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Abstract 

Open integrated architectures such as AUTOSAR or IMA offer an 
increased modularity and flexibility over more established federated 
architectures. Using such a design, system developers can reuse and 
exchange applications and execution platforms more flexibly, as costs for 
migration and integration decrease. However, when developing systems 
that are safety-critical, the traditionally monolithic approach of safety 
engineering poses threats to the modularity that comes with the new 
architecture. In fact, the safety has to be re-evaluated and argued 
whenever the system changes. As a consequence, significant costs are 
incurred every time a component is reused or replaced, which decreases 
the desired flexibility of the open integrated architecture. 

To address this problem, this thesis introduces a technique that allows 
for the partial automation of the safety-related integration process. The 
technique is built of three components: 

The foundation of our approach is a model-based specification language 
allowing developers to define the conditions for the valid integration of 
platforms and applications. Our language follows a modular, contract-
based approach for the specification of demands and guarantees, which 
together form a safety interface between application and platform. The 
demands are specified by the application developer and define the 
safety-related behavior of the platform as required for the safe execution 
of the application. The guarantees, on the other hand, are specified by 
the platform developer and define the actual safety-related capabilities 
of the platform at hand. 

Based on this language, we define a mediation algorithm that is capable 
of automatically checking if the conditions specified in the safety 
interfaces are met for a given application-platform deployment. This 
automation decreases the effort for integrating safety-critical 
applications and platforms, which sustains the flexibility of the design. 

However, in order to perform the automated integration check, our 
mediation algorithm requires the deployment of applications and 
platforms as an input. To assist the integrator in identifying a valid 
deployment, we present an objective function for evaluating safety-
related deployment criteria as a third and final component of our 
solution approach. 
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Introduction 

1 Introduction 

1.1 Context and Motivation 

More and more developers of distributed embedded systems choose to 
design their product in accordance with the principles of integrated 
architectures. Unlike federated architectures, where every function is 
executed on a dedicated isolated computer platform, integrated 
architectures allow multiple applications to share the same execution 
node and to communicate with each other via shared communication 
networks. As a consequence, functions can be integrated more tightly 
and computer platforms can be saved. This integration allows for cost 
and weight improvements, at the expense of fault isolation and error 
containment [1]. 

The development of standards like ARINC 653 [2] and AUTOSAR [3] have 
shown that the advantages of integrated architectures are further 
enriched when there is a public and standardized interface between 
application and execution platform. Architectures with a public 
standardized Application Programming Interface (API) are often labeled 
as open, since third-party manufacturers can develop compatible 
components and contribute to the architecture. In the case of such an 
open integrated architecture, separate manufacturers are able to 
develop compatible applications and platforms and, ideally, the 
organization responsible for system integration is capable of fitting the 
emerging open integrated system together with little effort. 

The API separates function-specific applications and general-purpose 
execution platforms, and is realized by operating systems, drivers, or 
more generally, by platform software (PSW) or middleware. The 
middleware abstracts from the specifics of the underlying platform 
hardware and provides a uniform interface to allow applications to 
access the platform’s shared resources. Furthermore, the middleware 
acts as a resource manager, allowing for a well-organized distribution of 
resources. Figure 1 sketches the characteristics of open integrated 
architectures described above. 

This design has many advantages: First, it allows for a clear separation 
between functional and technical design and thus provides a means for 
abstraction and complexity management. Second, the roles of 
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application developer, platform developer1, and system integrator can 
more easily be filled by different organizations, since the standardized 
API fosters modularized development. This facilitates modular 
contracting, which is beneficial for the distributed development of 
complex embedded systems. Finally, the standardized API makes 
applications as well as platforms more portable and exchangeable, 
allowing the integrator to use them more flexibly. 

PSW/Middleware

HW

ASWC 
1-1

ASWC 
2-1

ASWC 
1-2

...

PSW/Middleware

HW
platform

HW-independent 
technical interface

functional interfaces

 

Figure 1: Schematic of an open integrated architecture , showing several application software 
components (ASWC) and two platforms. Each platform consists of middleware and 
hardware (HW).  

The aforementioned integrators benefit from this flexibility in multiple 
ways. First, they are able to reuse established platforms and applications 
in new systems, without having to spend an extensive amount of 
resources on adaptation [4]. Second, they can, over the lifetime of a 
system, exchange execution platforms to fight hardware obsolescence, 
or integrate novel applications to expand or modify the system’s 
functionality. Finally, system integrators are able to freely choose 
efficient deployment of the system’s functional architecture, containing 
several application software components (ASWC), onto the system’s 
platform topology, consisting of execution platforms and communication 
networks. 

The integrator can optimize the allocation of ASWCs with regard to 
multiple aspects. The most common optimization criterion is to closely 
match the requirements of the applications to the capabilities of the 
available platforms. This has the potential of reducing the number of 
required platforms and thus to reduce hardware costs as well as weight, 
space, and energy consumption. Yet, finding a beneficial deployment is 
challenging for at least two reasons. First, the integrator has to consider 
not only a multitude of criteria, but some of them are also conflicting in 
nature, like the satisfaction of response time constraints and the 

1 Often, platform development can be sub-divided into middleware and hardware 
development. This thesis, however, regards the platform as a whole. 
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maximization of resource utilization. Second, the integrator is confronted 
with a large solution space containing at least  possible deployments, 
assuming that there are  platforms and  applications. 

The task of deployment becomes even more challenging if the system is 
safety-critical. A system is called safety-critical if its malfunction/failure 
may result in death or injury. Because of this, the development of safety-
critical systems is typically regulated by standards and norms, and in 
some industries, standard compliance is checked by official certification 
bodies. The enormous responsibility towards society and the resulting 
strict development requirements make the general development of a 
safety-critical system a challenging and, typically, expensive endeavor. 

As far as deployment is concerned, we can regard safety as a source of 
additional optimization criteria and constraints. The integrator, for 
example, has to check whether a platform fulfills all safety-related 
demands of the hosted applications and thus allows for safe execution. 
Furthermore, platforms may introduce new sources of common cause 
failure that may invalidate complete safety concepts or increase the 
criticality classification of software-components. Consequently, the 
safety aspect has to be taken into careful consideration in order not to 
endanger the overall safety of the system or inflict additional costs. 

Additionally, safety criticality poses a threat to the portability of an open 
integrated system. In fact, the technical compatibility of applications and 
platforms provided by the API does not guarantee per se the feasibility of 
every possible platform-application combination. Especially in the context 
of safety-critical systems, there has to be a rigorous check whether each 
application software component is able to run safely on its dedicated 
platform. Additionally, safety standards often demand the creation of a 
seamless argument to demonstrate that a system is acceptably safe. In 
sum, checking safety and creating the evidences leads to effort that has 
to be spent every time an application is deployed to a different platform, 
which reduces the desired flexibility significantly. 

Therefore, this thesis introduces a technique for efficiently checking and 
arguing the safety compatibility of an application-platform combination, 
so as to decrease the integration costs, regain portability of applications, 
and maintain the architecture’s flexibility. Based on the regained 
flexibility, this thesis describes techniques for evaluating and optimizing a 
given deployment with respect to safety in order to aid the integrator in 
finding an optimal deployment and exploiting the advantages of an 
open integrated architecture. 
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1.2 Problem Statement and Contribution 

Usually, safety engineering starts with the identification and classification 
of potential sources of harm posed by a system, which are called 
hazards. Hazard analysis is often performed separately for each function 
of the system, rather than for the system as a whole. Since in an 
integrated architecture, functions are implemented by applications, 
hazards can be identified for each application. 

After hazard analysis, the safety engineer needs to identify all potential 
causes that may lead to the previously identified hazards and develop a 
strategy for controlling these inadvertent events. Since the application 
depends on other system components, it is typically unable to implement 
such a strategy in a completely self-supported way. For this reason, the 
implementation of the strategy depends on the behavior of other system 
elements. When examining an application in an open integrated 
architecture, one can differentiate three classes of dependencies. 

The first class contains dependencies among multiple applications. We 
shall refer to this class as functional or horizontal dependency, in 
accordance with the structure outlined in Figure 1. In order to exemplify 
functional dependencies, let’s assume a car’s ESC2 application requires 
knowing the precise vehicle speed to perform safely. Let’s further 
assume that this information is provided by another application and can 
be used for the ESC’s purposes. However, the ESC needs the other 
application to safely indicate when a precise vehicle speed is unavailable 
in order to be able to react accordingly and, e.g., deactivate the ESC to 
control the potential hazard. 

We call the second class of dependencies environmental, as it subsumes 
all dependencies between the application and entities outside the E/E 
(electric/electronic) domain. Take, as an example, the time that the 
controlled system is able to tolerate a specific failure. In the case of the 
aforementioned ESC, the fault tolerance time between a faulty braking 
intervention and the hazardous destabilization of the car depends on the 
dynamics of each specific vehicle. In this case, the fault tolerance time 
might increase if the inertia of the vehicle increases. 

The final class of dependencies is called vertical and contains the 
dependencies between applications and platforms. A platform can act 
both as a source of failure, for example when corrupting stored data, 
and as a provider of mechanisms for controlling failures, for example 
when detecting a crashed application through deadline monitoring. This 
thesis focuses on vertical dependencies. 

2 Electronic stability control (ESC) is a technology that improves the stability of a car by 
detecting and controlling skids. 
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The vertical dependencies have to be analyzed when checking the safety 
compatibility of an application and a platform. Since in an open 
integrated system, applications and platforms are developed 
independently, vertical dependencies have to be specified modularly. The 
resulting two elements of the modular specification are first, the 
demands of the application regarding the safety-related behavior of the 
platform and second, the guarantees regarding the actual capabilities of 
the platform. The vertical demands defined by the application developer 
should contain requirements such that the fulfillment of these 
requirements entails the platform behavior necessary for controlling the 
application’s hazards. On the other hand, the guarantees specified by 
the platform developer should contain all safety-related capabilities of 
the platform, which can potentially be of use for an application. As a 
consequence, checking the safety compatibility between an application 
and a platform is a matter of checking whether the application demands 
can be fulfilled with the actual guarantees of the host platform. 

In our experience, performing such a check manually is time-consuming 
and expensive, leading to the predicaments described in section 1.1. 
Because of this, it is necessary to automate this process as far as 
possible. However, in order to be able to do so, application demands 
and platform guarantees have to be formalized. Therefore, the first 
contribution of this thesis is defined as follows: 

Contrib. 1 Interface Specification: Defining a formal language for the modular 
specification of safety-related demands and guarantees between an 
application and a platform in an open integrated architecture. 

The ability to formally specify the vertical dependencies fulfills a 
prerequisite for analyzing safety compatibility in an automated way. 
However, since most safety standards demand a final safety assessment, 
it is also necessary that the results of such an analysis can be used as 
evidence to demonstrate that the system is acceptably safe. The 
generation of evidences and the demonstration of safety is a difficult 
and time-consuming task as well. Accordingly, the second contribution 
of this thesis addresses the following research problem: 

Contrib. 2 Interface Mediation: Developing an automated process for checking 
the safety compatibility of an application and a platform in an open 
integrated architecture. 

We believe that this automated process lowers the costs that accrue 
when deploying an application to a new platform and therefore enables 
improved deployment flexibility. To optimally use this flexibility, an 
appropriate deployment has to be identified. There are several safety-
related aspects in a multi-criteria deployment optimization. In order to 
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take the last step towards capitalizing on flexible deployment, this thesis 
addresses the following problem: 

Contrib. 3 Deployment Evaluation: Developing an objective function for 
evaluating and optimizing the deployment of a functional architecture 
onto a platform topology from a safety perspective. 

This thesis explains the implementation of these three contributions and 
demonstrates how our solutions can be used to increase the efficiency of 
deploying safety-critical applications onto open integrated architectures. 

1.3 Structure 

In this chapter, we motivated the challenge of efficiently deploying 
safety-critical applications onto open integrated architectures and 
presented the research contributions proposed by this thesis, which aim 
at increasing the aforementioned efficiency. Chapter 2 presents an 
overview of related work in this field, so as to name the methods and 
techniques our approach is based upon and to sketch the knowledge 
gaps our approach tries to fill. Chapter 3 presents an overview of our 
solution and briefly outlines the structure of our methods and 
techniques. The following three chapters give an in-depth presentation 
of our solutions, structured according to the three contributions 
specified in section 1.2. Chapter 4 presents a language for specifying the 
safety-related dependencies between applications and platform, whereas 
chapter 5 describes a method for mediating those dependencies and, if 
possible, arguing how the specified constraints are met. Chapter 6 
presents two metrics for a safety-focused deployment evaluation. The 
tools we implemented to evaluate our approach together with the 
evaluation itself are shown in chapter 7. We conclude and present 
possible future work in chapter 8. 
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2 Related Work 

The previous chapter briefly introduced the challenges and the benefits 
of efficiently deploying safety-critical applications onto open integrated 
architectures and listed the contributions that will be presented in this 
thesis. This chapter presents related work in the area of open integrated 
architectures and deployment evaluation in order to explain the 
foundations our work is based upon and to precisely identify the 
knowledge gaps our methods and techniques try to fill. 

Therefore, section 2.1 introduces open integrated architectures and the 
adaptation of the typical embedded system design process that they 
entail, and derives a common set of services provided by typical 
platforms using two popular examples. Section 2.2 focuses on the topic 
of deployment evaluation. We list several criteria that can be used to 
evaluate a deployment solution and present corresponding approaches 
to assess these criteria. Additionally, section 2.2 introduces the three 
criteria that are addressed by our techniques. Two of these criteria are 
assessed by our objective functions (see Contrib. 3) and the remaining 
criterion is the one that can be formulated with our specification 
language (see Contrib. 1) and checked with our mediation technique 
(see Contrib. 2). The related work regarding this criterion of checking 
whether the safety requirements of an application are fulfilled by the 
capabilities of its host platform is introduced in section 2.3. Since this last 
aspect evolves around the modular specification and integration of 
safety capabilities, we will use the commonly used term modular 
certification to headline this section. 

2.1 Open Integrated Architectures 

This section introduces the notion of open integrated architectures, 
starting with an explanation of the more traditional federating 
architectures and a presentation of the transitional solution of integrated 
architectures before ending with an explanation of open integrated 
architectures. After presenting the main characteristics of an open 
integrated architecture, we will explain the necessary adaptations of the 
traditional development lifecycle when developing open integrated 
systems. After that we will introduce the two most important standards 
for open integrated architectures before concluding this section with an 
independent list of platform services derived from the example 
standards. 
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In the past, the majority of distributed embedded systems were 
federated. [5] and [1] describe a federated architecture as a collection of 
computational nodes, where each node implements exactly one 
dedicated function, such as controlling the air speed of an aircraft (auto-
throttle function) or the speed of a car (cruise-control function). Sensors 
and effectors were typically not shared and communication between the 
nodes, and thus the functions, was limited [6]. 

The following quote by Scott Gravelie, Director, Boeing 787 Programs 
with GE Aviation Systems (formerly Smiths Aerospace) [5] summarizes 
the shortcomings of federated architectures: “Add to this picture the fact 
that some level of redundancy had to be built into each functional sub-
system, and you’re left with an overall system architecture that is 
inefficient, heavy, and expensive to develop and maintain. It’s also void 
of much of the interaction (between sub-systems) that is now deemed 
essential in a true, modern system.” 

In an integrated architecture, however, we treat function-specific 
applications and general-purpose platforms as two separate building 
blocks, instead of regarding each function as a monolith comprising 
software and computational hardware. RTCA DO-297 [7] defines an 
application as “software and/or application-specific hardware with a 
defined set of interfaces that, when integrated with a platform, performs 
a function”. On the other hand, platforms are defined as a combination 
of software and hardware to “provide computational, communication, 
and interface capabilities for hosting at least one application. […] 
Platforms by themselves do not provide any […] functionality”. 

Unlike federated architectures, integrated architectures allow hosting 
several applications on one platform in order to share the platform’s 
computational and communicational resources. This allows the system 
developer to reduce the number of platforms and therefore, reduce the 
system’s weight, energy consumption, and costs. The weight and space 
savings of an integrated architecture in a passenger aircraft are, as an 
example, equivalent to at least two seats including passengers [8]. In 
addition to that, the sub-systems of an aircraft can more easily interact 
with each other to provide enhanced functionality. 

From the safety perspective, the major downside of stronger integration 
is the loss of the natural fault containment barrier between separated 
platforms. In an integrated architecture, failures of one application may 
affect all applications hosted on the same platform, even if there are no 
functional dependencies between the applications. Therefore, the 
concept of integrated architectures is tightly coupled with the concept of 
partitioning [9]. A partition provides fault containment capabilities such 
that faults of an application in one partition cannot affect the platform's 
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capability to provide shared resources to applications in other partitions 
in such a way that the other applications fail. 

However, in an integrated architecture that is not open, platforms are 
still developed for one specific system and application software is 
typically developed for one specific type of hardware, i.e., for one 
specific type of platform. In order to change this, the principle of open 
architectures is applied. In an open architecture, there are public 
standards that precisely specify the key interfaces between the modules 
of the system [10, 11]. In case of an integrated architecture, this key 
interface is the application programming interface (API) between 
application and platform. Consequently, we call an integrated 
architecture with a standardized API an open integrated architecture. 

The API defines how the application interfaces with the platform in order 
to use the platform’s shared resources. The common API of an open 
integrated architecture facilitates modularity and portability, since it 
allows the developers to reuse and replace platforms and applications 
and add new applications over the lifetime of the system. The API and 
the associated abstraction are provided by a collection of hardware-
dependent software. Some authors call this software operating system 
(OS), whereas others use the term OS more restrictively to describe only 
a subset of all the functionality necessary to implement the API. For this 
reason, we refer to the software providing the API more generally as 
middleware or platform software. We define platform software as 
software that either directly (not via the API) accesses hardware or 
directly accesses other platform software modules. Figure 2 shows a 
platform software architecture example. 

If an embedded system is designed as an integrated open architecture, 
the process for designing the system changes. Traditionally, embedded 
system design is a top-down process that starts with the specification of 
the system’s functionality and continues with the specification of the 
system architecture until the process reaches the step where software 
and hardware are implemented in parallel. In an open integrated 
architecture, however, the standardized API of an execution platform 
allows decoupling the development of platforms from the function-
specific development of applications. This changes the top-down process 
to a meet-in-the-middle process, as aptly described by [12]. In [12] this 
process is called platform-based design and we will introduce it in 
subsection 2.1.1. 

 9 



Related Work 

Application 
1

Application 
2

API

HW

OS
Driver 

1
Driver 

2

File 
System

PSW 
Module

PSW 
Module

Platform 
Software

Application 
Software

 

Figure 2: Simplified example a platform software (PSW) architecture in an open integrated 
architecture. Application software components are shown as rectangles, platform software 
modules are shown as ellipses. 

The next subsections are going to introduce two very common open 
integrated architecture platforms. The AUTomotive Open Software 
ARchitecture (AUTOSAR) from the automotive domain will be presented 
in subsection 2.1.2 and a civilian version of Integrated Modular Avionics 
(IMA) from the aviation domain will be presented in subsection 2.1.3. 
After that, we will present in subsection 2.1.4 a domain-independent 
description of platform services in open integrated architectures, which 
we will derive from the example platforms and use to define our 
specification language in the later chapters. 

AUTOSAR and IMA are the two most important and wide-spread 
examples. There are, of course, other integrated architectures or 
operating systems with a standardized API in the embedded domain, 
such as VxWorks [13], QNX Neutrino RTOS [14], CodeSys RTE [15], 
Integrity [16], L4 micro kernels, PikeOS [17], or OSEK-OS [18]. For 
reasons of accessibility, we chose the two open and publicly available 
specifications mentioned above. However, we believe that the abstract 
platform services presented in 2.1.4 are able to cover most of the 
services provided by the other middleware products as well, especially 
since there are add-ons for some of the listed operating systems to make 
them IMA- or AUTOSAR-compatible. 

2.1.1 Platform-based Design 

The most typical embedded system development process is an adapted 
form of the traditional V-model. It is adapted in the sense that at a 
certain point in time, the developer has to decide which functionality to 
implement in hardware, which functionality to implement in software, 
and how to connect hardware and software with each other via 
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interfaces. From this point onwards, the system development splits up 
into hardware and software development running in parallel. In the 
development of open integrated systems, this process changes. 

The standardized API of an open integrated architecture predefines the 
interface between application and platform as well as a large part of the 
functionality provided by the platform and the hardware, respectively. 
This fixed aspect in the design allows application and platform 
developers to implement their products largely independent from each 
other, and either development is possible without an embracing system 
development. The task of finally integrating applications and platforms 
into a system lies with the system integrator. First, the integrator defines 
the system’s functional architecture by integrating all applications, and 
defines the system’s platform topology by integrating the available 
platforms. In the next step, the integrator maps the applications onto the 
platforms during the so-called deployment phase yielding the integrated 
system. This platform-based design process is illustrated in Figure 3. 

On closer inspection, deploying a functional architecture onto the 
platform topology is challenging for at least three reasons. First, the 
abstraction gap between a function and a platform is usually too big to 
directly map them to each other. Second, the deployment is constrained 
by the requirements of the application and the available capabilities of 
the platforms. And third, within the given constraints, it is still a 
challenging problem to find a suitable deployment. While the third point 
will be discussed in detail in section 2.2 of this chapter, we want to 
elaborate on the first two points in this subsection. 
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Figure 3: A development process for open integrated systems 

If we regard an application as a stateful function, an application is simply 
defined by its inputs, outputs, and a corresponding transfer function. 
What we described earlier as functional architecture is created when the 
outputs of one application are connected with the corresponding inputs 
of other applications to model their interaction with each other. Such a 
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model does, for example, fall short of information about how and when 
to execute a function and how to implement communication needed to 
map the applications to the platforms. To bridge this gap, there has to 
be an intermediate model that can be directly mapped to the platform 
services. Such an intermediate model could, for example, map the 
functions and signals of the functional architecture to tasks and 
messages. These tasks and messages are then mapped to the execution 
platforms and communication channels of the platform topology as 
proposed in [19]. An example mapping is shown in Figure 5. 
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Figure 4: Mapping of a functional architecture onto a platform topology via the intermediate model 
(figure is based on figure 4 of [19]) 

Coming back to our second point, the necessity of checking whether a 
given platform meets the requirements of an application is an inherent 
property of platform-based design. Whereas in traditional development, 
the platform was tailored to the specific needs of the function, it is now 
a general-purpose component developed without knowledge of all the 
possible functions it may host. Therefore, the “top-down constraint 
propagation and the bottom-up performance estimation” [20] is a key 
aspect of platform-based design. The developer of an application 
specifies certain constraints regarding the behavior of the platform, 
whereas the platform developer has to specify the capabilities of the 
platform, as shown in Figure 5. During deployment, the fulfillment of the 
application’s constraints has to be checked against the capabilities of the 
platform3. While this process is necessary for all kinds of dependencies 
between platforms and applications, the specification of safety-related 

3 The discussion of typical deployment constraints as well as deployment objective 
functions is part of the next chapter. 
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application requirements and the corresponding platform capabilities, as 
well as checking whether they match, is the key contribution of our 
work (see Contribution 1 and Contribution 2). 
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Figure 5: Interactions between abstraction layers in a platform-based design [21] 

As a last point in this subsection, we want to mention that the idea of 
platform-based design can be used more generally than described so far. 
A platform can be more generally defined as an abstraction layer that 
hides the details of several possible implementation refinements of the 
underlying layer [21]. With this definition it is possible to define a whole 
platform stack looking at the development of a modern embedded 
system. 

An API platform as specified by us provides an abstraction from the 
resources provided by the underlying hardware and hides its 
implementation details as well as the implementation details of the 
middleware. In addition to the API platform, there could also be a 
microarchitecture platform. In simplified terms, the microarchitecture 
platform provides a first layer of abstraction from the computation and 
communication hardware, which by itself is not abstract enough to be 
efficiently used by an application developer. Therefore, the API platform 
uses the microarchitecture abstraction layer to provide yet another, more 
convenient abstraction. Together, the API platform and the 
microarchitecture platform form the aforementioned platform stack. In 
this more general case, platform-based design is described as a meet-in-
the-middle process, where successive refinements of specifications meet 
with abstractions of potential implementations. 

We commonly find this kind of abstraction stack when we look at the 
implementation of an open integrated architecture. AUTOSAR, for 
example, defines a microcontroller abstraction layer that serves the sole 
purpose of adapting the higher-level middleware services to the specifics 
of the underlying microcontroller architecture. Many implementations of 
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the ARINC 653 API contain so-called microcontroller or microarchitecture 
support packages that can be exchanged together with the underlying 
hardware. The abstraction provided by such a microarchitecture layer, 
however, is beyond the scope of our work. 

2.1.2 Example Platform 1: AUTOSAR 

AUTOSAR [3] is short for AUTomotive Open System Architecture and is 
an open integrated architecture tailored to the needs of the automotive 
domain. Its development officially started in 2003, when a group of 
vehicle manufacturers and tier 1 suppliers signed the respective 
partnership agreement. The goal of the AUTOSAR development is to 
reduce hardware costs, manage the complexity of innovative functions, 
and improve the portability and reusability of applications and platforms 
[4]. Therefore, the development partnership defined a standardized 
middleware architecture with a standardized API as well as a 
development methodology for AUTOSAR-based applications. In this 
subsection, we first give an overview of the development methodology 
before introducing the AUTOSAR middleware architecture. Since the 
AUTOSAR standard is still evolving, we need to mention that this 
subsection addresses the third revision of the fourth version of the 
AUTSAR specification, updated in January 2012. 

Comparable to the development process described in subsection 2.1.1, 
the main concern of the AUTOSAR development process is the 
separation of application and platform development. To this end, 
AUTOSAR uses a concept called the Virtual Functional Bus (VFB). To use 
the VFB, application developers model their applications, structuring 
them into application software components and defining the 
components’ incoming and outgoing signals, as well as the middleware 
services directly used by the components. The VFB then provides a virtual 
communication channel allowing the developers to logically connect 
application software components and to describe their interplay without 
anticipating their deployment and the resulting physical implementation 
of their communication. When finally deploying the application software 
components to specific platforms, the integrator has to choose a suitable 
implementation for the virtual bus, using available and applicable 
communication mechanisms. One can regard the VFB as a mechanism 
for defining a functional architecture. 

In general, an AUTOSAR platform provides its services to applications via 
standardized platform software components, called basic software 
modules in the AUTOSAR context. Since application software 
components and the basic software modules are compiled 
independently, they have to be linked together via a third abstraction 
layer, called the Runtime Environment (RTE). Typically, the integrator 
generates the RTE automatically, using the information from the model-
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based representation of the applications and the platforms. As of late, 
the RTE has been implementing more and more functionality that can be 
generated conveniently if the deployment is known. The AUTOSAR 
development approach is illustrated in Figure 6. 
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Figure 6: AUTOSAR methodology excerpt : From VFB to configured RTE [22] 

In the following paragraphs, we will describe the AUTOSAR platform 
software. Even though we have learned that applications directly 
interface with the RTE, the RTE is ill suited to analyzing the services of 
the platform software. This is because the actual interface of the RTE is 
generated dynamically during system configuration and the generic RTE 
interface hides the functionality provided by the platform. In order to 
identify the services provided by the AUTOSAR platform, we therefore 
have to analyze the top-level interface of the basic software instead. 

The basic AUTOSAR software consists of 66 individual modules, and 
there is a detailed interface specification of each module. However, not 
all interfaces are relevant to us, since most of them are not visible at the 
application layer. In fact, the basic software is again divided into three 
layers as shown in Figure 7. The lowest layer is called the microcontroller 
abstraction layer. It mainly consists of device drivers, which provide an 
abstraction from the differences of the underlying microcontroller 
hardware and the ICs connected to the controller. The second layer is 
called hardware abstraction layer and additionally abstracts from the 
specific layout of the microcontroller board. It abstracts, for example, 
from a CAN (Controller Area Network) channel that is implemented 
directly by the μController or a channel that is implemented by a 
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separate CAN driver IC that is connected to the μController via SPI. The 
third layer is called the service layer. This layer finally provides a 
convenient set of system functions to access the platform resources. This 
service layer is directly accessible for applications (via the RTE “glue 
code”). 

Application Layer

RTE

Complex 
Device 
Drivers

I/O 
Hardware 

Abstraction

I/O DriversCommunication 
Drivers

Memory 
Drivers

μController 
Drivers

Communication 
Hardware 

Abstraction

Communication 
Services

Memory 
Hardware 

Abstraction

Memory 
Services

Onboard 
Device 

Abstraction

Hardware

System 
Services

Service
Layer

Hardware 
Abstraction 

Layer

μController 
Abstraction 

Layer

 

Figure 7: The layered platform software architecture of AUTOSAR [23]. The layers are differentiated 
by different shades of gray, from lighter to darker: the service layer, the hardware 
abstraction layer, and the microcontroller abstraction layer. Complex drivers allow for the 
integration into the platform software of software components that are not standardized 
by AUTOSAR. 

The horizontally layered architecture of the basic AUTOSAR software is 
again sectioned vertically. Each of the four resulting vertical “stacks” 
represents one key service class of an AUTOSAR platform. These four 
service classes are: 

System Services are used to manage, configure, and retrieve the status 
of the platform, as well as to perform inter-partition communication, 
diagnostics, and health management. The operating system is also part 
of this service class. 

Memory Services allow access to non-volatile memory (NV-RAM). This 
class abstracts from the differences between EEPROM and Flash, and 
allows accessing external memory ICs via SPI. It furthermore provides 
convenience functions for storing redundant memory blocks and for 
memory consistency checks. 

Communication Services implement services to send and receive 
messages to and from inter-platform communication busses. The layered 
communication stack abstracts from different bus types like CAN, TT-
CAN, or Flex Ray and allows for large or multiplexed messages. 
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I/O Hardware Abstraction4 provides access to input and output 
devices to read from sensors and to control effectors. There is support 
for digital and analog I/O as well as for PWM signals.  

Enabling safety is one the primary objectives of the AUTOSAR 
development [24]. Therefore, the AUTOSAR standard contains a number 
of safety mechanisms ranging from end-to-end communication 
protection, logical program flow monitoring, or timing and memory 
protection. A summary of the safety-related requirements and features 
of an AUTOSAR platform is specified in the Technical Safety Concept 
Status Report [25]. 

Consequently, one goal of our technique was to be able to cover the 
AUTOSAR-specific safety requirements and to be able to automate the 
process for checking and arguing the sufficiency of these requirements 
in the face of a concrete application. In chapter 7, we will show how the 
AUTOSAR safety mechanisms can be modeled using our approach. 

2.1.3 Example Platform 2: IMA – ARINC 653 

IMA [26] is short for Integrated Modular Avionics and represents the 
overall movement of using integrated architectures in the avionics 
domain. There is no such thing as one central IMA standard; rather, 
there are several specifications that provide a standardized API that 
follows the concepts of IMA. There is, for example, the ARINC 653 [2] 
standard in civil aviation, the Def. Stan. 00-74[27] standard in the 
military domain, or Honeywell’s DEOS (Digital Engine Operating System) 
[28]. 

In this section, we will focus on describing the publicly available ARINC 
653 specification, more specifically the first part of the standard, which 
deals with the core services of the platform software5. The ARINC 653 
specification calls its API the APplication/EXecutive (APEX) interface. The 
APEX interface integrates the application software with the platform 
software, called O/S kernel in the context of ARINC 653. 

The application software is bundled into different application partitions 
by the application developer. The software in each application partition 
may only use the APEX interface, which makes this software platform-
independent. Additionally, the application developer may provide so-
called system partitions. The software in these partitions is allowed to 
additionally call non-standardized system-specific middleware functions. 
The software in application partitions as well as in system partitions is 
protected from mutual interferences and runs in user mode. However, 

4 AUTOSAR does not offer an I/O Service layer. 
5 The second part contains an extension of the API for file and database handling. 
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since the software in the system partition does not exclusively call APEX 
procedures, this software is not necessarily portable to other platforms, 
since these platforms might not support these system-specific functions. 
Figure 8 shows the relationships between the different types of software 
in an ARINC 653 system. 
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Figure 8: ARINC 653 software architecture and its relations  [2] 

The handling of communication between applications is comparable to 
the AUTOSAR approach. The application developer does not know 
whether communicating applications are on the same platform or not. 
Therefore, the integrator has to configure the APEX appropriately after 
the deployment is fixed. However, the handling of communication is 
different from AUTOSAR in at least one aspect. The developer of an 
application software component in an ARINC 653 scenario does know 
whether the communication counterparts are in the same partition. 
Therefore, there are different service calls for inter-partition and intra-
partition communication in ARINC 653, whereas there is only one 
communication interface visible to AUTOSAR applications. The 
differentiation between inter- and intra-partition communication is made 
after the application interface in an AUTOSAR system 

Just like we listed the AUTOSAR platform services by analyzing the API, 
we extracted the following ARINC 653 service classes from analyzing the 
APEX interface: 

Partition management is used to retrieve and control the status of 
partitions. A partition provides an area of fault containment as specified 
in section 2.1. 

Process management is used to create, stop, and restart processes as 
well as to retrieve and control their status. A process in ARINC 653 has 
its own memory area and may possess platform resources. 
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Time management is used to retrieve time information or wait until a 
certain time interval. This service class includes functions for retrieving a 
global time 

Inter-partition communication is used for communication between 
partitions on the same as well as on different platforms. 

Intra-partition communication is used for communication and 
synchronization between processes in the same partition (e.g., 
semaphores, events, and buffers) 

Health monitoring is used for handling detected failures. This includes 
default reactions like shutting down partitions or processes, as well as 
invoking application call-back functions. 

ARINC 653 addresses safety explicitly through the specification of robust 
partitioning mechanisms as well as with its health monitoring services. 
Just like the mechanisms introduced by the AUTOSAR standard, these 
features must be describable with our specification language as we will 
show in chapter 7. Additionally, there is a standard for certification in 
the IMA domain, RTCA/DO-297 [7], which will be introduced in 
subsection 2.3.1. 

2.1.4 Platform Service Types 

While there is a wide variety of platforms, most of the platforms provide 
comparable services. Although specific services might be available (or 
not) for specific platforms, and although the same service might differ in 
aspects like performance or call syntax, the core of the provided services 
is relatively stable. This circumstance is also the reason why industry was 
able to standardize platforms in the first place. This subsection provides a 
list of abstract platform services derived from the AUTOSAR and the 
ARINC 653 examples. In this section, we introduce this list of standard 
services that a platform typically provides. We derived this list from 
standard platform specifications like AUTOSAR (subsection 2.1.2) or 
ARINC 653 (subsection 2.1.3). 

With the exception of the computational capabilities provided by the 
CPU and the storage capabilities provided by the main memory, 
applications access a platform’s services via the API provided by the 
platform software. With regard to platform software or operating 
systems, Tanenbaum [29] differentiates between two main tasks: 

1. The platform software as an extended machine 

2. The platform software as a resource manager 
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The first task regards the platform software as an extension of the 
machine that is the underlying hardware. The hardware itself already 
comes with an interface that allows the software to interact with the 
CPU and its devices, but there are two main reasons why this interface is 
extended by the platform software. The first reason is that the direct 
hardware interface is usually complicated to use, which is why the 
platform software provides an easier and more convenient interface for 
accessing the platform’s resources than the direct HW interface does. 
Second, the platform software abstracts from particularities of different 
hardware implementations and therefore provides a hardware-
independent interface. The application software directly calls this 
abstract/extended interface and does not see the actual hardware 
anymore. This is why Tanenbaum refers to this as the top-down view on 
platform software. 

The second task becomes relevant if there are multiple applications 
sharing the platform’s resources. In this case, the platform has to 
manage and regulate the application’s resource usage, such that the 
applications are able to share the common resources properly, which 
enables what is usually called multiprogramming. In the context of 
safety-critical systems, platform software must provide additional and 
stricter guarantees with regard to the absence of interferences via shared 
resources. We have referred to mechanisms providing freedom from 
interference as partitioning earlier in our work (section 2.1). In contrast 
to the services of the platform as an extended machine, the services that 
manage and regulate concurrent resource usage are usually transparent 
to applications. In fact, there is typically no direct interaction between 
applications and these services, meaning that there is no explicit API to 
influence these services. Therefore, Tanenbaum refers to this as the 
bottom-up view on platform software. 

This second task can be further differentiated according to the resource 
that is shared and protected. There are those resources that are accessed 
via the API, such as communication channels, I/O devices or files, and 
there are resources like RAM and CPU, which are typically not accessed 
via the platform software. In the latter case, the protection and 
management of the resource has to be jointly implemented by platform 
hardware and platform software since otherwise, the platform software 
would have no means for controlling access. 

In order to provide a more detailed view on a platform’s typical API, we 
used the specification of AUTOSAR and ARINC 653, as well as the 
structure proposed by [29] to split the services into eight different service 
types. A mapping of the AUTOSAR and the ARINC 653 specifications to 
these service classes can be found in section 7.1. 

(1) Synchronization mechanisms providing measures for 
synchronization between tasks and for the implementation of 
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critical regions: In the literature, the term inter-process communication 
(IPC) is typically used as a collective term for mechanisms enabling 
communication between processes running in different memory areas. 
This includes services for synchronization, such as barriers or events, 
services for realizing critical regions, such as spin-locks or binary 
semaphores, and mechanisms for exchanging data, such as buffers. 
Since we cannot assume that there is a memory management unit 
(MMU) in every embedded platform, we do not want to use the pre-
allocated term IPC. Instead we use the term synchronization mechanisms 
for our first service class, which includes mechanisms for synchronization 
and for the implementation of critical regions. As we do not assume that 
every μController supports the concept of processes, we do not 
differentiate between inter-process and intra-process communication as 
often done in literature. Communication in general is captured by the 
next service class 

(2) Communication for information exchange between tasks: This 
service class contains all mechanisms that allow applications to exchange 
data. Since we want to describe services only from the application’s 
point of view, we do not differentiate between inter- and intra-process 
communication, between inter- and intra-partition communication, and 
between inter- and intra-platform communication. This kind of 
differentiation is only made during deployment and is, therefore, 
transparent for the application. 

(3) I/O access for reading and writing from/to sensors/actuators: 
This class is comprised of services to read from input devices such as A/D 
converters or digital input channels and to write to output devices such 
as PWM channels or digital output channels. We do not differentiate 
between I/O channels that are on the chip of the μController (such as an 
internal A/D converter) and external channels that are implemented by 
external ICs attached via local busses, such as I²C or SPI. 

(4) Time services for measuring and waiting a certain time: Time 
services contain services for measuring relative time, for waiting a certain 
time, as well as for retrieving a global time. Relative time is characterized 
as a time interval between two events, e.g. between a start and a stop 
timer call. Global time, on the other hand, provides a consistent and 
comparable time base for the overall system. 

(5) Memory services for accessing memory that is not directly 
mapped onto the address space or for addressing mapped 
memory more conveniently: This class aggregates services for 
indirectly reading and writing to non-volatile memory. Unlike direct 
memory access, indirect memory access is performed via the platform 
software API and not directly on the memory bus. This can include 
simple convenience functions for writing to or reading from Flash, 
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EEPROM, FeRAM, or a hard disk. This can also include more 
sophisticated functions for storing and retrieving data in databases or via 
a file-based service. 

(6) Health monitoring for detecting and handling application and 
platform failures: This is a category for all services that address 
detection of application as well as platform failures and failure handling 
in general. Typical failure detection mechanisms include deadline 
monitoring or logical sequence monitoring. Typical failure reactions 
include restart or shutdown of partitions or the platform, as well as 
setting default outputs or sending default messages. Besides that, health 
monitoring contains services for self-testing, such as built-in self-tests of 
the hardware like memory or computation logic checks. 

(7) Basic computation:  This category summarizes all services of the 
platform that are not accessed via the platform software API. Typically, 
these are the computation services of the CPU and the data storage 
services of the main memory. Please note that the absence of an API 
does not imply that the access to these resources is not coordinated by 
the platform software. 

These seven service classes identified by an analysis of the two most 
common open integrated architectures are the foundation for the 
definition of the specification language provided by this thesis (see 
Contrib. 1). Please note that this implies that most open integrated 
architectures are statically configured. It is, for example, not possible to 
allocate memory or to create operating system objects dynamically 
during runtime. 

2.2 Deployment Evaluation 

In the previous section, we presented the typical development lifecycle 
for open integrated systems, which included a work step called 
deployment. This section presents the topic of deployment evaluation. 
Deployment evaluation has many different evaluation criteria, which is 
why we will introduce every safety-related criterion in the following 
subsection. Together with these criteria, we will present the 
corresponding related approaches and name the criteria that our 
approach evaluates and what is unique about what we do. 

The term deployment describes the process of mapping a system’s 
functional/logical architecture onto the system’s technical/physical 
architecture. In this context, the latter is sometimes also called the target 
environment of the deployment. A functional architecture consists of 
functions interconnected by signals, whereas the physical architecture 
consists of computational nodes interconnected by communication 
channels and gateways that interconnect the communication channels. 
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Functions are implemented by software components6 that are mapped 
to computational nodes, and signals are packed into messages that are 
mapped to communication channels. Since functions are always 
implemented by applications (see definition of application), we usually 
refer to the software components implementing a function as 
application software component (ASWC). 

The idea of mapping ASWCs to platforms can be regarded as the top-
down view on deployment. From the bottom-up perspective, however, 
the platform typically does not perceive the application as a collection of 
components. Instead, the platform perceives applications as a collection 
of schedulable entities, which we refer to as tasks. Therefore, in the 
literature one may also find the term task allocation alternating with the 
term deployment, depending on the author’s viewing angle. 

