to Rationale-based Support
for Process Model Evolution

Volume 26 Marcus Trapp (2008), Generating User Interfaces for Ambient Intelligence
Systems; Introducing Client Types as Adaptation Factor

Volume 27 Christian Denger (2009), SafeSpection – A Framework for Systematization
and Customization of Software Hazard Identification by Applying Inspection
Concepts

Volume 28 Andreas Jedlitschka (2009), An Empirical Model of Software Managers’
Information Needs for Software Engineering Technology Selection
A Framework to Support Experimentally-based Software Engineering
Technology Selection

Volume 29 Eric Ras (2009), Learning Spaces: Automatic Context-Aware Enrichment of
Software Engineering Experience

Volume 30 Isabel John (2009), Pattern-based Documentation Analysis for Software
Product Lines

Volume 31 Martín Soto (2009), The DeltaProcess Approach to Systematic Software
Process Change Management

Volume 32 Ove Armbrust (2010), The SCOPE Approach for Scoping Software
Processes

Volume 33 Thorsten Keuler (2010), An Aspect-Oriented Approach for Improving
Architecture Design Efficiency

Volume 34 Jörg Dörr (2010), Elicitation of a Complete Set of Non-Functional
Requirements

Volume 35 Jens Knodel (2010), Sustainable Structures in Software Implementations by
Live Compliance Checking

Volume 36 Thomas Patzke (2011), Sustainable Evolution of Product Line Infrastructure
Code

Volume 37 Ansgar Lamersdorf (2011), Model-based Decision Support of Task
Allocation in Global Software Development

Volume 38 Ralf Carbon (2011), Architecture-Centric Software Producibility Analysis

Volume 39 Florian Schmidt (2012), Funktionale Absicherung kamerabasierter Aktiver
Fahrerassistenzsysteme durch Hardware-in the-Loop-Tests

Volume 40 Frank Elberzhager (2012), A Systematic Integration of Inspection and
Testing Processes for Focusing Testing Activities

Volume 41 Matthias Naab (2012), Enhancing Architecture Design Methods for
Improved Flexibility in Long-Living Information Systems

Volume 42 Marcus Ciolkowski (2012), An Approach for Quantitative Aggregation of
Evidence from Controlled Experiments in Software Engineering

Volume 43 Igor Menzel (2012), Optimizing the Completeness of Textual Requirements
Documents in Practice

Volume 44 Sebastian Adam (2012), Incorporating Software Product Line Knowledge
into Requirements Processes

Volume 45 Kai Höfig (2012), Failure-Dependent Timing Analysis – A New Methodology
for Probabilistic Worst-Case Execution Time Analysis

Volume 46 Kai Breiner (2013), AssistU – A framework for user interaction forensics

Volume 47 Rasmus Adler (2013), A model-based approach for exploring the space of
adaptation behaviors of safety-related embedded systems

Volume 48 Daniel Schneider (2014), Conditional Safety Certification for Open
Adaptive Systems

Volume 49 Michail Anastasopoulos (2013), Evolution Control for Software Product
Lines: An Automation Layer over Configuration Management

Volume 50 Bastian Zimmer (2014), Efficiently Deploying Safety-Critical Applications
onto Open Integrated Architectures

l

o

Software Engineering has become one of the major foci of Computer
Science research in Kaiserslautern, Germany. Both the University of
Kaiserslautern‘s Computer Science Department and the Fraunhofer
Institute for Experimental Software Engineering (IESE) conduct re-
search that subscribes to the development of complex software ap-
plications based on engineering principles. This requires system and
process models for managing complexity, methods and techniques
for ensuring product and process quality, and scalable formal meth-
ods for modeling and simulating system behavior. To understand the
potential and limitations of these technologies, experiments need to
be conducted for quantitative and qualitative evaluation and improve-
ment. This line of software engineering research, which is based on

Software Engineering‘.
In this series, we publish PhD theses from the Fraunhofer Institute for
Experimental Software Engineering (IESE) and from the Software En-
gineering Research Groups of the Computer Science Department at
the University of Kaiserslautern. PhD theses that originate elsewhere
can be included, if accepted by the Editorial Board.

Editor-in-Chief: Prof. Dr. Dieter Rombach
Executive Director of Fraunhofer IESE and Head of the AGSE Group
of the Computer Science Department, University of Kaiserslautern

Editorial Board Member: Prof. Dr. Peter Liggesmeyer

of the Computer Science Department, University of Kaiserslautern

Editorial Board Member: Prof. Dr. Frank Bomarius
Deputy Director of Fraunhofer IESE and Professor for Computer Sci-
ence at the Department of Engineering, University of Applied Sci-
ences, Kaiserslautern

AG Software Engineering

9 783839 607534

ISBN 978-3-8396-0753-4