In the previous subsection, we argued that there must be a standardized 
interface between the functional and the physical architecture to enable 
separate development of applications and platforms while maintaining 
deployment compatibility. In the context of distributed embedded 
systems, open integrated architectures contain such standardizations. In 
the object-oriented domain, however, such standards have long been 
made available by middleware standards like the Common Object 
Request Broker Architecture (CORBA) [30] or comparable methods.  A 
well-known source for information about object-oriented deployment is 
provided, for example, by the “Deployment and Configuration of 
Component-based Distributed Applications Specification” [31] published 
by the Object Management Group (OMG). 

According to [31], a deployment process can be separated into five 
steps. Even though our approach only focuses on the third work step, 
we will, for reasons of demarcation, introduce the other four as well. (1) 
The installation step is performed by the developer of an application and 
describes the act of bringing an application’s software components into 
a software repository. This does not include actually moving the software 
to the target environment, but is a preparation step that enables the 
second work step. Since we think that the installation step is not of 
equal importance for embedded systems, we will not further elaborate 
on it. (2) The configuration work step allows the developer to configure 
the application in the repository, for example changing the acceleration 
ramp of a cruise control application. In the embedded domain, this is 
typically done by the application developer. Since we intend to define 
deployment as a process that is performed by the system integrator, we 
do not include configuration in our evaluation. (3) In the deployment 
planning phase, the integrator plans the mapping of the system’s 

6 Functions can also be implemented by hardware components. Hardware 
components are, however, extraneous to deployment. 
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functional architecture to the system’s technical architecture, for 
example the mapping of the software components to execution 
platforms or the mapping of the logical signals to communication links. 
The decisions made during the planning phase are specified in the 
deployment plan. Deployment planning does not include actually moving 
the compiled software to an execution node. (4) Preparation is the work 
step in which the integrator configures the target environment such that 
the planned deployment can be executed. We will refer to this step as 
configuration, since in our experience this is more typical in the 
embedded domain.  (5) In the launch step, the application is finally 
moved to its target and executed. 

During deployment planning, there typically is a solution space 
containing numerous possible solution candidates for mapping a given 
functional architecture onto a given technical architecture. Deployment 
evaluation is our term for the qualitative or quantitative assessment of 
deployment solution candidates aimed at exploring the design space and 
find the most suitable deployment plan. 

Deployment has several different quality goals that can be evaluated. 
The evaluation can be performed in a qualitative pass/fail manner using 
constraints, or in a quantitative manner using objective functions. 
Objective functions can again be divided into fitness functions, if the 
assessed criterion has a positive nature and is to be maximized and cost 
functions, if the regarded criterion is negative and is to be minimized. 
Finally, an objective function can also be used to implement a constraint 
if the user defines a pass/fail criterion using a minimum or a maximum 
threshold, respectively, for the objective function. 

Example: The workload of the platform must be lower than 67%. 

In the following subsections, we will classify evaluation approaches with 
regard to the criteria they evaluate. Table 1 shows an extended version 
of a table taken from [32] listing the deployment criteria we used for the 
classification of the related work. As the objective functions introduced 
by this thesis perform a safety-related deployment evaluation, the related 
work lists only safety-related approaches and the listed criteria have a 
safety focus as well. Consequently, the evaluation criteria list is not 
complete since there are other important, not directly safety-related 
criteria, such as the exploitation of computational concurrency. 

The following subsections will introduce the related work, classified 
according to the evaluation criteria they address.  

Table 2 provides an overview of the different deployment qualities 
addressed by each approach we have analyzed. 
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Table 1: Quality criteria of a given deployment solution. 

Criterion Description Desired 

Match Analyzing how well application 
requirements match platform capabilities 
(e.g., schedulability) 

Maximize 

Delay Analyzing the end-to-end delay of an 
application 

Minimize 

Flow Analyzing messaging traffic and network 
capabilities 

Minimize 

Replication Analyzing the costs for replicating 
components 

Minimize 

Reliability Analyzing the reliability or failure rate of 
the application  

Maximize 

Mixed 
criticality 

Analyzing the criticality heterogeneity of 
software components in one partition 

Minimize 

Fixed 
assignment 

Explicitly mapping a software 
component to a specific node 

Constraint 

Diverse 
assignment 

Forbidding to map two or more 
software components to the same node 
(or node type) 

Constraint 

 
Table 2: A mapping between quality criteria and references.  An “x” indicates that the approach 

denoted by the column evaluates the criteria denoted by the row. An” x” in parentheses 
indicates that the criteria are evaluated but without safety focus. 

Quality \ 
Reference 

A B C D E F G Our 
approach 

Match  (x) (x) (x) (x) (x)  x 

Delay x x       

Flow  x x x  x  x 

Replication x x  x   x  

Reliability x x     x  

Mixed 
criticality 

       x 

Fixed 
assignment 

x  x   x  x 

Diverse 
assignment 

  x  x x  x 
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Table 3: A mapping of identifiers used inTable 2 to references. 

ID Name 

A Fault-Tolerant Distributed Deployment of Embedded Control 
Software [33] 

B Automated Deployment of Distributed Software Components 
with Fault Tolerance Guarantees [34] 

C Two Optimization Techniques for Component-Based Systems 
Deployment [35] 

D Effective distribution of object-oriented applications [32] 

E Task allocation in fault-tolerant distributed systems [36] 

F Allocating hard real-time tasks: an NP-hard problem made easy 
[37] 

G Task allocation algorithms for maximizing reliability of 
distributed computing systems [38]and 

Models and algorithms for reliability-oriented task-allocation in 
redundant distributed-computer systems [39] and 

Safety and reliability driven task allocation in distributed 
systems [40] 

2.2.1 Match 

The match criterion measures how well the capabilities of a platform 
match with the requirements of an application7. A very typical 
manifestation of this quality is measuring how well the computational 
power of a platform’s processor(s) matches with the required 
computational power of an application. Maximizing this particular aspect 
equals maximizing the workload of processors, which again may result in 
a lower number of required platforms. There are also approaches 
working in the opposite direction, like equally balancing the workload of 
all platforms as proposed by [36]. According to [36], this may lead to 
more spare time for performing diagnosis functions and, therefore, 
increasing reliability. These two views on processor work load can be 
applied more generally to the match quality. The overfulfillment of 
requirements typically leads to an inefficient use of available resources, 
which is expensive. The plain underfulfillment of requirements leads to 
failures, and a very close fulfillment of requirements might lack the 
safety margin necessary for resilience against adverse circumstances. 

So in order to check whether the platform fulfills the minimum 
requirements of an application, the match quality is often used as a 

7 The corresponding meet-in-the-middle development process is described in 
subsection 2.1.1 
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constraint. Typical requirements ask for the availability of a floating-
point-unit (FPU), a certain amount of available primary and secondary 
storage space, minimum computational power, support for concurrency, 
or supported security levels as listed in [32]. Especially checking whether 
the current deployment does not exceed the available memory capacity 
[36, 37] or the available computational power [34] is very common. 
Other approaches go one step further than just checking required 
against available computational power. The techniques presented in [36] 
and [37] try to automatically compute a schedule in order to check 
whether the current deployment solution is valid with regard to the 
available computational power and the deadlines of the applications. 

The method defined in [35] allows the designer to specify classes of 
nodes (like x86/Windows computer) and classes of software components 
(like Windows application) and to define “supports” relations between 
the classes. The deployment algorithm then checks whether the class of 
each node instance supports the class of each hosted ASWC instance. 
This technique allows for the specification of high-level match 
constraints. 

Regarding the example above, the match quality contains a lot of 
aspects that are not directly safety-relevant. On the other hand, there are 
numerous safety requirements that an application may demand from its 
host platform. These include fault-tolerant communication, robust 
partitioning, the detection of missed deadlines, and many more. Our 
approach allows specifying the safety-related requirements and 
capabilities of applications and platforms on a detailed level (see 
Contrib. 1), as well as checking whether they match (see Contrib. 2), 
which is unique in the field of deployment evaluation to the best of our 
knowledge. 

2.2.2 Replication and Reliability 

Redundancy is a very common architectural pattern for safety-critical 
systems. Critical functions are implemented and executed redundantly, 
and an arbitration component chooses which of the redundantly 
computed results to use, or how to integrate multiple valid results. In 
case of a system that always fails silently, dual redundancy is sufficient to 
tolerate single failures. If the system does not only fail silently, the system 
requires triple redundancy to tolerate a single failure (byzantine failures 
might even require a higher level of redundancy). A simple replication of 
a software application is, however, not suitable for dealing with 
systematic failures. These failures will most likely occur on all instances of 
the redundant software simultaneously, rendering redundancy useless. 
Nevertheless, random failures of the hardware platform can be tolerated 
if using replicated application software components that are deployed to 
different platforms. On the other hand, replication of software 
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components increases the required communicational and computational 
capacity and can, therefore, have significant effects on a system’s 
hardware costs. Consequently, it is important to make efficient use of 
replication during deployment to find a suitable reliability/cost tradeoff, 
which is modeled by the replication criterion. 

Besides fault tolerance strategies, the designer can also choose to use 
highly reliable components in order to decrease the failure rate of a 
system to an acceptable level. If there are platforms and communication 
channels that have relatively high and low failure rates, the deployment 
has an effect on the overall reliability of the system. The effect of 
deployment on quantitatively measured reliability is described by the 
reliability criterion. 

The approach described in [33] optimizes the reliability/cost tradeoff by 
calculating the optimal number of software component replicas and by 
deploying them efficiently to a given platform topology. To do so, the 
designer has to specify the desired fault behavior of the application 
together with the application’s fault scenarios. The desired fault behavior 
is defined as a minimum set of functions that must remain available 
under certain fault scenarios. Every fault scenario is defined as a set of 
platform and network failures that must be tolerated by the application 
simultaneously. Using these inputs, an optimization algorithm calculates 
the number of required replicas, as well as a deployment plan to ensure 
the desired fault behavior in the presence of the specified fault scenarios. 

The method proposed in [34], on the other hand, minimizes the failure 
rate resulting from a deployment by taking the failure rates of the 
different platforms and communication channels into consideration. The 
objective function estimates the failure rate of the system by summing 
up the specific failure rates of the nodes and communication channels 
needed to compute the application. If an application software 
component is duplicated and the replicas are deployed to different 
platforms, the corresponding failure rate is assumed to be zero, since the 
fault model only considers single failures. The same is true for the 
duplication of communication links. By summing up the failure rates in a 
series connection, the algorithm approximates the overall failure rate. 
Using the logical “or” would, however, yield the exact failure rate. 

Building further on [39], a more precise failure rate calculation is 
provided by [41]. The algorithm assumes that all hardware components, 
computational nodes, and communication links have different but 
constant failure rates. To calculate the mission failure rate, the algorithm 
integrates the failure rate over the accumulated execution times of all 
software components and the accumulated transmission times to 
perform all necessary communication over the mission time of the 
system. The reliability formula also accounts for redundancy in the 
application model. The method proposed by [40] also builds on the 
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reliability function provided by [39] and adds a feature for modeling fail-
safe mechanisms. Instead of calculating only the system’s reliability, the 
algorithm accounts for the probability of detecting failures and 
transitioning into a safe-state, for example, by shutting the system 
down. 

2.2.3 Delay and Flow 

Timing behavior is an important aspect of many embedded systems. 
Many applications in the embedded domain are implemented as closed-
loop control. Such an application perceives its environment using 
sensors, then uses this information to compute a control value, and 
finally influences its environment via effectors such that a certain set 
value is reached. Unexpectedly high delays or varying delays (jitters) are 
not accounted for in the underlying control theory and are, therefore, 
detrimental to the accuracy and stability of the control loop. Besides 
closed-loop controls, safety mechanisms often have to react to failures 
within a short time so that the fault tolerance time of the respective 
system is not exceeded. The deployment has a notable effect on the 
end-to-end delay and the jitter of an application. This is due to delays 
introduced by software components that are executed asynchronously 
on different nodes and the resulting wait times, as well as the delay 
introduced by signal transmission. The delay criterion measures the 
effect of the deployment on the jitter and the end-to-end delay of 
applications. 

Besides the resulting delay, communication is also restricted by the 
bandwidth of communication links. In many modern cars, for example, 
communication networks operate at their limit, and adding new 
communication busses is avoided because of weight and costs. When 
the communication link uses priority-based access arbitration, delay and 
jitter are also affected if the workload of the bus increases. Quality 
aspects regarding the total number of exchanged messages compared to 
the available bandwidth of the communication channels are summarized 
by the flow criterion. The most intuitive way to approach this aspect is to 
compare the available bandwidth of the communication channels with 
the required bandwidth resulting from the deployment as done in [37] 
and [34]. 

The approach described in[33] allows a control theorist to specify the 
maximum time (T_max) that is allowed to elapse between reading the 
sensor values and controlling the effectors of a closed-loop control, 
which is what we called end-to-end delay above. Knowing the required 
and available computational power of each software component and 
execution node, the proposed algorithm calculates a deployment plan 
and a corresponding schedule, such that T_max is not exceeded. To 
account for communication delay, the algorithm uses the worst-case 
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communication delay specified a priori for each communication link by 
the developer. 

Instead of using delay as a constraint, the method proposed by [34] 
minimizes the end-to-end delay in a best effort way. Besides that, the 
computation of the actual delay is comparable to the computation done 
by [33] described above. Considering that a control loop should typically 
not be computed as fast as possible but with the exact delay specified by 
the control theorist, using delay as a constraint seems more favorable for 
embedded systems than optimizing delay. 

The modeling language specified in [35], on the other hand, allows 
specifying the frequency of the messages exchanged by the software 
components. The objective function then multiplies the frequency of 
each message with the number of hops required to transmit the 
message in order to calculate and optimize the number of messages sent 
per second. A transmission requires several hops if a gateway is used to 
route the message over multiple communication channels. 

The approach presented in [32] also evaluates message traffic and thus 
the flow criterion, but is based on the analysis of scenarios. Each 
scenario is evaluated individually regarding the required communication 
and the likelihood of the scenario. In a second step, the scenario specific 
data are combined with the likelihood of each scenario in order to get 
an estimation of the traffic encompassing all scenarios. Based on this 
information, the communication is optimized on two levels, inter-site 
and intra-site communication. Intra-site communication describes 
message exchange between two computers that are located close to 
each other and that are connected via a local communication channel. 
Such a channel allows for cheap communication regarding the available 
bandwidth and the transmission delay. Inter-site communication, on the 
other hand, is expensive and must therefore be reduced with higher 
priority. 

The flow criterion is also regarded by our deployment evaluation 
algorithm (see Contrib. 3). Instead of measuring the required bandwidth 
or the number of messages per second, we evaluate the costs caused by 
the safety mechanisms needed to protect against communication 
failures. The algorithm differentiates between two levels of 
communication as well, comparable to the inter-site/intra-site 
differentiation. 

2.2.4 Fixed and Diverse Assignment 

Even though we assume that deployment is flexible, i.e., each platform 
is, in principle, compatible with each application software component, 
there are some reasons for restricting the deployment solution space. 
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We differentiate between two kinds of restrictions, fixed assignment and 
diverse assignment. Fixed assignment allows the integrator to directly 
assign a software component to a specific platform. This is necessary, for 
example, to put the software component performing input conditioning 
of a sensor value onto the same platform the sensor is attached to. Fixed 
assignments are supported by [33], [37] and [35]. 

Diverse assignment or separated assignment [35–37], on the other hand, 
allows the integrator to forbid putting a set of software components 
onto the same platform. This is typically done to increase reliability by 
forcing a mapping of software components replicas onto different 
platforms.  

Besides fixed and diverse assignment, [35] allow specifying the constraint 
that two components must be placed on the same platform. This is 
mainly done to avoid network communication between tightly coupled 
applications. If communication traffic is already measured using the flow 
criterion, this constraint might not be necessary. 

Our evaluation approach (see Contrib. 3) allows fixed as well as diverse 
assignment. In the case of diverse assignment, we differentiate between 
diverse assignment for protecting against random failures and diverse 
assignment for protecting against systematic failures. To protect against 
systematic failures, application software components must not only be 
deployed onto different instances of the same platforms, but the 
platforms must be of different kinds. 

2.2.5 Mixed Criticality 

If there is the possibility that a set of software components interferes 
with each other, safety standards typically demand that all software 
components in the set are developed according to the highest integrity 
level of all software components in the set. This is done to avoid that 
failures of lower-criticality components, developed according to less strict 
development requirements, cause higher-criticality applications to fail 
and therefore, indirectly cause hazards with higher criticality. 

We introduced the concept of partitioning in section 2.1. Partitioning 
guarantees freedom from interference between software components 
located in different partitions. If, however, software components with 
mixed criticality are in the same partition, the aforementioned rule 
applies and the criticality level of the applications is increased. This also 
increases development costs and, therefore, should be avoided if 
possible. These costs are evaluated using the mixed criticality criterion 
and are assessed using our deployment evaluation technique (see 
Contrib. 3). To the best of our knowledge, there is no other method that 
allows optimizing this criterion. 
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2.3 Modular Certification 

In the previous section, we discussed several criteria for evaluating a 
deployment. The match criterion is one of them and is used to evaluate 
how well the requirements of the application match the capabilities of 
the platform. This process of matching application requirements with 
platform capabilities, however, anticipates that the safety-related 
dependencies between application and platform are specified modularly. 
Traditionally, though, safety-critical systems are certified in their entirety. 
This means that even though the system might be composed of 
individual parts, the safety of the composite is argued monolithically. 
Since certification is a significant matter of expense in the development 
of a safety-critical system, the reuse of components is only efficient if a 
large portion of their certification artifacts is reusable, too. Furthermore, 
the deployment cannot be handled flexibly if the safety-related 
dependencies between applications and platforms are not specified 
modularly and, therefore, cannot be checked after deployment. Along 
these lines, Rushby defines the concept of modular certification as “the 
development of modular components that could be largely “precertified” 
and used in several different contexts within a single system, or across 
many different systems”8. 

Modular certification is a wide field of interest. In the following section, 
we will describe a classification containing the different aspects of 
modular certification. We will use this classification to emphasize which 
aspects of modular certification our work addresses. Furthermore, we 
will use this classification to categorize the related approaches in order 
to show how our work relates to existing approaches, and to isolate that 
gap in the research landscape that we meant to fill with this thesis. The 
classification contains three major branches: (1) The interface 
constituents describe the different kinds of information that have to 
be contained in the public certification artifacts of a product to make the 
product reusable efficiently. We will call this public part of the 
certification the interface of the modular certificate. (2) The interface 
orientation describing the different kinds of interfaces a modular 
certificate may have, especially in the context of open integrated 
architectures. (3) The work steps involved in using a modular 
certification. The classification is illustrated in Figure 9. 

The typical way for specifying a component that is interconnected with 
other entities in a self-contained, i.e., modular, manner is to capture its 
dependencies to other entities using an interface specification. The first 
aspect in our classification differentiates the different interface 

8 The definition of modular certification has been slightly broadened. The term 
airplane has been replaced with system, since the author was only referring to the 
certification of airplanes in his original text.  
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constituents that must be captured in a modular certificate’s interface. 
To identify the information that has to be captured in such an interface, 
we examine the definition of fail-silent taken from the aviation standard 
[42]. In the standard we find that certification requires (A) an assessment 
of whether the design of the product is applicable to demonstrate an 
acceptable level of safety, and (B) a judgment that confirms that the 
product conforms to the afore-assessed design. In other words: (A) 
checking whether the system is safe as specified and (B) checking 
whether the system has actually been developed as specified, i.e., 
whether the system meets its specification. 

modular 
certification

interface 
constituents

design 
dependencies

product-
based 

evidences

process-
based 

evidences

interface 
orientation

horizontal 
interface

vertical 
interface

application / 
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other vertical 
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interface 
specification

module 
integration

 

Figure 9: A classification of the different aspects of modular certification. Aspects that are covered 
by this thesis are depicted by dark gray boxes. 

The first aspect (A) is analyzed and argued on the basis of design 
documents such as requirements or architecture specifications that 
describe how the system is structured and how it behaves. In order to 
modularize such an argument, one must make assumptions about the 
behavior of related components and give guarantees regarding its 
behavior, which is what we summarized as design dependencies in our 
classification The latter aspect (B) is argued on the basis of so-called 
evidences, typically in the form of development records [43], [44], and 
[45] differentiate between product-based evidence and process-based 
evidence. Product-based evidence, such as testing, verification, or review 
records, directly demonstrates the compliance of a product with its 
design specification. Process-based evidence, such as lifecycle data or 
staff training records, demonstrates compliance with a given 
development process. The motivation for showing compliance with the 
development process is the establishment of the validity and 
trustworthiness of product-related evidence and therefore, indirect 
support for the claim that a product meets its design. There are some 
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who believe that mature and strict processes have a direct effect on the 
safety of a system, but there have been no empirical data to underpin 
that claim. The dependencies between product-related evidences, 
process-related evidences, and design specification are shown in Figure 
10. 

Consequently, the interface of a modular certificate has to cover the 
three aspects process-based evidences, product-based evidences, and 
design dependencies. With regard to processes, the system must 
typically be developed according to the process demanded by the 
relevant-safety standard. Sometimes, the respective process cannot be 
performed completely by the developer of the component or the module 
so that certain activities remain to be performed by the integrator. The 
same is true for the generation of product-related evidence. Some 
evidences, such as integration tests, have to be produced by the 
integrator as well. Both residual product- and process-based evidences 
must be specified at the certificate interface, so that it is known how to 
complete the required set of evidences. In addition to that, the evidences 
already generated by the module developer must typically be provided to 
the integrator so that the integrator is able to present a compilation of 
evidences to the certification body. Finally, the interfaces must also 
contain the safety-critical design-related dependencies (structural as well 
as behavioral) to other modules, specifying under which conditions the 
module can be used safely. Our approach focuses only on the design-
related dependencies. 
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Figure 10: Dependencies between different kinds of evidences in the development-lifecycle of a 
safety-critical system. 

As indicated at the beginning of this section, modular certification is a 
general term. This means that it does not restrict the product that is 
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certified modularly. In this thesis, however, we focus on modular 
certification of applications and platforms and the interface between 
applications and platforms as described in subsection 2.1.4. To 
demarcate this interface from other interfaces, we differentiate the 
interface orientation. 

A horizontal interface describes functional dependencies between two 
entities on a peer level. In the context of integrated architectures, such 
interfaces exist between applications. Assume that, for example, the ESC 
of a car requires knowledge of the car’s velocity to operate safely. 
Consequently, the ESC might demand that the provider of the 
information indicate whenever the velocity is unreliable or unavailable. 
Since there are an infinite number of possible dependencies between 
functions, it is difficult to define a language for describing the 
dependencies. 

In contrast to that, the vertical interface describes dependencies between 
a component implementing a system-level function and a component 
providing a general, function-independent service. Those function-
independent components are typically developed for reuse, and one 
might refer to them as COTS (commercial off the shelf). Examples are 
libraries, communication protocols, or operation systems. The developers 
of COTS do not know all future systems their product will be part of and 
they do not know the functions they contribute to. Therefore, it is 
impossible to perform a hazard and risk analysis for such a component. 
On the other hand, the function using the general-purpose component 
knows the kind of service provided by the component and can analyze 
which failures of the component could cause a hazard. The interface 
relevant for this thesis, which is the interface between an application and 
a platform, is a special type of vertical interface. 

Coming to the third branch of our classification, the specification of the 
certificate interface is only the first step towards achieving the goal of 
reusing certificates efficiently and flexibly. The second work step is the 
integration of the module certificates into the system certificate. This 
step includes checking the satisfaction of the mutual dependencies 
between the module and system, as well as the necessary generation of 
an argument that the dependencies are satisfied. In our classification, we 
therefore differentiate between approaches that support interface 
specification and those that also allow for the efficient integration of the 
modules. Our method addresses the specification using a formal 
language (see Contrib. 1) and the integration of modular certificates (see 
Contrib. 2). 

In the following subsections, we will use the classification presented 
above to classify the related work in the context of modular certification. 
Since there are many approaches that focus on the process-related 
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aspects of modular certification, these approaches are summarized in 
one subsection. All other approaches are described in separate 
subsections. An overview of the classification of related work is shown in 
Table 4. 

Table 4: An overview of the modular certification aspects addressed by the different approaches in 
our related work. An “x” indicates that the approach denoted by the column addresses the 
aspect denoted by the row. An” x” in parentheses indicates that the aspect is addressed 
only marginally. 
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Table 5: Mapping of identifiers used in Table 4 to references. 

ID name 

A Road Vehicles – Functional safety; Part 10: Guideline; Chapter 
10: Safety element out of context [46] 

B AC 20-148 - Reusable Software Components [47] 

C Open IEC 61508 Certification of Products [48] 

D Modular certification support - The DECOS concept of generic 
safety cases [49] 

E DO-297: Integrated Modular Avionics (IMA) - Development 

9 Only the specific design of the DECOS platform is addressed. 
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Guidance and Certification Considerations [7] 

F The Goal Structuring Notation – A Safety Argument Notation 
[50] and 

Architectural Considerations in the Certification of Modular 
Systems [51] and 

Safety case architectures to complement a contract-based 
approach to designing safe systems [52] 

G Boosting Re-use of Embedded Automotive Applications 
Through Rich Components [53] 

H Safety Analysis of Computer Resource Management Software 
[54] 

Before the presentation of the state of the art, we want to clarify that 
modular certification is not to be confused with the modular 
specification of failure logic as done with Component Fault Trees (CFTs) 
[55], the Failure Propagation and Transformation Notation (FPTN) [56], 
Hierarchically Performed Hazard Origin and Propagation Studies (HiP-
HOPS) [57], or SafeComp Component Model (SaveCCM) [58]. Modular 
certification evolves around the contract-like specification of demanded 
requirements and guaranteed capabilities, which may include 
information about produced, detected, or handled failures, but is not 
limited to it. 

2.3.1 Process-focused Approaches 

This section provides a summary of five approaches that mostly address 
the process-related issues of vertical modular certification. Some of them 
provide guidelines regarding product-related evidences, too, but only 
few and coarse-grained specification-related recommendations are 
given. The first three approaches address general vertical modular 
certification; the two remaining specifically address open integrated 
architectures. 

ISO 26262 [46] is a safety standard adapted from IEC 61508 [59] to fit 
the specific needs of the automotive sector. Part ten of ISO 26262 
contains non-mandatory development guidelines, and chapter ten of this 
part introduces guidelines for the development of a Safety Element out 
of Context (SEooC). The standard defines an SEooC as a safety-critical 
element10 for which an item does not exist at the time of its 
development. This definition complies with our definition of vertical 
interfaces. 

10 An element is the ISO 26262’s term for any kind of part of a larger hierarchical 
entity, up to the system under development itself. The term was chosen to evade 
pre-allocated terms like module, component, and such. 
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The guidelines presented suggest that the developer of an SEooC shall 
make assumptions about the safety-related properties required from his 
product and develop it accordingly. When using the SEooC, the 
integrator shall check and provide evidence that the element as specified 
fits into the system’s safety concept. The standard only provides a very 
high-level guideline for addressing these process-related aspects. 
Guidance on how the assumptions should be specified by the developer 
or checked by the integrator is not given. 

In the aviation domain, the Federal Aviation Administration (FAA) 
advisory circular (AC11) 20-148 [47] describes a process that can be used 
to acquire acceptance for a reusable software component to be used in 
airborne systems. An accepted component can be used more easily as 
part of a safety-critical system, since certification-relevant artifacts can be 
reused in the context of the system’s certification. AC 20-148 specifically 
deals with software components that are a part of an airborne system’s 
software application but might not be a software application by itself. As 
examples, the AC names libraries, operation systems, or communication 
protocols. This puts the circular in the class of general approaches for 
vertical modular certification. 

The core idea of AC 20-148 is that the developer of a reusable software 
component may fulfill only a subset of the objectives, or partially fulfill 
single objectives of the RTCA/DO-178B12 [60]. The integrator may reuse 
the credit of the fulfilled and partially fulfilled objectives, and perform 
the remaining activities (e.g., integration tests) to comply with the 
residual objectives. The circular focuses on guidelines for complying with 
RTCA/DO-178B in a distributed and reuse-centered context, which is 
why we classify the approach as process-related. However, there are 
some specification-specific aspects that have to be defined by the 
developer and checked by the integrator. These include features of the 
component, such as error detection or partitioning, as well as constraints 
for the use of the component, such as certain hardware failures that the 
component cannot detect or control. 

Open Certification [48] is an application-domain-independent method 
for vertical modular certification in the context of IEC 61508 [59]. The 
method is designed to produce two deliverables. First, the safety case 
provided to the certification body and second, an open document 
provided to the integrator of the product. 

11 An AC never contains mandatory instruction, but advice. In this case, the AC 
provides one, but not the only, possible means for developing reusable software 
components. 

12 RTCA/DO-178B is the most common standard for the certification of safety-critical 
software in airborne systems. 
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The safety case contains a list of all requirements demanded by the IEC 
61508 and either evidence for each requirement’s fulfillment, a rationale 
why the requirement is not applicable to the specific product under 
development, or why the requirement has to be fulfilled by the 
integrator. The open document is called safety manual and contains the 
information that is relevant for the integrator. Besides the remaining 
process activities for the integrator, the safety manual also contains 
probabilistic data like MTTF, maintenance requirements, and restrictions 
for the safe application of the product. The method is process-heavy but 
provides a distinction between the realization of the safety-critical 
module (safety case) and its interface specification (safety manual). Using 
this separation, the developer is able to protect intellectual property from 
the customer while allowing the customer to integrate the product into 
the system safety case. 

The EU project DECOS (Dependable Embedded Component and 
Systems) developed an eponymous open integrated architecture for 
safety-critical embedded systems [61]. The method described in [49] 
describes an approach for vertical modular certification in the specific 
context of the DECOS architecture. 

The method proposes modularization of the system’s safety case into 
two generic and reusable safety cases for the platform (one for the core 
services and one for higher-level services) and several application-specific 
safety cases. Besides this methodological aspect, the authors describe 
the specifics of the safety cases for the DECOS platform. The approach 
does not provide any guidelines for checking the sufficiency of the 
platform’s capabilities when faced with different kinds of applications 
and does, therefore, not provide any guidance on integrating the 
application and platform safety arguments. The general idea of splitting 
application and platform safety cases aligns well with the approach 
pursued by our method. Furthermore, the DECOS safety case can be 
used for evaluating the specification language of this thesis, comparable 
to the safety-related feature specifications of AUTOSAR and ARINC 653. 

The safety standard RTCA/DO-297 [7] contains guidelines for the 
certification of systems in the context of Integrated Modular Avionics 
(IMA). The document describes processes for gathering incremental 
assurance for the certification of an IMA system. The overall process is 
called incremental acceptance and allows obtaining certification credit 
for modules, platforms, and applications. Regarding applications, the 
standard allows their certification on a specific platform, independent 
from other applications if a robust partitioning is guaranteed. An 
independent certification of application and platform, however, is not 
supported. 

There are four different tasks in the specified incremental acceptance 
process. Task 1 allows the modular acceptance of certain parts of a 
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platform, called modules, and of the complete platform. Task 2 describes 
the process for accepting applications in an IMA system. An application 
may only be modularly accepted together with its future IMA platform, 
but without considering the other applications hosted on the platforms. 
Subsequently, these applications are incrementally integrated into an 
IMA system in task 3. Task 4 deals with the integration of the IMA 
system into the aircraft. 

Since initially, applications may only be accepted together with the host 
platform, a modular specification of the vertical demands of the 
application is not needed. The standard requires the application 
developer to check whether the health monitoring and fault 
management services of the platform are sufficient; a more in-depth 
guideline is not provided. Task 6 specifies the demands for reusing an 
application in the context of another platform, but mostly refers to the 
previously mentioned AC 20-148 and gives little further guidance. 

2.3.2 Modular GSN 

The Goal Structuring Notation (GSN) [50] is a graphical notation for 
modeling safety cases. The same paper provides a widely accepted 
definition for the term safety case: 

“A safety case communicates a clear, comprehensive and defensible 
argument that a system is acceptably safe to operate in a particular 
context“ 

The argument contained within a safety case is meant to be used to 
convince third-party assessors. With GSN, the argument is composed 
hierarchically in a tree-like structure. A typical GSN architecture looks as 
follows: The top part of the tree contains the hazards that have to be 
controlled or the safety goals that have to be reached, respectively. Via a 
logical chain of argumentation and via several layers of sub-goals, the 
top-level goals are connected to product- and process-related evidences 
in order to substantiate their fulfillment. 

To cater for the modularity of open integrated architectures (especially 
for IMA), [51] proposes an approach for modularly constructing safety 
cases with the GSN. To this end, the approach allows specifying a 
modular interface for a safety case, which may comprise goals, 
evidences, or context definitions provided (outgoing) or needed 
(incoming) by other modular safety cases. According to [51], the idea of 
such an interface is comparable to the rely-guarantee approach, where 
the provided goals (analogously evidences or context definitions) of a 
safety case are guaranteed to be fulfilled only if the required goals of the 
safety case are fulfilled, too. Besides the graphical notation, [52] 
describes guidelines for the design of modular safety cases in general. 
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The guidelines for the design of modular safety cases and the idea of 
specifying design dependencies between modular certificates in a rely-
guarantee like fashion provide a basis for our methods. In our approach, 
we make use of this more generic idea, and tailor it to the specific needs 
of the application/platform interface. 

2.3.3 Rich Component Model 

The Rich Component Model (RCM) [53] is a methodology for designing 
embedded systems that focuses on modularity. RCM allows the 
definition of module interfaces using a contract-like assume/guarantee 
semantics. The interface specification of a module comprises several 
views, covering functional as well as non-functional aspects including a 
safety view. Furthermore, RCM supports the definition of horizontal as 
well as of vertical interfaces. 

The RCM methodology does not explicitly provide a language for the 
specification of module interfaces, but most of the examples found use 
an automaton-based specification approach [62], [53], [63]. It seems that 
the focus of RCM does not lie on the specification language, but on 
more general formalization of interface contracts. The methodology 
contains formal specifications for logical operators to specify, for 
example, the union or the intersection of multiple guarantees or 
demands of a single module. 

Considering module integration, the approach contains formal 
specifications of operators for composing interfaces. Checking the 
fulfillment of properties over a set of composed interfaces is non-trivial 
and specific for the specification language chosen. [62], for example, 
propose an approach using formal verification for a hybrid automata 
specification language. 

RCM is not tailored to a particular specification purpose. This versatility 
usually requires a very powerful specification language, like hybrid 
automata, to be able to model the variety of embedded systems. The 
specification language proposed in this thesis, however, is a language 
tailored specifically to the particularities of the vertical interface between 
applications and platforms. Complicated dependencies between 
applications and platforms that would have to be modeled using hybrid 
automata are available directly in our method. 

2.3.4 Safety Analysis of CRMS 

The method presented in [54] allows performing a modular safety 
analysis of Computer Resource Management Software (CRMS). The 
author defines CRMS as “any software whose main function is to 
provide dedicated software with access to generic computer hardware 
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resources”. We adopted this definition in our work, but referred to the 
term CRMS as platform software. The developed safety analysis method 
uses the guideword-based techniques SHARD [64] and LISA [65], as well 
as patterns describing typical platform software services like 
communication or scheduling. 

Furthermore, [54] describes how to specify the results of the modular 
safety analysis. The technique for capturing the analysis results is again 
contract-based. Since the author found that there are dependencies 
between platform software and applications on several levels of 
abstraction, the specification technique allows the specification of 
contracts on three levels: the architectural level, the behavioral level, and 
the performance level. On each level, the technique includes the 
specification of guarantees provided by the platform software and 
demands that have to be met to validate the respective guarantees. 

Finally, the method contains a two-step process describing how to use 
the results of such an analysis for the development of a safety-critical 
application that uses the analyzed platform. The first step requires the 
application developer to show that the application fulfills the demands 
specified by the platform developer. The second step of the process 
describes how to integrate the platform guarantees into a system-level 
safety case in order to show how they help to control the function-
specific hazards. 

The most obvious distinguishing feature between the method proposed 
in [54] and our method is that our method assumes that platforms as 
well as applications are developed modularly and are integrated by a 
third party, whereas [54] assumes that only the platform is reused. If the 
application is to be reused, this entails the need for a modular 
specification of the demands of the application in addition to modular 
specification of the guarantees and demands of the platform. As a 
second point, this thesis deals with the platform as a whole, consisting 
of platform hardware and software, whereas platform hardware is 
explicitly excluded in [54]. 

Apart from these two distinguishing points, we incorporated some ideas 
described in [54], like the analysis technique and the contract-based 
specification of dependencies. Along these lines, we developed a more 
formal way of specifying the dependencies between application and 
platform and an automated integration process for capitalizing on this 
formalization. The method for “performing a modular safety analysis of 
Computer Resource Management Software” introduced in this 
subsection is completely based on natural language, whereas the Rich 
Component Model introduced in the previous subsection is completely 
formalized. Our method, on the other hand, takes an approach in the 
middle between natural language and formalization to reach a trade-off 
between automation and ease of use. This trade-off will be discussed 
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briefly in chapter 3 and in more detail in chapter 5, when our technique 
is introduced in its entirety. 

2.3.5 Conditional Safety Certificates 

Open integrated architectures allow for a more flexible and dynamic 
system architecture, which calls for modular specification of safety cases 
and efficient methods for integrating these safety cases at the system 
level. In open integrated systems, however, we have to deal with 
architectures that change dynamically during design time, especially 
during the deployment phase. Current trends such as ubiquitous 
computing or cyber-physical systems will, however, produce “open” 
embedded systems, like harvesting fleets combined from multiple 
architectural vehicles or car2car applications. Those systems are 
characterized by having an architecture that might even change during 
runtime. 

Nevertheless, if an open embedded system is safety critical, there is a 
need to provide sound safety assurance. The idea behind the 
Conditional Safety Certificates (ConSerts) approach [66] and the 
Runtime Certification approach [67] is to shift parts of the safety 
assurance to runtime when all elements of the architecture as well as 
their capabilities and requirements are known. ConSerts allow 
establishing predefined modular safety certificates for each entity of the 
future system. Those certificates are conditional in the sense that they 
define requirements on the behavior and the capabilities of other entities 
as a condition before safe behavior is guaranteed. When each entity 
provides such a modular runtime certificate, an algorithm is able to 
check at runtime whether the current system combination fulfills the 
predefined constraints and is therefore able to run safely. 

ConSerts and our approach have the modular specification of certificates 
as well as the automated integration check in common. ConSerts are, 
however, different in two aspects. Besides being developed for runtime 
application, ConSerts operate on the horizontal level between different 
applications, whereas our approach modularizes the certificates along 
the vertical axis between applications and platforms. 
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3 Solution Overview 

In the previous chapter, we gave an overview of the current state of the 
art in developing safety-critical open integrated systems, describing the 
modular development of applications and platforms and their 
subsequent integration. Following the presentation of existing 
approaches as well as the remaining challenges in this field, we will now 
present our solution for solving the challenges claimed by our 
contributions with this chapter. For reasons of clarity and 
comprehensibility, we have divided the detailed description of our 
solution into three parts and will describe these separately in chapter 4, 
chapter 5, and chapter 6. In this chapter, however, we will present the 
different parts of our method jointly and will elaborate on their relations 
and interactions in order to reach our overall goal of “efficiently 
deploying safety-critical applications onto open integrated architectures”. 

Since our approach addresses particular challenges introduced by the 
development of open integrated systems, we introduce our solutions in 
the context of the respective development process. An initial version of 
that process was already sketched in subsection 2.1.1 (Figure 3). 
However, the process model presented in chapter 2 gives a more general 
overview of the development process of open integrated systems. Since 
our work focuses on safety, we need to have a closer look at the safety-
specific process steps before we can summarize the core idea behind our 
work. Therefore, we will discuss a more safety-focused process in this 
section, as depicted by Figure 11. 

The new process separates the development lifecycle of applications and 
platforms into a product engineering activity and a safety engineering 
activity. The application safety engineering activity produces one major 
artifact that is relevant for our consideration: the vertical safety interface 
of the application. The need for this particular artifact is due to the 
stringent modularization of applications and platforms and contains the 
demands on the safety-related behavior of the platform that are 
necessary to argue the safety of the application in a modular way, i.e., 
isolated from the platform. With the demands specified in this interface, 
the application developer is capable of arguing the soundness of the 
application safety case under the assumption that the specified demands 
are fulfilled. Comparable to the application development, the platform 
developer produces a vertical safety interface for the platform. 
Complementary to the application safety interface, which contains the 
assumptions on the safety-related capabilities of the platform, this 
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document specifies the actual safety-related capabilities that the 
platform provides towards the application. 
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Figure 11: A more detailed version of the OIA development process already illustrated in Figure 3. 
Orange-colored elements mark the activities and products affected by our contributions. 

The idea of separating safety case and safety interface is comparable to 
the separation of realization and specification well known from 
component-based development. There, the specification of a component 
describes its required and provided services while hiding the realization 
of the services. Analogously, the safety interface describes the safety-
related guarantees and demands of the product while hiding the 
detailed design information, the arguments, as well as the evidences 
contained in the safety case. The specification of safety interfaces for 
modular development of safety-related systems is not new to our work. 
Instead, it is a widely accepted practice in academia and, to a certain 
extent, also in industry (see section 2.3 for more information on related 
work w.r.t. modular certification). 

A novelty, however, is our specification language for Vertical Safety 
Interfaces, or VerSaI language for short. The VerSaI language allows 
application and platform developers to specify their safety case interfaces 
in a model-based and formal manner. The formality of the specification 
is a prerequisite for the tool-supported and automated integration of 
safety interfaces on the system level, which is the final goal of our 
method. The VerSaI language implements the first contribution initially 
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introduced in chapter 1, which is repeated here for reasons of 
convenience: 

Contrib. 1 Interface Specification: Defining a formal language for the modular 
specification of safety-related demands and guarantees between an 
application and a platform in an open integrated architecture. 

When an application is finally mapped onto its execution platform, the 
system integrator uses the vertical safety interfaces of the application 
and the platform to check whether the given application is capable of 
executing safely on its specified host platform. This integration process is 
where the second part of our solution comes into play. The VerSaI 
mediator combines the vertical safety case interfaces specified with the 
VerSaI language and checks whether the demands of the applications 
can be fulfilled by the capabilities of the corresponding platform. This 
mediation process is mostly automated and implements the second 
contribution provided by our approach: 

Contrib.2 Interface Mediation: Developing an automated process for checking 
the safety compatibility of an application and a platform in an open 
integrated architecture. 

The VerSaI language for interface specification will be introduced in 
detail in chapter 4, whereas the VerSaI mediator for interface mediation 
will be presented in chapter 5. Yet, in the next subsection (3.1), we will 
describe the relationships between both components and provide a 
more detailed description of how the VerSaI method interfaces with the 
development lifecycle. 

As mentioned before, the VerSaI mediator assumes that the modular 
developed applications and platforms are already mapped to each other 
and, as shown later, this mapping information is a key input to the 
automated mediation provided by the mediator. The system integration 
step that determines the mapping of applications to platforms is called 
deployment planning (see section 2.2 for more information). To assist in 
the identification of suitable mappings / deployment plans, we 
developed an objective function that can be used for deployment 
evaluation and consequently for deployment optimization. This objective 
function corresponds to our third contribution. 

Contrib. 3 Deployment Evaluation: Developing a metric for evaluating the 
deployment of a functional architecture onto a platform topology from a 
safety perspective. 

In the section after the next (3.2), we will give a short overview of this 
contribution; a detailed description of the deployment evaluation will be 
given in chapter 6. 
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3.1 Interface Specification and Mediation 

In this section, we give a summary of the process for the specification of 
vertical safety interfaces using the VerSaI language and the 
consolidation of the resulting interfaces using the VerSaI mediator. The 
overall approach is called the VerSaI method and is sketched in Figure 
12. 

In the first step of the VerSaI method, the application developer specifies 
the vertical application interface using the VerSaI language and the 
platform developer specifies the vertical platform interface with the 
VerSaI language. The VerSaI language contains different classes of 
language elements that allow for the specification of different kinds of 
safety-related dependencies between an application and a platform. It 
allows the application developer, for example, to demand the detection 
or avoidance of typical platform failures, but it may equally demand the 
provision of certain monitoring or failure reaction mechanisms by the 
platform. When an application or platform developer specifies a safety-
related dependency, the developer selects one of these predefined 
classes and instantiates and configures the class to his or her needs. 
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Figure 12: Overall process of interface specification and interface mediation with the VerSaI method. 

Example 1 shows an example application demand regarding the 
detection of a value failure of an analog output signal called a_set_fin. 
Example 2, on the other hand, presents the corresponding guarantee 
provided by an analog output channel called voltage_out. The 
examples showcase certain parameters like failure mode, maximum 
deviation, failure detection time, or integrity level, which can be variably 
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configured by the user. To mark these parameters, we underline them in 
the following examples: 

Example 1: A value failure of the output signal a_set_fin larger than 0.05V must be 
detected within 0.05ms (ASIL C). 

Example 2: A value failure of an output signal issued via voltage_out larger than 
0.02V is detected within 0.03ms (ASIL C). 

The examples allow us to observe another core feature of the VerSaI 
language, namely the integration of the language into the model-based 
design artifacts of applications and platforms. Referring to the examples 
presented above, the application demand (example 1) is linked to the 
model-based representation of the corresponding signal called 
a_set_fin, and the platform guarantee regarding corruption detection 
is linked to the model-based representation of the corresponding output 
channel called voltage_out. This integration of safety model and 
design model facilitates consistency between the safety model and the 
design model, enables certain plausibility checks, and, most importantly, 
is required by the VerSaI mediator to perform the automated interface 
mediation. 

Once the vertical interfaces of application and platform have been 
specified, the aforementioned VerSaI mediator checks whether the 
application demands can be fulfilled using the available platform 
guarantees. During this step, the integration aspect of the VerSaI 
language is used to match demands with their relevant guarantees. To 
perform this matching, the mediator uses an additional piece of 
information – the deployment. The deployment is an integral part of a 
regular development process and specifies the mapping of application 
elements (e.g., of output signals) to platform elements (e.g., output 
channels). Since the demands and guarantees of the VerSaI language are 
related to their corresponding language element, the deployment 
information can be used to match a demand with the relevant 
guarantees in a transitive fashion. The mediator navigates from a 
demand to the related application element, via the deployment 
information to the corresponding platform element, and finally from 
there to the relevant guarantees. 

If the guarantees that are relevant for the fulfillment of a demand are 
found, the next step in the mediation process is to analyze whether the 
demands can be met by these particular guarantees. The detailed 
process describing the mediation of the different demand classes 
provided by the VerSaI language is described in chapter 5. The VerSaI 
language itself is described in chapter 4. 
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3.2 Deployment Evaluation 

In the last section, we gave an overview of the process for specifying and 
checking the fulfillment of safety-related dependencies between 
applications and platforms using the VerSaI method. One of the required 
inputs for the method is a deployment plan specifying the mapping of 
the applications onto the platforms of the system. In this section, we will 
describe how our third contribution, the objective function for 
deployment evaluation, helps to find a suitable deployment plan. 

The first challenge in identifying potential deployment candidates lies in 
the size of the solution space. If we only regard the assignment of 
applications to platforms, this results in  possibilities, assuming that 
there are  applications and  platforms. To handle the high number of 
possibilities, the evaluation of the solutions is usually performed 
automatically. The second challenge lies in the variety of design criteria 
that influence the quality of a deployment plan. As we have shown in 
chapter 2 (subsection 2.2), there are also conflicting criteria that are hard 
to weight and compare with each other. In the context of this 
automated multi-criteria deployment evaluation, we developed two 
novel metrics for deployment evaluation. 

The cohesion metric focuses on the aspect of unprotected shared 
computational resources in a mixed-critical system, as the metric 
evaluates the costs of interferences between ASWCs. The coupling 
metric, on the other hand, evaluates the costs caused by safety 
mechanisms to protect against communication failures, which are 
incurred when separating tightly coupled components over the platforms 
of a distributed system. It is important to note that in a real-world 
application, our metrics have to be used together with other objective 
functions, since there are multiple other quality criteria that have to be 
evaluated as well. 

Figure 13 illustrates the process of deployment optimization that involves 
our metrics. The solution space of the deployment is defined by the 
functional architecture specifying the elements that have to be deployed 
and the platform topology specifying the target environment of the 
deployment. The cohesion metric, the coupling metric, and some 
additional constraints that can be specified using our approach are used 
together with other objective functions and constraints to identify the 
solution candidates. The cohesion metric, the coupling metric, and the 
deployment constraints that can be modeled with our approach will be 
introduced in chapter 6. 

The deployment plan that is generated by this optimization specifies a 
relatively high-level mapping of applications to platforms. It is important 
to note that there is a manual step involved that refines this high-level 
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mapping before it reaches the level of detail required for the VerSaI 
approach13. 

As a final comment to this overview, we want to remark that there are 
many approaches for optimization, such as Linear Programming [68] or 
Genetic Algorithms [69]. Our contribution, however, does not focus on 
the choice of the optimization algorithm but rather on the objective 
functions for evaluating deployments. However, we have evaluated our 
metrics with an example in the context of an optimization framework 
using genetic algorithms, which will also be discussed in chapter 6. 
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Figure 13: The process of Solution Candidate Identification : Orange-colored elements mark the 
activities and products affected by our contributions. 

  

13 The difference between the high-level and low-level deployment model is best 
observed by comparing the deployment as specified in Figure 73 with the 
deployment as specified in Table 16 
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4 Interface Specification 

This chapter is the first of three chapters describing our methods for 
“Efficiently Deploying Safety-Critical Applications onto Open Integrated 
Architectures”. In this particular chapter, we describe the realization of 
our formal language for specifying the safety-related dependencies 
between applications and platforms, which corresponds to the first 
contribution specified in chapter 1. 

Contrib. 1 Interface Specification: Defining a formal language for the modular 
specification of safety-related demands and guarantees between an 
application and a platform in an open integrated architecture. 

Prior to describing the structure of the language and of this chapter, we 
will summarize the role of the VerSaI language in the overall context of 
our work. The VerSaI language is part of the VerSaI method and is used 
by application developers and platform developers to specify the vertical 
safety interface of applications and platforms, respectively. The VerSaI 
language allows specifying the vertical safety case interface specified in a 
model-based representation. The VerSaI language has been developed 
with the idea of containing sufficient information so as to allow the 
VerSaI mediator to decide (or support the decision-finding) about 
whether a particular application can be executed safely on a particular 
execution platform. Figure 14 depicts this role of the VerSaI language. It 
shows the transition from the language specification to the mediation 
phase, which begins with the configuration of the existing applications 
and platforms. However, the mediation is beyond the scope of this 
chapter and will be presented in chapter 5, “Interface Mediation”. In this 
chapter, the focus is on the description of the VerSaI language14. 

The structure of this chapter mirrors the top-level architecture of the 
language. The VerSaI language is divided into three main packages 
(Figure 15): the common language, the application language, and the 
platform language. The common language defines types, properties, and 
relations that are used across the application- and platform-specific 
language parts. The application-specific part is used by the application 
developer to specify the demands regarding the behavior of the 
platform, whereas the platform-specific part is used by the platform 
developer to specify the guarantees regarding the behavior of the 
platform. 

14 Please note that a complete overview of the VerSaI technique is given in the 
previous chapter in section 3.1 (for a quick overview, see Figure 12). 
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This chapter is structured as follows. We begin with the introduction of a 
running example that will be used across the upcoming sections to 
exemplify the language concepts. The description of the language starts 
in section 4.2 with an explanation of the key high-level design decisions 
that have a cross-cutting influence on most components of the VerSaI 
language. In Section 4.3, we introduce the first part of the common 
language containing types, parameters, and relations. Section 4.4 
describes the second part of the common language, which contains the 
very core of the VerSaI language, the common set of failure modes and 
failure reaction measures used to specify demands and guarantees. 
Following this, the application-specific part of the language is introduced 
in section 4.5, while the platform-specific part of the VerSaI language is 
presented in section 4.6. 
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Figure 14: The role of the VerSaI language in the VerSaI method 

 
Figure 15: This figure shows the top-level architecture of the VerSaI language 
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4.1 Running Example 

In this section, we introduce a running example that will be used across 
the upcoming sections and chapters to exemplify the concepts of the 
VerSaI language and the VerSaI mediator. The running example consists 
of two parts: an example application shown in Figure 16 and an example 
platform shown in Figure 17. The mapping/deployment of the 
application to the platform is shown in Table 6. For more information 
regarding the underlying meta-model, please refer to Appendix A15. 
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Figure 16: An example cruise control application : Software components are shown as blue 

rectangles, actuators and sensors as black rectangles. The integrity level of software 
components is shown in a red tag in the lower right corner of the rectangle. 

The example application is an automotive cruise control application. The 
goal of the application is to control the vehicle’s velocity to match a user-
defined reference velocity (v_ref). The main controller component in 
our example is called v_controller. The controller reads the current 
velocity of the car, compares it to the reference velocity, and calculates a 
new set value for the throttle to match the future velocity with the 
reference value. The current velocity of the car is provided by two 
redundant sensors (v_sensor_A, v_sensor_B) and two sensor 
software components (v_sensorSWC_A, v_sensorSWC_B). On the 
actuator side, the acceleration is controlled by a single software 
component (throttleSWC) and a single actuator (throttle). The 
redundant sensor components are used by the application to tolerate 
single sensor failures. Such a failure is detected by the monitoring 
software component, which, upon detection, manipulates the values 
sent to the actuator so as to transition the system into a safe state. In 

15 Please note that, for reasons of clarity, the presented graphical representations of 
the example do not show every detail of the model. 
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addition to the afore-mentioned components directly involved in the 
control loop, the application contains another software component 
called GUI, which provides the user with information regarding the 
current status of the cruise control application. 

Please note that the described example application is a mixed-critical 
application, i.e., it contains software components of different degrees of 
criticality. The redundantly constructed sensor components are 
developed according to ASIL B16, whereas the residual components are 
developed according to the higher ASIL C, with the exception of the GUI 
component, which is developed according to QM. 

Partitions

partition0 partition1

Peripherals Communication Links

current_in

Services
health monitoring 

service
event servicepartition2

core0 core1 ram0 flash0

internal_
comLink

voltage_outvoltage_in can0

 

Figure 17: An example platform 

The simple example platform hosts an operating system that provides 
the concept of partitions for separating mixed-critical applications. The 
platform is currently configured to have three partitions: partition0, 
partition1, and partition2. In addition to the partitions, the 
platform offers two software services, a health monitoring service 
and an event service for inter-process communication. Regarding 
peripherals, the example platform offers two input channels, one for 
reading voltage-based (voltage_in) and one for reading current-based 
signals (current_in), and a single output channel (voltage_out) for 
providing voltage-based output signals. Additionally, the platform 
provides two communication links: an internal communication link to 
connect software components hosted on the platform 
(internal_comLink) and one communication link for connecting the 
software components with other platforms (can0). Please note that, 
since we do not further separate platform software and platform 
hardware, peripherals and communication links as specified in our 
example consist of software (e.g., the com stack) as well as hardware 
components (e.g., microcontroller peripherals). 

16 ASIL stands for Automotive Safety Integrity Level. Further information is provided in 
the glossary. 
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The deployment of the application to the example platform is shown in 
the following table: 

Table 6: The deployment of the running example : This is a deployment of the example application 
onto the resources provided by our example platform. 

Resource User Resource 

ASWC : v_sensorSWC_A Partition : partition 0 
ASWC : v_sensorSWC_B Partition : partition 0 
ASWC : v_controller Partition : partition 1 
ASWC : throttleSWC Partition : partition 1 
ASWC : monitoring Partition : partition 1 
ASWC : GUI Partition : partition 0 
SignalInPort : v_raw_A InputChannel : voltage_in 
SignalInPort : v_raw_B InputChannel : current_in 
SignalOutPort : a_set_fin OutputChannel : 

voltage_out 
ComPort : enable ComLink : can0 
ComPort : v_ref ComLink : can0 
ComPort : v_A ComLink : internal_comLink 
ComPort : v_B ComLink : internal_comLink 
ComPort : a_set ComLink : internal_comLink 
ComPort : error ComLink : internal_comLink 
ComPort : a_set_mon ComLink : internal_comLink 
ComPort : status ComLink : can0 
ServiceNeed : sn1 Service : health 

monitoring service 
ServiceNeed : sn2 Service : health 

monitoring service 
ServiceNeed : sn3 Service : health 

monitoring service 
ServiceNeed : sn4 Service : health 

monitoring service 
ServiceNeed : sn5 Service : health 

monitoring service 
ServiceNeed : sn6 Service : event 

service.error_event 
ServiceNeed : sn7 Service : event 

service.error_event 
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4.2 Language Design 

In this section, we will discuss the core characteristics of the VerSaI 
language’s design. This discussion is structured according to six main 
characteristics of the VerSaI language, which are: 

 semi-formal 

 finite 

 exhaustive 

 extensible 

 parameterizable 

 integrated 

The VerSaI language must be as formal as necessary so that the VerSaI 
mediator can reason about whether the application demands are fulfilled 
by the given platform guarantees. With our design approach, it is 
sufficient to formalize the syntax of the language and specify some parts 
of its semantics informally. The syntax is formalized by the meta-model 
of the language. Conversely, the semantics of the language elements is 
specified informally by the descriptions given in this chapter. As we will 
show in the next chapter, this degree of formalism is sufficient for 
automatically checking whether the demands and guarantees are 
compatible. 

The basic element of the aforementioned meta-model, and thus of the 
VerSaI language, are safety requirements specified at the interface 
between application and platform. Each requirement can either be typed 
as a demand – if it specifies an expectation about the behavior of the 
platform – or as a guarantee – if it specifies the realization of platform 
behavior. When we say that the VerSaI language is finite, we mean that 
there are a finite number of safety requirement types that can be used to 
specify the vertical safety interface of a platform or application. Unlike a 
specification language such as state machines, where a complex 
semantic whole (the state machine) is composed by putting elementary 
units into relations (states and transitions), a safety interface specified 
using the VerSaI language consists of a set of independent requirements. 
On the one hand, this simplicity allows for a mediation algorithm that 
works with a semi-formal language. On the other hand, however, this 
means that the expressiveness of the language is limited by the available 
demand and guarantee types. 

To achieve sufficient expressiveness using such a design, the language 
must be exhaustive, which means that every possible safety-related 
dependency between application and platform must be expressible with 
the available demands and guarantees. This directly leads to the question 
of whether it is feasible to enumerate all possible safety requirements 
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that can occur at the interface between application and platform. We 
found that, with certain restrictions, this can be done due to one 
fundamental reason: An execution platform mostly offers standard 
services. If most platforms did not offer standardized services, one would 
not have been able to standardize the API of the execution platform in 
the first place. Based upon those services, we found that a platform and 
an application share four different classes of safety-related 
dependencies: (1) Platform Service Failures, (2) Health Monitoring, (3) 
Service Diversity, and (4) Resource Protection. 

Application Language

Platform Language
Platform

 Service 
Failures

H
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onitoring

Service D
iversity

R
esource 

Protection

 

Figure 18: The four classes of safety dependencies in VerSaI 

The platform needs to provide dependable services to the application in 
order to enable the application to provide its functions safely. The 
platform service failure class enables the application and platform 
developer to specify demands and guarantees regarding the detection or 
avoidance of platform failures that would otherwise affect the safe 
behavior of the application. In contrast, it is common practice to use the 
platform as a means for detecting application failures and for executing 
failure containment reactions. The health monitoring class allows 
specifying the corresponding dependencies. The third class of safety-
related dependency is called service diversity. It allows specifying 
demands regarding the diversity of provided services, which is the basis 
for so-called integrity level decompositions offered by certain standards. 
The fourth and last class is called resource protection and allows 
specifying demands regarding the protection of services from 
interference by other applications, which is demanded by most safety 
standards when mixed-critical applications share common platform 
resources and services. 

Both the application and the platform language are structured according 
to these four classes and contain corresponding demand and guarantee 
prototypes. If the developer needs to specify a demand or a guarantee, 
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the demand or guarantee must be covered by one of the available types 
for all features of the VerSaI language to be available. To deal with 
demands and guarantees that are not covered, the VerSaI language 
offers two possible solutions. The first is its extensibility and the second 
the possibility to incorporate informal free-text demands and guarantees 
into the interface specification. With regard to demands or guarantees 
that are not covered by our language, we recommend that a developer 
specifies the language element using an informal free-text requirement 
when encountering the issue for the first time. If such a free-text 
requirement is used, the automated interface mitigation is not available 
for this particular requirement. Only if a certain kind of free-text 
requirement is used more frequently, we suggest extending the VerSaI 
method. This task of extending the method is supported by the modular 
design of the VerSaI language and the VerSaI mediator. 

However, during our evaluation (see 0) we found that the VerSaI 
language is capable of expressing most of the required dependencies 
between applications and platforms. One reason for this is that the user 
of this language is able to tailor a demand or guarantee prototype to her 
or his needs by specifying relations and properties. 

The most important relation that can be specified is the safety 
requirement’s architecture references. Architecture references specify the 
integration of the language into the design model of the application and 
of the platform. If a certain demand or guarantee relates to an 
architectural element, this element must be referenced by the 
corresponding safety requirement. As an example, a demand regarding 
the detection of a signal corruption must reference the corresponding 
signal (e.g., the signal a_set_fin in our example application) or a 
platform guarantee regarding the detection of corruptions must 
reference the corresponding communication link (e.g., the 
internal_com_link or can0 in our example platform). With this 
information, plausibility tests can be performed and the mediator can 
automatically put demands and guarantees into relation if the 
deployment specification is available. 

Application demands relate only to elements of the application model 
and platform guarantees relate only to elements of the platform model. 
Furthermore, application and platform model are connected with each 
other via the deployment model (the deployment model can be used to 
specify deployment plans, see section 3.2). The application model, the 
platform model, and the deployment model were inspired by existing 
meta-models like the AUTOSAR or the EAST-ADL meta-model. We 
present our architecture model in Appendix A. When you read the 
language specification, you will encounter references to the architecture 
model. If you consider it important to understand the meaning of certain 
architectural elements, we recommend looking up the meaning of the 
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element in Appendix A. The high-level architecture of the VerSaI 
language including the relation to the architecture model is shown in 
Figure 19. 

 
Figure 19: The high-level architecture of the VerSaI language and the architecture model 

To tailor a safety requirement type during instantiation, each type has 
certain quantitative and qualitative parameters. One mandatory 
qualitative parameter is the criticality level of a requirement, which 
classifies the risks caused by not meeting the requirement. Certain 
requirements also need quantification. If, for example, the application 
developer demands the detection of a failure mode, the application 
developer has to specify the fault detection time, which is the time 
between the occurrence and the indication of the failure. 

4.3 Common Language – General Features 

This first part of the common language package describes types, 
relations, and parameters that are used in the application language and 
in the platform language. Most of these common aspects describe 
realizations of high-level design concepts that were introduced in section 
4.2. 
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This section will successively introduce the realization of demands and 
guarantees in subsection 4.3.1 and conditions in section 4.3.2. After 
that, we will describe the modeling of architecture references in 4.3.3 
and that of parameters in 4.3.4. 

4.3.1 Demands and Guarantees 

The main goal of the VerSaI language is to allow modular specification 
of safety-related dependencies between applications and platforms. To 
allow such modular specification of dependencies, the developers must 
be capable of specifying assumptions/demands on the behavior of other 
modules and guarantees regarding a module’s own behavior in a 
contract-based manner. Therefore, the VerSaI language employs a 
demand-guarantee concept for the specification of interface 
requirements. 

A demand is typically used by the application developer when the 
application development gets to a point where it is impossible to argue 
about the safety of the application without knowing about the behavior 
of the platform. At such a point, demands regarding the characteristics 
of the platform are used to complete the safety argument of the 
application. With the demands in place, it is possible to assess the 
soundness of the application safety case without knowing the actual 
platform, under the assumption that the platform fulfills all demands. 
When reviewing the safety case, the developer respectively the assessor 
should come to the conclusion that the “application is safe under the 
assumption that the application demands are fulfilled by its host 
execution platform”. 

A guarantee, on the other hand, is used by the platform developer as a 
starting point for the safety-related development of the platform. The 
developer of a general-purpose platform is unaware of the applications 
that will later run on the platform. Hence, it is impossible to know in 
advance the detailed demands regarding the behavior of the platform 
that will be brought forward by the application developer. Therefore, the 
platform developer must make assumptions about the required safety-
related behavior of the platform and develop the platform accordingly. 
After the platform has been developed and assessed, the assumptions 
about the required behavior turn into guarantees that can be used 
during integration to satisfy the demands of the hosted applications. 

Consequently, at the root of the VerSaI meta-model is the abstract 
InterfaceRequirement class, which is divided into Demands and 
Guarantees. Starting from this first classification, the VerSaI language is 
further structured according to the dependency classes introduced in 
section 4.2. In the leaves of the emerging classification are the 
instantiable safety requirements that can be used to define a vertical 
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safety interface. The first three levels of the safety requirement 
classification are shown in Figure 20. The remainder of the meta-model 
will be introduced in the corresponding sections. Application-specific 
refinements will be introduced in 4.5; platform-specific refinements in 
4.6. 

 

Figure 20: An excerpt of the VerSaI language’s classification tree 

4.3.2 Conditions 

Applications and platforms, but especially the latter, are highly 
configurable and adaptable components. As a consequence, it is often 
impossible to specify demands or guarantees in an absolute manner, 
since a demand or guarantee often depends on the configuration of the 
component. AUTOSAR, for example, provides numerous mechanisms for 
protecting its operating system, but those mechanisms can be 
deactivated for performance reasons or do not work as intended for 
certain configurations. In order to deal with these situations, the VerSaI 
language provides a mechanism for specifying conditions, which is 
presented in this section. 

From a technical point of view, a condition is an expression that the 
mediation algorithm evaluates as true or false during the mediation 
process.  There are three different kinds of conditions: configuration-
dependent conditions (the main use case for conditions), deployment-
dependent conditions, and manual conditions. These different kinds of 
conditions differ only in terms of the information required to evaluate 
the condition. Configuration-dependent conditions can be evaluated as 
true or false when the application or platform is configured. 
Deployment-dependent conditions can be evaluated when the 
deployment is specified. Manual conditions, however, cannot be 
evaluated by the mediation algorithm and have to be checked by the 
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integrator. A condition has one variable called fulfillment that represents 
the state of the condition. The variable can be set to three states: The 
variable is set to “unchecked” if the condition has not been evaluated 
yet. It is set to “fulfilled” if the condition has been evaluated to true, and 
it is set to “violated” if it is evaluated to false. Figure 21 shows the 
condition state machine. 

The VerSaI language currently supports configuration-dependent 
conditions with an “equals” semantics. The developer of the vertical 
safety interface specifies a condition by referring to a configuration 
parameter and by asserting a required value to the configuration 
parameter. When the integrator has finished the configuration, the 
mediation algorithm evaluates the condition to true if the corresponding 
configuration parameter is set to the required values. The VerSaI 
language currently does not support “greater than” or “less than” 
configuration conditions. 

unchecked

fulfilled violated

successful check unsuccessful check

unsuccessful
check

successful check

 

Figure 21: The VerSaI condition state machine 

The developer specifies manual conditions by describing a condition as 
plain text and by specifying the evidences that are required to support 
the condition, if applicable. The integrator can link the evidences that 
support the manual condition and set the manual condition to true or 
false. Deployment-dependent conditions are envisaged and rudimentarily 
implemented in the language and in the mediator, but have not been 
implemented yet. 

Figure 22 shows an excerpt of the meta-model that illustrates the design 
of conditions. 
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Figure 22: The VerSaI condition meta-model 

As mentioned above, the primary use case of the condition concept is 
the specification of conditional demands and guarantees. In order to 
specify such a conditional language element, the developer is allowed to 
specify a list of conditions17. These conditions must be evaluated before 
the mediation algorithm knows whether the interface requirement is 
valid or not. For demands as well as for guarantees, all conditions must 
be evaluated to true before the corresponding requirement is valid. 
However, the semantics of invalid demands and guarantees differs 
significantly: An invalid demand makes mediation easier, as an invalid 
demand does not participate in the mediation, i.e., it is not needed and 
does not have to be fulfilled. On the other hand, an invalid guarantee 
hampers the overall mediation as an invalid guarantee is not available 
and can therefore not be used to fulfill the demands at hand. 

Another important use case for conditions is the specification of 
conditional parameters, which will be introduced in section 4.3.4. 

4.3.3 Architecture Relations 

Although still a vibrant topic of research, many embedded systems are 
already being developed using model-based techniques. In fact, some 
embedded environments like AUTOSAR and ARINC 653 already require a 
significant portion of the system to be modeled. In order to use the 
advantages of model-based design, such as automatic generation of 

17 Every type of condition (i.e., configuration, deployment, and manual condition) and 
every combination of condition types is allowed. 
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development artifacts, the VerSaI language is model-based as well. In 
order to make use of the information already provided in existing 
models, the VerSaI language provides the architecture relation concept 
as a plug-in mechanism for connecting the VerSaI model with existing 
architecture models. 

Technically speaking, an architecture reference is a link between a 
vertical safety requirement and the architecture model of the 
corresponding application or platform. Architecture relations realize the 
integration of model-based demands and guarantees into the design 
model of the integrated system. As already described in section 4.1, 
application demands are always integrated into the application’s 
architecture model and platform guarantees are always integrated into 
the platform’s architecture model. 

Architecture relations enable several features of the VerSaI language. On 
the one hand, they foster consistency. If an architectural element 
changes, the change is directly reflected or indicated at each safety 
requirement that is related to the architectural element. Furthermore, 
architecture relations allow for plausibility checks. If, for example, all but 
one communication port of a software component contain safety-related 
demands, the remaining port might have been forgotten by the 
developer. But most importantly, architecture relations enable the 
mediation algorithm to associate demands with mediation-relevant 
guarantees. If an application element such as a communication port 
contains demands, the mediation algorithm is able to identify the related 
platform element via the deployment information of the communication 
port, and the related guarantees of the communication link via its 
architecture relations. 

In the VerSaI language, there are two kinds of architecture relations: 
containments and references. 

A containment relation allows an architecture element to contain a 
demand or a guarantee. The components/elements that form the 
application (application elements) may contain demands and the 
components/elements that constitute the platform (called platform 
elements) may contain guarantees. An application element contains a 
demand if the demand originates from that element: “If the element 
was not there, there would also be no demand”. A communication port, 
for example, contains demands regarding the detection or avoidance of 
the signal received via the demand. If we want model a demand 
regarding the correct reception of the signal v_ref in our running 
example, this demand would be contained in the corresponding port of 
the software component v_controller. A platform element, on the 
other hand, contains a guarantee if the element is responsible for 
providing the guarantee. Therefore, an element such as a 
communication link contains guarantees regarding the control of 
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communication failures. In our running example, a guarantee regarding 
the detection of corruptions of the signal v_ref is contained in the 
communication link transporting the signal, in this case the 
communication link labeled as can0. 

One of our design goals was to design the VerSaI language such that it is 
minimally invasive regarding the architecture model, i.e., the use of the 
VerSaI language should impose minimal to no changes on the model of 
the corresponding integrated system. Therefore we chose to 
automatically generate one abstract class that is contained in every 
application or platform element. Through inheritance of this abstract 
class, interface requirements can be flexibly contained in architectural 
elements without changing the meta-model of the integrated system. 
An excerpt of the corresponding meta-model is shown in Figure 23. 

 

Figure 23: Containment relations in VerSaI : The left side of the figure shows the modeling pattern 
used to realize containment relations in a minimally invasive fashion. The right side shows 
an example instantiation of the pattern for communication failure demands. 

The second kind of architecture relation, i.e., references, are used if a 
demand or guarantee needs to reference the respective element but the 
semantic relation between interface requirement and architecture 
element is not strong enough or is not suitable for a containment 
relation. Architecture references are generally used if the precise 
specification of a requirement involves an architecture element but the 
requirement originates from a different element (which is realized by a 
containment relation). If there is, for example, a requirement that 
demands an output port to send a fail-safe signal when a failure has 
occurred, the affected output port is referenced via an architecture 
reference. As an example use case let us assume that the software 
component throttleSWC has to deal with scheduling failures. If the 
component is not scheduled in time, the throttle actuator is not 
controlled appropriately, which results in a critical situation. Therefore, 
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the software component demands that the platform automatically sets 
the signal a_set_fin to its fail-safe signal (no throttle demand) in case 
the component misses its deadline. When specifying such a demand, the 
demand is contained in the throttleSWC component but references the 
a_set_fin port. 

 

Figure 24: Reference relations in VerSaI : The left side of the figure shows the modeling pattern used 
to realize reference relations. The right side shows an example instantiation of the pattern 
for referencing ports or communication links that need to output a default message. 

However, most of the architecture references do not directly originate 
from a demand or guarantee, but rather from an element of the 
common language. The challenge with those references is that, 
depending on whether the common language element is used in the 
application language or in the platform language, the target of the 
reference changes. A send default message reaction, for example, 
references a communication port in the application language and 
references a communication link in the platform language. Therefore, 
the meta-model of the language uses a modeling pattern that is similar 
to the pattern used for containment relations. The common language 
element contains an abstract class, which is inherited by different classes 
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in the application and platform language to realize different relation 
targets from application and platform. The corresponding pattern is 
depicted in Figure 24. Please note that the modeling pattern is again 
minimally invasive regarding the meta-model of the integrated system, 
as the meta-model is left unchanged. 

4.3.4 Parameters 

The demand and guarantee prototypes provided by the VerSaI language 
have to be parameterized to adjust the prototypes for the needs of the 
individual systems. VerSaI language parameters are always set during the 
instantiation of a safety requirement. Example parameters are: the failure 
detection time of a detection demand, the integrity level of a demand or 
a guarantee, or the tolerable deviation of an analog signal. A demand 
taken from our running example that incorporates all three of the afore-
mentioned parameters might read as follows: “A value failure of the 
output signal a_set_fin larger than 0,2V must be detected within 0.5ms 
(ASIL C)”.18 

In the following subsections, we will introduce the different parameter 
types provided by the VerSaI language. There are primitive parameter 
types and there are composite parameters, which are composed of 
primitive parameters. Altogether there are the following parameters: 

 Primitive Parameter Types: Boolean, Integer, Float and String 

 Time  

 Physical Quantities 

 Error 

 Integrity Level 

Before the introduction of the different parameters, an explanation is 
needed as to how parameters are attached to language prototypes. 
Parameters are not directly attached to a language element by means of 
an attribute or a containment relation because we want to allow for 
conditional parameters. A conditional parameter is a parameter whose 
value depends on a condition (see section 4.3.2 for an introduction to 
conditions), for example a configuration condition. 

18 This example demand is a “platform service failure detection demand” (see section 
4.5.1) of the “analog output value failure” failure mode (see section 4.4.2.4). 

 69 

                                                      



Interface Specification 

 

Figure 25: Parameter assignments : The left side of this figure shows the pattern for modeling 
parameter assignments. The right side shows an example parameter assignment for Integer 
parameters. 

To realize conditional parameters, a parameterized interface requirement 
contains an abstract class called ParameterAssignment. There is one of 
these classes for every parameter (e.g., IntegerAssignment). Each 
ParameterAssignment class is inherited by the parameter itself, 
allowing direct unconditional parameter assignment, and by a class 
called SwitchCaseParameterAssignment. As the name of the class 
indicates, it allows for switch-case-like conditional parameter 
assignment. A switch assignment consists of a list of 
conditional/assignment tuples. The conditional part of such a tuple can 
be evaluated during mediation; if it is evaluated to true, the assignment 
part of the tuple describes which value should be assigned to the 
parameter. The evaluation of the switch parameter assignment is 
comparable to the evaluation of a switch statement in Java or C and is 
performed by the mediation algorithm. A more detailed explanation of 
the evaluation is provided in chapter 5. Figure 25 shows the modeling 
pattern of parameter assignments. 

Primitive Parameter Types 

The VerSaI language contains four primitive parameter types: Integer, 
Boolean, String, and Float. We chose these types as they represent a 
sufficiently expressive starting point for modeling parameters. All 
primitive parameters are implemented as simple wrappers of the 
corresponding data types of the programming language used to 
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represent the meta-model (in our case this is Java). Figure 26 shows the 
implementation of the primitive parameter types in the VerSaI language. 

Figure 26: The primitive data types of the VerSaI language 

We used these primitive parameters to create standard composite 
parameters, which will be introduced in the following. 

Time 

A property that is often required to specify safety requirements is time. 
Time is needed for specifying parameters such as the tolerable jitters or 
latencies in signal transmission, or the tolerable detection intervals of 
specific failures. In VerSaI, time is always modeled as an interval, i.e., the 
time that has elapsed between the occurrences of two events. In VerSaI, 
there is no need to specify absolute points in time, like “2pm CET, 
August 8th, 2012”. 

In VerSaI, the time parameter is a composite parameter that is composed 
of two integer parameters. One integer defines the milliseconds and 
the other integer defines the microseconds of the time interval. The 
microseconds variable is not allowed to exceed the value of 999 in order 
to preserve the parameter’s canonical form. Furthermore, both integer 
variables have to be non-negative. Figure 27 shows the modeling of 
Time as a composite parameter. 

In addition to the Time parameter, the VerSaI language contains three 
auxiliary classes that support modeling interface requirements that 
require time parameters. These abstract classes are called 
LatencyConstrained-InterfaceRequirement, 
TimeDeviationConstrainedInterface-Requirement, 
and JitterConstrainedInterfaceRequirement. 
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Figure 27: The meta-model of the composite time parameter 

The latency constraint and the time deviation constraint are used to 
model interface requirements that depend on the specification of 
intervals. An example requirement is the demand for detecting a 
communication latency failure, which requires the specification of the 
nominal communication latency in order to distinguish nominal latencies 
from erroneous latencies. The latency constraint allows modeling the 
acceptable time interval by specifying the acceptable lower bound (tl) of 
the latency, in case an early failure19 is critical, or the acceptable upper 
bound (tu) of the latency, in case a late failure is critical. In case the early 
and the late failures are both critical, the corresponding acceptable time 
interval ta, therefore, is tl<ta<tu. The time deviation constraint, on the 
other hand, defines the acceptable latency as a deviation (td) from the 
nominal latency (tn). Consequently, the acceptable time interval ta is 
(tn-td)<ta<(tn+td). 

Unlike the latency and the time deviation constraints, the jitter constraint 
does not model a constraint regarding an arbitrary time interval, but 
rather the interval between the occurrences of two subsequent instances 
of the same periodical event. An example of such an event is the event 
that triggers the periodical sampling of an ADC, the receive event of a 
periodical message, or the scheduling of a periodical task. A period is 
defined by its duration (tn), i.e., the nominal time between the 
occurrence of two subsequent instances of the same event, and its jitter 
(tj), i.e., the admissible deviation from the nominal duration. The 
acceptable period pa between two occurrences of the periodical event is 
(tn-tj)<pa<(tn+tj). 

When an interface requirement inherits from one of the abstract time 
constraint classes, it inherits all its time parameters and the semantics 
that have just been specified. The events that specify the interval (i.e., 
the send event and the receive event of a message transmission define 
the transmission latency) are specific for each requirement. They can 
therefore not be inherited and have to be specified separately for each 

19 The definition of late and early failure is provided in section 4.4.1.2.
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requirement. Figure 28 shows the meta-model that specifies the time 
constraint classes introduced above. 

Figure 28: The meta-model of the time constraint classes 

It is important to note that the design of the time-related parameters is 
based on existing model-based designs. The AUTOSAR standard, for 
example, contains a document describing the specification of time-
related parameters in the AUTOSAR context. The “AUTOSAR 
Specification of the Timing Extension” [70] describes the specification of 
period and latency constraints in a way comparable to the VerSaI 
language, together with many other AUTOSAR-specific timing 
constraints. 

Physical Quantities 

According to [71], a physical quantity describes a property of a 
phenomenon, body, or substance, where the property has a magnitude 
that can be expressed as a number and a unit of measurement. In the 
VerSaI language, a physical quantity is used to specify physical signals at 
the interface between platform and application that have typically been 
read or written via analog input or output channels. In this use case, the 
relevant units typically are voltage, current, and frequency. However, the 
VerSaI language does not restrict the user in the choice of units of 
measurement. 

This is mainly because the current version of the VerSaI language has no 
unit system. A unit is expressed by a string and the VerSaI language only 
allows comparing two physical quantities if they have the same unit, i.e., 
if the strings of quantities are equal. In case the strings are not equal, an 
exception is thrown and the algorithm that issued the comparison has to 
react appropriately20. 

The number or value of the physical quantity is expressed by a floating 
point number in the VerSaI language. Consequently, a physical quantity 

20 In our case, an appropriate reaction is the reaction that is pessimistic regarding
mediation, i.e., makes mediation harder. 
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parameter is a composite parameter composed of a string parameter 
and a float parameter. The resulting meta-model is shown in Figure 29. 

Figure 29: The meta-model of the physical quantity parameter 

Error 

An error parameter describes the admissible deviation of an actual value 
of a signal from the nominal value of the signal. An example usage of 
this parameter is the specification of a value failure of an analog input 
channel, where the error is used to specify the admissible deviation from 
the actual value returned by the ADC from the nominal value on the 
analog line. Please note that in a different context, the term error is also 
defined as the erroneous state of a component as a result of an internal 
fault or a failure of an interacting component. 

The VerSaI language allows the definition of absolute errors and relative 
errors. An absolute error is specified as a physical quantity that 
represents the absolute deviation of the actual value from the nominal 
value (e.g., an error of 0.2V). A relative error, on the other hand, 
describes the error from the nominal value relative to the quantity of the 
nominal value in percent (e.g.,10%). 

Consequently, the error parameter is modeled as an abstract parameter 
with two sub-classes: the relative error and the absolute error parameter. 
Both classes are modeled as composite parameters: The relative 
parameter contains an integer parameter that must not be greater than 
100, and the absolute parameter contains a physical quantity parameter. 
The corresponding excerpt of the VerSaI meta-model is shown in Figure 
30. 
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Figure 30: The meta-model of the composite error parameter 

Integrity Level 

The development of a safety-critical system is based on the concept of 
risk. The risk of a hazard is typically defined as the “product” of its 
probability and its severity. The go-to strategy for reducing the risk to an 
acceptable level includes reduction of the hazard’s probability of 
occurrence. The incorrect behavior of the system, i.e., failures, account 
for a certain part of the occurrence probability and must therefore be 
reduced. This is done by adding safety measures and designing the 
system in such a way that critical failures are avoided, contained, or 
detected and mitigated. The focus of our work is on specifying these 
design dependencies between applications and platforms and assessing 
whether a specific measure setup is adequate. However, the adequacy of 
a certain measure setup depends on the criticality of the failure that is 
protected by the measures. 

The failures of a system are typically divided into systematic and random 
failures. Systematic failures are caused by design flaws, whereas random 
failures are typically caused by physical effects, like wear-out. Systematic 
failures are typically addressed by rigorous development processes and 
random failures by constraints regarding their occurrence probability. 

As already stated in the related work chapter (see section 2.3), there are 
established methods like Component Fault Trees (CFTs) [55] for 
specifying failure logic modularly and for calculating failure rates from 
these modular specification. Therefore, our solution does not include 
another modular failure logic specification to support the specification of 
random failure rates. Instead, we suggest using an established method 
like CFTs. 

Regarding systematic failures, most safety standards across most 
industrial domains regulate the rigor of their safety-related development 
processes using so-called integrity levels. The higher the required level of 
risk reduction, the higher the integrity level, and consequently, the more 
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rigorous the development processes. Typical integrity level scales are the 
safety integrity level (SIL) scale from IEC 61508 [59], the automotive 
safety integrity level (ASIL) scale from ISO 26262 [46], or the 
development assurance level (DAL) scale from DO-178C [60]. The 
development process also regulates the generation of process- and 
product-related evidences, which were introduced in section 2.3. 

In accordance with the above-mentioned standards, each requirement 
specified using the VerSaI language includes an integrity level 
specification. In case of a demand, this means that failing to fulfill the 
demand can lead to a hazard with the corresponding criticality. In case 
of a guarantee, this means that the guarantee has been developed 
according to the development process required for achieving the 
specified integrity level. Typically, guarantees used to fulfill a demand 
must be developed according to at least the same integrity level as the 
demand21. 

Figure 31 shows the integrity level parameters that are represented in 
the meta-model. The part of the model describing integrity levels must 
be adapted when using different standards, since different standards use 
different integrity level scales. The figure shows a variant of the model 
that was adapted for use in the context of the automotive domain and 
the safety standard ISO 26262. 

 

Figure 31: The meta-model of the integrity level parameter 

The user of the VerSaI method must attach an integrity level demand to 
every demand or guarantee, which is also the only use case of the 
integrity level parameter in the VerSaI language. Figure 32 depicts the 
corresponding excerpt of the VerSaI meta-model that shows the 
assignment of the integrity level parameter. 

21 Some safety standards allow reducing the required integrity level by so-called 
decompositions, which is supported by the VerSaI language. 
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4.4 Common Language – Failures and Failure Reactions 

Product-related safety engineering often focuses on failure modes and 
safety mechanisms. Failure modes describe different ways in which the 
system under development fails, whereas safety measures are techniques 
and mechanisms that allow the system to control and tolerate these 
failures. Consequently, to reach our goal of providing a language that 
allows the specification of safety-related demands and guarantees 
between applications and demands, we have to provide a way for the 
specification of failure modes and safety measures. One of the core ideas 
behind the VerSaI approach is to use the standardized services provided 
by an open integrated system to derive a standardized failure model and 
to use the most common safety measures to provide a standardized 
catalogue of failure reactions provided by an execution platform. 

Figure 32: The assignment of the integrity level parameter to the top-level interface requirement class. 

In this second part of the common language description, we introduce 
the standardized failure models and the failure reaction catalogue that 
can be used for the specification of the interface requirements in the 
VerSaI language. In the upcoming sections 4.5 and 4.6, we will see that 
failure modes and failure reactions are used like types in the specification 
of demands and guarantees. We will also find out in chapter 5 that the 
standardization of the failure model and reaction types plays an essential 
role in allowing the mediation algorithm to automatically check whether 
a particular guarantee is suitable for fulfilling a given demand. 

Since the failure model plays such a central role in the VerSaI language, 
we dedicate section 4.4.1 to the description of the approach taken to 
analyze and specify the failure model. We will then continue with the 
introduction of our failure model, which differentiates between two 
kinds of common failure modes. Platform service failure modes describe 
failures of services that are offered by the platform, and will be 
introduced in section 4.4.2. On the other hand, application failure 
modes describe failures of the application that can be detected by a 
potential monitoring facility provided by the platform, and will be 
introduced in section 4.4.3. Section 4.4.4 finally describes the 
standardized platform failure reaction model. 
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4.4.1 Failure Analysis and Classification 

A core part of the VerSaI language is the common failure model that is 
used to specify demands and guarantees. We created the common 
failure model by analyzing the common platform services introduced in 
section 2.1.4 for failure modes. We performed the failure analysis using 
the guideword-based analysis based on the methods proposed by [64] 
and [72]. All things considered, both approaches introduce the same 
guidewords. These are:  

Service Value:

Coarse Incorrect

Subtle Incorrect

Service Timing:

Early

Late

Service Provision:

Omission

Commission

Together the guidewords form the failure mode topology shown in 
Figure 33. 

Service 
Failure

Value Timing Provision

Coarse 
Incorrect

Subtle 
Incorrect Early Late Omission Commission

Figure 33: The failure mode taxonomy used in VerSaI . Classes depicted by gray rectangles are not 
used in the language. 

In the following sections, we will introduce the different failure classes: 
value, timing, and provision. In the corresponding sections, we will 
explain their original meaning as well as their interpretation and their 
usage in the VerSaI language. 

Service Value 

Most services will eventually produce a value when invoked. However, it 
is also possible that a service invocation only leads to a change of the 
service’s internal state and produces no output. Furthermore, there are 
services that do not only produce outputs when invoked but produce 
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outputs, for example, at specific times. Whenever a service produces an 
output that is not in the set of acceptable outputs for the current 
situation, a value failure occurs. 

Both [64] and [72] differentiate between coarsely incorrect and subtly 
incorrect. A coarse incorrect value failure can be detected by the user, 
whereas a subtle incorrect failure cannot. This differentiation is irrelevant 
for the VerSaI language. Whether the application is able to detect a 
failure is only implicitly visible at the safety interface. If the application 
was able to detect the failure, there would usually not be a detection 
demand for the platform. Whether the platform is able to detect a 
failure is clearly specified by the availability of a corresponding 
guarantee. If there is no guarantee, the failure is not detectable. 
Accordingly, there is no need for the differentiation between coarse 
incorrect and subtle incorrect in the context of the VerSaI language. 

To specify a value failure, the user of the VerSaI language must be able 
to distinguish acceptable from unacceptable outputs, and nominal 
outputs from erroneous outputs. Consequently, every value failure mode 
in the common language allows the user to make this distinction, usually 
using the error parameter. 

Service Timing 

In the majority of safety-critical embedded systems, the timing of the 
service is equally important as its correct value. When the correct output 
is delivered either too early or too late, the value might be as hazardous 
as or even more hazardous than an incorrect value at the correct time. 

Since the services provided by the platform are usually invoked by the 
application, most timing failures can be specified using the time interval 
between the invocation of the service and the time when the service 
produces its output or performs its reaction. If this interval is shorter than 
allowed, there is an early timing failure, and if this is interval is longer 
than allowed, there is a late timing failure. 

Thus, in order to specify a timing failure, each failure has to include a 
specification of the start event and the end event of the corresponding 
interval, and the language user has to specify the timing thresholds that 
distinguish an admissible timing from an erroneous timing. This is always 
done using the abstract time constraints introduced in section 4.3.4 
Time. 

Please note that the language does not provide a late and early failure 
mode for every possible API call. Sometimes the API call is only part of a 
larger functionality provided by the service; in this case, the timing failure 
is specified on the service level. Furthermore, if the functionality is 
performed by one API call and that particular call is uninterrupted (there 
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is no wait involved) and synchronous, there will also be no timing failure. 
The timing of such an API call that behaves like a regular function call is 
already covered by the execution time of the calling ASWC. 

In addition to late and early failures, we allow specifying so-called jitter 
failures. A jitter is the deviation from the periodicity of a periodical event. 
A jitter could also be replaced by a late and an early failure, but for 
reasons of convenience, jitter failures are directly specifiable using the 
VerSaI language. 

Service Provision 

Service provision is differentiated into omission and commission failure 
modes. An omission failure occurs if the service produces no output even 
though an output should have been produced. A commission failure 
occurs if the service produces an output event though the output should 
not have been produced. However, there are some difficulties regarding 
omission failures. 

First and foremost, neither the user nor the system can differentiate an 
omission failure from an infinitely late failure. If the service has not 
produced any output after a given time, the system has no chance of 
knowing whether the service will eventually produce an output. In such 
a case, the user has to specify a certain time interval, after which a 
service omission is assumed. However, if the service is supposed to 
eventually produce an output, the system might no longer be able to 
associate the output with the correct invocation and treat the output as 
a commission. 

Furthermore, it is sometimes hard to differentiate an omission failure 
from a value failure if there is no NIL representation in the service’s 
output domain. As an example, let us examine an analog output channel 
that produces a voltage signal. There is always a potential on the output 
channel. Let us assume the actual potential is vcurrent. Let us further 
assume that the application demands outputting a new potential vnew. If 
the output channel still produces vcurrent after the time interval assigned to 
an omission, there is no way of telling a value failure that produced 
vcurrent from an omission failure. Consequently, we decided not to use 
omission failures in case the analyzed service has no inherent NIL 
representation. 

Since a commission failure is specified as producing an output even 
though the service should be inactive, in the VerSaI language a 
commission failure is specified by the output or the reaction that should 
not have been performed and the condition that nominally inhibits the 
service. The specification of a commission failure follows the template 
below: 
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Example: Service X performs action Y even though condition A or 
condition B or ... or condition C were true. 

Since an omission failure is specified as not producing an output even 
though the service should produce an output, in the VerSaI language an 
omission failure is specified by the output or the reaction that should 
have been performed and the conditions that nominally activate the 
service. The specification of an omission failure follows the template 
below: 

Example: Service X does not perform action Y even though 
condition A or condition B or ... or condition C were 
true. 

4.4.2 Platform Service Failures 

The platform service failures package contains a standardized set of 
configurable failure models of typical platform services. Each service-
specific failure model contains a set of failure modes that are commonly 
used for both the specification of application demands and platform 
guarantees. The VerSaI language supports failure models for the 
platform services identified in section 2.1.4. These are: 

 Synchronization Services 

 Communication Services 

 Input Services 

 Output Services 

 Time Services 

 Memory Services 

 Scheduling 

 Basic Execution Services 

In the following subsections, we will present a failure model for each 
service class. Each failure model contains a set of failure modes 
describing different ways of how the analyzed service can potentially fail. 

Subsequently, we will introduce the failure models of the different 
service classes. Each failure model specification starts with a description 
of the corresponding service class including a description of the 
functionality provided and the different use-case scenarios of the service 
class. After the introduction of the service class we will illustrate the 
different failure modes of the service class including parameters (see 
section 4.3.4 for more information on parameters) and architecture 
relations (see section 4.3.3 for more information on architecture 
relations). 
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Please note that every failure mode in the platform service failure model 
is a failure mode prototype or, in other words, a failure mode class, 
rather than a specific failure mode. In order to turn the failure mode 
prototype into a failure mode, it has to be “instantiated”. With 
instantiation we mean that the failure mode has to be parameterized 
and related to an architecture element. The relation to an architecture 
element turns a failure mode type into a failure mode of that specific 
architecture element. If, for instance, we relate a common 
communication corruption failure to the v_ref communication port of 
our running example, the failure mode type is instantiated as a failure 
mode of the specific signal received via the v_ref port. 

As a final remark before the introduction of the failure models, we note 
that the VerSaI language does not allow specifying demands or 
guarantees regarding 2nd level failures (failures of safety measures); 
therefore, there are no failure modes of platform failure detection or 
platform failure reaction mechanisms. 

Synchronization Failure Model 

The synchronization failure model describes the failure modes of a 
platform’s synchronization mechanisms as introduced in section 2.1.4. A 
synchronization mechanism allows the application developer to control 
the execution sequence or, in other words, the control flow between 
several runnables22. To do so, a synchronization mechanism contains at 
least one so-called blocking call, which sets the task23 executing the 
runnable to the waiting state. Instead of blocking calls provided, for 
example, by the time services, the waiting task is not released to the 
ready state by the operating system (at least in the nominal case) but by 
another runnable. 

There can be numerous types and implementations of synchronization 
mechanisms in a modern operating system. We chose to cover simple 
implementations of the two most common synchronization mechanisms 
with the VerSaI language. Other mechanisms and more complex 
implementations are left open for future extensions. The failure model 
covers an abstract mutual exclusion (mutex) mechanism for 
implementing critical regions and an event mechanism that allows 
signaling between runnables. 

A critical region refers to a sequence of instructions in which a program 
accesses a shared resource (like a shared variable or a system register 

22 A runnable is a schedulable entity of an ASWC. Refer to Annex A.2 for more
information about the application model. 

23 A task is an atomic schedulable entity of the platform. A runnable runs in the
context of a task. Refer to Annex A.3 for more information about the platform 
model. 
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controlling a device) in a non-atomic way. If the program is interrupted 
during this process and another program starts accessing the shared 
resource, the resource might reach an undefined or inconsistent state, 
jeopardizing the correct execution of both programs. To prevent this 
predicament from happening, all programs accessing the shared 
resource enter the afore-described critical region before they start to 
manipulate the resource. The mutex mechanism ensures that only one 
program is able to enter the same critical region at a time. 

A mutex, as defined in the context of our language, contains two 
procedures, enter mutex to enter the critical region and exit mutex 
when the critical region is exited. Furthermore, the enter mutex 
procedure allows the application to specify a timeout in order to define 
the maximum amount of time the application wants to wait in case the 
mutex is occupied. When enter mutex is called, the call directly returns 
if the mutex is free and the call blocks the calling task if the mutex is 
occupied. The waiting task is put into the ready state as soon as the 
mutex is exited or the specified timeout has expired. In case the mutex 
has been exited, the activated task makes another attempt to enter the 
mutex. The described mutex mechanism is comparable to a binary 
semaphore (a semaphore with only two states) and so are the failure 
modes. However, failure modes of counting semaphores (semaphores 
that allow an arbitrary resource count) are not covered by our language. 
The mutex mechanism is illustrated in Figure 34. 

unlocked locked

[enter mutex]

[exit mutex]
release waiting task(s)

[enter mutex]
block calling task

[timeout expired]
release 

corresponding task

Figure 34: The state machine of a mutex 

Contrary to the mutex mechanism, we have to differentiate two 
different user roles when describing the event mechanism. First, there 
are programs waiting for a particular event and second, there are 
programs signaling the event. When a runnable calls wait event, the 
corresponding task enters the waiting state (events are not stored). As 
soon as another runnable calls signal event for the corresponding 
event, all tasks waiting for the event are released into the ready state. 
Comparable to the timeout feature of the mutex mechanisms, the event 
mechanism contains a timeout feature as well. 
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We will now continue describing the failure modes of the 
synchronization failure model containing six different failure modes. An 
overview of the synchronization failure mode is given in Figure 35. The 
failure model consists of the following failure modes: 

synchFM-1: Mutex Access Commission

synchFM-2: Mutex Access Omission

synchFM-3: Mutex Release Commission

synchFM-4: Mutex Release Omission

synchFM-5: Mutex Timeout Failure

synchFM-6: Event Signal Commission

synchFM-7: Event Signal Omission

synchFM-8: Event Timeout Failure

Figure 35: The meta-model of the synchronization failure model 

synchFM-1: Mutex Access Commission 

A mutex access commission occurs if a runnable calling enter mutex is 
allowed to enter the critical region even though the region is occupied. 

synchFM-2: Mutex Access Omission 

A mutex access omission occurs if a runnable calling enter mutex is 
blocked even though the region is not occupied. 

synchFM-3: Mutex Release Commission 

A mutex release commission occurs if a runnable is released even though 
the region is not left. 

Please note that this failure does not implicate that the released runnable 
is allowed to enter the mutex even though the mutex is still occupied. 
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synchFM-4: Mutex Release Omission 

A mutex release omission occurs if a runnable is not released even 
though the region is left. 

synchFM-5: Mutex Timeout Failure 

A mutex timeout failure occurs if a runnable that has been blocked for 
calling enter mutex with a timeout parameter is released too early 
before or too late after the timeout has expired. 

In order to specify the tolerable deviation from the specified timeout 
failure, the event timeout failure is parameterized according to the time 
deviation constraint introduced in section 4.3.4 Time. 

synchFM-6: Event Signal Commission 

An event signal commission occurs if a runnable waiting for an event 
gets released even though no runnable has called a corresponding 
signal event operation. 

synchFM-7: Event Signal Omission 

An event signal omission occurs if a runnable waiting for an event gets 
not released even though a runnable has called a corresponding signal 
event operation. 

synchFM-8: Event Timeout Failure 

An event timeout failure occurs if a runnable that has been blocked for 
calling wait event with a timeout parameter is released too early 
before or too late after the timeout has expired. 

In order to specify the tolerable deviation from the specified timeout 
failure, the event timeout failure is parameterized according to the time 
deviation constraint introduced in section 4.3.4 Time. 

Communication Failure Model 

This subsection describes the failure model of a platform’s 
communication service as introduced in subsection 2.1.4. The 
communication failure model was derived from existing failure models 
introduced in common safety standards like [46] or [73]. 

In this context, communication means the exchange of information 
between ASWCs, or in other words, the exchange of logical signals 
between ASWCs. In such a communication scenario, the ASWC 
providing the information is called the sender ASWC and the ASWC 
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requiring the information is called the receiver ASWC. Since we examine 
communication on a functional level, the communication process is 
regarded as event-based rather than continuous, as we would have to 
regard it on a physical level. The entity that is transmitted during one 
communication instance is called a message; the payload of a message is 
called data. The event at the beginning of the communication process is 
called the send event, the event at the end of the communication 
process is called the receive event. The send event is triggered as 
soon as the data are available for communication at the PSW of the 
sender ASWC. The receive event is triggered as soon as the PSW of the 
receiver ASWC has made the data available to the receiver ASCE, which 
includes an indication if receive notification is enabled. The described 
scenario is depicted in Figure 36. 

As discussed earlier, the deployment of applications is only determined 
after the development of the application. Consequently, the 
communication-related failure model must neither differentiate between 
inter-process, inter-partition, or inter-platform failure modes, nor 
between failure modes specific to a certain technical implementation like 
CAN or FlexRay. Therefore, the presented communication failure model 
contains all failures that can occur in an embedded systems 
communication scenario. 

The communication failure model contains six basic failure modes; an 
overview of the failure model is shown in Figure 37. Each failure mode 
type can be configured as a provided or as a required message failure 
mode, so that sender ASWCs and receiver ASWCs alike are able to 
specify demands regarding communication. The basic failure model 
contains the following failure modes: 

comFM-1: Message Corruption

comFM-2: Message Insertion

comFM-3: Message Loss

comFM-4: Incorrect Message Sequence

comFM-5: Late Transmission

comFM-6: Early Transmission

Prior to introducing the communication failure modes, two remarks are 
in order, one on the design and one on the interpretation of the 
communication failure model. 
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Figure 36: Comparison of functional and technical communication scenarios . Only the functional 
level is regarded in the application language. GW stands for gateway. The following events 
are shown in the figure. 1: the send event; 2: the receive event. 

First, every demand, no matter whether it is specified on the sender or 
on the receiver side, is targeted at the complete communication path. 
When, for example, a receiver ASWC demands timely transmission of a 
message, this does not only call for timely behavior of the receiving 
platform, but of all other platforms involved in the communication 
process. This design decision was made because the alternative design, 
splitting responsibilities between sender and receiver, has two 
disadvantages. First, there would be an implicit dependency between the 
vertical interfaces of the sender and receiver ASWC, since neither the 
receiver demand nor the sender demand would be meaningful without 
the other. With such a dependency, the vertical interfaces would include 
a “hidden horizontal interface”, as there would not only be a 
dependency between one application and one platform but also 
between the involved (sender and receiver) applications. The second 
reason for not splitting responsibilities is the routing of a signal, which is 
potentially very complex. Which demand (the sender or the receiver one) 
would include the responsibility for the safe behavior of gateways? 

 

Figure 37: The meta-model of the communication failure model 
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Second, we would like to clarify that every communication failure mode 
is specified from the receiver’s point of view. Every failure mode 
describes a deviation of a correct communication as perceived by the 
receiver. To exemplify this, let us regard two scenarios. In both scenarios 
the sender ASWC sends a message that gets transmitted faster than 
specified. In the first scenario, the message overwrites an earlier message 
at the port of the receiver ASWC before the ASWC has been able to 
read the message that is now overwritten. In the second scenario, the 
message reception triggers an early reaction of the receiver ASWC. 
Unlike the second scenario, the first scenario is not considered to be an 
early message failure. This is because the receiver perceives this failure 
mode either as a deleted or as a corrupted message. In this case, the fast 
or early transmission is a technical cause for a message corruption or a 
message loss failure. Technical causes for failures are not regarded on 
the level of the interface language. 

comFM-1: Message Corruption 

Message corruption occurs if the data received by the receiver ASWC are 
not identical to the data originally sent by the sender ASWC. 

Since application demands are specified on a functional level, data 
would still be considered as identical if they are changed for technical 
reasons. This happens, for example, if receiver and sender use different 
endianness. Message corruption is a common communication failure 
mode, which may, for example, be caused by electro-magnetic 
influences. 

comFM-2: Message Insertion 

Message insertion occurs if the receiver ASWC receives a message that 
has not been sent by a valid sender ASWC. 

Typically, one distinguishes two cases of this failure. In the first case, a 
valid sender24 sends a superfluous message, or a valid message is 
accidentally duplicated on the communication link. In the second case, 
an unauthorized sender assumes the identity of a valid sender and sends 
a message on its behalf. The latter case is typically labeled as 
masquerading. Since one cannot distinguish between the two cases on 
the application level, there is no additional failure mode to differentiate 
masquerading in the application language. Both unintentional 
duplication and masquerading are regarded as a message insertion. 

24 A sender that is allowed to the send this type of message according to its 
specification 
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comFM-3: Message Loss 

Message loss occurs if the receiver ASWC does not receive a message 
that has been properly sent by a valid sender ASWC. 

comFM-4: Incorrect Message Sequence 

An incorrect message sequence occurs if two messages that have been 
sent successively by the sender ASWC are received out of order by the 
receiver ASWC. 

The specification of the incorrect message sequence failure has two 
restrictions. First, it allows demanding the correct sequence of only two 
sequential messages. With this demand, the designer is able to 
pessimistically include failures in longer sequences, since any failure in a 
sequence of more than two messages implies a sequence failure of at 
least two messages. Second, the designer is only able to demand the 
correct sequence of messages sent or received via the same port.  

comFM-5: Late Transmission 

A late transmission failure occurs if the transmission latency is too large. 
Transmission latency is defined as the time interval between the send 
event and the receive event. 

At the point in time when a late message failure is detected one cannot 
determine whether the message is really delayed or actually lost. A lost 
message would not be in time either. This means that every measure for 
detecting late messages is also effective for detecting lost messages. Yet 
on the other hand, there are measures for detecting lost messages that 
cannot detect late messages. Therefore, message loss is regarded 
separately and not as a special case of the late message failure. 

In order to specify the tolerable maximum transmission latency, the late 
transmission failure is parameterized according to the latency constraint 
introduced in section 4.3.4 Time. 

comFM-6: Early Transmission 

An early transmission failure occurs if the transmission latency is too 
small. Transmission latency is defined as the time interval between the 
send event and the receive event. 

In order to specify the tolerable minimum transmission latency, the early 
transmission failure is parameterized according to the latency constraint 
introduced in section 4.3.4 Time. 
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Input Failure Model 

This subsection describes the failure model of the input part of a 
platform’s input/output functionality as described in subsection 2.1.4. 
The input functionality allows an application to connect to sensors via 
the platform’s input peripherals. We do not differentiate between on-
chip peripherals that are directly accessible via the platform’s processing 
unit (on-chip peripherals) and on-board peripherals that are connected 
via on-board communication busses like SPI or I²C. 

The failure model does, however, differentiate between digital and 
analog input channels. Digital input channels are typically implemented 
by appropriately configured DIO (digital input/output) pins of a 
microcontroller to read the status of digital switches connected to the 
platform. DIO pins can also be used as a source for interrupt triggers, but 
this functionality is covered by the scheduling failure model. Analog 
input channels, on the other hand, are usually implemented using ADCs 
(Analog-to-Digital Converter). 

Analog input channels, i.e., ADCs, and digital input channels, i.e., DIOs, 
are accessed differently. Since an ADC conversion takes many CPU 
cycles, they are typically accessed asynchronously, whereas DIOs are 
accessed synchronously (on modern microcontrollers with sophisticated 
memory architectures, DIO access takes several CPU cycles as well, but 
not nearly as many as ADC conversion). These different scenarios for 
accessing digital and analog input peripherals result in different failure 
modes, which is why the input failure model differentiates between 
digital and analog input failure modes. 

To elaborate on the failure model, we will first describe the different 
input scenarios. We divide a typical input scenario into the data 
acquisition phase and the data access phase. The data acquisition phase 
begins with the ASWC requesting the input peripheral to read from the 
physical input channel and ends when the input peripheral starts to read 
from the physical input channel. The data access phase, on the other 
hand, starts when the input peripheral has finished reading from the 
physical input channel and ends when the acquired data is provided to 
the respective ASWC. An overview of the different scenarios is shown in 
Figure 38. 
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Figure 38: The different scenarios for accessing an input channel . The following events are shown in 
the figure: 1: read/sampling requested; 2: read/sampling started; 3: read/sampling finished; 
4: result copied; 5: notification sent; 6: result read; 7: returned with result. 

There are three different kinds of read/sampling requests. When working 
with a standard ADC, one has to differentiate between the so-called 
one-shot mode, externally triggered sampling (in our case called 
platform trigger), and streaming mode. In the first scenario, the 
application triggers the ADC to sample the input channel one time by 
calling the platform API. In the second scenario, the ADC is triggered by 
the platform (for example by a timer), which is typically used to 
implement periodical sampling. In the last scenario, the ADC runs in the 
so-called streaming mode, where the ADC starts a new sampling 
procedure as soon as the last one has ended. When reading from a DIO 
channel, data acquisition is typically only triggered by the application in a 
one-shot manner. 
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On the other hand, the data access phase begins with the completion of 
the sampling procedure. Since the ADC sampling takes several CPU 
cycles, samples are typically accessed asynchronously. When the 
sampling is completed, the platform software copies the data into a data 
buffer located in a memory area accessible to the ASWC (this memory 
area could be a part of the ASWC’s private memory). After this common 
step, we differentiate between asynchronous data access with and 
without notification. In the first scenario, the platform notifies the ASWC 
when the sampling has been completed and the data have been copied, 
whereas in the second scenario, the ASWC is left without notification 
and has to poll the buffer or the PSW for status information. On the 
other hand, reading from a DIO channel is typically done synchronously, 
which might, however, involve a trap and a switch to supervisor mode. 

As we will explain later, certain failure modes of the input failure model 
are interpreted differently or do not apply depending on the input 
scenario relevant for the current input channel. In sum, the input failure 
model contains fifteen different failure modes. The analog input failures 
of the input failure model are depicted in Figure 39; the digital input 
failure are modeled accordingly. The failure modes of the input failure 
model are: 

 inFM-1: Digital Input Read Omission 

 inFM-2: Digital Input Late Read 

 inFM-3: Digital Input Early Read 

 inFM-4: Digital Input Late Return 

 inFM-5: Digital Input Early Return 

 inFM-6: Digital Input False Positive 

 inFM-7: Digital Input False Negative 

 inFM-8: Analog Input Omission 

 inFM-9: Analog Input Commission 

 inFM-10: Analog Input Late Sampling 

 inFM-11: Analog Input Early Sampling 

 inFM-12: Analog Input Sampling Jitter 

 inFM-13: Analog Input Late Return 

 inFM-14: Analog Input Early Return 

 inFM-15: Analog Input Value Failure 

Reading from a digital input is usually performed in a synchronous way. 
As described in section 4.4.1 Service Timingsection, we usually do not 
specify timing failure modes for those services. However, if a digital input 
channel is read by a complex driver, the driver might perform the writing 
asynchronously. Because of these cases, we have added timing failures 
to the digital input failure model. 
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Figure 39: The meta-model of the analog part of the input failure model 

inFM-1: Digital Input Read Omission 

A digital input omission occurs if the read request does not return or 
returns with an error value. 

If the digital read is implemented in a truly synchronous way, the request 
will always return if no exception occurs. If the read request returns with 
an error code, this is considered as a detected read omission. 

inFM-2: Digital Input Late Read 

A digital input early read failure occurs if the delay between the read 
requested event and the read started event is larger than the 
tolerable maximum delay. 

The delay between the read request and the start of the reading 
procedure is relevant for determining the age of the data when the data 
is returned to the requester ASWC. 

In order to specify the tolerable maximum read delay, the digital input 
late read failure is parameterized according to the latency constraint 
introduced in section 4.3.4 Time. 

inFM-3: Digital Input Early Read 

A digital input early read failure occurs if the delay between the read 
requested event and the read started event is smaller than the 
tolerable minimum delay. 
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Usually, we assume that an early read is uncritical. Nevertheless, for 
reasons of completeness, we added the early read failure mode to the 
input failure model. 

In order to specify the tolerable minimum read delay, the digital input 
early read failure is parameterized according to the latency constraint 
introduced in section 4.3.4 Time. 

inFM-4: Digital Input Late Return 

A digital input late return failure occurs if the end-to-end delay between 
the request of the read procedure (read requested event) and the 
return of the read procedure (returned with result event) is too 
large. 

The return delay is important for determining the end-to-end delay (from 
sensor to actuator) of the corresponding application. 

In order to specify the tolerable maximum return delay, the digital input 
late return failure is parameterized according to the latency constraint 
introduced in section 4.3.4 Time. 

inFM-5: Digital Input Early Return 

A digital input late return failure occurs if the end-to-end delay between 
the request of the read procedure (read requested event) and the 
return of the read procedure (returned with result event) is too 
small. 

In order to specify the tolerable minimum return delay, the digital input 
early return failure is parameterized according to the latency constraint 
introduced in section 4.3.4 Time. 

inFM-6: Digital Input False Positive 

A digital input false positive failure occurs if the Boolean value returned 
to the requester ASWC is true, even though the value on the digital 
input channel was false at the time the read process started. 

inFM-7: Digital Input False Negative 

A digital input false negative failure occurs if the Boolean value returned 
to the requester ASWC is false, even though the value on the digital 
input channel was true at the time the read process started. 
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inFM-8: Analog Input Omission 

The semantics of the analog input omission failure depends on the 
triggerType and the returnType parameter of the 
AnalogSensorInPort or the AnalogInputChannel related to the 
failure mode. 

In case the ADC is triggered by the platform (triggerType = 
PlatformTrigger) or operates in streaming mode (triggerType = 
Streaming), an omission occurs if there is no trigger (sampling 
request event) even though there should be a trigger regarding the 
specification of the platform. In those scenarios, triggering the sampling 
is not the responsibility of the ASWC. 

Furthermore, a sampling omission occurs if the sampling has been 
triggered but the platform omits copying the sampled value into the 
respective result buffer of the requester ASWCs. In case notifications are 
enabled (returnType = Notification), an omission also occurs if the 
platform copies the sampled value into the buffer but omits to notify the 
ASWC. 

inFM-9: Analog Input Commission 

The semantics of the analog input omission failure depends on the 
returnType parameter of the AnalogSensorInPort or the 
AnalogInputChannel related to the failure mode. 

If notifications are disabled (returnType = Polling) an analog input 
commission occurs if the platform copies a new value into the data 
buffer even though there was no ASWC trigger or there should not have 
been a trigger (in case trigger responsibility was with the platform). If 
notifications are enabled (returnType = Polling), an analog input 
commission occurs if the platform sends a notification even though there 
was no ASWC trigger or there should not have been a trigger (in case 
trigger responsibility was with the platform). 

inFM-10: Analog Input Late Sampling 

An analog input late sampling occurs if the delay between the 
sampling requested event and the sampling started event is too 
large. 

The delay between the sampling request and the start of the sampling 
procedure is relevant for determining the age of the data when the data 
is returned to the requester ASWC. 

The analog input late sampling failure mode only applies if the ADC is 
triggered by the ASWC (triggerType = OneShot) or by the platform 
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(triggerType = PlatformTrigger), since there is no delay between 
the trigger and the beginning of the sampling in streaming mode 
(triggerType = Streaming). 

In order to specify the tolerable maximum sampling delay, the analog 
input late sampling failure is parameterized according to the latency 
constraint introduced in section 4.3.4 Time. 

inFM-11: Analog Input Early Sampling 

An analog input early sampling occurs if the delay between the 
sampling requested event and the sampling started event is too 
small. 

The delay between the sampling request and the start of the sampling 
procedure is relevant for determining the age of the data when the data 
is returned to the requester ASWC. 

The analog input late sampling failure mode only applies if the ADC is 
triggered by the ASWC (triggerType = OneShot) or by the platform 
(triggerType = PlatformTrigger), since there is always no delay 
between the trigger and the beginning of the sampling in streaming 
mode (triggerType = Streaming). 

In order to specify the tolerable minimum sampling delay, the analog 
input early sampling failure is parameterized according to the latency 
constraint introduced in section 4.3.4 Time. 

inFM-12: Analog Input Sampling Jitter 

An analog input sampling jitter failure occurs if the time between two 
successive periodical sampling triggers (sampling requested event) 
varies too much. 

Such a variation has detrimental effects on the precision and the stability 
of a closed loop control algorithm. To make a demand regarding the 
end-to-end jitter of a periodical sampling procedure, the analog input 
sampling jitter demand must be combined with a return latency failure 
(see ). 

The analog input sampling jitter failure only applies if the ADC is 
triggered by the platform (triggerType = PlatformTrigger), since 
in one-shot mode, the ASWC has the trigger responsibility and in 
streaming mode, periodical triggering is impossible. 

In order to specify the tolerable jitter, the analog input sampling jitter 
failure is parameterized according to the jitter constraint introduced in 
section 4.3.4 Time. 
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inFM-13: Analog Input Late Return 

The semantics of the analog input late return failure depends on the 
returnType parameter of the AnalogSensorInPort. 

In case of a polling return type (returnType = Polling), an analog 
input late return occurs if the delay between the sampling requested 
event and the result copied event is too large. 

In case of a notification return type (returnType = Notification), 
an analog input return latency failure occurs if the delay between the 
sampling requested event and the notification send event is too 
large. 

In order to specify the tolerable maximum return delay, the analog input 
late return failure is parameterized according to the latency constraint 
introduced in section 4.3.4 Time. 

inFM-14: Analog Input Early Return 

The semantics of the analog input early return failure depends on the 
returnType parameter of the AnalogSensorInPort. 

In case of a polling return type (returnType = Polling), an analog 
input late early occurs if the delay between the sampling requested 
event and the result copied event is too small. 

In case of a notification return type (returnType = Notification), 
an analog input return latency failure occurs if the delay between the 
sampling requested event and the notification send event is too 
small. 

In order to specify the tolerable minimum return delay, the analog input 
early return failure is parameterized according to the latency constraint 
introduced in section 4.3.4 Time. 

inFM-15: Analog Input Value Failure 

An analog input value failure occurs if the actual value on the analog 
channel at the sampling started event and the value returned to the 
requester ASWC deviate by more than the predefined error. 

The error can be absolute (e.g., 0,5V) or relative (e.g., 10%). See section 
4.3.4 Error for more information about modeling errors. 
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Output Failure Model 

This subsection describes the failure model of the output part of a 
platform’s input/output functionality as described in subsection 2.1.4. A 
platform’s output functionality allows the application to access the 
platform’s output peripherals in order to connect to the application’s 
actuators. We assume that the application cannot differentiate between 
output channels implemented by on-chip and on-board peripherals, 
which is why the failure model in this subsection does not differentiate 
between the two cases either. 

Unlike the input failure model, the output failure model does not 
differentiate between different scenarios of accessing an output 
peripheral, resulting in a less complex failure model. This is mainly 
because accessing an output peripheral does not include returning a 
value, which is why we do not have to differentiate between 
synchronous and an asynchronous access. The output scenario starts 
with the output request event when the ASWC requests the output 
peripheral to update the activation signal sent to the actuator, and ends 
when the output peripheral has written the new value to the output 
channel. The scenario for accessing an output peripheral is shown in 
Figure 40. 

Because of the reasons described in section 4.4.1 Service Provision, we 
decided not to include an omission failure mode in our failure model 
since an omission failure (not processing an output request) cannot be 
differentiated from a value failure, as there is no NIL concept on a 
physical channel. It is sufficient to demand that the correct value has to 
appear on the channel after a certain period of time. Not processing the 
output request at all is just a technical cause of this kind of failure. 
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Figure 40: The scenario for accessing an output peripheral covered by this failure model. The 
following events are shown in the figure: 1: output requested event, 2: output written 
event. 
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The output failure model contains seven failure modes. Figure 41 gives 
an overview of the output failure mores. The failure modes are: 

 outFm-1: Digital Output Late 

 outFm-2: Digital Output Early 

 outFm-3: Digital Output False Positive 

 outFm-4: Digital Output False Negative 

 outFm-5: Analog Output Late 

 outFm-6: Analog Output Early 

 outFm-7: Analog Output Value Failure 

The writing of digital output is usually performed in a synchronous way. 
As described in section 4.3.1.2, we usually do not specify timing failure 
modes for those services. However, if a digital output channel is written 
by a complex driver, the driver might perform the writing 
asynchronously. Because of these cases, we have added timing failures 
to the digital output failure model. 

outFm-1: Digital Output Late 

A digital output late failure occurs if the delay between the output 
requested event and the output written event is too large. 

If writing to a digital output is always synchronous, the runtime of a 
write request should be completely predictable (restrictions apply under 
some conditions, for example if the memory access times are 
unpredictable because of unfair memory interconnect arbitration). 

In order to specify the tolerable maximum write delay, the digital output 
late failure is parameterized according to the latency constraint 
introduced in section 4.3.4 Time. 

 

Figure 41: The meta-model of the output failure model 
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outFm-2: Digital Output Early 

A digital output early failure occurs if the delay between the output 
requested event and the output written event is too small. 

The comment given for outFM-1 regarding the runtime of an output 
request is valid for this failure mode. 

In order to specify the tolerable minimum write delay, the digital output 
early failure is parameterized according to the latency constraint 
introduced in section 4.3.4 Time. 

outFm-3: Digital Output False Positive 

A digital output false positive failure occurs if the Boolean value written 
to the output channel is true, even though the value requested by the 
requester ASWC was false. 

outFm-4: Digital Output False Negative 

A digital output false positive failure occurs if the Boolean value written 
to the output channel is false, even though the value requested by the 
requester ASWC was true. 

outFm-5: Analog Output Late 

An analog output late failure occurs if the delay between the output 
requested event and the output written event is too large. 

In order to specify the tolerable maximum write delay, the analog output 
late failure is parameterized according to the latency constraint 
introduced in section 4.3.4 Time. 

outFm-6: Analog Output Early 

An analog output late failure occurs if the delay between the output 
requested event and the output written event is too small. 

In order to specify the tolerable minimum write delay, the analog output 
early failure is parameterized according to the latency constraint 
introduced in section 4.3.4 Time. 

outFm-7: Analog Output Value Failure 

An analog output value failure occurs if there is a larger deviation 
between the actual value on the analog output channel after the 
output written event and the value requested than specified by the 
acceptable error. 
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The error can be absolute (e.g., 0,5V) or relative (e.g., 10%). See sub-
section 4.3.4 Error for more information about modeling errors. 

Time Services Failure Model 

This subsection describes the failure model of a platform’s time services 
as described in 2.1.4. The time services include a timer service that 
allows measuring relative time, a global time service that allows 
accessing a global time base of the system, and a service that allows a 
runnable entity of the ASWC to wait for a certain period of time. 

Measuring a relative time using a timer typically revolves around three 
different API calls: (1) starting the timer, (2) stopping the timer, and (3) 
reading the elapsed time. The value returned when reading the elapsed 
time is the time period since the last start of the timer if the timer has 
not been stopped since. Otherwise it is the elapsed time between the 
last start timer / stop timer call sequence. Retrieving a global time, on the 
other hand, is a straightforward procedure of making a synchronous API 
call and needs no further explanation. Waiting for a certain period of 
time also involves a single call. After that call, the task that hosts the 
runnable transitions into the waiting state until the requested time 
interval is up. After that, the platform has to activate the thread, i.e., set 
the task’s state to ready. The scenarios for measuring relative time and 
for waiting a certain period of time is shown in Figure 42. 

The time service failure model contains three failure modes, one for each 
feature, which are listed below. An overview of the time services failure 
model is given in Figure 43: 

 timeFM-1: Global Time Failure 

 timeFM-2: Relative Time Failure 

 timeFM-3: Wait Time Failure 
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Figure 42: The scenarios for using time-related services as covered by this failure model. The following 
events are shown in the figure: 1start timer, 2: read timer, 3: stop timer. 
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Figure 43: The meta-model of the time services failure model 

All failure modes of the time service failure model are parameterized by 
time deviation constraints (see 4.3.4 Time) to specify the tolerable 
deviation from the correct time and the time produced by the 
corresponding service. 

timeFM-1: Global Time Failure 

A global time failure occurs if the deviation between the correct global 
time according to the platform’s specification and the time delivered as a 
result by the global time service is bigger than the predefined maximum 
deviation. 

timeFM-2: Relative Time Failure 

A relative time failure occurs if the deviation between the correct time 
between the read timer call and the last start timer call, or the 
correct time between the last start timer, stop timer sequence, 
and the time returned by a read time call is bigger than the predefined 
maximum deviation. 

Start or stop timer omissions/commissions manifest themselves as 
relative time failures at the platform API. Consequently, we did not 
include these failures in the relative time failure model. 

timeFM-3: Wait Time Failure 

A wait time failure occurs if the time between the wait time call and 
the activation of the runnable deviates from the correct time interval by 
more than the predefined maximum deviation. 

Memory Service Failure Model 

This subsection specifies the failure model for a platform’s memory 
services as introduced in subsection 2.1.4. Memory services allow the 
application to access memory that cannot be directly accessed via the 
CPUs memory bus, like a flash device connected via an on-board bus, 
and provide convenience services for memory access, like a file system or 
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a comparable service as, for example, provided by the AUTOSAR NV-
Ram Manager [74]. 

The memory access service failure model differentiates between read 
and write scenarios. Both scenarios begin with the application requesting 
a read or write job. Typically, this job is not processed synchronously but 
stored in a job queue since the corresponding service or the memory 
itself might by busy and the process of reading or writing takes several 
CPU cycles. Therefore, processing the job itself takes a certain period of 
time as well. When a read job is finished, the data that have been stored 
in the corresponding memory address are returned to the ASWC. If the 
write job finishes, there might be a notification to identify the ASWC. 
This process for using memory services is depicted in Figure 44. 

In some platforms, there are also services for managing virtual memory, 
memory mapping, or caches. These kinds of services are not regarded by 
our language. 
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Figure 44: The scenario for accessing indirectly accessed memory : For reading (left side) and writing 
(right side). The following events and intervals are shown in the left figure (read): 1: read 
requested, 2: read started, 3: read finished, 4: result returned, d: read delay. The following 
events are shown in the right figure (write): 1: write requested, 2 write started, 3: write 
finished, d: write delay. 

The memory access failure mode consists of six failure modes, listed in 
the following and depicted in Figure 45: 

 memFM-1: Memory Late Read 

 memFM-2: Memory Read Access Denial 

 memFM-3: Memory Read Data Failure 

 memFM-4: Memory Write Delay 

 memFM-5: Memory Write Access Denial 

 memFM-6: Memory Write Data Failure 
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memFM-1: Memory Late Read 

A memory read delay occurs if the time between the read request 
event and the result returned event is larger than a predefined 
threshold. 

In order to specify the tolerable memory read delay, the memory read 
delay failure is parameterized according to the latency constraint 
introduced in 4.3.4 Time. 

There are no early failures in the memory read failure model, since we 
are convinced that an earlier read than expected will never be safety 
critical. 

memFM-2: Memory Read Access Denial 

A memory read access denial occurs if the service denies the read 
request to the memory address even though the requester ASWC is 
allowed to read from that memory address, or if the service accepts the 
request but does omit to return data. 

 

Figure 45: The meta-model of the memory service failure model 

memFM-3: Memory Read Data Failure 

A memory read data failure occurs if the data that are returned to the 
ASWC are not identical to the data that were written to the provided 
memory address by the last write access. 

This could mean that either the data have been corrupted since the last 
write access (e.g., by other applications or by an SEU) or that the read 
access does not return the data that were stored in the respective 
memory address when the read was requested. 
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memFM-4: Memory Write Delay 

A memory write delay occurs if the time between the write request 
event and the write finished event is bigger than a predefined 
threshold. 

In order to specify the tolerable memory write delay, the memory write 
delay failure is parameterized according to the latency constraint 
introduced in 4.3.4 Time. 

There are no early failures in the memory write failure model, since we 
are convinced that an earlier write than expected will never be safety 
critical. 

memFM-5: Memory Write Access Denial 

A memory write access denial occurs if the service denies write access to 
the memory address even though the requester ASWC is allowed to 
write into that memory address, or if the service accepts the request but 
omits to write data. 

A write to a wrong address would result in a denial of the intended write 
request and a corruption of the data at the address that have been 
written. 

memFM-6: Memory Write Data Failure 

A memory write data failure occurs if the data provided to the service 
are not identical to the data that are stored at the provided memory 
address directly after the write process has finished. 

Scheduling Failure Model 

The scheduling service of a platform is responsible for managing the 
concurrent access of all ASWC to the platform’s CPU or CPUs. Several 
tasks, and therefore the runnables that run in the context of the task, 
compete for this shared resource. Scheduling is successful if each time-
critical runnable meets its specified deadline. 

In accordance with most scheduling models and referring to [75], we 
define a task’s timing model using three variables. The task request time 
ri of task Ti is the point in time when the task execution is requested. 
From this point in time, the task must finish its execution within a certain 
time interval di, the task’s deadline. The third variable is the task’s (worst 
case) execution time ei, which defines the time the task needs to 
complete after it has been activated. If ei is correct, a task needs to be 
activated the latest after the time interval li = di-ei, which is called the 
laxity of the task. 
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From the point of scheduling, it is important to differentiate between 
event-triggered and periodic time-triggered tasks. An event-triggered 
task is triggered by a sporadic event, and triggering the task is therefore 
not directly the platform’s job25. A periodically triggered task, on the 
other hand, is re-requested periodically after a specified time interval pi. 
As soon as the first task request ri is made, every future task request is 
automatically made by the platform’s operating system. 

To summarize: The scheduling requirements of a time-triggered task Ti 
are specified by the triple Ti = (pi, di, ci), whereas the event-
triggered task Tj is specified by the tuple Tj = (di, ci). Figure 46 
shows an overview of the events and time intervals relevant for the 
scheduling process. 

As a third function besides scheduling of time- and event-triggered 
tasks, we consider the execution of interrupts as part of the scheduling 
function. Unlike tasks, which are requested by software, interrupts are 
requested by hardware. After the hardware has requested an interrupt, 
an interrupt controller will eventually make the CPU call the software 
that handles the interrupt, which is called interrupt service routine (ISR). 
Other than that, an interrupt can be regarded much like an event-
triggered task and indeed, event-triggered tasks are often requested 
from within an ISR. The time between an interrupt request and the 
interrupt being served, i.e., the activation of the ISR, is called the 
interrupt latency. This latency depends on multiple aspects, including the 
design of the hardware and the operating system, as well as interrupt 
masking policies and how they are enforced. 

tei
execution time

Task Ti

ri,1
task request

task.state = ready

task activation
task.state = running

execution finished
task.state = stopped

deadlinedi
deadline interval

ri,2
task request

task.state = ready
pi

period  

Figure 46: Events and intervals for task scheduling. The period pi is only relevant for periodically 
triggered tasks. 

25 It is, of course, the platform’s job to request the task after the event has occurred, 
and some sporadic events might also be triggered by the platform. 
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Regarding the scheduling of time-triggered tasks, event-triggered tasks, 
and interrupts, the scheduling failure model consists of the following 
three failure modes, also in Figure 47: 

 schedFM-1: Scheduling Jitter Failure 

 schedFM-2: Scheduling Deadline Failure 

 schedFM-3: Late Interrupt Execution 

Figure 47 depicts two classes of runnable-related scheduling failures: 
TimeTriggeredRunnableSchedulingFailure and 
GeneralRunnableSchedulingFailure. Each failure mode inheriting 
from the first class is only relevant for time-triggered runnables, whereas 
each failure mode inheriting from the second class is relevant for every 
kind of runnable (event- and time-triggered). 

 

Figure 47: The meta-model of the scheduling failure model 

Prior to the introduction of the failure models, we want to make some 
comments regarding the design of the scheduling failure model. First of 
all, the application language is meant to contain demands regarding the 
behavior of the platform. Without additional measures, the platform 
alone cannot guarantee compliance with scheduling demands, since this 
depends on the execution time of the application. Therefore, the 
presented scheduling failure modes do not cover the failure of another 
runnable exceeding its WCET, meaning that every guarantee or demand 
given using these failure modes implicitly assumes that the WCETs are 
correct. In case the application requires protection from other ASWCs 
exceeding their execution time, a protection demand has to be specified. 
Protection demands are introduced in section 4.5.3, protection 
guarantees in section 4.6.3. 

Having said this, we must also note that the WCET of a runnable is not 
completely in control of the runnable. The WCET depends on many 
things, such as the context switching latency of the OS, the WCET of the 
platform services used, and the performance of the computational 
resources, like CPU or memory. In the current version of the VerSaI 
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language, demands regarding the trustworthiness of WCET computation 
are not covered by our language. 

schedFM-1: Scheduling Jitter Failure 

A scheduling jitter failure occurs if the time between two successive 
execution finished events of the same runnable deviates by more 
than a predefined maximum value. 

In order to specify the tolerable jitter, the scheduling jitter failure is 
parameterized according to the jitter constraint introduced in section 
4.3.4 Time. 

schedFM-2: Scheduling Deadline Failure 

A scheduling deadline failure occurs if the runnable finishes its execution 
after its deadline has expired (the time between runnable requested 
and runnable finished is bigger than di). 

In order to specify the deadline, the scheduling deadline failure is 
parameterized according to the latency constraint introduced in section 
4.3.4 Time. 

schedFM-3: Late Interrupt Execution 

A late interrupt execution failure occurs if the time between interrupt 
requested and execution of ISR is larger than a predefined 
maximum delay. 

In order to specify the maximum interrupt latency, the late interrupt 
execution failure is parameterized according to the latency constraint 
introduced in section 4.3.4 Time. 

Basic Execution Failure Model 

So far the failure model has been covering special-purpose services of a 
platform. The basic execution failure model covers the failure modes of 
platform hardware components that have a crosscutting effect on 
almost any service a platform provides. Therefore, we suggest that every 
safety-critical application specifies a detection or avoidance demand for 
each of the failure modes listed below (this can also be done 
automatically by our tool). 

This failure model contains four failure modes, which are also depicted in 
Figure 48: 

 basExFM-1: CPU Failure 
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 basExFM-2: Main Memory Failure 

 basExFM-3: CPU Clock Failure 

 basExFM-4: Power Supply Failure 

basExFM-1: CPU Failure 

A CPU failure occurs if the behavior of the CPU deviates from its 
specification. 

basExFM-2: Main Memory Failure 

A main memory failure occurs if the behavior of the main memory 
(directly accessed memory like cache, RAM, flash) deviates from its 
specification. Such a failure can also be caused by hardware components 
like caches or interconnects used to connect the CPU to the main 
memory. 

 

Figure 48: The meta-model of the basic computation failure model 

basExFM-3: CPU Clock Failure 

A CPU clock failure occurs if the behavior of the CPU clock deviates from 
its specification (i.e,. runs faster, runs slower than specified or stops). 

basExFM-4: Power Supply Failure 

A power supply failure occurs if the behavior of the power supply 
deviates from its specification (i.e., voltage drops, rises, fluctuates or the 
supply fails completely). 

4.4.3 Application Failures 

The application failure package contains the failure modes of an 
application that can be detected by a platform. Unlike the platform 
service failure modes, the application failure modes were not identified 
by a failure analysis of an application. First, this would not be possible 
since applications have no standardized behavior like standardized 
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execution platforms. Second, analyzing an application regarding its 
failure modes would yield every failure mode and not only those that can 
be potentially detected by a platform. Therefore, the platform-detectable 
application failures were derived from standard detection mechanisms 
available for typical platforms. 

As a result of the analysis, this section introduces five different 
application failure modes that can be detected by appropriate 
monitoring facilities. These are: 

 appFM-1: Arrival Rate Failure 

 appFM-2: Inter-Arrival Time Failure 

 appFM-3: Execution Time Deviation 

 appFM-4: Logical Sequence Failure 

 appFM-5: Runtime Failure 

The first three and the last failure modes describe deviations from the 
nominal timing-related behavior of an application. The fourth failure 
mode describes a deviation from the application’s logical behavior. Since 
a multi-purpose execution platform does not per se know the nominal 
behavior of its guest applications, the platform’s monitoring facilities 
must be adaptable, so that an integrator can enable them to detect the 
application’s failures by configuring them appropriately. 

A look at the list of failure modes reveals that there is no demand 
regarding the detection of deadline or time-window misses. This is 
because demands regarding the detection of these failures are specified 
using the scheduling failure. 

Every application failure mode specified in this package is observed on 
the runnable level. Therefore, every application failure mode has an 
architecture reference to a supervised element, which, on the application 
level, points towards a runnable. Figure 49 shows the corresponding 
meta-model including all platform detectable failure modes and their 
architecture references. 

A runnable is the smallest executable entity of an application, and 
consequently, higher-level failures (for example on the ASWC level) can 
usually be inferred by the application using runnable-level failures. If a 
specific type of platform provides detection mechanisms on other 
abstraction levels, this part of the VerSaI language must be extended or 
adapted. 
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appFM-1: Arrival Rate Failure 

An arrival rate failure occurs when the number of times a runnable is 
executed during a certain time interval exceeds or falls below a specified 
threshold. 

To specify the minimum and maximum arrival rates, the arrival rate 
failure contains two integer parameters (min and max). To specify the 
supervision interval, the arrival rate failure contains a time parameter 
(interval). 

Arrival rate monitoring can be used to check for the aliveness of a 
runnable. It is possible to check whether activation of the runnable is too 
frequent or too scarce. The arrival rate is the reciprocal of the inter-
arrival time, as it measures the count of runnable activations per time 
unit. The arrival rate is typically a more coarse-grained measure for the 
aliveness of a runnable than the inter-arrival time, but its implementation 
is also less resource consuming since the arrival rate has to be checked 
only once per time interval. 

 

Figure 49: An excerpt of the meta-model for application monitoring demands 

appFM-2: Inter-Arrival Time Failure 

An inter-arrival time failure occurs when the time between two 
executions of a runnable exceeds or falls below a specified threshold. 

In order to specify the acceptable inter-arrival time, the inter-arrival time 
failure is parameterized according to the latency constraint introduced in 
section 4.3.4 Time. 

Inter-arrival time monitoring can be used to check the aliveness of a 
runnable, but also to check its periodicity. It is possible to check whether 
the inter-arrival time is too long or too short. The arrival time is the 
reciprocal of the arrival rate. Arrival time monitoring is typically a more 
precise measure for the aliveness of a runnable, but it is also more 
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resource consuming since it has to be checked every time a runnable is 
activated. 

appFM-3: Execution Time Deviation 

An execution time deviation occurs when the time between the 
activation of a runnable and the termination of the runnable exceeds or 
falls below a specific threshold. 

In order to specify the acceptable execution time, the execution time 
deviation failure is parameterized according to the latency constraint 
introduced in section 4.3.4 Time. 

Execution time monitoring evaluates the time between the activation of 
the runnable and the termination of the runnable. It is better suited for 
detecting the root cause of a deadline miss than deadline monitoring. 
Execution time monitoring is able to exactly identify the runnable that 
exceeded its execution time. Conversely, when detecting a deadline 
miss, it is impossible to say whether the runnable that missed its deadline 
caused the scheduling failure or any runnable that was scheduled 
before. 

appFM-4: Logical Sequence Failure 

A logical sequence failure occurs when the sequence of points in the 
control flow of the runnable deviates from the possible sequences of a 
nominally working runnable. 

The valid logical sequences of a runnable are typically modeled as a 
graph of checkpoints. If there is no edge between the previous and the 
actual checkpoints, a logical sequence error is detected. 

appFM-5: Runtime Failure 

A runtime failure is an exception that is raised by the general 
computation hardware or by the platform software during the execution 
of the application. Examples of hardware-raised runtime failures are 
divisions by zero, execution of kernel-level instructions in user-mode, or 
access to a protected memory region. Typical runtime failures raised by 
the platform software are invalid access to protected services, use of 
uninitialized services, or invalid service calls (e.g., termination of a task 
while blocking a shared resource). 

The runtime failures available on a specific platform depend on the 
microarchitecture and the platform software (OS and middleware 
components). 
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4.4.4 Platform Failure Reactions 

This section introduces the standardized platform failure reactions 
provided by the VerSaI language. A platform failure reaction is a reaction 
that the platform is able to perform whenever a failure occurs. In the 
context of safety-critical systems, it is common to use the platform to 
perform failure control since the application itself might be unreliable or 
unable to perform a reaction after it has encountered a failure. 
Furthermore, some failure reactions like shutting cannot be performed 
by the application due to a lack of sufficient permissions. 

Comparable to the application failures introduced in section 4.4.3, the 
platform failure reactions presented in this section were also identified 
by analyzing common standardized platforms, like AUTOSAR or IMA 653 
compliant platforms. During our analysis we identified six types of 
platform failure reactions. These are: 

 Restart 

 Shutdown 

 Write Default Signal 

 Send Default Message 

 Indication 

 Handler Execution 

Restart and shut down are generalized reaction types. In order to 
completely specify a shutdown or a restart, the application developer 
needs to specify the object that is restarted or shut down. The options 
are: (A) the task hosting the runnable that is referenced by the demand, 
(B) the partition hosting the ASWC that is referenced by the demand, or 
(C) the complete platform. The corresponding excerpt of the platform 
failure reaction meta-model is shown in Figure 50. 

Restart 

Restart is an often used measure to react to a detected failure. A restart 
basically deletes the current state of the system and puts the system into 
a pre-defined initial state. If the system detects a failure, it is sometimes 
unclear if the failure corrupted the state of the system and/or how to 
repair the corrupted state. In such a case, a restart resets the system 
state. If the failure was transient, the system might behave normally after 
the restart. 

We differentiate between three levels of restart. On the first level, we 
allow demands regarding the restart of tasks. Restarting a task resets all 
runnables that are executed in the context of the task. On the second 
level, there are demands regarding the restart of a partition. A restart of 
a partition will result in a restart of all tasks running in the context of the 
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partition as well as in a reset of all resources held by the partition. On 
the last level, we allow demand for a restart of the platform. Such a 
restart typically involves a restart of the MCU as well as a restart of all 
stateful devices. 

 

Figure 50: An excerpt of the platform failure reaction meta-model . The excerpt shows the part of the 
model that specifies restart and shutdown reactions. 

Shutdown 

Like restarting, shutting the system down is a measure to roll the system 
forward to a known state. However, in case of a shutdown the target 
state is not the initial but the final state of the system. A shutdown is 
typically performed if a failure is detected but there is reasonable 
suspicion that the cause of the failure is permanent (e.g., if the system 
has been restarted several times). Shutting the system down is a 
standard means to put fail-safe systems into their safe state. 

Again, we differentiate between three levels of restart. On the task level, 
all runnables executed in the context of the task are shut down. On the 
partition level, a shutdown affects all tasks running in the context as well 
as all resources held by the partition. On the platform level, the MCU 
and all devices are shut down. 
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Write Default Signal 

Writing a default signal on an output channel is the standard means for 
bringing an actuator to its safe state. Often, the default signal equals the 
state that the output channel has if it is de-energized. In this way, the 
actuator is automatically put into its safe sate if the platform is shut 
down. However, putting the actuator into a safe state is not only 
performed in the course of an overall shutdown but can also be 
demanded if, for example, the ASWC driving the actuator fails. In such a 
case, we allow demanding to write a default signal on a physical output 
channel using the write default signal demand. 

We differentiate between digital default signals and analog default 
signals. A digital default signal can have the default value set to logical 
zero or logical one, whereas an analog default signal can have a floating 
point value combined with a unit (represented by a semantics-less 
string). 

Send Default Message 

Sending a default signal via a communication channel is typically done to 
inform other communication participants about a failure. In case the 
application is unable to send the corresponding default message, the 
platform can be used to perform this task, which is specified using the 
send default message reaction. 

The following EBNF production rules are used to specify demands 
regarding the sending of default messages. The default message itself is 
only represented by a semantics-less string. We show the example 
production rule for a simple reaction demand to send a default message. 
The corresponding complex reaction demand is designed analogously. 

Indication 

Indicating a failure is typically done when the ASWC is able to control 
the failure by itself. In such a case, the platform first detects the failure 
and then indicates the failure to the ASWC. The action to control the 
failure is finally performed by the ASWC. 

Handler Execution 

Comparable to an indication reaction, the handler execution reaction 
leaves the control of the failure to the application. But instead of 
indicating the failure, the platform executes a pre-defined error handler, 
a program written by the application developer. Compared to an 
indication reaction, the handler execution allows for a much quicker 
failure reaction time since the program controlling the failure does not 
need to be scheduled first. 
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4.5 Application Language 

In this section, we will introduce the application language. The 
application language is used by the application developer to specify the 
safety-critical demands regarding the behavior of the platform and is the 
counterpart to the platform language, which will be introduced in 
section 4.6. The specification of the application language uses the 
common types, attributes, and relations that are part of the common 
language introduced in sections 4.3 and 4.4; therefore, we recommend 
reading the corresponding sections before studying the application 
language. 

The application developer uses the application language to specify the 
vertical safety interface of the application. This safety interface contains 
all the assumptions regarding the behavior of the application’s host 
platform(s) that have to be met to validate the application’s safety case. 
If one of these assumptions is not met by a platform, the application 
safety case loses its soundness and deploying the application to such a 
platform may result in an unsafe system. To stress their critical nature, 
we call those assumptions demands. On the other hand, if all demands 
are met by the host platform(s) and the application safety interface is 
correct and complete, the application will execute safely. Correctness 
and completeness of the application safety interface have to be assessed 
and, where appropriate, certified before it can be used for credible 
VerSaI mediation. Such an assessment shall conclude that the application 
is fit for safety-critical execution on an execution platform, provided the 
execution platform fulfills all demands specified in the application’s 
vertical safety interface. 

As mentioned briefly in section 4.2, the structure of the application and 
platform language is based on the observation that there are four major 
classes of safety-related dependencies between an application and a 
platform. Analogously, the application language consists of four basic 
types of identically named demands. These are: platform service 
demands, health monitoring demands, resource protection demands, 
and service diversity demands. 

A platform service demand enables the application developer to specify 
demands regarding the detection or avoidance of platform failures that 
would otherwise affect the safe behavior of the application. In contrast 
to seeing the platform’s role as a cause of failure, it is common practice 
to use the platform as a means for detecting application failures and for 
executing failure containment reactions. To specify the corresponding 
demands, the application developer uses the so-called health monitoring 
demand. In addition to these failure-centric demands, we also have to 
cover the challenges posed by mixed-critical applications that share 
common platform resources and services. To protect highly critical 
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applications from application with lower criticality, the platform must 
provide certain protection mechanisms. The application developer 
demands the availability of these mechanisms using resource protection 
demands. Finally, the last demand class allows specifying service diversity 
demands, which enable the application developer to demand that 
different services are developed diversely/dissimilarly. This, on the other 
hand, enables the application developer to use so-called integrity level 
decompositions in the application-level safety case and to specify the 
resulting demands in the vertical safety interface. 

Figure 51 shows the top-level structure oaf the application language 
meta-model including the different demand classes. You might realize 
that the vertical application (safety) interface does not contain but 
reference the application demands. This is because the application 
demands are contained in appropriate architecture elements of the 
application (see section 4.3.3 for more information on demand 
containment). The mapping between demands and container elements 
will be introduced in the next subsection. 

The following subsections are ordered as follows: Platform service 
demands are introduced in subsection 4.5.1, health monitoring demands 
in subsection 4.5.2, resource protection demands in subsection 4.5.3, 
and service diversity demands in subsection 4.5.4. 

 

Figure 51: The top-level meta-model of the application language 
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4.5.1 Platform Service Demands 

A platform service failure demand enables the application developer to 
specify demands regarding the avoidance or detection of platform 
service failures. It is the first in a series of four top-level demand classes 
that constitute the application language. 

Providing infrastructural services to an application is the primary task of 
every execution platform. The application requires these services in order 
to realize its functions. Consequently, the correct provision of a function 
directly depends on the correct provision of the platform services 
required to realize the function. Therefore, failure of a platform service 
may lead to failure of all functions relying on the service. If one of these 
functions is safety-critical, the consequence is that the platform service 
becomes safety-critical, too. Platform service demands allow the 
application developer to view a platform as a potential source of failure 
and to specify demands regarding these. 

Whenever the application developer uses a platform service, he or she 
has to perform the following steps. First, the effects of the service’s 
possible failure modes on the behavior of the application have to be 
analyzed. To do so, the application developer uses the standardized 
failure modes presented in section 4.4.2, for example as a starting point 
of an FMEA analysis or as a possible basic failure event in an FTA. In case 
a failure mode might lead to a safety-critical failure of the application, 
the application developer has four options: (1) redesign the application 
so that the failure is no longer safety critical; (2) introduce mechanisms 
into the application that detect and control the failure mode in an 
appropriate way; (3) specify a platform service demand that requests the 
platform to detect the failure and either indicate it and leave the control 
to the application, or perform a failure reaction (this is done using health 
monitoring demands, see section 4.5.2); (4) specify an avoidance 
demand. To fulfill an avoidance demand, the platform has to control the 
failure so that there are no visible negative effects for the application. 
Figure 52 gives an overview of an application developer’s design decision 
when encountering a safety-critical platform service failure. 

Figure 52 shows that when the application developer decides to specify 
a platform service demand, the main decision is whether to specify a 
detection or an avoidance demand. Therefore, we continue this section 
by providing further details about the syntax and semantics of detection 
and avoidance demands. 
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Figure 52: Flow chart showing the service failure demand design options of an application developer 
when encountering a platform service failure. Orange rectangles indicate that the 
specification of an application demand is necessary. 

A detection demand is fulfilled if the platform has the capability of 
detecting the corresponding failure. Since detecting a failure is never 
sufficient for controlling a failure, a detection demand must always be 
accompanied by at least one appropriate reaction demand. If no reaction 
demand is specified by the application developer, a default reaction 
demand is generated, which demands that the detected failure must be 
indicated to the application. This enables the application to control the 
detected failure. If the application is unable to control the failure itself, 
the application may use the failure reactions provided by the platform, 
which are specified using health monitoring demands. If that does not 
yield a safe application either, the only remaining option is to specify an 
avoidance demand. 

Furthermore, when specifying a detection demand, the application 
developer has to specify the demanded failure detection time. The failure 
detection time is the time between the occurrence of the failure and the 
starting point of the failure reaction. If the application developer 
specifies a failure detection time of “0 ms”, the corresponding failure 
must be detected before it is able to affect the behavior of the 
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application. This is, for example, possible for any kind of data corruption 
(e.g., signal corruption). In this case, the corrupted signal must be 
detected before the application is able to use the data. 

An avoidance demand is fulfilled if the chance for the corresponding 
platform service failure to occur is acceptably low. Since the VerSaI 
language focuses on systematic failures, the criterion for acceptability is 
specified using integrity levels. Compared to detection demands, 
avoidance demands are usually harder to fulfill. Consequently, when 
specifying an avoidance demand, the chance for successful mediation 
decreases. Furthermore, when an application developer decides to 
specify an avoidance demand, there are two important issues regarding 
its semantics: First, an avoidance demand is not absolute. To fulfill an 
avoidance demand, there must be mechanisms in place that can prevent 
the occurrence of the failure. Yet there might still be a certain probability 
or some special scenarios where the failure mode cannot be avoided. 
Deciding upon the sufficiency of an avoidance mechanism is done during 
the interface mediation step and is based on the integrity level of the 
avoidance demand. Second, an avoidance demand is no correctness 
demand. The platform can fulfill an avoidance demand by transforming 
the corresponding failure into another failure mode when it occurs. A 
demand to avoid a signal corruption can, for example, be implemented 
by detecting the signal corruption, discarding the signal, and thereby 
transforming the corruption into an omission. 

We will now continue with a detailed description of the modeling of 
platform service demands, including additional parameters, the 
integration of the demands into the architecture model of the 
application, and the usage of the common platform service failure 
model. 

At the root of the platform service demand meta-model is the 
differentiation between demands for detection 
(PlatformServiceFailureDetectionDemand) and demands for 
avoidance (PlatformServiceFailureAvoidanceDemand). Based on 
this first differentiation, the meta-model contains different classes for 
different types of failure demands (e.g., 
MutexFailureDetectionDemand). Each of these failure-mode-specific 
demands is related to a specific element of the application model and to 
the corresponding failure modes of the element. Figure 53 shows the 
related part of the platform service demand meta-model. 

Each failure-specific demand is contained26 by a different type of 
application element (e.g., a mutex) and may contain one of the possible 
failure modes of the element (e.g., mutex failures). Using this modeling 

26 Please note that every demand containment is realized by the containment pattern
introduced in section 4.3.4 and depicted in Figure 23. 
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pattern, an abstract platform service failure mode (e.g., a mutex access 
commission) is related to a specific architecture element (mutex_1). This 
turns the abstract failure mode into a failure mode of this specific 
element (a mutex access commission of mutex_1). This pattern is 
necessary since an application often utilizes the same service class in 
several ways, e.g., it uses a communication link to send different signals. 
Different utilizations of the same service may have different safety 
requirements (one signal carries critical information, the other does not). 
Using this modeling pattern, the application developer can specify 
different demands for different utilizations of the same service. Of 
course, when instantiating and parameterizing a platform service 
demand, the application developer must also parameterize the related 
failure mode (see section 4.4.2 for the failure modes of each parameter) 
and the integrity level of the demand (a parameter inherited from the 
abstract interface requirement class, see section 4.3.4 Integrity Level). 

 

Figure 53: The principal structure of the platform service demand meta-model 

Table 7 shows all failure-specific platform service demands including 
their related application elements and failure modes. 

Table 7: A list of all platform service demands including their related application elements and 
failure modes. 

Demand Related 
application 

element 

Related failure 
mode 

Failure model 

MutexFailureDemand MutexService-
Need 

MutexFailure Synchron.-
FailureModel 

EventFailureDemand EventService-
Need 

EventFailure “ 
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Communication-
FailureDemand 

Communication-
Port 

Communication-
Failure 

Communication-
FailureModel  

DigitalInput-
FailureDemand 

DigitalSensorIn-
Port 

DigitalInput-
Failure 

InputFailure-
Model 

AnalogInput-
FailureDemand 

AnalogSensorIn-
Port 

AnalogInput-
Failure 

“ 

DigitalOutput-
FailureDemand 

DigitalActuator-
OutPort 

DigitalOutput-
Failure 

OutputFailure-
Model 

AnalogOutput-
FailureDemand 

AnalogActuator-
OutPort 

AnalogOutput-
Failure 

“ 

GlobalTimeFailure-
Demand 

GlobalTime-
ServiceNeed 

GlobalTime-
Failure 

TimeService-
FailureModel 

RelativeTime-
FailureDemand 

TimerService-
Need 

RelativeTime-
Failure 

“ 

WaitTimeFailure-
Demand 

WaitService-Need WaitTime-
Failure 

“ 

MemoryService-
FailureDemand 

MemoryService-
Need 

MemoryService-
Failure 

MemoryService-
FailureModel 

TTRunnableScheduling-
FailureDemand 

TimeTriggered-
Runnable 

TTRunnable-
Scheduling-
Failure 

Scheduling-
FailureModel 

RunnableScheduling-
FailureDemand 

Runnable General-
Runnable-
Scheduling-
Failure 

“ 

InterruptScheduling-
FailureDemand 

ISR Interrupt-
Scheduling-
Failure 

“ 

CoreRelatedFailure-
Demand 

Runnable CoreRelated-
Failure 

BasicExecution
-FailureModel 

MainMemoryFailure-
Demand 

MemorySection MainMemory-
Failure 

“ 

PowerSupplyFailure-
Demand 

ASWC PowerSupply-
Failure 

“ 

In the following, we will introduce some example platform service 
demands based on the running example introduced in section 4.1. 

Example D1 presents a failure avoidance demand for a sampling latency 
failure of the analog input signal v_raw_A. 

Example D1:  A sampling latency of the input signal v_raw_A larger than 0.2ms must 
be avoided (ASIL B). 
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Example D2 presents a failure detection demand for a value failure of 
the output signal a_set_fin. 

Example D2: A value failure of the output signal a_set_fin larger than 0.05V must be 
detected within 0.05ms (ASIL C). 

Example D3 presents a corruption failure of the communication signal 
v_ref without any specification of a failure detection time. The 
semantics in this case is that the message corruption must be detected 
before the message reaches the corresponding software component (in 
this case v_controller). 

Example D3: A corruption of the signal v_ref must be detected (ASIL C). 

4.5.2 Health Monitoring Demands 

A health monitoring demand enables the application developer to 
specify demands regarding the detection of application failures and the 
execution of failure reaction. This is the second in a series of four top-
level demand classes that constitute the application language. 

As described in section 4.5.1, the execution platform can be regarded as 
a source of failure. But it is also common for the platform to take the 
opposing role and provide safety mechanisms to the application. To 
some extent, the platform can be regarded as an independent 
component that is able to keep track of most of the application’s 
actions. This makes the platform a suitable candidate for monitoring 
application failures. In addition to its partial independence of the 
application, the platform has many rights for performing actions (like a 
shutdown) that the application does not have, which allows the platform 
to provide more powerful failure reactions. 

To cover both aspects, the health monitoring demand model is divided 
into two parts. The first part contains application monitoring demands, 
allowing the developer to specify demands regarding the detection of 
application failures. The second part contains failure reaction demands, 
allowing the application developer to specify demands regarding the 
execution of failure reactions. Figure 54 gives an overview of the health 
monitoring model. 

In the following two subsections, we will first introduce application 
monitoring demands  and then failure reaction demands. 
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Figure 54: The health monitoring meta-model 

Application Monitoring Demands 

The application developer specifies an application monitoring demand to 
strengthen the fault tolerance of the application under development. 
The application monitoring demand requires the platform to detect a 
deviation from the application’s nominal behavior, i.e., an application 
failure. The platform has the capability of monitoring the behavior of the 
application since the platform is involved in the realization of most of the 
application’s functionality. Of course, a plain execution platform cannot 
generally tell an application’s nominal behavior from a failure; hence, the 
platform provides general-purpose monitoring mechanisms that have to 
be configured. This configuration is performed by the integrator, which 
then enables the platform to detect the failures of guest applications. 

There are many reasons for an application developer to specify an 
application monitoring demand. The first is to protect the application 
from design faults. Some standards demand the application to be 
monitored if its criticality exceeds a certain level. But application 
monitoring demands are also suitable to detect failures where the root 
cause is not found in the application itself. It is also possible that a failure 
external to the application may cause a failure that is perceived as a 
deviation of the application’s behavior (the omission of another 
application to trigger an event can easily lead to a timing failure of the 
supervised application). Therefore, the application developer also 
specifies application monitoring demands if the application uses 
untrusted components and the failure of the untrusted component may 
manifest itself as a detectable application failure. 

If the application developer decides to specify an application monitoring 
demand, an application monitoring demand is instantiated (see Figure 
54). Unlike platform service demands, an application monitoring demand 
is not directly contained in the element that shows the failure mode, i.e., 
the supervised runnable, but by an application monitoring need (see 
annex A.2). The model is designed like this because an application 
monitoring need is always deployed to an application monitoring service 
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(see annex A.3), allowing the mediation algorithm to directly check the 
available monitoring capabilities for their sufficiency. 

When the demand is instantiated, the developer chooses an application 
failure mode from the application failure model specified in section 
4.4.3. As described in section 4.4.3, application failures reference an 
executable unit of the corresponding application to identify the 
supervised entity. Where applicable, the application developer has to 
parameterize the failure mode chosen. The parameters of the application 
failure modes are also specified in section 4.4.3. Since avoiding 
application failures does not lie within the power of the application, 
every application monitoring demand is automatically a detection 
demand, which requires the application developer to specify a failure 
detection time (see section 4.5.1 for more information regarding failure 
detection time). 

In the following, we will introduce some example application monitoring 
demands based on the running example introduced in section 4.1. 

Assume that the v_controller software component contains one 
executable/job called v_controller_main that has an execution time 
of 0.015ms. Example D4 specifies an application monitoring demand 
that demands the detection of deviations from this nominal execution 
time with a small safety margin of 0.001ms. 

Example D4: The platform must detect an execution time of the executable 
v_controller_main of more than 0.016ms (ASIL C). 

Example D5 specifies another application monitoring demand that 
requires the supervision of the logical execution sequence of 
v_controller_main. The prerequisite for configuring the 
corresponding monitoring mechanism is specified in the corresponding 
guarantee (see Example G4). 

Example D5: The platform must detect a logical sequence failure of the executable 
v_controller_main (ASIL C). 

Failure Reaction Demands 

The application developer specifies a failure reaction demand to request 
a failure controlling reaction from the platform. In an integrated 
architecture, the application is only allowed to use the platform API to 
interact with the platform software and hardware. This design restriction 
protects the platform and other applications from erroneous 
applications, but also limits an application’s freedom to perform certain 
failure recovery reactions. Therefore, an application uses the platform to 
explicitly trigger these restricted recovery reactions. In addition to the 
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extended permissions of the platform, the platform can be seen as an 
independent element to the application. When an application-related 
failure occurs, this may render the affected application unable to 
perform a reaction, whereas the platform might still be able to react. 
Consequently, the platform can be used to perform recovery reactions 
when the reliability of the application is in question. 

As stated above, there are two reasons for an application developer to 
specify a failure reaction demand: (1) if the application has insufficient 
rights to perform the required reaction, and (2) if, as a consequence of a 
failure, the application is unable or unreliable to recover from the failure 
itself. Depending on whether the application is capable of performing or 
triggering recovery reactions in case of failure, the VerSaI language 
offers two types of failure reaction demands: request-triggered reaction 
demands and detection-triggered reaction demands. The application 
developer uses a request-triggered reaction demand if the application is 
capable of triggering the reaction but is unable to autonomously 
perform the recovery reaction. A request-triggered reaction is performed 
by the platform but triggered by the application by calling the 
corresponding API function. By using this kind of reaction demand, the 
application is in full control of starting the recovery reaction. 

The application developer uses a detection-triggered reaction demand if 
the application is not reliable enough to trigger the reaction itself. In 
case of a detection-triggered reaction demand, the platform 
automatically performs the reaction as soon as the related failure occurs. 
If it uses detection-triggered reaction demands, the application has no 
responsibility in the process of starting or executing the failure recovery. 
However, this kind of demand can only be used if the platform is aware 
of the failure that triggers the reaction, which restricts these kinds of 
demands to platform service failures and platform-detectable application 
failures. Failures that are internal to an application cannot automatically 
trigger platform reactions. But since internal application failures are 
detected by the application, it is safe to assume that the application is 
also able to reliably trigger the appropriate platform failure reaction. 

When the application developer specifies a failure reaction demand, no 
matter which type, he or she specifies the failure recovery reaction the 
platform has to perform. This is done using the common recovery 
reactions specified by the common platform failure reactions (see section 
4.4.4). When a failure reaction contains parameters, the developer must 
also configure the corresponding reaction appropriately. 

Furthermore, every reaction demand requires the specification of a 
failure reaction time. A failure reaction time specifies the maximum time 
interval that may elapse between triggering the recovery reaction and 
finishing the execution of the reaction. The application developer uses 
the failure reaction time parameter together with the failure detection 
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time parameter to ensure that the time between failure occurrence and 
failure recovery is smaller than the failure tolerance time given by the 
physical process controlled by the application. In case the failure 
tolerance time is particularly small, the application developer might 
consider using detection-triggered reaction demands rather than 
request-triggered reaction demands, as this type of demand usually 
allows for quicker reaction time. 

In case the application developer specifies a detection-triggered reaction 
demand, he or she must specify which failure detection triggers the 
reaction. This is done by referencing a corresponding detection demand, 
i.e., a platform service detection demand or an application monitoring 
demand that is already specified. This identifies the trigger condition of 
the automatic recovery reaction and assures that the application 
developer specifies a failure detection triggered reaction demand only if 
the corresponding detection demand is specified as well. If the 
application developer wants to specify that several failures trigger the 
same reaction (e.g., a standard shutdown), several detection triggered 
reaction demands must be specified. 

In the following, we will introduce some example failure reaction 
demands based on the running example introduced in section 4.1. 

Examples D6 and D7 show two request-triggered reaction demands 
owned by the software component monitoring. This software 
component is capable of detecting deviations in the redundantly 
measured vehicle velocity and demands the restart of both sensor 
software components in case such a deviation is detected. 

Example D6: Upon request, the platform must restart the task hosting executable 
v_sensorSWC_A_main (ASIL C). 

Example D7: Upon request, the platform must restart the task hosting executable 
v_sensorSWC_B_main (ASIL C). 

Example D8 specifies a detection-triggered reaction demand owned by 
the software component throttleSWC. This software component 
demands that upon detection of the previously specified output value 
failure of a_set_fin (see Example D2), the platform automatically sets 
the output signal to its safe default value. Please note that the output 
value failure is unambiguously defined. The corresponding detection 
demand that triggers the reaction is referenced in the meta-model (see 
detectionDemand relation in Figure 54). 

Example D8: Upon detection of the output value failure of signal a_set_fin, the 
platform must set the signal to the default signal 0.0V within 0.05ms 
(ASIL C). 
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4.5.3 Resource Protection Demands 

A resource protection demand enables the application developer to 
specify demands regarding protection from interferences. This is the 
third in a series of four top-level demand classes that constitute the 
application language. 

When multiple applications share the resources of an execution 
platform, so-called interferences can occur. An interference is a special 
type of failure scenario, which is characterized by the following cause-
effect chain: At the beginning of an interference, an application uses a 
shared platform resource, typically in an erroneous manner (e.g., it uses 
it for too long or modifies it in the wrong way). This resource utilization 
affects the resource in such a way that it is unable to provide its service 
as demanded by another application. This other application is affected 
by the misbehavior of the causative application, as it perceives a failure 
of the platform resource, comparable to those specified in subsection 
4.5.1 Via this additional failure propagation channel, applications can 
interfere with each other even if there is no functional dependency 
between the corresponding applications. 

The possibility of an interference with no functional dependency is one 
reason why interferences are hard to control by an application. An 
application is per se unaware whether a resource is shared or not, since 
in an integrated architecture, the deployment is specified only after the 
application has been developed. Therefore, the application does not 
know what kind of interference protection is required or if protection is 
required at all. The other reason why interferences are hard to handle for 
an application is that interferences directly affect the infrastructural 
resources provided by the platform. In many cases, the application 
depends on these resources to perform the most basic functionality 
(think of the CPU or the main memory). A failure of such an 
infrastructural resource leaves the application very badly equipped to 
deal with abnormal situations. Therefore, interferences are typically 
handled by the platform, which in most cases even prevents them. 

Unhandled interferences are especially severe in a mixed-critical system. 
A system is called mixed-critical if the same platform hosts applications 
with different criticality/integrity levels. In such a scenario, interferences 
open channels for a failure of a low-critical application to propagate to a 
high-critical application, and potentially cause the high-critical 
application to fail. To prevent such a scenario, most safety standards 
demand that all applications running on the same platform are 
developed according to the highest integrity level amongst them if the 
platform is unable to prevent or control interferences. 

To demand protection from such an interference, the application 
developer specifies a resource protection demand. Specification of a 
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resource protection demand always includes specification of the resource 
to be protected and the critical failure modes of the resource from the 
perspective of the demanding application. A protection demand is 
fulfilled if the platform is able to guarantee that all applications with 
lower criticality than the demanding application are unable to cause one 
of the critical failures of the corresponding resource. Which failures are 
critical differs between applications and has to be specified by the 
application developer. By specifying the failure modes that are actually 
critical, the application developer facilitates mediation, as the platform 
must only protect the resource regarding this limited number of failures. 

In the literature, most authors differentiate between temporal and 
spatial interferences. Temporal interferences can be encountered when 
using a time-partitioned resource like the ECU. If overutilization of this 
resource by a resource user occurs, other users of the resource are 
affected by the resulting drop in the resource’s performance. Spatial 
interferences, on the other hand, are encountered with space-
partitioned resources like memory. A spatial interference occurs when 
one resource user manipulates a segment of a space-partitioned 
resource belonging to another user. However, there are resources like 
memory that have space- and time-partitioned aspects. Memory, for 
example, is space-partitioned regarding its separation into address 
regions, where a range of addresses represent a so-called memory 
segment that can belong to a single program or a restricted set of 
programs. On a system with different concurrent memory users, such as 
in a multi-core system, memory is also time-partitioned, since usually 
only one core is able to access a memory module at a time. 

The VerSaI language differentiates between two kinds of resource 
protection demands: protection demands for the basic execution 
resources (memory and CPU) and protection demands for the standard 
platform services, comparable to platform service demands. The 
relatively coarse-grained failure classification of temporal and spatial 
failures is only used for basic execution protection demands, whereas we 
use the common failure model specified in section 4.4.2 for the service 
protection demands to provide a more fine-grained differentiation of 
failure modes. Figure 55 shows the principal structure of the resource 
protection meta-model. 

Regarding the integration of resource protection demands into the 
architecture model of the application, we have to again differentiate 
between basic execution resource protection demands and service 
protection demands. Since memory and CPU utilization is not explicitly 
modeled using service needs, a memory protection demand is contained 
in the ASWC’s memory section that must be protected from 
interferences and a CPU protection demand references the runnable 
requiring protection. Other than that, the related architecture elements 
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of the other protection demands are the same as specified for platform 
service demands in Table 7 of section 4.5.1. 

 

Figure 55: An excerpt of the resource protection meta-model 

To reduce redundant work for the application developer, the VerSaI 
language allows for an automatic protection demand specification in 
addition to manual protection demand specification. In case of a manual 
specification, the application developer has to specify which resource 
utilization requires protection and – a most tedious task – which failure 
modes are critical. In case automatic specification is configured, the 
VerSaI mediator will automatically generate a resource protection 
demand for every service utilization including all critical failures. To do 
so, the automatic service uses the already specified platform service 
failure demands. The assumption underlying automatic specification is 
that if a service failure is critical regarding platform failures, then it 
should be critical regarding interference-related causes as well. 

In the following, we will introduce some example resource protection 
demands based on the running example introduced in section 4.1. 

Example D9 introduces a typical but also simple protection demand. The 
demand requires the protection from temporal interferences of the 
executable v_controller_main via the shared resource CPU. 

Example D9: The executable v_controller_main must be protected from temporal CPU 
interferences (ASIL C). 

Example D10 introduces a more complex protection demand owned by 
the software component monitoring, which uses the event service 
provided by the host platform. The requirement demands the protection 
from interferences via this shared event service. The specification 
includes a list identifying two failure modes that are not allowed to occur 
as a result of an interference. 
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Example D10: The monitoring.error_event service need must be protected from 
interferences that cause the failure modes Event Signal Commission, 
Event Timeout Failure (ASIL C). 

4.5.4 Service Diversity Demands 

A service diversity demand enables the application developer to specify 
demands regarding the diverse design and implementation of platform 
services. This is the final demand class in a series of four top-level 
demand classes that constitute the application language. 

According to [76], Design diversity is a defense against “common mode” 
or “common cause” development errors in safety critical systems. It is a 
system design concept that attempts to reduce the possibility that the 
failure stemming from a common development error in one functional 
failure path will result in another functional failure path. This is 
accomplished by designing a functional failure path to be sufficiently 
different to minimize the likelihood that the error will manifest itself in 
another functional failure path implementing the system function and, 
then, allow an unacceptable failure event. 

The concept of diversity is used in many safety standards like DO-178C 
[60], IEC 61508[59], and [46], although the terminology differs as some 
standards use the term dissimilarity or independence to describe the 
same or a comparable concept. Recapitulating the above definition, 
diversity is used so as to reduce the likelihood of common-cause 
systematic failures in redundant components. Depending on the safety 
standard, there are different demands that have to be fulfilled before 
diversity can be assumed. Typically, safety standards ask at least for 
diverse design of the relevant components and for independence 
between the teams developing them. Please note that diverse design 
and implementation are no guarantee for the freedom from common 
cause systematic failures, but most certification authorities accept 
diversity as a measure to support the corresponding claim. 

In a federated architecture, diversity usually means that there is a 
redundant functional architecture, where the redundant channels have 
been implemented on the technical level using different platforms. 
However, in an integrated architecture, it is also possible that the 
redundant channels are deployed to the same platform. To support such 
an architecture, services offered by the platform, like two input channels, 
are sometimes designed and implemented diversely. 

Overall, there are mainly two use cases for having diverse services on an 
execution platform. First, diverse services can be combined into one 
virtual service by the platform developer to provide a more reliable 
service. This design pattern, however, is invisible to the application, since 
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the application only sees the emerging virtual reliable service. The second 
use case applies, if the application is designed according to a redundant 
architecture (e.g., 1 out of 2) and both channels of the redundant 
application are deployed to the same platform. In this case, the services 
used by the redundant channels must be developed diversely in order 
not to introduce systematic common-cause failures via the platform. To 
support this use case, the VerSaI language allows the application 
developer to specify service diversity demands. 

If service diversity demands are specified in a comprehensive manner, a 
diversity demand is only fulfilled if the corresponding services fail 
independently with regard to every failure mode of the relevant service 
type. If we regard the communication service as an example, the VerSaI 
language differentiates between five failure modes as specified in 
subsection 4.4.2 Communication Failure Model. If an application 
developer demands general diversity between two communication 
channels, the demand can only be fulfilled if the corresponding channels 
fail independently with regard to all five failure modes. 

To specify diversity demands individually, the VerSaI language offers 
failure-mode precise diversity demand specification. In this case, the 
application developer first identifies the critical failure modes of a service 
utilization, and then demands service diversity only regarding critical 
failure modes. If, for example, the omission failure of a communication 
channel was the only critical failure mode in a specific use case, it would 
not matter if there were systematic common causes for message 
corruptions on both diverse communication channels. Comparable to 
the automatic specification of resource protection demands, the 
application’s demands regarding platform service failures (see section 
4.5.1) can be used to identify critical failure modes automatically and 
specify the diversity demand accordingly. 

In the VerSaI language, there are three kinds of service diversity 
demands: input service diversity demands to demand the independence 
of input services, communication service diversity demands to demand 
the independence of communication links, and output service diversity 
demands to demand the independence of output services. We allow 
specifying diversity demands for only these service types since these are, 
to the best of our knowledge, the only types that are usually developed 
diversely on an execution platform. 

When specifying a diversity demand, the application developer has to 
specify two channels that have to be developed diversely. Of course, the 
application developer is unable to directly specify a channel since the 
channel is a platform element. As a consequence, the developer specifies 
the corresponding ports of the application to demand in a transitive 
manner that the channels the ports are going to be deployed to are 
developed diversely. The VerSaI language only allows the specification of 
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two-channel diversity since it is uncommon to have more than two 
diversely developed services on one platform. 

In addition to the diverse channels, the application developer has to 
specify the failure modes of the channels that need to be independent. 
The application developer specifies this by picking a set of relevant 
failure modes from the appropriate failure model presented in section 
4.4.2. If the application developer specifies a set of failure modes, every 
combination of failure modes must be independent. As a point in case, 
assume that there is a diversity demand that refers to the channels ch1 
and ch2 and contains the failure modes fm1 and fm2. In this case, all of 
the following pairs of failure modes must be independent to fulfill the 
demand: (ch1.fm1,ch2.fm1), (ch1.fm1,ch2.fm2), 
(ch1.fm2,ch2.fm1) (ch1.fm2, ch2.fm2). 

Finally, all service diversity demands are contained in the application itself 
since the demand usually spans several ASWCs, leaving only the 
application itself as a suitable container. Figure 56 shows the resulting 
service diversity meta-model. 

 

Figure 56: The service diversity meta-model 

In the following, we will introduce some example service diversity 
demands based on the running example introduced in section 4.1. 

The running example application contains two redundant sensor 
software components that read redundant vehicle velocity sensor values. 
Example D11 specifies a service diversity demand for the redundant 
sensor signals v_raw_A and v_raw_B. If this demand is fulfilled, the 
application developer can design an application safety case based on the 
assumption that the specified common cause failures are avoided by the 
platform design. 

Example D11: The analog input channels used to read the input signals v_raw_A and 
v_raw_B must be developed diversely. The following common-cause 
failure shall be avoided by means of diverse design: Analog Input Value 
Failure (ASIL C). 
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4.6 Platform Language 

In this section, we will introduce the platform language. The platform 
developer uses the platform language for the specification of safety-
related guarantees regarding the behavior of the platform. These 
guarantees can be used for the mediation of demands specified using 
the VerSaI application language introduced in section 4.5. Just like the 
application language, the specification of the platform language is based 
on the common types, attributes, and relations specified by the common 
language introduced in sections 4.3 and 4.4, and to some extent on the 
platform model, which is presented in Annex A.3. 

Prior to the description of the platform language we want to note that 
the overall design of the platform language is in many aspects 
comparable to the design of the application language, but also differs 
significantly in other aspects. In order to avoid repeating things that 
were already specified in the previous section, we will refer the reader to 
the specification of the application language where appropriate. 
However, this is not always possible in order to keep up the flow of 
reading. 

The platform developer uses the platform language to specify the vertical 
safety interface of the platform. The platform safety interface contains all 
the guarantees regarding the behavior of the platform that can be used 
to fulfill the demands of the platform’s guest applications. In order to 
provide a sufficient level of trustworthiness, the platform development 
process must include steps that provide evidence about the reliability of 
the guarantees. In certain industries, it might also be necessary for the 
platform to undergo assessment or certification; the guarantees can then 
be used to support the safety case of the guest applications. 

The structure of the application and platform language is based on the 
observation that there are four major classes of safety-related 
dependencies between an application and a platform. Analogously to 
the application language, the platform language consists of four basic 
types of guarantees: platform service guarantees, health monitoring 
guarantees, resource protection guarantees, and service diversity 
guarantees. 

With platform service guarantees, the platform developer specifies the 
platform’s capabilities of providing reliable infrastructural services and 
detecting failures should they occur. Health monitoring guarantees 
enable the platform developer to specify the platform’s mechanisms for 
detecting application failures and executing failure control reactions. 
Resource protection guarantees, on the other hand, are used to specify 
the platform’s capability of protecting resources from interferences. 
Finally, using service diversity guarantees, the platform developer 
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specifies which platform services are developed diversely and can 
therefore be used in various redundancy safety concepts. 

Figure 57 shows the top-level structure of the platform language meta-
model including the different demand classes. If you compare this figure 
with Figure 51 depicting the structure of the application language, you 
will see the analog structure of both models, which simplifies mediation. 
Just as in the application language, guarantees are also not contained in 
the vertical platform interface, but in the corresponding service or 
element that is mainly responsible for providing the guarantee. The 
containment relations of the different guarantees will be introduced in 
the following subsection. 

Regarding the parameterization of demands, failure modes, and failure 
reactions, the semantics of the platform language is completely different 
than the semantics of the application language. In the case of the 
application language, parameters are used to specify that single relevant 
failure mode or reaction as precisely as possible. The platform developer, 
however, does not want to specify one failure mode or reaction, but the 
set or the range of failure modes/reactions that the platform is capable 
of handling. To allow this, specifying parameters always spans a range of 
possible failure modes or reactions. For instance, if a platform developer 
specifies a failure detection time of x ms, this means that all failure 
modes with a detection time equal to or longer than x ms can be 
handled. 

Platform service guarantees will be introduced in subsection 4.6.1, 
health monitoring guarantees in subsection 4.6.2, resource protection 
guarantees in subsection 4.6.3, and finally service diversity guarantees in 
subsection 4.6.4. 
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Figure 57: The top-level meta-model of the platform language 

4.6.1 Platform Service Guarantees 

A platform service failure guarantee enables the platform developer to 
specify guarantees regarding the platform’s capabilities of avoiding or 
detecting failures of its provided services. This is the first in a series of 
four top-level guarantee classes that constitute the platform language. 

In order for a platform to be used in a safety-critical system, it must 
provide safe services to enable an application to provide safe functions. 
Safety is typically achieved by one of the following means [77]: 

A) Fault tolerance is intended to preserve the delivery of safe service in 
the presence of active faults. Fault tolerance is a design measure that 
usually involves the development of mechanisms for performing error 
detection and error handling. Regarding platform services, this means 
that the platform must be able to detect erroneous services and allow 
for appropriate error handling (the latter aspect is covered in the next 
section). Error handling does not necessarily imply that the service user 
perceives the service as failed. If the platform is able to perform error 
handling in a fail-operation manner (e.g., using rollback or redundancy), 
the service users might be able to perform their tasks uninterruptedly. 

B) Fault avoidance or fault prevention is attained by quality control 
techniques employed during the design and manufacturing of hardware 
and software. They include structured programming, information hiding, 
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modularization, etc., for software, and rigorous design rules for 
hardware. 

C) Fault removal is performed both during the development phase, and 
during the operational life of a system. Fault removal during the 
development phase of a system life-cycle consists of three steps: 
verification, diagnosis, correction. Verification is the process of checking 
whether the system adheres to given properties, termed the verification 
conditions. If it does not, the other two steps follow: diagnosing the 
fault(s) that prevented the verification conditions from being fulfilled, 
and then performing the necessary corrections. In other words, fault 
removal includes verification and validation measures like testing, 
inspection, static analyses, model checking, etc. 

Just like platform service demands, platform guarantees are divided into 
detection and avoidance guarantees (for more information regarding the 
semantics of detection and avoidance, please refer to section 4.5.1). The 
availability of a platform service guarantee, be it detection or avoidance, 
is mainly determined by the implemented fault tolerance mechanisms. 
The integrity level of the provided guarantee, however, is determined by 
the fault avoidance and fault removal steps that the platform developer 
performed during the platform development process. Which kind of 
development process is sufficient to claim a certain level of integrity is 
usually specified by the applicable safety standard. On the other hand, 
determining whether a certain composition of mechanisms is sufficient 
to claim the detection or avoidance of a failure must be argued by the 
platform developer on a case by case basis27. 

The steps involved in developing a certain behavior that is backed by 
evidence and compliant with a safety standard is relevant for every kind 
of execution platform. However, if the execution platform is part of an 
integrated system it is always developed independent of the guest 
applications. Consequently, the platform guarantees have to be chosen 
before the applications and their demands are known. In order to pick 
the right guarantees, the platform developer has to rely on experience or 
on standardized safety concept patterns in the relevant industrial 
domain. If the platform is developed for the automotive industry, it 
should be capable of hosting an application that is safeguarded using 
the standardized E-Gas monitoring concept. 

We will now continue with a description of the modeling of platform 
service guarantees, including additional parameters, the integration of 
the demands into the architecture model of the application, and the 
usage of the common platform service failure model. 

27 There are some standards, like [59] and [46], that provide guidelines for the choice 
of mechanisms that are appropriate for handling certain failure modes. 
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On the top level, platform service guarantees are separated into 
guarantees for failure detection 
(PlatformServiceFailureDetectionGuarantee) and for failure 
avoidance (PlatformServiceFailureAvoidanceGuarantee). Those 
abstract guarantees are further differentiated into failure- or element-
specific guarantees, like communication failure detection and avoidance 
guarantees. The platform developer instantiates these guarantees to 
specify the safety-related behavior of the platform. To configure the 
guarantee, the platform developer chooses the related platform element 
of the corresponding type (e.g., a communication link for 
communication failure guarantees) and a failure from the matching 
failure model (e.g., the corruption failure from the communication 
failure mode). The related element and the related failure mode are 
specified using containment relations. The guarantee is contained in the 
related platform element and contains the related failure mode. 

Regarding the parameterization of the guarantee, the platform 
developer has to specify the integrity level of the guarantee (a parameter 
inherited from the abstract interface requirement class, see section 
4.3.4Integrity Level), the failure detection time of the guarantee in case it 
is a detection guarantee (see section 4.5.1), and all the parameters of 
the related failure-mode (see section 4.4.2 for the failure modes of each 
parameter). The platform developer uses the parameters to describe the 
range of detectable or avoidable failures. Specifying a failure detection 
time of x ms means that failures with a failure detection time of x ms or 
larger can be detected. 

Figure 58 shows an excerpt of the platform service guarantee meta-
model. 

 

Figure 58: The top-level structure of the platform service guarantee meta-model 
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Before we provide a list of all available platform service guarantees, an 
explanation of a particularity of the platform model is in order. There are 
certain platform elements called platform objects that are generated by 
the integrator during platform configuration, as opposed to every other 
kind of platform element (e.g., an input channel) that is modeled by the 
platform developer during platform development. Every platform object 
is a logical software object that can only be generated when the needs 
of the host applications are known. Example platform objects are 
software timers, semaphores, mutexes, events, partitions, etc. 

Since these elements are only generated during integration, the platform 
developer cannot directly specify guarantees for them. Instead, the 
platform developer specifies a platform object guarantee template 
containing the guarantees of the platform object. This guarantee 
template is contained in the platform element or platform service that 
provides the platform object. As an example, the mutex guarantee 
template is contained in the mutex service. The VerSaI mediator will 
automatically generate these object-related guarantees when the 
integrator instantiates a platform object (see section 5.1.1). 

As a consequence of this procedure, object-related guarantee types can 
be contained in the service providing the platform object, and in the 
platform object itself. Nevertheless, the object-related guarantees 
contained in the service play no role in mediation. As soon as the 
integration phase is finished, the mediation algorithm will only use the 
guarantees generated for the platform object to fulfill the application 
guarantees. 

Table 8 shows all available platform service guarantees, including their 
related platform elements and their related failure modes. Platform 
object related platform service guarantees are distinguished by having 
two related platform elements, the platform object container and the 
platform object itself. 

Table 8: A list of all platform service demands including their related application elements and 
failure modes. 

Guarantee Related 
platform 
element 

Related failure 
mode 

Failure model 

MutexFailure 
Guarantee 

MutexService 
Mutex 

MutexFailure Synchronization-
FailureModel 

EventFailure 
Guarantee 

EventService 
Event 

EventFailure “ 

Communication 
FailureGuarantee 

Communication 
Link 

Communication-
Failure 

Communication-
FailureModel 

DigitalInput DigitalInput DigitalInput- InputFailure-
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FailureGuarantee Channel Failure Model 

AnalogInput 
FailureGuarantee 

AnalogInput 
Channel 

AnalogInput-
Failure 

“ 

DigitalOutput 
FailureGuarantee 

DigitalOutput 
Channel 

DigitalOutput-
Failure 

OutputFailure-
Model 

AnalogOutput 
FailureGuarantee 

AnalogOutput 
Channel 

AnalogOutput-
Failure 

“ 

GlobalTimeFailure 
Guarantee 

GlobalTime-
Service 

GlobalTime-
Failure 

TimeService-
FailureModel 

RelativeTime 
FailureGuarantee 

TimerService 
Timer 

RelativeTime-
Failure 

“ 

WaitTimeFailure 
Guarantee 

WaitService WaitTime-Failure “ 

MemoryService 
FailureGuarantee 

MemoryService 
File 

MemoryService-
Failure 

MemoryService-
FailureModel 

TTRunnable-
Scheduling 
FailureGuarantee 

TimeTriggered 
Task 

TTRunnable-
Scheduling-
Failure 

Scheduling-
FailureModel 

RunnableScheduling 
FailureGuarantee 

Task GeneralRunnable-
Scheduling-
Failure 

“ 

Interrupt-
Scheduling-
FailureGuarantee 

Interrupt Interrupt-
Scheduling-
Failure 

“ 

CoreRelatedFailure 
Guarantee 

Core CoreRelated-
Failure 

BasicExecution-
FailureModel 

MainMemoryFailure 
Guarantee 

MemoryModule 
MemorySegment 

MainMemory-
Failure 

“ 

PowerSupplyFailure 
Guarantee 

Platform PowerSupply-
Failure 

“ 

In the following, we will introduce some example platform service 
guarantees based on the running example introduced in section 4.1. 

The platform service guarantee Example G1 specifies a guarantee 
provided for the ADC input channel called voltage_in. Please note that 
the input channel comprises hardware as well as software components, 
such as drivers provided by the platform. 

Example G1:  A sampling latency of input signals received via voltage_in larger than 
0.1ms can be avoided (ASIL B). 
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Example G2 specifies a guarantee provided by the can0 communication 
link. Comparable to the previous guarantee, can0 comprises hardware 
(controller and transceiver) as well the communication software stack 
provided by the platform. 

Example G2: Corruptions of messages transmitted via communication link can0 can 
be detected (ASIL C). 

4.6.2 Health Monitoring Guarantees 

A health monitoring guarantee enables the platform developer to specify 
the platform’s capabilities of detecting application failures and executing 
failure recovery reactions. This is the second in a series of four top-level 
guarantee classes that constitute the platform language. 

Both mechanisms, failure detection and recovery, can be used to 
improve the fault tolerance of an application. With an application 
monitoring mechanism, the platform is able to detect erroneous 
application behavior, and by providing a failure recovery mechanism, the 
platform is even able to help the application recover from the situation. 
Additionally, failure recovery mechanisms can be used by the platform to 
recover from platform service failures (see previous section for additional 
information regarding platform service failure guarantees). 

Comparable to the health monitoring demand model, the corresponding 
guarantee model is divided into two parts. The first part contains 
guarantees regarding application monitoring and failure detection and 
the second part contains guarantees regarding failure recovery 
mechanisms. Figure 59 gives an overview of the health monitoring 
model. This section shares the split structure of the model: Application 
monitoring guarantees are introduced in the next subsection and failure 
reaction guarantees are introduced after that. 

 

Figure 59: The health monitoring guarantee meta-model 
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Application Monitoring Guarantees 

The platform developer uses application monitoring guarantees to 
specify the platform’s capability of monitoring the application behavior 
and detecting deviations from the application’s specified behavior, i.e., 
application failures. For the specification of platform-detectable 
application failures, the model references the common application failure 
model presented in section 4.4.3. 

Since in an integrated architecture the guest applications are unknown 
during a platform’s development, the applications’ nominal behavior is 
not known either. Therefore, application monitoring mechanisms have 
to be configurable to enable the system integrator to adapt the 
mechanisms to the specific behavior of the guest applications. 
Consequently, the platform developer is only able to guarantee the 
correct functioning of the monitoring mechanisms under the premise 
that the mechanisms are configured correctly. The platform developer 
models this premise by specifying a conditional application monitoring 
guarantee. 

An application monitoring guarantee inherits the possibility of containing 
conditions from the general interface requirement class as specified in 
section 4.3.2. At first glance, there are two types of conditions that are 
qualified for specifying this kind of premise: configuration-dependent 
conditions and manual conditions. However, upon closer examination, 
configuration-dependent conditions are not suitable for automatically 
checking for the correctness of a monitoring mechanism’s configuration. 
A configuration-dependent condition cannot specify the required value 
of a platform configuration parameter if the value depends on a 
parameter of the application. To allow such a construct, all configuration 
parameters of the application must be known during platform 
development. This is not the case in the VerSaI language. If we adapt the 
VerSaI language to a predefined standard like AUTOSAR, where the 
application configuration parameters are fixed, such a mechanism would 
be possible. For now, the platform developer has to specify a manual 
condition to require the integrator to check the configuration for 
correctness. 

If the platform developer specifies an application monitoring guarantee, 
the equally named class (see Figure 59) must be instantiated. Following 
the containment rule of the platform language, all application 
monitoring guarantees are contained in the platform’s application 
monitoring service, since this service is responsible for providing 
monitoring mechanisms. When the demand is instantiated, the platform 
developer chooses the application failure that the monitoring facility can 
detect from the common application failure model specified in section 
4.4.3. If the application monitoring facility is capable of detecting more 
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than one application failure, the platform developer has to specify 
several application monitoring demands. 

As always, the next step in specifying the guarantees is to parameterize 
the guarantee itself as well as the related common element, in this case 
the related application failure. Since every application monitoring 
guarantee is a detection guarantee, this includes the minimum failure 
detection time. With regard to the parameterization of the application 
failure mode, the developer has to parameterize the failure-mode-
specific parameters and the supervised entity or, in the case of the 
platform, the supervisable entities. The VerSaI language provides the 
developer with three choices: All executable entities are supervisable (ISR 
and runnable), only runnables are supervisable, or only ISRs are 
supervisable. To specify that no supervision is possible, the platform 
developer does not specify the corresponding guarantee. 

In the following, we will introduce some example application monitoring 
guarantees based on the running example introduced in section 4.1. 

Example G3 specifies the capabilities of the platform with respect to 
detection execution time failures. As specified above, the platform 
developer has to specify which types of executable entities can be 
supervised. 

Example G3: The platform is capable of detecting execution time failures of runnables 
(ASIL C). 

Example G4 specifies a guarantee with respect to the detection of logical 
sequence failures. Furthermore, example G4 specifies a manual condition 
which states that the guarantee is only valid if the monitoring facility is 
configured appropriately. The manual condition further demands the 
generation of an evidence. Since this condition is a manual condition, 
the integrator has to manually set the status of the condition before the 
mediator is capable of using the specified guarantee. For more 
information regarding the specification of manual conditions and 
conditions in general, please refer to section 4.3.2. 

Example G4: The platform is capable of detecting logical sequence failures of 
runnables and ISRs (ASIL C). Conditions apply: “The monitoring facility 
must be configured appropriately”. Corresponding evidences must be 
generated: ”Review of configuration file”. 

Failure Reaction Guarantees 

The platform developer uses failure reaction guarantees to specify the 
platform’s capability of performing reactions that help application to 
recover from application or platform service failures. For the specification 
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of recovery reactions, the guarantee model references the common 
failure reactions presented in section 4.4.4. 

The failure recovery reactions specified in section 4.4.4 are common 
reactions found in many platforms. Comparable to application 
monitoring facilities, some of the reactions are configurable to allow 
adapting the reaction to the specific needs of the guest application. If 
that is the case, the platform developer must specify a conditioned 
guarantee in order to model that the corresponding failure reaction can 
only be provided correctly under the premise that it is configured 
correctly. For more information regarding conditional guarantees for 
configurable platform mechanisms, please refer to section 4.3.2. 

There are two kinds of failure reaction guarantees: request-triggered 
reaction guarantees and detection-triggered reaction guarantees. The 
platform developer models a request-triggered reaction guarantee to 
specify that the platform is capable of performing a certain recovery 
reaction on application request, i.e., via an API call. In contrast, the 
platform developer models a detection-triggered reaction guarantee to 
specify that the platform is capable of performing a recovery reaction as 
an automatic result of a detected failure. 

To model both kinds of guarantees, the platform developer must specify 
the guarantee’s failure reaction time and related failure reaction. The 
failure reaction time is the maximum time between the triggering of the 
reaction, be that trigger a request via the API or a failure detection, and 
the time when the execution of the reaction has finished. The related 
failure reaction is chosen from the failure recovery model specified in the 
previous section. Some of these failure reactions have parameters that 
have to be set when the platform developer specifies a failure reaction 
guarantee. When inspecting the failure model you will realize that some 
reactions reference multiple parameters of the same type. The “issue 
default signal” reaction can, for instance, contain several default signals. 
For a reaction demand specified by the application this makes no sense, 
which is why only the first default signal of the list is relevant in case the 
reaction is specified in the context of a demand. For a reaction 
guarantee, however, the platform developer is able to specify all default 
signals the platform is able to send. In case there is no limitation on the 
default signals, the platform developer sets the default signal list to 
NULL. In case the platform is unable to issue default signals at all, the 
platform developer specifies no such guarantee. 

This pattern is also used to specify the architecture element of a failure 
recovery reaction affected by a reaction. This kind of reference identifies, 
for example, which partition can be shut down by a shutdown reaction 
or which channel a default signal can be sent on (for more information, 
refer to section 4.4.4). When used to specify a platform reaction 
guarantee, the platform developer uses these references to specify all 
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possible reaction-affected architecture elements, for example, all output 
channels that are able to issue a default signal. Table 9 shows a list of all 
failure reactions and how their reaction-affected architecture reference 
can be parameterized when the failure recovery reaction is used in the 
context of a reaction guarantee. 

Table 9:  A list of all platform service demands including their related application elements and 
failure modes. 

Reaction Reaction-affected platform 
element 

RestartTask All Task Objects, Task 

ShutDownTask “ 

RestartPartition All Partition Objects, 
Partition 

ShutDownPartition “ 

RestartPlatform ExecutionPlatform 

ShutDownPlatform ExecutionPlatform 

SendDefaultMessage All ComLinks, ComLink 

IssueAnalogDefault-
Signal 

All AnalogOutputChannels, 
AnalogOutputChannel 

IssueDigitalDefault-
Signal 

All DigitalOutputChannels, 
DigitalOutputChannel 

Indication All ASWCs 

HandlerExecution All Runnables 

There are two more important aspects regarding the specification of 
reaction-affected platform elements: Most of the references are 
conditional, and there are wildcard references. 

Using conditional references, the platform developer is able to specify 
that a reaction can be executed on a specific element under the premise 
that a certain condition is fulfilled. It is, for example, possible to specify 
that the related element must be configured appropriately (e.g., a task 
must have the property restart_enabled set to true before it can be 
restarted) or the integrator must perform a manual check before the 
element can be used (e.g., a partition may only be shut down if it has 
been checked that it does not affect another application). 

Wildcard references like “all runnables” allow the platform developer to 
specify that a certain reaction can be performed on all elements of a 
type. Conditional references can also be used together with platform 
object wildcard references (partitions and tasks). If the platform 
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developer specifies such a reference, this means that every platform 
object of that type is a potential reaction-affected element if the 
specified condition holds. 

The parameters described above have to be set for both kinds of 
reaction guarantees, detection-triggered guarantees and request-
triggered guarantees. Thus, when modeling a detection-triggered 
guarantee, the platform developer has to additionally specify which 
failure detections are able to trigger the corresponding reaction. The 
platform developer selects these failure detections via the list of specified 
detection guarantees, which includes platform service detection 
guarantees and application monitoring guarantees. 

In the following, we will introduce some examples of the rather complex 
specification of failure reaction guarantees. The example guarantees are 
based on the running example introduced in section 4.1. 

Example G5 specifies a guarantee that states that the platform is capable 
of restarting tasks upon request. Since the guarantee is a request-
triggered reaction, the possible detection triggers do not have to be 
specified. However, the possible targets of the restart have to be 
specified by the platform developer. For simplicity’s sake, we chose to 
use the wildcard “all tasks” for this guarantee, meaning that in 
principle, every task can be restarted. However, a manual condition 
applies, which states that the caller must have sufficient rights to restart 
the task. Since this is a manual condition, the integrator would have to 
check whether this is true for every user of this guarantee. 

Example G5: The platform is capable of restarting tasks upon request. Possible restart 
targets: all tasks. Conditions apply: “The caller must have sufficient rights 
to request the restart” (ASIL C). 

The second guarantee provided by example G6 is a detection-triggered 
reaction guarantee. Consequently, the possible detection triggers have 
to be specified. We use the wildcard “all detections” to specify that 
every detection mechanism is capable of triggering this “shutdown 
partition” reaction. With respect to the possible target partitions, there is 
a condition that limits the targets to partitions that have the parameter 
restart_enabled set to true. Additionally, the same manual condition 
that applied for example G5 applies for example G6 as well. 

Example G6: The platform is capable of shutting down partitions upon detection. 
Possible triggers: all failure detection events. Possible restart targets: 
partition objects with the configuration condition “restart_enabled == 
true”. Conditions apply: “The caller must have sufficient rights to request 
the shutdown” (ASIL C). 
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4.6.3 Resource Protection Guarantees 

A resource protection guarantee enables the platform developer to 
specify the platform’s capabilities of protecting the application from 
interferences. This is the third in a series of four top-level guarantee 
classes that constitute the platform language. 

An interference failure is rather a failure scenario than an actual failure 
mode. In an interference scenario, an application is affected by a failure 
of a platform resource, but this failure is not caused by the resource 
provider, i.e., the platform, but by another resource user, i.e., another 
application. Most safety standards demand that all applications that can 
interfere with each other must be developed according to the same 
integrity level. Hence, if the platform does not protect applications from 
interferences, this will either lead to deployment incompatibilities (if the 
applications cannot be developed according to a higher integrity level) or 
to an increase in development costs (if the applications are developed 
according to a higher level). More information regarding interferences is 
found in section 4.5.3. 

If the platform developer uses a resource protection guarantee to specify 
the platform’s capability to offer protection from interference, the 
platform developer has to choose from one of thirteen different 
protection guarantee classes. Each class represents a guarantee to 
protect a different type of resource, including cores, memory modules, 
I/O- and com-channels, and the different services provided by a platform. 
Since it is not always possible to provide comprehensive protection, the 
platform developer has to additionally specify for each instantiated 
guarantee which failure modes are protected from interference causes. 
For most of the protection guarantee types, the platform developer uses 
the detailed resource-specific failure models introduced in section 4.4.2. 
However, for the specification of CPU and memory protection 
guarantees, there is no refined failure model, which is why the developer 
has to use the coarse-grained temporal/spatial interference 
differentiation2829. Figure 60 provides an overview of the resource 
protection guarantee meta-model. 

28 On the abstraction level applicable to the VerSAI approach, a CPU poses only 
temporal interference failures. 

29 The difference between temporal and spatial interferences is described in section 
4.5.3. 
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Figure 60: An overview of the resource protection guarantee model 

We have already argued that comprehensive protection guarantees are 
hard to achieve; this is also true regarding aspects other than the failure 
modes to protect against. Therefore, the VerSaI language offers more 
gradations for precisely specifying a platform’s protection capabilities. 
First, many platforms offer so-called partitions. A partition is a logical 
grouping of ASWCs, where ASWCs in different partitions are not able to 
interfere with each other. Or put in other words, protection is only 
provided between ASWCs that reside in different partitions. If that is the 
case, the platform developer must set the 
partitionSeparationRequired parameter of the corresponding 
guarantee to true. The other gradation aspect regards the shared usage 
of the protected resource. It is much easier for the platform to provide 
protection from other users if the users are not allowed to access the 
resource at all. However, in case protection is required for users that 
share a resource, more sophisticated protection mechanisms are 
required. To specify that protection is available even between shared 
resource users, the platform developer must set the 
sharedElementUsagePossible parameter to true. In case the 
protected platform element is a platform object (e.g., a mutex), there are 
even two levels of resource sharing. The first is sharing the object itself, 
which is covered by the previously mentioned parameter. The second 
level is sharing access to the service that provides the platform object 
(e.g., the synchronization service). To specify if protection is provided for 
users accessing the same service, there is an additional parameter called 
sharedServiceUsagePossible for parameterizing platform-object-
related protection guarantees. 

Comparable to platform service guarantees, resource protection 
guarantees are always contained in the related platform element. In this 
case, this is the protected resource. A CPU protection guarantee is, for 
example, contained in one of the platform’s CPUs/cores. 
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In the following, we will introduce some examples resource protection 
guarantees based on the running example introduced in section 4.1. 

Example G7 shows a temporal CPU protection guarantee. The 
partitionSeparationRequired parameter is set to true, meaning 
that protection is only guaranteed if mixed-critical executables run in 
different partitions. The sharedElementUsagePossible parameter is 
set to false, which additionally demands that mixed-critical executables 
have to be mapped to a different core as well. 

Example G7: The platform is capable of protecting core0 from temporal interferences. 
Mixed-critical users must be allocated to different partitions. Mixed-
critical users must be allocated to a different CPU (ASIL C). 

Example G8 specifies a protection guarantee for the event_service 
service provided by our example platform. Since an event service 
manages platform objects (the events), we have an additional parameter 
for precisely specifying the protection guarantee. In the example 
guarantee, the partitionSeparationRequired parameter is set to 
false. As a consequence, protection is still valid even if mixed-critical 
software components are not separated by partition boundaries. The 
new sharedServiceUsagePossible parameter is set to true, which 
means that mixed-critical software components are even allowed to 
share/use the service. However, the sharedElementUsagePossible 
parameter is set to false, which means that protection cannot be 
guaranteed if mixed-critical software components access the same event. 

Example G8: The platform is capable of protecting the service event_service from 
interferences that cause the failure modes Event Signal Commission, 
Event Signal Omission, Event Timeout Failure. Mixed-critical users do not 
have to be allocated to different partitions. Mixed-critical users are 
allowed to use the same service. Mixed-critical users are not allowed to 
use the same event (ASIL C). 

4.6.4 Service Diversity Guarantees 

A resource protection guarantee enables the platform developer to 
specify guarantees regarding the availability of diversely designed and 
implemented platform services. This is the final guarantee in a series of 
four top-level guarantee classes that constitute the platform language. 

The goal of diversely developed services is to reduce the probability of 
common-cause systematic failures in both services. Consequently, design 
diversity is only applied to two (or possibly more) services of the same 
type, i.e., two input channels. A platform developer can use diversely 
developed services to achieve two kinds of goals. On the one hand, a 
platform developer can provide a high-integrity service by combining 
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two diversely developed services with lower integrity. Such integrity level 
decomposition is done, for example, when developing systems according 
to the automotive safety standard ISO 26262 [46]. However, such a 
design is concealed from the eyes of the application developer, as the 
developer would only see a platform service with high integrity. 
Consequently, no service diversity guarantee is required in this case. On 
the other hand, the application developer himself could follow the same 
integrity level decomposition strategy and develop two functional 
channels as well. In this case, the application developer must ensure that 
there is sufficient reason for assuming that both channels have a low 
probability of common-cause systematic failures. If both channels use 
the same or two equally developed services, the possibility of a 
systematic failure of the service(s) subverts the independence argument 
of the application developer. To support diverse channels on the 
application level that are both deployed to the same or the same kind of 
platform, a platform provides diversely developed services. 

Which development techniques and evidences are required before 
dissimilarity can be claimed differs from standard to standard. Usually 
the techniques evolve around: use of different compilers, linkers, and 
loaders; use of different programming languages; design and 
development performed by independent teams with restricted 
interactions; designs that follow different principles (e.g., current and 
voltage-based analog input channels). 

When the platform developer specifies a service diversity guarantee, the 
developer chooses from three kinds of guarantees: one for modeling 
diverse input channels, one for modeling diverse communication links, 
and one for modeling diverse output channels. Other platform service 
types are commonly not provided in a diverse manner and the VerSaI 
language therefore provides no such service diversity guarantees. 

When modeling a diversity guarantee, the platform developer specifies 
two diversely developed channels; the VerSaI language provides no 
support for three-way diversity. Furthermore, the developer specifies all 
failure modes of the diversely developed channels when there is 
sufficient evidence to support the claim that there are no common-cause 
systematic failures. When specifying a set of failure modes, every 
possible combination of two failure modes must be free from common-
cause systematic failures (see section 4.5.4 for an example). 

As a last point regarding the specification of diversity guarantees, all 
diversity guarantees are contained in the platform itself. This is because a 
diversity guarantee spans several channels, so that we chose the 
container of both channels as a container for the reference. Figure 61 
provides an overview of the service diversity guarantee meta-model. 
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Figure 61: The service diversity guarantee meta-model 

In the following, we will introduce an example service diversity 
guarantee based on the running example introduced in section 4.1. 

Example G9 specifies a diversity guarantee that is analog to the example 
demand D11 specified in section 4.5.4. The guarantee states that the 
voltage measuring input channel voltage_in and the current 
measuring input channel current_in are developed diversely and that 
common-cause value failures are avoided. 

Example G9: The analog input channels voltage_in and current_in are designed 
diversely. There are no common-cause failures with respect to the 
following failure mode: Analog Input Value Failure (ASIL C). 
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5 Interface Mediation 

This chapter is the second of three chapters describing our methods for 
“Efficiently Deploying Safety-Critical Applications onto Open Integrated 
Architectures”. In this particular chapter, we will describe the realization 
of our mediation algorithm for checking if an application is capable of 
executing safely on a particular execution platform. This corresponds to 
the second contribution of this thesis as specified in chapter 1. 

Contrib.2 Interface Mediation: Developing an automated process for checking 
the safety compatibility of an application and a platform in an open 
integrated architecture. 

The automated mediation process provided by the VerSaI method is 
embedded into the general task of configuration and deployment. Inputs 
to this phase are the previously developed applications and platforms, as 
well as the preliminary deployment plan. Generally speaking, the 
integrator integrates the applications and platforms to build the final 
system during configuration and deployment. With respect to the VerSaI 
method, the integrator uses the previously specified vertical safety 
interfaces of applications and platforms together with the VerSaI 
mediator to decide whether the applications are capable of executing 
safely on the given platforms. The configuration and deployment task is 
divided into several steps. Since the VerSaI mediator performs automated 
actions in several of these steps, we will discuss the different steps in the 
following.  

In the first step of the configuration and deployment task, the integrator 
configures the general-purpose execution platforms, and sometimes also 
the applications, so that the platform is capable of hosting the 
application at hand. Since the vertical safety interfaces specified by the 
platform developer and the application developer are integrated with the 
application and platform model, the configuration automatically affects 
the safety interfaces as well. After configuration, the integrator 
implements the deployment plan by mapping the components of the 
application onto the resources and services provided by the platform. 
This step also affects certain elements of the safety interface, but 
primarily, the mapping provides information required for the mediator. 
The VerSaI mediator uses the deployment data to identify the guarantees 
that are basically capable of fulfilling the individual demands and, in a 
next step, for checking whether the identified guarantees are capable of 
fulfilling the demand. After the mediator has performed this procedure 
for every demand, the mediator provides the results of the mediation to 
the integrator. If the mediation requires further manual decision making, 
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the integrator is capable of performing the required actions and then 
retriggers the mediation. When there are no more points that require 
manual decision, the mediation is completed and can finally be assessed 
as failed or successful. An overview of the configuration and integration 
task is shown in Figure 6230. 
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Figure 62: An overview of the VerSaI mediation in the context of the overall VerSaI method 

In this chapter, we will introduce the afore-described process with a 
focus on the automatic actions that are performed by the mediator. The 
mediator’s main task is to perform the mediation itself, but it also assists 
the integrator during several integration steps. The mediator performs 
the following tasks: 

 During and after configuration: automatic specification of platform 
object guarantees and automatic evaluation of configuration 
dependent conditions. 

 After system integration: automatic evaluation of deployment-
dependent conditions. 

 Before mediation: evaluation of manual conditions. 

 Mediation: checking whether all application demands are met by the 
available platform guarantees. 

 After mediation: visualizing the mediation results and fixing fixable 
issues. 

30 The interface between this task and the residual development process is shown in 
chapter 3. 
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This chapter is structured in accordance with these tasks. Automatic 
handling of platform objects and configuration-dependent conditions is 
explained in 5.1. The evaluation of deployment-dependent conditions is 
provided by section 5.2, whereas the evaluation of manual conditions is 
shown in section 5.3. The main focus of this chapter is the specification 
of the mediation algorithms in section 5.4. We conclude this chapter 
with the visualization of the mediation results provided by the VerSaI 
mediator in section 5.5. 

5.1 Configuration 

During configuration, the integrator can adapt the applications and the 
platforms to their new system context. However, the integrator cannot 
adapt the behavior of applications and platforms freely; application and 
platform behavior can only be adapted regarding the variation points 
envisaged and designed by the developers. Besides configuration, there 
are other stages in the life-cycle of a system that contain variation points. 
However, with regard to the mediation of applications and platforms, 
we only consider variation points resolved during configuration. 

Usually, an application is not as configurable as an execution platform. 
The reason is that a general-purpose execution platform draws its main 
value from being adjustable and able to host as many kinds of 
applications as possible, whereas applications are often developed for a 
single kind of system, leaving no need for configuration-time adaptation. 
Nevertheless, especially in the automotive domain, some software 
applications are developed in an adaptable way, so as to efficiently and 
flexibly use a product in different systems. Systems like the ESC or the 
cruise control are often developed once and then adapted for individual 
makes and models. This adaptation influences the internal behavior of 
the component, like the controller parameters, but even changes at the 
component’s interface are possible. Regarding the cruise control, for 
example, most vendors have a different operation concept including 
different kinds of levers and buttons that can result in different software 
interfaces. 

A different controller behavior can easily influence the parameters of an 
application demand, such as the demand’s criticality (think, for example, 
of a higher maximum velocity that the application is allowed to operate 
at). Changes in the interface can even make certain demands obsolete, 
for example, when a certain input channel is not even used in a 
particular configuration. Modeling all these configuration dependencies 
is possible using the configuration-dependent conditions provided by the 
VerSaI language and introduced in section 4.3.2. 

The concept of configuration-dependent guarantees is especially 
valuable for specifying the vertical interface of a platform. On the one 
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hand, several of a platform’s safety mechanisms can be deactivated for 
the sake of performance when using the platform in a non-safety-critical 
system. On the other hand, there are several safety mechanisms that 
must be configured appropriately before their principal capabilities of 
detecting or avoiding failures turn into actual guarantees. 

As introduced in the preface to chapter 5, the first task of the integrator 
is to configure the system’s applications and platforms. After the 
configuration is completed, all configuration-dependent conditions can 
be resolved. This step is automatically performed by the VerSaI mediator 
in the transition between the configuration and the integration step. We 
will describe how this is done in subsection 5.1.2. 

However, in addition to configuration parameters, there is another way 
to adapt a platform, which has to be covered by our approach. During 
platform configuration, the integrator creates so-called platform objects. 
A platform object is a logical31 component like a task or a software 
timer, which is only instantiated when the needs of an application are 
known, i.e., during configuration when the deployment is already 
planned. Since platform objects are created during configuration, the 
platform developer is unable to specify configuration parameters and 
guarantees for them. Instead, the developer specifies configuration and 
guarantee templates to specify the safety-related capabilities of platform 
objects. These templates are used to automatically instantiate 
configuration parameters and guarantees when the integrator 
instantiates a platform object. The process of automatic platform object 
support is introduced in section 5.1.1. 

5.1.1 Platform Object Instantiation 

In this section, we will specify the automatic mechanisms provided by 
the mediator to support platform object instantiation. 

Platform objects, which include the more specific operating system and 
kernel objects, are logical objects provided by the platform. Platform 
objects include task, semaphores/mutexes, message queues, etc. These 
objects are usually created and used by the application dynamically. 
However, in a system like an AUTOSAR or an ARINC 653 platform, the 
objects cannot be created dynamically; instead, every application 
developer has to specify which and how many objects of a type the 
application requires. This information is then used by the integrator to 
statically create the objects needed during platform configuration. 

Since the objects are only created during integration, the developer is 
unable to specify guarantees and configuration parameters for a 

31 Logical in the sense that there is no counterpart in hardware 
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platform object directly. Instead, the platform developer specifies 
guarantee and configuration templates that describe the guarantees and 
configuration parameters a specific type of platform object must contain. 
The realization of this basic feature is provided by the mediator. 

When the integrator specifies a new platform object, the mediator 
checks the service that provides the platform object for configuration 
and guarantee templates. If there are such templates, the mediator 
automatically creates a copy of every existing configuration parameter 
and every guarantee for the newly instantiated platform object. Now 
that the platform object contains its own set of parameters and 
guarantees, the mediator checks the guarantees for configuration-
dependent conditions that still reference a template configuration 
parameter. If such a condition is found, the reference to the template 
parameter is replaced with a reference to the corresponding parameter 
of the platform object. After that, the platform integrator is able to 
configure the newly created platform object. 

Figure 63 illustrates the automatic generation of platform object 
guarantees. The generation of configuration parameters is not shown, 
but is performed analogously to the guarantee generation. 
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Figure 63: The process of automatic platform object guarantee generation 

5.1.2 Evaluation of Configuration-Dependent Conditions 

When the integrator finishes the configuration of an application or a 
platform, the application, respectively the platform, becomes ready for 
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integration. However, before the transition is triggered, the mediator 
checks the validity of the configuration; if the configuration is valid, the 
mediator automatically evaluates all configuration-dependent conditions 
specified in the corresponding safety interface. 

The validity check basically validates that every configuration parameter 
that is used for the specification of at least one demand or guarantee is 
set to a valid value, which is a premise for evaluating configuration-
dependent conditions. If the configuration is invalid, the mediator will 
not allow the transition to proceed to the integration phase. 

However, if the configuration is valid, the transition is triggered and the 
mediator checks for the fulfillment of configuration-dependent 
conditions. The current version of the VerSaI language supports three 
kinds of configuration-dependent conditions (see also section 4.3.2): an 
equals condition for integer parameters, an equals condition for Boolean 
parameters, and an equals condition for enumeration conditions. From 
our experience, most configuration parameters of a platform or 
application comply with one of the afore-mentioned types. However, 
especially regarding integer parameters, the implementation of greater 
than, less than, or “element of interval” conditions would be useful. Yet, 
we believe that the implementation of these conditions would have 
yielded no real research contribution, so we chose to omit this feature. 

To check for fulfillment, the mediator checks for each configuration-
dependent condition whether the required configuration value matches 
the actual configuration value. If it does, the status of the condition is set 
to “fulfilled”; otherwise the status of the condition is set to “violated”. 
However, the consequences of the condition evaluation are not analyzed 
during this analysis. Since the conditions affect mediation, this is done 
during interface mediation. 

5.2 System Integration 

The system integration step starts after the integrator has finished the 
configuration of applications and platforms. Now that the platform is 
appropriately configured to accommodate its guest applications, the 
integrator has to design the detailed mapping of the application’s 
resource needs to the resources provided by the platform. Thus, the 
reader should regard system integration as a refinement of the 
deployment plan. The deployment plan provides a coarse-grained 
mapping of application components to platforms and logical signals to 
communication links, whereas system integration specifies a much finer-
grained mapping of, for example, memory sections (like .text) to 
memory regions or logical signals to bus messages. 
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Since the integrator’s main task is to specify the afore-mentioned 
mappings, we provide a list showing every type of mapping in Annex 
A.4 (Table 16) in order to give the reader a feeling for the mapping’s 
level of detail. The table specifies which application element (resource 
user) is mapped to which platform element (resource). For a detailed 
description of application and platform elements, we refer the reader to 
Appendix A. 

When the integrator has specified this mapping, the VerSaI mediator has 
all the information necessary to relate an application demand to the 
platform guarantees that can potentially fulfill this demand. This is 
possible because of the VerSaI language’s design. A demand is always 
attached to the application element that is directly affected by the 
platform’s safety-related capabilities and a guarantee is always attached 
to the platform element that directly provides the safety-related 
guarantees. The mapping relates the application element to the 
corresponding platform element so that demands and guarantees can be 
related in a transitive manner as well. As an example, we look at an 
input signal provided by a sensor. The application’s need for such a 
signal is specified by an input port. The application’s demands regarding 
the failure behavior of the signal are attached to the demand as well. 
The deployment mapping, on the other hand, maps the input port to an 
input channel provided by the platform to model that the sensor signal is 
received via this particular channel. Finally, the platform’s capabilities 
regarding the detection or avoidance of signal-related failure modes are 
attached to the input channel. Consequently, the VerSaI mediator is 
capable of relating the demands to the relevant guarantees via the 
deployment mapping. 

Before the mediator starts relating and evaluating demands and 
guarantees, however, it has to evaluate the deployment-dependent 
conditions, which will be described in section 5.2.1. 

5.2.1 Evaluation of Deployment-Dependent Conditions 

When the integrator finishes the system integration, the system becomes 
ready for mediation. However, before integration is finished, the 
mediator checks the validity of the mapping. Only if the integration is 
valid does the mediator evaluate the deployment-dependent conditions 
specified in the vertical interfaces of applications and platforms. A 
deployment mapping is valid if there is a mapping for every application 
element that must be mapped to a platform resource. 

Regarding deployment-dependent conditions, the VerSaI language offers 
dedicated extension points in the meta-model as well as in the 
implementation to efficiently allow extending the VerSaI language. 
However, at the current point in time, the VerSaI language does not 
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provide implementation for any deployment-dependent conditions. 
During our tests and during evaluation we did not need them, yet we 
wanted to offer the user of the language the possibility to use 
deployment-dependent conditions. 

5.3 Manual Condition Evaluation 

Conditions that cannot be evaluated automatically, like the generation 
of sufficient evidences, are modeled as manual conditions. Manual 
conditions have to be checked or directly fulfilled by the integrator. 

A manual condition has to be sufficiently described by the creator of the 
conditions so that the integrator is capable of understanding its 
meaning. Additionally, the creator has to specify the required evidences 
for the condition fulfillment if there are any. During manual condition 
evaluation, the integrator then checks the description of the condition 
and, if the fulfillment depends on evidences, the integrator has to check 
the availability of the required evidences as well. In case the integrator is 
in charge of fulfilling the condition, the integrator generates the required 
evidences and, if possible, links the external document to the condition. 
In case the condition is to be fulfilled by a third party, the integrator can 
only check whether the condition has been successfully fulfilled or not. 
After fulfilling or checking the fulfillment of the condition, the integrator 
manually sets the status of the condition to “violated” or “fulfilled”. In 
the subsequent mediation, the automatic mediator handles manual 
conditions no different than other types of conditions. 

5.4 Interface Mediation 

The interface mediation step is triggered by the integrator after the 
evaluation of manual conditions. Together with the information provided 
during configuration and integration, the VerSaI mediator is now 
capable of performing automatic demand mediation. The goal of the 
mediation is to check if every required application demand is fulfilled by 
the available platform guarantees and to provide information regarding 
the fulfillment, respectively violation, of demands. In this section, we will 
describe the process for checking demand fulfillment, while the 
information regarding the mediation result will be introduced in section 
5.5, where we will describe how the integrator makes use of this 
information. 

Mediation is performed separately for each application. Since an 
application can be spread over multiple platforms, the mediation of an 
application usually involves guarantees from several platforms. We want 
to note that even though each application is mediated separately, all the 
other applications in the system have to be configured and deployed 
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before mediation starts for any application. This is because other 
applications can influence the mediation of an application via shared 
platform resources32. 

Overall, the mediation of an application contains three work steps: (1) 
demand assignment, (2) relevant guarantee retrieval, and (3) checking 
the fulfillment of the demand. Figure 64 gives an overview of the 
mediation process. 

During demand assignment, the mediator retrieves an application 
demand from the list of application demands that have not been 
mediated yet, and identifies the type of the newly retrieved demand. 
Regarding demand-level mediation, we differentiate between the 
different demand classes known from chapter 4, which are platform 
service demands (section 4.5.1), health monitoring demands (section 
4.5.2), resource protection demands (section 4.5.3), and service diversity 
demands (section 4.5.4). Since health monitoring demands are again 
divided into Application Monitoring Demands and Failure Reaction 
Demands, this leaves us with five different types of demands that have 
to be mediated in different ways. 

In the second step, the mediator retrieves the guarantees relevant for 
fulfilling a particular demand. Relevant guarantees are mostly identified 
via the additional deployment information generated during system 
integration, but this process differs slightly from demand type to 
demand type and will therefore be described later. After the retrieval of 
the relevant guarantees, the mediator possesses all information to begin 
checking demand fulfillment.  

During demand fulfillment, the mediator checks whether there is at least 
one guarantee in the set of relevant guarantees that is capable of 
fulfilling the demand at hand. This check for fulfillment depends strongly 
on the type of the demand as well, which is the main reason why we 
separated the mediation algorithm into five different sub-algorithms. 
However, all five mediation algorithms have in common that they are 
sub-divided into so-called prerequisite checks. Each prerequisite 
represents a certain characteristic that the guarantee has to fulfill in 
order to fulfill the overall demand, for example, integrity level sufficiency. 

To conclude this introduction to interface mediation, we summarize that 
there are three different levels of mediation. Starting with the lowest 
level, there are prerequisites, demands, and applications. These levels 
interact as follows: A guarantee fulfills a demand if every demand-type-
specific prerequisite is fulfilled. A demand, on the other hand, is fulfilled 
if there exists one guarantee that fulfills this particular demand. Finally, 

32 Please note that only the architectural model of an application affects the 
mediation of other applications, not its demands. 
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the mediation of the application is successful if every required demand 
of the application is fulfilled. 
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Figure 64: An overview of the automatic demand mediation process 

In the following, we will describe the different mediation sub-algorithms 
that describe in more detail how demand fulfillment is decided. In 
section 5.4.1, we will describe the mediation of platform services. 
Sections 5.4.2 and 5.4.3 describe the mediation of application 
monitoring and reaction demands, both belonging to the health 
monitoring demand category. Section 5.4.4 contains the description of 
protection demand mediation, whereas section 5.4.5 describes resource 
diversity demand mediation. Section 5.4.6 finally describes various 
parameter-specific checks that are used in several instances. 

5.4.1 Mediation of Platform Service Demands 

In this section, we will describe the mediation of platform service 
demands, i.e., the automatic process provided by the VerSaI mediator 
that checks whether a platform service demand is fulfilled or violated by 
the available platform guarantees. 

To recapitulate, a platform service failure demand enables the 
application developer to specify demands regarding the avoidance or 
detection of platform service failures. The application developer can, for 
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example, demand that the corruption of a certain logical signal is 
detected or avoided. The mediation of a platform service demand is 
successful if the corresponding platform service, e.g., the communication 
link transporting the signals, provides a sufficient guarantee. Checking 
for the availability of a sufficient guarantee involves checking ten 
prerequisites, which are described in the following. An overview of 
platform service demand mediation is provided in Figure 65. 
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Figure 65: An overview of platform service demand mediation 
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The first prerequisite that has to be checked when mediating a demand 
is whether the demand is actually necessary. Since applications are 
configurable, a demand might not be required in every possible 
configuration of the application, which is why the VerSaI language 
allows the application developer to specify conditional demands. The 
conditions are directly attached to the demand and only if the conditions 
evaluate to true is the demand necessary. If the conditions evaluate to 
false, the demand is regarded as dispensable and does not have to be 
mediated. This mediation semantics is represented by directly setting a 
dispensable demand to “fulfilled” so that it does not interfere with the 
mediation of the residual demands. Specifying a conditional demand is 
optional, and if there are no conditions attached to a demand, the 
demand is regarded as necessary and its fulfillment has to be checked. 

The next step in mediating a platform service demand is the 
identification of related guarantees. In brief, a guarantee is related to a 
demand if the guarantee is provided by the service that the owner of the 
demand is deployed to. As an example let us regard an input failure 
demand. The input failure demand is owned by/contained in the 
potentially faulty input signal. This signal is deployed to an input channel 
during system integration, and this input channel provides guarantees. 
These guarantees are called the related guarantees of our example 
demand. Figure 66 visualizes this transitive relation dependency. In order 
to retrieve related guarantees, the mediator checks the deployment 
information of the demand owner. If the corresponding application 
element is not deployed correctly, the demand cannot be mediated and 
is considered as violated. The same is true if the resulting platform 
element contains no guarantees. However, if there are related 
guarantees, each of these guarantees is checked individually. 

The first prerequisite that is checked for a guarantee is its relevance. A 
related guarantee is labeled relevant if it possesses some basic 
characteristics required for fulfilling the demand at hand. Since a 
platform element can contain different kinds of guarantees, the 
mediator first checks whether the type of the guarantee matches the 
type of the demand, i.e., if the guarantee is also a platform service 
guarantee and not, for example, a resource protection guarantee. In the 
second step, the mediator checks if the failure mode of the guarantee 
matches the failure mode of the demand. If the failure modes match, 
the mediator knows that the platform element is generally capable of 
handling the demanded failure mode. In the next steps, the mediator 
has to check whether the guarantee allows handling the failure in a 
sufficient way. 
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Figure 66: The concept of related guarantees 

Prior to assessing the specific guarantee capabilities, the mediator checks 
whether the guarantee is available. Comparable to the conditional 
necessity of a demand, certain platform guarantees have a conditional 
availability, usually depending on the configuration parameters. If the 
guarantee is conditional and the conditions are not fulfilled, the 
guarantee is not available in the current configuration and therefore 
incapable of fulfilling the demand. If the guarantee is available, the 
mediator continues the mediation by checking the compatibility of the 
guarantee’s failure handling type. 

As described in section 4.5.1, the VerSaI language differentiates 
between failure detection and failure avoidance. A failure detection 
guarantee specifies the platform’s capabilities of detecting a failure, 
which provides the basis for a certain reaction, e.g., a failure indication. 
On the other hand, a failure avoidance guarantee specifies the capability 
of completely avoiding a certain failure mode, for example, due to the 
design of the corresponding platform service or the availability of 
internal failure correction mechanisms. If the application demands 
detection of a failure mode, this can be fulfilled by a detection guarantee 
or by an avoidance guarantee, since the absence of a certain failure 
renders the demand for its detection void. Conversely, an avoidance 
demand can only be fulfilled by an avoidance guarantee. If the failure 
handling type matches, i.e., if an avoidance demand is fulfilled by an 
avoidance guarantee, the mediation continues with a check for integrity 
level sufficiency. 

Integrity level sufficiency requires that the integrity level of the guarantee 
is at least as high as the integrity level of the demand. The integrity level 
of a guarantee is a reflection of its trustworthiness and sometimes also 
of certain capabilities of the guarantee. Regarding trustworthiness, the 
integrity level defines the rigor with which the guarantee has been 
implemented and verified. The higher the integrity level of the 
guarantee, the higher the trustworthiness of its correct implementation. 
In addition to trustworthiness, certain standards loosely attach 
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capabilities to the integrity level as well, for example the likelihood with 
which a failure is detected or avoided. Only if the guarantee at least 
equally matches the demand’s integrity level is the guarantee capable of 
adequately handling the demand. 

The next prerequisite to be checked is the timeliness of the detection 
mechanism promised by a detection guarantee. This check is, of course, 
only relevant if the demand is a detection demand and if the current 
guarantee is a detection guarantee. If a detection demand is to be 
fulfilled by an avoidance demand, there will be no detection and 
consequently, no detection time. In case this check is required, the 
detection time specifies the maximum time between failure occurrence 
and failure detection. The mediator has to assess whether the promised 
detection time is lower than the required detection time. If the 
guarantee passes this prerequisite check, the mediator has to check the 
adequacy of the failure-mode-specific parameters. 

Most failure modes of the VerSaI language have additional parameters 
to allow the user to specify failure modes on a more detailed level. In 
case the failure mode is used in the context of a demand, these 
parameters allow the application developer to precisely specify the 
border line between acceptable and erroneous behavior. In case the 
failure mode is used in the context of a guarantee, these parameters 
allow the platform developer to precisely specify the capabilities of the 
platform regarding the detection or avoidance of the failure mode. 
Example parameters are jitters, error levels (as a measure for the 
deviation from the correct behavior), or delays. Since parameters are 
failure-mode-dependent and different types of parameters are mediated 
differently, we will describe parameter-specific mediation in a separate 
section (see 5.4.6). 

If the failure-mode-specific parameters of the guarantee are sufficient for 
fulfilling the failure-mode-specific parameters of the demand, the 
guarantee is finally assessed as being capable of fulfilling the demand. 
The demand is tagged as fulfilled and the mediation algorithm continues 
with the mediation of the next demand. 

In order to exemplify the mediation of platform service demands, we will 
use the example demand D2, which was defined in section 4.5.1. The 
demand is contained in the output port a_set_fin of our running 
example application and reads as follows: 

Example D2: A value failure of the output signal a_set_fin larger than 0.05V must be 
detected within 0.05ms (ASIL C). 

As specified in section 4.1, a_set_fin is deployed to the platform 
output channel voltage_out. Let us assume that this output port 
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provides three different guarantees, a resource protection guarantee and 
two platform service guarantees to address latency and value failures. 

In the first step of the mediation, the mediator checks the necessity of 
D2, but since D2 is unconditional, it is necessary per default. The second 
step is the retrieval of related guarantees. To do so, the mediator queries 
the architectural model of our example to retrieve the deployment 
information of a_set_fin. In our case, the query returns with the 
information that a_set_fin is deployed to the output channel 
voltage_out. A subsequent query provides the mediator with the three 
guarantees that are provided by voltage_out, which are individually 
analyzed by the mediator. 

If we assume that the mediator first selects the resource protection 
guarantee for evaluation, the check for guarantee relevance fails, since a 
platform service demand like D2 can never be fulfilled by a resource 
protection guarantee. The second guarantee that the mediator checks 
fails as well. The guarantee is a platform service guarantee, but the 
failure modes do not match (output latency vs. value failures). However, 
the final guarantee contained in voltage_out is a platform service 
guarantee that addresses value failures and that reads as follows: 

Example G10: A value failure of an output signal issued via voltage_out larger than 
0.02V is detected within 0.03ms (ASIL C). Conditions apply: “The 
configuration parameter enable_detection must be set to true”. 

Since G10 is a platform service guarantee that addresses value failures, it 
passes the relevance test. Following the relevance test, the mediator 
checks the availability of G10. Since G10 is a conditional guarantee, it is 
only available if the corresponding configuration parameter 
enable_detection is set accordingly. Since we assume that the 
configuration parameter is set to true, the condition is evaluated as 
“fulfilled” and consequently, the guarantee is available. 

The mediation continues with its sixth step, the failure handling 
capability check, which is successful since D2 demands failure detection 
and G10 provides failure detection. The integrity level check is also 
successful as G10 is provided with ASIL C integrity and D2 demands 
ASIL C integrity. Since G10 is a detection guarantee (as opposed to an 
avoidance guarantee), the appropriateness of the detection time has to 
be checked as well. As the provided time interval (0.03ms) is shorter 
than the demanded time interval (0.05ms), the timeliness check is 
successful and the mediation reaches its last stage, in which the failure-
mode-specific parameters are evaluated. In our example, the mediator 
has to check the allowed deviation parameter of the analog value failure 
mode. The tolerated deviation as specified by D2 is 0.05V, whereas the 
maximum deviation provided by G10 is 0.02V. As a consequence, the 

 168 



Interface Mediation 

mediator decides that the example demand D2 is adequately fulfilled by 
G10. 

5.4.2 Mediation of Application Monitoring Demands 

In this section, we will describe the mediation of application monitoring 
demands, i.e., the automatic process provided by the VerSaI mediator 
that checks whether an application monitoring demand is fulfilled or 
violated by the available platform guarantees. 

To recapitulate, an application monitoring demand enables the 
application developer to strengthen the fault tolerance of the application 
at hand. The application monitoring demand requests the platform to 
detect a deviation from the application’s nominal behavior, i.e., an 
application failure. The platform has the capability of monitoring the 
behavior of the application since the platform is involved in the 
realization of most of the application’s functionality. The platform 
typically provides general-purpose, configurable monitoring mechanisms. 
These are adapted and configured by the integrator to detect the failures 
of guest applications. The algorithm that checks for the availability of a 
guarantee that is sufficient for fulfilling an application monitoring 
demand involves checking eight prerequisites. This process will be 
described in the following; an overview of the platform service demand 
mediation is provided in Figure 67. 

The mediation of an application monitoring demand is in many ways 
comparable to the mediation of a platform service demand. More 
precisely, it is comparable to the mediation of a platform service 
detection demand, since there are no application monitoring avoidance 
demands. This comparability is reflected by the fact that seven of the 
eight prerequisite checks involved in application monitoring mediation 
are also used for platform service demand mediation. Instead of 
describing these checks redundantly, we will refer to the previous section 
where applicable. 

Application monitoring demand mediation starts with checking the 
necessity of the demand at hand. Only if the demand is necessary does it 
have to be mediated; otherwise it is automatically tagged as “fulfilled” 
and taken out of the mediation. The mediator then identifies the related 
guarantees via the deployment mapping of the demand owner and 
begins the iterative assessment of the individual related guarantees. The 
first step of guarantee-centric mediation is to verify that the related 
guarantee is also relevant. Since application monitoring demands are 
sub-typed via application failure modes (see section 4.4.3), the relevance 
check involves checking if the guarantee is an application monitoring 
guarantee and if the guarantee’s failure mode matches with the failure 
mode provided by the demand. If that is the case, the guarantee is 

 169 



Interface Mediation 

checked regarding its availability and the sufficiency of its integrity level. 
These five prerequisite checks are performed during platform service 
demand mediation as well, and a more detailed description of the 
checks is found in section 5.4.1, where platform service demand 
mediation is introduced. 
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Figure 67: An overview of the application monitoring demand mediation 

The check following thereafter is unique to application monitoring 
demands. An application monitoring demand is not owned by the 
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monitored/supervised entity but by a so-called application monitoring 
need, which is deployed to an application monitoring service that 
provides the corresponding monitoring guarantees. Therefore, the 
supervised entity is identified via a reference from the guarantee. Every 
executable entity can be supervised, which includes time-triggered 
runnables, event-triggered runnables, and ISRs. However, the platform is 
not necessarily capable of detecting the corresponding failure mode for 
every executable. Therefore, the mediator has to check whether the 
platform is capable of supervising the relevant executable before 
mediation continues. If the required executable entity cannot be 
supervised by the platform’s monitoring service, the guarantee is unable 
to fulfill the demand. 

In case the executable entity is supervisable, the mediator has to check 
the sufficiency of the failure detection time specified by the guarantee. 
Since the platform cannot guarantee the avoidance of application 
failures, there are no avoidance demands for this demand type. 
Consequently, the detection time check is mandatory for all demands of 
this type. Since application failures have parameters as well (comparable 
to platform service failures), the last step in application monitoring 
demand mediation is to check the adequacy of the failure-mode-specific 
parameters, which is described in a separate section of this chapter (see 
5.4.6). 

If the parameters of the guarantee are adequate, the demand is tagged 
as fulfilled and the mediation continues with another demand. 

The mediation of application monitoring demands is comparable to the 
mediation of platform service demands, which is also shown by the 
following example. The following example demand is specified by the 
software component v_controller known from our running example. 
The component contains a specific port for the specification of so-called 
service needs, which again contains the example demand D4 already 
specified in section 4.5.2. 

Example D4: The platform must detect an execution time of the executable 
v_controller_main of more than 0.016ms (ASIL C). 

A service need specified by an application is always deployed to the 
corresponding service provided by the platform. In this case, the 
monitoring service need is deployed to the health monitoring 
service provided by our example platform. With the help of this 
deployment information, the mediator is capable of retrieving the related 
guarantees contained in the corresponding service, one of which is 
example guarantee G3 known from section 4.6.2. 
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Example G3: The platform is capable of detecting execution time failures for 
runnables (ASIL C). 

From this point on out, the mediation of D4 is comparable to the 
mediation of platform service demands. The mediator checks whether 
the failure types match (in this, both failure types are “execution time 
failures”), whether the guarantee is available (there is no condition and 
therefore G3 is available), whether the integrity level is the same (both 
ASIL C), whether timeliness is guaranteed (not relevant here), and 
whether the failure-mode-specific parameters are fulfilled (the parameter 
specified by D4 is fulfilled since G3 does not restrict the precision of its 
monitoring facility). 

However, in addition to these items, the supervisability of the supervised 
element, in this case the executable v_controller_main, has to be 
checked. In our case the platform is only capable of supervising the 
execution of runnables, but not the execution of ISRs. Consequently, the 
mediator has to check whether v_controller_main is of the type 
runnable (which it is) before knowing whether D4 can be fulfilled by G3. 

5.4.3 Mediation of Failure Reaction Demands 

In this section, we will describe the mediation of failure reaction 
demands, i.e., the automatic process provided by the VerSaI mediator 
that checks whether a failure reaction demand is fulfilled or violated by 
the available platform guarantees. 

To refresh the basic semantics of a failure reaction demand, the 
application developer specifies a failure reaction demand to request a 
failure control reaction from the platform. In an integrated architecture, 
the application is only allowed to use the platform API to interact with 
the platform software and hardware. This design restriction protects the 
system from erroneous applications but also limits the application’s 
freedom to perform certain failure recovery reactions. Therefore the 
application uses the platform to explicitly trigger these restricted recovery 
reactions. In addition to this motivation for using failure reaction 
demands, the platform can be seen as an element independent of the 
application. When an application-related failure occurs, this may render 
the affected application unable to perform a reaction, whereas the 
platform might still be able to react. The algorithm for mediating 
platform failure reactions is the most complicated of all five demand 
classes and contains ten prerequisite checks. The algorithm is described 
in the following and is depicted in Figure 68. 

The mediation of a failure reaction demand starts with the regular check 
for the demand’s necessity. If the demand is necessary, the subsequent 
steps depend on how the reaction demand is triggered. As described in 
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section 4.5.2, there are request-triggered reaction demands and 
detection-triggered reaction demands. A request-triggered reaction is 
triggered directly by the application by calling the respective API 
function. Conversely, a detection-triggered reaction is automatically 
triggered by the platform if a specific failure is detected. In the latter 
case, the detection that triggers the reaction is identified via a reference 
from the reaction demand to the corresponding detection demand. 
Since the correct execution of the reaction depends on the correct 
detection of the failure, the reaction demand can only be mediated if the 
trigger demand has been successfully mediated as well. To be able to 
check that, reaction demand mediation is delayed until potential 
detection demands are mediated (see Figure 64). 

If the corresponding trigger demand is successfully mediated, an 
additional aspect related to the trigger demand has to be checked. If the 
trigger demand is a platform service demand, we have to check whether 
the trigger demand has been fulfilled by an avoidance guarantee. In this 
case, the failure that is supposed to trigger the reaction will never occur, 
which renders the detection-triggered reaction demand useless. Such a 
reaction demand is regarded as dispensable, comparable to an 
unnecessary conditional demand, and is marked as fulfilled by default. 
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Figure 68: An overview of failure reaction demand mediation 
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The next steps have to be performed equally for both request-triggered 
and detection-triggered demands. First, the mediator retrieves the 
related guarantees via the deployment of the demand’s failure reaction 
need to one of the platform’s failure reaction services. Filtering for 
relevant guarantees is performed via the demand’s platform failure 
reaction type (see section 4.4.4), which has to match with the type of 
the guarantee’s failure reaction. Following this filtering, the guarantees 
are, as usual, checked individually regarding their ability to fulfill the 
demand at hand. 

At first, each guarantee is checked regarding its availability and its 
integrity level sufficiency; both checks are described in more detail in 
section 5.4.1. After that, the timeliness of the failure reaction time is 
checked. The failure reaction time is the time between the detection of 
the failure and the end of the failure reaction. The failure reaction time 
and the failure detection time are usually chosen so that the sum of both 
is smaller than the tolerance time of the failure. The failure reaction time 
is regarded as sufficient if the failure reaction time assured by the 
guarantee is smaller than the failure reaction time required by the 
demand. 

Every failure reaction specifies a so-called affected element. This platform 
element is directly affected by the reaction, like a partition or a task that 
is shut down as a result of the reaction, or an output channel that is set 
to a fail-safe state. The affected platform element required by the 
demand is identified via the demand’s affected application element. If, 
for example, the demand specifies that a certain runnable or ASWC has 
to be restarted, or that a logical signal has to be set to its default value, 
this is translated into a restart of the task that hosts the runnable, a 
restart of the partition that hosts the ASWC, or into setting the output 
channel that emits the logical signal to its default value, respectively. 

Since the platform developer may design the platform such that not 
every element is capable of performing the required reaction, the 
mediator has to check whether the required platform element is able to 
perform the demanded reaction. This information is specified by the 
guarantee since the failure reaction guarantee references every platform 
element that is capable of performing the relevant reaction. Only if the 
required platform element is in the list of the available platform elements 
can the guarantee execute the demanded reaction and fulfill the 
demand at hand. 

Comparable to design restrictions regarding the platform elements 
available for implementing reactions, there are certain platforms where 
not every kind of failure is capable of triggering every kind of reaction. In 
an ARINC 653 compatible platform, for example, failures are categorized 
according to their potential influence and only the failures that are able 
to harm the whole platform are allowed to trigger a restart of the 
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platform. To model this behavior, a detection-triggered failure reaction 
guarantee references all failures that are capable of triggering the 
reaction. If the demand at hand is a detection-triggered failure reaction 
demand, the mediator checks whether the failure specified by the 
demand is capable of triggering the required guarantee, and only if this 
is possible can the guarantee fulfill the demand. 

If all the previous prerequisite checks have been successfully passed, the 
mediator finally checks for the adequacy of the guarantee’s reaction-
specific parameters. If these parameters are suitable for fulfilling the 
reaction-specific parameters of the demand, the guarantee is finally 
marked as being able to fulfill the demand. Comparable to the 
parameters of platform service failures and application failures, the 
mediation of parameters specific for different types of reactions is 
described in section 5.4.6. 

To exemplify the mediation of failure reaction demands, we discuss the 
mediation of example demand D12. 

Example D12: Upon detection of the output value failure of signal a_set_fin, the 
platform must shut down the partition that hosts the software 
component throttleSWC within 0.05ms (ASIL C). 

The requirement is contained in a service need of the software 
component throttleSWC and demands the shutdown of its own 
partition in case a value failure of the output signal a_set_fin is 
detected. The first step in the mediation of this demand is to check 
whether there is a corresponding trigger demand that requests the 
detection of the value failure and, if such a demand exists, whether that 
demand has been successfully fulfilled. As described in section 5.4.1, 
there is such a demand, namely D2, and the demand has been 
successfully mediated. 

In the next step, the related guarantees are identified via the deployment 
of throttleSWC’s service need port to the health monitoring 
service of the example platform. This process yields the related and 
relevant guarantee G6. 

Example G6: The platform is capable of shutting down partitions upon detection. 
Possible triggers: all failure detection events. Possible restart targets: 
partition objects with the configuration condition “restart_enabled == 
true”. (ASIL C) Conditions apply: “The caller must have sufficient rights to 
request the shutdown”. 

The availability of the guarantee depends on a condition that has to be 
manually checked by the integrator since the VerSaI method is not 
capable of checking rights and permissions in its current version. Let us 
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assume that the integrator marks this manual condition as fulfilled, so 
that the mediator is capable of continuing with the subsequent checks. 

The following checks for integrity level sufficiency and for timeliness of 
fthe ailure reaction time (comparable to the check for timeliness of 
failure detection time) were already covered by previous examples and 
hold no special points of interest. In the next step, however, the 
mediator has to check for the availability of the affected element. In our 
case, the affected element is partition 2, since throttleSWC is 
deployed to this partition. In order to find out whether partition 2 can be 
shut down, the mediator has to evaluate whether the configuration 
parameter restart_enabled is set to true. 

If we assume that this is the case, the mediation continues by checking 
whether an “output value failure”, as demanded by D12, is capable of 
triggering a partition shutdown in our example platform. Since G6 
specifies no restrictions regarding the possible trigger events of partition 
shutdowns, D12 is fulfilled by our example platform. 

5.4.4 Mediation of Resource Protection Demands 

In this section, we will describe the mediation of resource protection 
demands, i.e., the automatic process provided by the VerSaI mediator 
that checks whether a resource protection demand is fulfilled or violated 
by the available platform guarantees. 

Resource protection demands are modeled by the application developer 
to demand protection from so-called interferences caused by the sharing 
of platform resources among mixed-critical applications. An interference 
is a special type of failure scenario, which is characterized by the 
following cause-effect chain: At the beginning of an interference, an 
application uses a shared platform resource, typically in an erroneous 
manner (e.g., it uses it for too long or modifies it in the wrong way). This 
resource utilization affects the resource in such a way that it is unable to 
provide its service as demanded by another application. This other 
application is affected by the misbehavior of the causative application, as 
it perceives a failure of the affected platform resource. These failures can 
be comparable to those specified in subsection 4.5.1. Via this additional 
failure propagation channel, applications can interfere with each other 
even if there is no functional dependency between the corresponding 
applications. To fulfill a resource protection demand, the platform has to 
adequately protect shared resources from interferences. Whether the 
provided protection mechanisms are adequate is checked by the 
mediator by performing nine individual checks. An overview of the 
resource protection demand mediation is provided in Figure 69. 
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The mediation of a resource protection demand starts as usual, with a 
check regarding the necessity of the demand. After that, the mediator 
checks for the necessity of protection. Protection is only necessary if the 
current application shares the platform with other applications that have 
lower criticality than the application’s own criticality. Consequently, if 
there are no other applications with lower criticality, protection is not 
necessary and the mediator tags the demand as fulfilled by default. 

If protection is necessary, the mediator assesses whether there are 
related guarantees. Comparable to platform failure demands, protection 
demands are contained in the application element that is affected by the 
potential interference. Communication interference demands are, for 
example, contained in communication ports just like communication 
failure demands. Analogously, resource protection guarantees are 
contained in the platform resource that is potentially affected by the 
interference as well and that propagates the interference effect to the 
application element using the resource. To stay with the previous 
example, a communication protection guarantee is contained in a 
communication link. Since every protection guarantee contained in the 
related platform element is relevant for the mediation of the demand, 
we do not differentiate between relevant and related demands as we did 
for the mediation of the previous three demand types. 
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Figure 69: An overview of resource protection demand mediation 
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Subsequently, each relevant guarantee is, as usual, checked for its 
integrity level sufficiency. If the integrity level is sufficient, the mediator 
checks whether the platform is capable of protecting against every 
relevant failure mode. If the application developer demands protection, it 
is possible that protection is not required regarding every possible failure. 
It is, for example, possible that a value failure is safety relevant, but a late 
failure is not. Consequently, the platform does not have to provide 
protection regarding every possible failure mode either to fulfill a 
protection demand. To model the critical failure modes against which 
protection is necessary, the application developer specifies a list of 
related failure modes that are then contained in the demand. 
Analogously, the platform developer specifies a list of failure modes that 
are included in the protection. To do so, both developers choose from 
the failure modes provided by the VerSaI language (see section 4.4.2). If 
the specified set of demand failure modes is a subset of the guarantee’s 
failure modes, the check is successful. 

The last three checks of resource protection mediation assess the 
sufficiency of the given protection on three levels: platform level, service 
level, and resource level. 

On the platform level, the check evaluates if the resource is automatically 
protected from an ASWC with lower criticality or whether lower-
criticality ASWCs have to be allocated to a different partition than the 
ASWC that owns the demand. From the previously performed protection 
necessity check we know that there is at least one less critical ASWC 
deployed to the platform. If the platform guarantee currently being 
checked specifies that the resource can only be protected from ASWCs 
that belong to another partition, we have to check if the partition of the 
demand owner ASWC does not contain any less critical ASWCs. If 
partitioning is not required or if there are no lower-criticality ASWCs in 
the relevant partition, the mediator continues with the evaluation of the 
protection on the service level. 

On the previous level we checked for the protection of potentially 
unrelated ASWCs, which are those ASWCs that neither directly use the 
relevant resource nor the service that provides the resource. On the 
service level, we check whether the platform is capable of protecting the 
resource from interferences if there are less critical ASWCs that use the 
same service that provides the resource. Please note that only those 
resources that we label as platform object (mutexes, timers, tasks …) are 
actually provided by services. Resources like cores or input channels are 
directly provided by the platform, and service-level protection is not 
applicable to those resources. If the platform is capable of providing 
protection against lower-criticality ASWCs that share the service or if 
there are no such lower-criticality ASWCs, the mediator continues with 
the final resource-level protection check. 
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During this last step, the mediator checks whether there are less critical 
ASWCs that share the resource with the demand owner ASWC, and 
whether the platform is capable of protecting the related resource from 
interference by these ASWCs. If protection is available or if it is not 
required (if there are no lower-criticality ASWCs that share the resource), 
the guarantee is finally assessed as being capable of fulfilling the 
demand at hand. 

In the following, we will exemplify the mediation of resource protection 
demand using the example demand D10 previously specified in section 
4.5.1. D10 is contained in the monitoring ASWC, more precisely in 
service need sn6, and reads as follows: 

Example D10: The monitoring.error_event service need must be protected from 
interferences that cause the failure modes Event Signal Commission, 
Event Timeout Failure (ASIL C). 

Unlike the previously described mediations, the mediation of resource 
protection demands depends heavily on the deployment of other 
application elements. Accordingly, in the first step of the mediation the 
mediator checks whether there are less critical components deployed to 
the same platform. In our case, there are such components, namely GUI, 
v_sensorSWC_A, and v_sensorSWC_B. Consequently, protection is 
principally necessary and D10 is not fulfilled by default. In the following 
step, the mediator retrieves the relevant guarantees as usual via the 
deployment of sn6 to the event service of our example platform, 
which yields the following guarantee previously specified in section 
4.6.3: 

Example G8: The platform is capable of protecting the service event service from 
interferences that cause the failure modes Event Signal Commission, 
Event Signal Omission, Event Timeout Failure. Mixed-critical users do not 
have to be allocated to different partitions. Mixed-critical users are 
allowed to use the same service. Mixed-critical users are not allowed to 
use the same event (ASIL C). 

G8 is available since it is unconditional; it also has a sufficient integrity 
level (ASIL C vs. ASIL C), which is why the guarantee passes the next two 
standard mediation checks. In the following step, the mediator checks 
whether the platform protects the event service from all relevant failure 
modes. In our case, the protected failure modes are a true subset of the 
failure modes that need to be protected and consequently, the 
guarantee passes this test as  well. 

In the next three stages, the mediator has to inspect the deployment of 
components more closely to decide whether G8 fulfills D10. On the 
platform level, the mediator checks whether the provided protection 
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requires partition separation and if it does, whether the relevant partition 
contains mixed-critical components. In the current case, however, the 
protection neither requires partition separation nor does monitoring’s 
partition contain mixed-critical components. As a consequence, G8 
passes the check on the platform level. On the service level, the mediator 
checks whether the service can be protected from mixed-critical users. 
According to G8, the event service can be protected from mixed-critical 
users, which is also necessary since the QM-rated GUI ASWC uses the 
event service as well. Finally, the mediator checks whether protection 
can be guaranteed on the event level. For the example situation, the 
mediator finds that the corresponding event called error_event is used 
by both GUI and monitoring, but according to G8, element-level 
protection is not guaranteed. Consequently, G8 is not capable of 
fulfilling D10. 

5.4.5 Mediation of Service Diversity Demands 

In this section, we will describe the mediation of service diversity 
demands, i.e., the automatic process provided by the VerSaI mediator 
that checks whether a service diversity demand is fulfilled or violated by 
the available platform guarantees. 

The application developer specifies a service diversity demand to support 
a redundant two-channel architecture of the application. With the 
specification of a diversity demand, the developer demands that two 
specific channels (input, output, or communication) used by the 
application are developed diversely by the platform. Such a demand is 
fulfilled if the platform is capable of providing the relevant channels 
diversely, i.e., if the relevant channels fail independently with regard to 
systematic failures. The corresponding mediation algorithm contains six 
checks and is shown in Figure 70. 

After the regular check for the necessity of the demand, the mediator 
retrieves the demand’s related guarantees. However, the retrieval of 
related guarantees is not as straightforward as it was for the previous 
demand types. Service diversity demands are contained in applications 
and the corresponding guarantees are contained in platforms. Since an 
application is not directly deployed to a platform (the software 
components of the application are), we cannot simply follow the 
deployment of the demand owner to retrieve the related guarantees. 
Instead, the demand references the application elements (e.g., 
communication ports) that have to be deployed to diverse channels (e.g., 
communication links). The mediator tries to retrieve the related 
guarantees via the deployment of these application elements. Yet, it is 
possible that both application elements are deployed to resources 
provided by different platforms. Since there are no guarantees that span 
different platforms, there are no matching diversity guarantees and the 
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mediator cannot mediate the demand with the given deployment. In this 
case, the mediator tags the demand as fulfilled under the premise that a 
manual check shows the diversity of the redundant channels. In case a 
single relevant platform can be identified, the related guarantees can be 
retrieved. 

In the next step, the mediator filters the relevant guarantees from the 
related guarantees. Since there are three types of diversity demands 
(input channel diversity, output channel diversity, and communication 
channel diversity), the mediator assesses only those diversity guarantees 
that match the type of the diversity demand. 

After the usual check for the guarantee’s availability, the mediator 
checks whether the channels provided by the guarantee match the 
channels required by the demand. The required channels are identified 
via the deployment of the application elements referenced by the 
demand. If these required channels are identical to the channels 
referenced by the guarantee, the relevant channels were indeed 
developed diversely and the mediation continues. 

Comparable to resource protection demands, service diversity demands 
are also specified in a failure-mode-specific manner. When two platform 
resources are developed diversely, it is also possible that the 
independence of a certain failure mode cannot be guaranteed. 
Analogously, it is possible that the application developer does not 
demand independence with regard to every possible failure mode of the 
related resource. Therefore, resource diversity demands as well as 
resource diversity guarantees reference a list of failure modes, namely 
those failure modes that are required to occur independently and those 
failure modes that are guaranteed to occur independently. Only if the set 
of required independent failure modes is a subset of the guaranteed 
independent failure modes does the mediation of the guarantee 
continue. 

The last check the guarantee has to pass is the check for its integrity 
level sufficiency. If the integrity level is sufficient, the guarantee is finally 
assessed as being capable of fulfilling the demand at hand. 
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Figure 70: An overview of service diversity demand mediation 

5.4.6 Mediation of Specific Parameters 

For the detailed specification of failure modes and failure reactions, the 
VerSaI language allows parameterizing certain failure modes and 
reactions. These parameters influence the mediation of platform service 
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demands, application monitoring demands, and failure reaction 
demands as described in the previous sections. In the following 
paragraphs, we will describe how the mediator treats different kinds of 
parameters. 

Most of the failure modes and failure reactions are parameterized with 
standard parameter sets that are reused throughout the specification of 
the VerSaI language. These parameter sets are: time deviation, latency, 
jitter, and error. However, to specify arrival rate failures, analog default 
signal reactions, and digital default signal reactions, the VerSaI language 
uses specific parameters. These parameters do not, however, influence 
the mediation. 

To find out which parameters are used for the definition of different 
failure modes, please refer to Appendix B Table 17. To find out which 
parameters are used for the definition of different failure reactions, 
please refer to Appendix B Table 18. 

Time Deviation 

A time deviation parameter models a time constraint specifying the 
acceptable deviation from a nominal latency. Consequently, this 
constraint contains two time parameters, the nominal latency (tn) and 
the acceptable deviation (td) from the nominal latency. For a time 
deviation constraint, the acceptable time interval ta results to (tn-
td)<ta<(tn+td). 

Nominal latency plays no role in the mediation of a deviation parameter. 
In case the demand that is parameterized with the time deviation 
constraint is to be fulfilled with a detection guarantee, the mediator 
checks whether the smallest detectable deviation is smaller than the 
acceptable deviation. In case the demand is to be fulfilled by a 
guarantee, the mediator checks if the avoided deviation promised by the 
guarantee is smaller than the acceptable deviation specified by the 
demand. 

Latency 

The latency constraint allows modeling an acceptable time interval by 
specifying the acceptable lower bound (tl) of the latency if an early 
failure is critical, or the acceptable upper bound (tu) of the latency if a 
late failure is critical. In case both early and late failures are critical, the 
corresponding acceptable time interval ta therefore results to tl<ta<tu. 

If either the acceptable lower bound or the acceptable upper bound is 
not specified, this means that the corresponding failure is not relevant 
regarding the current demand. Consequently, the mediator omits the 
related check and only performs the other check. If, however, both 
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bounds are undefined, the mediation of the latency parameters throws 
an error and assesses the parameter as violated. 

If an early failure is critical, the mediator checks whether the detectable 
earliest deviation is smaller than or equal to the acceptable earliest 
deviation, or if the guaranteed lowest deviation is larger than or equal to 
the acceptable earliest deviation. Analogously, if a late failure is critical, 
the mediator checks whether the detectable latest deviation is large than 
or equal to the acceptable latest deviation, or if the guaranteed latest 
deviation is smaller than or equal to the acceptable latest deviation. 

Jitter 

Constraints regarding jitters are specified using the period constraint. A 
period constraint models the admissible deviation between two 
occurrences of a periodical event. A period is defined by its duration (tn), 
i.e., by the nominal time between the occurrence of the two subsequent 
instances of the same periodical event, and by its jitter (tj), i.e., by the 
admissible deviation from the nominal duration. The acceptable period 
pa between two occurrences of the periodical event is (tn-
tj)<pa<(tn+tj). 

If a period constraint is mediated, the mediator checks whether the 
detectable jitter is bigger than the acceptable jitter or whether the 
promised maximum jitter is smaller than the acceptable jitter. 

Error 

An error parameter describes the admissible deviation of an actual value 
of a signal from the nominal value of the signal. In terms of mediation, 
we have to differentiate between relative and absolute errors. 

A relative error is specified using an integer parameter that ranges from 
0 to 100, modeling the admissible deviation as a percentage. If the error 
is to be detected, the mediator checks whether the smallest detectable 
error is smaller than the admissible error. If the error is to be avoided, the 
mediator checks whether the avoidable error is smaller than the 
admissible error as well. 

An absolute error is specified using a float parameter and a string 
parameter. The float parameter specifies the admissible error value, 
whereas the string parameter identifies the unit of the error. If the unit 
of the demanded error-related capabilities is the same as the unit of the 
guaranteed error-related capabilities, the mediator continues checking 
whether the guaranteed value is sufficiently low. However, if the units 
do not match, the mediator can only regard the parameter as violated 
since the current version of the VerSaI method contains no mechanism 
for unit conversion. 
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5.5 Post Mediation 

After the mediation is finished, the mediator processes the results of the 
mediation to provide an overview to the integrator. This overview 
contains all relevant information regarding the success or failure of the 
mediation. Based on this information, the integrator decides whether a 
different configuration, a different integration, or a rework of the 
manual conditions is capable of transforming a failed mediation into a 
successful one. Using the mediation results, the integrator is capable of 
efficiently identifying the causes of a failed mediation, fix the issues, and 
start a new mediation run. 

In the following section, we will introduce the information provided by 
the mediator after a mediation run. 

5.5.1 Visualizing Mediation Results 

The mediator visualizes the results of the mediation by generating a 
separate mediation report for each application that is part of the system 
and that contains at least one demand. The goal of the mediation report 
is to explain for every demand why and how it is fulfilled or why the 
mediator was unable to fulfill the demand. In case the demand is 
violated, the mediation report should point out what made the 
mediation fail in order to enable the integrator to quickly fix the 
problem, if possible. 

The mediation report is hierarchically structured. On the top level of the 
hierarchy, the report contains a list of every interface demand specified 
by the application. On this level, the mediation result provides a quick 
overview regarding the fulfillment of the demand, and if the demand is 
violated, a quick comment regarding the reasons, if possible. 

On the second level, the report provides two kinds of information 
regarding the mediation of the chosen demand. First, it shows the 
results of the prerequisite checks on the demand level, like demand 
necessity or the availability of related guarantees. Second, the report lists 
every guarantee related to the demand, including a quick summary 
regarding this guarantee’s capability of fulfilling the demand. 

On the third and last level, the report illustrates the outcome of the 
various checks performed to assess whether the guarantee at hand is 
capable of fulfilling the demand. Every prerequisite that has to be 
checked is listed, including the information regarding the outcome of 
the check and, in case the guarantee is unable to fulfill the demand, 
comments that explain why a certain prerequisite is not fulfilled. 
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With this information, the integrator is not only able to identify which 
prerequisite check caused a specific demand to be violated, but also to 
gain additional, prerequisite-internal information via the comment field. 
With this feature, the mediation report can point the integrator to single 
conditions and configurations that can change the outcome of the 
mediation. Figure 71 shows the structure of a mediation report. 

demand necessity

Resource Protection Demand: ASWC_X.Memory

...

Platform Service Demand: ASWC_A.ComFailure.Omission

Platform Service Demand: ASWC_A.ComFailure.Corruption

related guarantee existence

protection necessity

Resource Protection Guarantee: MemoryModule_A

integrity level sufficiency

guarantee availability

...

Resource Protection Guarantee: MemoryModule_B

Name Fulfillment Comment

fulfilled

violated no related guarantees

fulfilled

fulfilled

fulfilled

fulfilled

violated

fulfilled

insufficient integrity level

violated insufficient integrity level (ASIL D > ASIL A)

fulfilled
 

Figure 71: The structure of a mediation report 
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6 Deployment Evaluation 

This chapter is the third and final chapter describing our method for 
“Efficiently Deploying Safety-Critical Applications onto Open Integrated 
Architectures”. In this particular chapter, we will describe our objective 
function for evaluating and optimizing the high-level deployment 
evaluation, which corresponds to the third contribution specified in 
chapter 1. 

Contrib. 3 Deployment Evaluation: Developing an objective function for 
evaluating and optimizing the deployment of a functional architecture 
onto a platform topology from a safety perspective. 

As discussed before, open Integrated Architectures like AUTOSAR or IMA 
enable flexible deployment, which can potentially help to reduce the 
number of computer platforms in a distributed embedded system, and 
therefore reduce weight, energy consumption, and costs. Finding a 
beneficial deployment that yields the desired properties is, however, a 
complicated multi-criteria optimization problem. One criterion that 
requires exceptionally careful examination is safety, since an adverse 
deployment can compromise system safety and inflict significant costs. 

In section 2.2, we identified and listed several safety-related objective 
functions that assist the integrator in finding a suitable deployment. 
However, to the best of our knowledge, there is no function that allows 
the integrator to weigh the costs of strict separation versus flexible 
deployment in a mixed-critical system. Since mixed-critical systems are 
gaining more and more importance in the automotive as well as in the 
aviation industry, our method provides an objective function for 
evaluating these costs. The objective function is based on two metrics 
and additional constraints, which are assembled to form an adequate 
objective function. The assembled objective function is finally 
implemented and tested using a genetic algorithm (GA). 

Figure 72 shows an overview of our deployment optimization 
contribution as well as its interface to the residual VerSaI method. 
Deployment optimization takes place during deployment planning, 
before the VerSaI method comes into play. Our objective function assists 
the integrator in finding a suitable deployment plan, i.e., a mapping of 
ASWCs to platforms and signals to communication links. The generated 
deployment serves as input to the VerSaI method, where the deployment 
plan is used to configure the applications and platforms accordingly, and 
as refinement of the deployment plan until the deployment can be 
realized technically. 
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The structure of this chapter is as follows. Section 6.1 provides a detailed 
description of the problem addressed by our approach and introduces a 
running example that is used to illustrate the working of our metrics and 
constraints. We present the objective function for deployment evaluation 
in section 6.2 and the deployment optimization with the GA in section 
6.3. 
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Figure 72: An overview of our deployment evaluation contribution in the context of the overall VerSaI 
method. 

6.1 Problem Statement 

In an integrated system, applications do not have to be deployed onto 
platforms as a whole. Applications may consist of several individual 
ASWCs, which can be deployed separately. To provide a certain degree 
of separation between ASWCs from different applications, some 
platforms provide not only one indivisible deployment target, but several 
individual deployment compartments called partitions. Basically, a 
partition provides fault containment capabilities such that faults of an 
application in one partition cannot affect the platform's capability to 
provide shared resources in such a way that there is an interference with 
applications in other partitions. Resulting from this definition, we define 
one aspect of deployment as the mapping of the application software 
components (ASWCs) onto the partitions of the platforms. ASWCs are 
further characterized by two attributes: their name and their complexity. 
Complexity is determined by a three-stage scale (low, medium, high), 
which provides a very coarse-grained model of the components’ 
implementation complexity and size. 

A second aspect of deployment is the mapping of the logical signals 
exchanged between ASWCs onto the communication channels 
connecting the different platforms. Here, we differentiate between 
channels that allow inter-platform communication and the local 
communication channel that allows communication between ASWCs in 
different partitions of the same platform. The stronger the separation 
between interactive ASWCs, the higher the required communication 
volume. 
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We specify the target of a deployment as a collection of platforms, 
where each platform is again capable of containing several partitions. If 
a platform does not provide partitioning mechanisms, we model this by 
specifying a platform with one virtual partition. The platforms are 
connected with each other via communication channels. Platforms and 
communication channels specify a type that will be used later for the 
calculation of the objective function. A possible communication channel 
type could be “CAN” or “FlexRay”, whereas a possible platform type 
could be “vendor X AUTOSAR 4.0 running on hardware platform Y”. 

We label the deployment target, i.e., the tuple consisting of the platform 
set and the communication channel set, as platform topology. On the 
other hand, we label the part of the system that has to be deployed, i.e., 
the ASWCs and the signals, as functional architecture. The goal of 
deployment optimization is to find a suitable mapping (a deployment 
plan) of a given functional architecture onto a given platform topology. 
Figure 73 shows the meta-model we use to specify a deployment 
problem and possible solution deployment plans. 
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Figure 73: The meta-model to specify deployment problems and possible solution deployment plans. 

Please note that the initial deployment planning is performed very early 
in the development cycle of the embedded system. Since platforms 
require installation space and the availability of a communication 
channel affects the wiring, the platform topology affects the 
geographical design of the embedded system, which is again specified in 
the early development phases. If it should turn out that the specified 
platform topology is unable to host all required software components, 
redesigning the topology becomes expensive. To avoid such a situation, 
the initial deployment has to be specified early as well in order to show 
the general feasibility of the platform topology. 

During such an early development phase, the deployment is specified on 
a relative coarse-grained level of detail. It is possible to describe 
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deployment on a more fine-grained level such that the deployment 
specifies, for example, the application's requirement on the capabilities 
of specific platform resources like I/O devices, non-volatile memory 
(NVRAM), or the assignment of signals to messages or ASWCs to 
operating system (OS) tasks and so one. Since this information is only 
available and necessary during the later development phases and our 
objective function is meant to be used during the early design phase, our 
objective function does not use this information. However, the more 
detailed deployment information is safety relevant and has to be 
checked, which is why we covered these aspects with our VerSaI method 
described in chapter 4 and chapter 5. 

6.1.1 Safety-Related Properties 

The concept of safety integrity levels (SIL) [59], or comparable concepts 
like development assurance levels (DAL) [60], is used in safety standards 
across most domains. Integrity levels are a qualitative scale for the risk 
posed by a system hazard. The higher the risk, the stronger the 
requirements for the system to reduce the risk to an acceptable level. 
Safety standards try to enforce this by tailoring the safety standards 
using integrity levels. The higher the integrity level, the stronger, the 
stricter, and the more numerous the demands of the standard. As a 
consequence, the integrity level significantly influences the development 
costs of a system. Depending on the criticality level, costs for DO-178C-
compliant software [60] development can increase by 300 to 500%. 

During system development, while the system architecture is being 
gradually refined, it is common to allocate integrity levels to components 
if the safety requirements implemented by that component are required 
to prevent a hazard that has the corresponding integrity level. Simply 
tagging a component with an integrity level can be regarded as 
simplification, as it abstracts from the specific requirement and the 
specific failure that would actually lead to the hazard. Still, standards 
specify deployment rules that are based upon integrity levels, where it is 
common to assign integrity levels (IntLevel) to components, in our case 
ASWCs. 

The same is true for logical signals exchanged between ASWCs. We 
assign integrity levels to signals if there is at least one failure mode 
related to the transmission of the signal (like corruption, delay, insertion, 
masquerading, etc.) that might lead to a hazard that poses the 
corresponding level of risk. 

Since this information is required for calculating our objective function, 
we assume that the ASWCs and the signals contained in the given 
functional network are all classified according to their criticality level. 
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6.1.2 Running Example 

Figure 74 shows the specific deployment problem that we will use as a 
running example to illustrate our deployment evaluation method. The 
example uses the safety integrity level (SIL) scale defined by the IEC 
61508 [59]. The scale goes from QM for uncritical components to SIL 1 -
SIL 4, with SIL 4 being the category for the most critical components. 

The functional architecture implements a two-channel comparator 
architecture. Both channels are built of two SIL B ASWCs with medium 
complexity exchanging two signals. The resulting signal of both channels 
is then transmitted to the comparator component, which has low 
complexity but a relatively high SIL C criticality level. In addition to the 
two-channel comparator, the system contains two highly complex 
components that implement an uncritical functionality. 

The simple platform topology consists of two platforms that both 
provide a partitioning mechanism. Both platforms provide two partitions. 
The platforms are connected via one communication channel called 
CH1. 
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Figure 74: A running example for the deployment evaluation method . ASWCs are depicted as 
rectangles containing three strings, from top to bottom: name, criticality, complexity. 
Signals are depicted as arrows with two strings, from top to bottom: name, criticality. 
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6.2 Objective Function 

This chapter introduces two metrics for evaluating, from the safety 
perspective, a solution for a specific deployment problem introduced in 
section 6.1. The metrics implement a cost function that is minimized by 
the optimization algorithm presented in section 6.3. In particular, both 
metrics evaluate negative effects caused by two core characteristics of 
integrated architectures. 

The cohesion metric is presented in section 6.2.1 and focuses on the 
aspect of shared computational resources, as the metric evaluates the 
costs induced by unprotected interferences between mixed-critical 
ASWCs. The coupling metric is presented in section 6.2.2 and evaluates 
the costs caused by safety mechanisms required to protect against 
communication failures. In addition to the quantitative evaluation using 
these metrics, we allow for the specification of certain constraints that 
are required to restrict the available deployment solution space to 
sensible solutions. These constraints are introduced in section 6.2.3. The 
assembly of the metrics and the constraints into a single objective 
function is presented in section 6.2.4. Since the metrics and the objective 
function are highly configurable, we conclude this chapter with a 
mechanism to adequately parameterize the metrics in section 6.2.5. 

6.2.1 Cohesion Metric 

A major disadvantage of integrated architectures is the lack of natural 
fault containment barriers. If an application fails in a federated 
architecture, the failure propagates to other applications only via 
functional dependencies because different applications are hosted on 
separate platforms, which leaves almost no potential for fault 
propagation via technical dependencies. However, in an integrated 
architecture, failures of an application can affect the host platform, and 
from thereon, affect other applications on the same platform even if the 
concerned applications share no functional dependencies. This effect is 
typically called interference. 

If there is a possibility that a set of ASWCs will interfere with each other, 
safety standards typically demand that all ASWCs in the set are 
developed according to the highest integrity level amongst all ASWCs in 
the set. This is done to prevent failures of lower-criticality components 
developed according to less strict development requirements from 
causing higher-criticality applications to fail and therefore indirectly 
cause hazards with higher criticality. Conversely, if standards were not to 
apply this rule, lower-criticality components would be capable of causing 
highly critical hazards. 
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In section 6.1.1 we already introduced the concept of partitioning. 
Partitioning separates a platform into virtual compartments and prevents 
interferences across the borders of partitions. Inside a partition, however, 
there is no freedom from interference. As a consequence, ASWCs 
allocated to the same partition or to a platform that provides no 
partitioning mechanisms must be developed according to the highest 
integrity level of all the ASWCS allocated to the partition as described 
above. 

If this rule causes a raise of the original integrity level of an ASWC, 
development costs increase. The cohesion metric quantifies this effect 
based on an estimation of the resulting additional costs. According to 
our experience, the costs for safety-critical development are not added 
to the regular development costs like a constant, but rather affect the 
costs like a factor. Therefore, we define ( ) to be the cost 
factor for the development of an ASWC with integrity level " " , 
compared to the development of an identical but uncritical ASWC. 

Let  be the original integrity level of an ASWC and  the 
increased integrity level of the ASWC caused by deployment. Then the 
cost factor difference  is calculated as: , = ( ) ( ) 
To evaluate the impact of the cost factor difference, we have to estimate 
the development costs of the affected component. To this end, we 
define the complexity of an ASWC as a qualitative scale as described in 
section 6.1, as the costs increase with increasing complexity of the 
development of the component. We further define the function ( ) as the cost factor for complexity level "y". The complexity 
categorization of an ASWC is currently based on expert judgment. 

If we let ( ) be the integrity level and ( ) the complexity 
level of the ASWC "aswc", the cost difference  for upgrading the 
criticality of  to level  is defined as: ( , ) = ( ( ), ) ( ( )) 
Finally, the cohesion metric results from summing up the cost differences 
for all applications in all partitions. Let " " be the set of all partitions of 
the platform topology and ( ) the maximum integrity 
level among the applications in the partition " ". Then cohesion is 
calculated as: ( ) = ( , ( )) 
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Figure 75 shows two solutions for deploying the running example side 
by side. The solution on the left shows a deployment yielding no 
cohesion costs, since there are only equally critical ASWCs in each 
partition. The deployment shown on the right yields much worse 
cohesion since both uncritical complex components are deployed to the 
same partition as the critical comparator component. This would result in 
two highly complex but uncritical components being developed 
according to SIL C. 
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Figure 75: Two example deployments illustrating the cohesion metric . The deployment of an ASWC 
to a partition is indicated by the same fill color and pattern of the respective shapes. The 
deployment of signals is not indicated. 

6.2.2 Coupling Metric 

In an integrated architecture, computer platforms are interconnected via 
communication buses. This allows the system developer to spread the 
components of an application over multiple platforms and to integrate 
applications in order to provide new or improved functionalities. 
However, the increased information exchange caused by spreading an 
application over multiple platforms is also an additional source of failure. 

In a safety-critical system, communication failures can potentially cause 
hazards, which is why protection mechanisms are necessary to detect 
and control them. Typical protection mechanisms include sending 
redundant information to detect corruptions, message counters to 
detect lost messages, or deadline monitoring to detect delayed signals. 
These mechanisms cause bus workload, use computational resources, 
and may also increase end-to-end delay. Furthermore, communication 
protection mechanisms typically detect, but do not prevent failures. The 
necessary failure reaction often lowers the utility or availability of the 
system. Therefore, the coupling metric evaluates these costs of safety-
critical communication. 
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In section 6.1.1, we abstracted from specific communication failure 
modes and classified each signal by assigning an integrity level to it. With 
increasing risk, standards typically demand increasingly rigorous 
protection mechanisms. To achieve high diagnostic coverage, for 
example, ISO 26262 recommends complete bus redundancy, whereas 
multiple redundant bits optimally allow for medium diagnostic coverage. 
To represent this, we evaluate the costs for protecting a signal as a 
function ( ) of the signal's integrity level " ". 
The costs for protecting signals from communication failures do not 
solely depend on integrity levels. They also depend on the 
communication channel that the signal is transmitted on. This is because 
some types of channels already come with protection mechanisms or 
have a design that makes certain failures less likely. In this dissertation, 
we only differentiate between intra-platform communication (if the 
collaborating ASWCs are located in different partitions of the same 
platform) and inter-platform communication (if they are located on 
different platforms). Channel-type-specific costs can be differentiated 
further by adding more channel types to the meta-model and extending 
the function ( ), which yields the cost factor of a channel 
type . 

If we let " " be the evaluated signal, ( ) the type of the 
communication channel that " " is assigned to, and ( ) the integrity 
level of " ", then the cost function for protecting the communication of " " is defined as: ( ) = ( ) ( ( )) 
If we let  be the set containing all applications and ( ) 
the outgoing signals of the ASWC " ", then coupling is defined as: ( ) = ( )( )  

Figure 76 shows two solutions for deploying the running example side 
by side. The deployment shown on the left side yields low coupling costs 
since only the signal “s 2.3” with SIL B criticality is deployed to an 
inter-platform channel. The second signal that requires communication is 
the signal “s 1.3”, but this signal can be transmitted at lower costs via 
the platform-internal communication channel. The deployment shown 
on the right side, however, requires the inter-platform communication of 
five additional signals, which results in much higher coupling costs. 
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Figure 76: Two example deployments illustrating the coupling metric . The deployment of ASWCs is 
indicated as in Figure 75. The deployment of a signal is indicated as follows: Locally 
exchanged signals are shown with a dotted line. Signals deployed to the respective intra-
platform channel are shown with a dashed line. Signals deployed to the inter-platform 
channel “CH 1” are shown with a solid line. 

6.2.3 Constraints 

This section introduces two constraints that allow the designer to restrict 
the deployment solution space. Whereas the aspects evaluated in the 
previous two sections have quantifiable effects on system development, 
solutions that violate constraints are infeasible and will therefore be 
discarded. 

We mentioned before that our metrics operate during very early 
development stages, where most of the software has not been 
developed yet. This assumption is used for calculating the cohesion 
metric, where we assume that we can still change the native integrity 
level of components. However, if the component is reused from a 
previous project or if it is a component off the shelf (COTS), the 
component is already developed and its integrity level can no longer be 
freely adapted. Therefore, the first constraint allows the designer to 
specify that a certain ASWC has a fixed integrity level. Consequently, it 
will be treated as a constraint that the ASWC does not share a partition 
with lower-criticality ASWCs. 

The second constraint is used to represent dissimilarity relations between 
typically two or three ASWCs, which means that the corresponding 
ASWCs have to be developed heterogeneously to avoid systematic 
common-cause failures. This also means that the platforms the ASWCs 
are deployed to must not have systematic common-cause failures either. 
Consequently, the dissimilarity constraint is violated if the type of the 
host platforms of at least two dissimilar ASWCs is the same. 
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6.2.4 Objective Function Assembly 

Since we intend to use a GA to evaluate our objective functions and GAs 
typically work with fitness functions, we have to transform the cost 
functions implemented by our metrics into a fitness function. To that 
end, we define a function to pessimistically estimate the worst-case costs 
for a specific deployment problem and subtract the cost functions to get 
a non-negative fitness function. The pessimistic worst-case estimation 
simply assumes that every ASWC is deployed onto the same partition 
and every signal is transmitted via an inter-platform communication link. 

Let " " be a specific deployment problem (a tuple consisting of a 
platform topology and a functional network). Then ( ) yields all 
partitions of all platforms, and ( ) yields all ASWCs in . 
Furthermore, let ( ) be defined as the corresponding worst-case 
cost estimation and ( ) as a function that yields "1" if no 
constraint is violated and ”0” if at least one constraint is violated. Then 
we define the fitness function as: ( ) =( ) ( ) ( ) ( )   

Using a number of exemplary architectures and corresponding 
deployments, we conducted a qualitative analysis of the fitness function 
with practitioners in the automotive domain. During the analysis, several 
iterations were necessary to adapt the problem description and the 
metrics such that it became possible to model the relevant aspects of the 
deployment and to evaluate them appropriately. After a final evaluation 
of the technique, the metrics were identified as adequately expressive 
and the expert estimations allowed for adequate parametrization of the 
metrics. 

6.2.5 Parameterization 

Our objective function requires adequate parameterization to function 
properly. If we assume three complexity levels, two kinds of 
communication channels (inter- and intra-platform channels), and the 
common number of five criticality levels (including the uncritical level) for 
ASWCs as well as for signals, we end up with a total of fifteen 
parameters for customizing the cost functions as shown in Table 10. 
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Table 10: A list of parameters of our objective function 

Number Parameter Description 

1 ( ) Cost factor for a ASWC 
with a low complexity 

2 ( ) Cost factor for a ASWC 
with a medium complexity 

3 ( ) Cost factor for a ASWC 
with a high complexity 

4 ( ) Cost factor for a ASWC 
with a QM risk estimation 

5 ( _1) Cost factor for a ASWC 
with a SIL 1 risk estimation 

6 ( _2) Cost factor for a ASWC 
with a SIL 2 risk estimation 

7 ( _3) Cost factor for a ASWC 
with a SIL 3 risk estimation 

8 ( _4) Cost factor for a ASWC 
with a SIL 4 risk estimation 

9 ( ) Cost factor for a ASWC 
with a medium complexity 

10 ( ) Cost factor for a ASWC 
with a high complexity 

11 ( ) Cost factor for a ASWC 
with a QM risk estimation 

12 ( _1) Cost factor for a ASWC 
with a SIL 1 risk estimation 

13 ( _2) Cost factor for a ASWC 
with a SIL 2 risk estimation 

14 ( _3) Cost factor for a ASWC 
with a SIL 3 risk estimation 

15 ( _4) Cost factor for a ASWC 
with a SIL 4 risk estimation 

We chose to design this flexibly since an exact acquisition of specific 
safety-related costs is usually not available and different domains, 
organizations, and sometimes different projects will most probably 
require different kinds of parameterization regarding safety-related 
costs. 
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Since it is usually difficult for the developers to acquire the respective 
cost relations, we allow for an alternative way to parameterize the 
metrics: A deployment expert is confronted with an artificial but 
humanly manageable calibration deployment problem. The deployment 
expert is allowed to change the parameters, and after each change, the 
optimizer immediately calculates a deployment solution and presents it 
to the expert. This cycle is repeated until the optimizer arrives at a 
solution that the expert expects. 

The parameter set that produced the expected solution during the 
calibration can then be used for real-world deployment problems. Please 
note that the quality of the resulting parameters depends on the expert's 
estimation and might not correlate with the real cost factors. According 
to our experience, however, this process yields better parameters than 
completely manual parameterization. Figure 77 illustrates this tool-
supported parameterization process. 

expert enters 
initial 

parameters

compute 
optimal 

deployment

expert evaluates 
computed 

deployment

compute 
optimal 

deployment

use current 
parameters

as 
expected?

[yes]

[no]

 
Figure 77: The tool-supported parameterization of the objective function 

6.3 Deployment Optimization 

In this section, we present a deployment optimization algorithm based 
on the introduced fitness function and a GA. It is important to note that 
the focus of our work lies on the presented metrics and not on the 
selection of this specific optimization algorithm. We used a GA to test 
and evaluate our metrics because they were integrated into a larger-
scale optimization running a GA as well. Other techniques, such as linear 
programming, however, are also suitable for deployment optimization. 

A GA is a stochastic search algorithm that uses techniques adopted from 
natural evolution to find near-optimal solutions for complex optimization 
problems [69]. The optimization process starts with a number of 
randomized solutions, the so-called initial population. After initialization, 
each member of the population is evaluated for its fitness, and then a 
new population is reproduced from the old population using techniques 
like crossover, where chromosomes of one individual are mixed with 
chromosomes of another individual, and mutation, where single 
chromosomes are randomly altered. Members with higher fitness are 
more likely to participate in this reproduction/generation of a new 
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population than members with low fitness. After the new population is 
generated, it is evaluated for its fitness, which is followed by another 
reproduction of a new population. This optimization loop terminates, for 
example, after a fixed number of cycles or when one individual has 
reached a sufficient predefined fitness. 

To be able to use standard algorithms like crossover and mutation, 
solutions of the optimization problem have to be represented by so-
called chromosomes. A chromosome is divided into several genes, each 
gene representing a distinct part of a potential solution. In our case, the 
intuitive chromosome for a specific deployment problem with  ASWCs 
and  signals would be an array of  genes representing ASWC 
mappings, concatenated with  genes representing signal mappings. 

However, we decided to include only the ASWC mappings onto the 
chromosome and let the GA optimize only the ASWC mappings. This is 
because the signal mapping highly depends on the ASWC mapping and 
we are able to calculate the optimal signal mapping directly as soon as 
the ASWC mapping has been determined. For a specific deployment 
problem with  ASWCs and  partitions, our chromosome therefore 
consists of the genes {1, … , }, {1, … , }. Each of the  genes is 
represented by an integer between 1 and , where =  denotes that 
ASWC  is assigned to partition . 

Using this chromosome layout results in a slightly adapted version of the 
aforementioned GA optimization loop, since we have to add the signal 
mappings to the ASWC mappings for calculating our fitness function. 
The resulting loop consists of three steps: (1) calculate the fitness for 
each individual, (2) reproduce a new set of ASWC mappings, (3) 
calculate optimal signal mappings for each individual. The optimization 
stops if the fitness improvement within the last 30 generations has been 
below 5%. Figure 78 shows the modified optimization loop. 

random generation of 
initial population (only 

ASWC mappings)

evaluation of 
population 

fitness

generation of new 
population (only 

ASWC mappings)

calculation of optimal 
signal mappings for 

initial population

calculation of optimal 
signal mappings for 

new population

termination 
condition 
fulfilled?

[yes]
[no]

 

Figure 78: The adapted GA optimization loop used for our objective function 
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The optimal signal mapping can be determined in a straightforward 
fashion since the costs for individual signal mappings do not influence 
each other. First, we check the deployment of the receiver and sender 
ASWC of each signal. If both are in the same partition, no channel is 
needed, and if both are on the same platform, we deploy the signal to 
the local channel. If both are hosted on different platforms, we search 
for all available channels connecting the respective platforms. If there is 
no such channel, we flag the ASWC mapping as invalid. If there is more 
than one channel, we search for the channel that yields the lowest costs 
and deploy the signal accordingly. 
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7 Implementation and Evaluation 

In this chapter, we will describe the evaluation and the technical 
implementation of our contributions described in the preceding 
chapters. Comparable to the structure of the overall thesis, we 
performed the evaluation in a modular way: In the first part of the 
evaluation, we will assess the VerSaI technique, which includes the 
VerSaI language as well as the VerSaI mediator. The VerSaI language was 
specified earlier, in chapter 4, whereas the specification of the VerSaI 
mediator is found in chapter 5. In the second part of the evaluation, we 
will assess our objective function for deployment evaluation, which was 
specified in chapter 6. The technical feasibility of our solution is 
underpinned by two implementation prototypes that will be introduced 
in the following as well. 

This chapter is structured as follows. The evaluation of the VerSaI 
technique is described in section 7.1; the evaluation of our approach for 
deployment evaluation is described in section 7.2. The implemented 
prototypes of the VerSaI technique and the deployment evaluation are 
introduced in section 7.2 and section 7.4, respectively. 

7.1 VerSaI Evaluation 

The VerSaI technique comprises mainly two components. First, there is 
the VerSaI language, which allows application and platform developers 
to specify the demands regarding the safety-related behavior of the 
platform and the correspondingly safety-related guarantees of the 
platform. This part of the VerSaI technique corresponds to our first 
contribution, in which we declared that we will “define a formal 
language for the modular specification of safety-related demands and 
guarantees between an application and a platform in an open integrated 
architecture.” Second, there is the VerSaI mediator for automatically 
checking if a set of application demands specified with the VerSaI 
language is fulfilled given the guarantees provided by a specific platform. 
This part of the VerSaI technique corresponds to our second 
contribution, where we proclaim that we will “develop an automated 
process for checking the safety compatibility of an application and a 
platform in an open integrated architecture”. 

In this section, we evaluate whether both of these contributions have 
been achieved by the solutions presented in the previous chapters, i.e., 
whether it is actually possible to specify the relevant demands and 
guarantees with the VerSaI language and whether the mediator is 
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capable of automatically checking the compatibility of demand and 
guarantee interfaces specified with our language. 

Our evaluation starts with the argument for the applicability of the 
VerSaI language. The basic strategy behind this argument is to show that 
the VerSaI language is capable of covering the safety-related 
dependencies between a state-of-the-practice application and a state-of-
the-practice platform. This state of the practice in the development of 
open integrated architectures is well represented by the most widely 
used open integrated architectures, which are AUTOSAR in the 
automotive domain and the civil IMA-derivate ARINC 653 in the aviation 
domain. Consequently, to demonstrate that the VerSaI language is 
capable of covering the relevant safety-related dependencies, we refer to 
the most widely used open integrated architecture standards: AUTOSAR 
and ARINC 653. 

To show that our language covers AUTOSAR and ARINC 653, we 
generated a mapping between these standards and the VerSaI language. 
As described in section 4.2, the VerSaI language is structured into four 
classes/packages of safety-related dependencies between applications 
and platforms: (1) platform service failures, (2) health monitoring, (3) 
resource protection, and (4) service diversity. In the following 
paragraphs, we will iterate through each of these classes and discuss 
their completeness with regard to AUTOSAR and ARINC 653 
specification. 

The first step in arguing the completeness of the platform service failures 
covered by the VerSaI language is to argue the completeness of the 
platform services covered by the VerSaI language. These are: 
synchronization, communication, I/O access, time services, memory 
services, and scheduling. In the following tables, we map the services 
provided by ARINC 653 (see Table 11) and AUTOSAR (see Table 12) to 
the VerSaI services. Please note that the mapping tables include the 
mapping of “health monitoring” services. Health monitoring is not 
relevant for the platform service failure class and will be discussed 
separately shortly hereafter. 

Table 11: Mapping of AUTOSAR services to services in VerSaI . An “x” in the matrix denotes that the 
specific part of the ARINC API is addressed by the respective service class. Please not that 
there are further directly accessible service components but those components are only 
active during initialization or debugging and are therefore not included. 

AUTOSAR \ 
Classification 

Com NV-
RAM 

Mngr. 

OS Diagn. 
Event 
Mngr. 

Funct. 
Inhi. 

Mngr. 

RTE Watch
-dog 
Mngr 

IO 
HW 

Abstr. 

Synchronization 
Mechanisms   x   x   

Communication x  x   x   
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I/O Access        X 

Time Services   x      

NV Memory 
Access 

 x       

Scheduling   x   x   

Health 
Monitoring 

   x x  x  

 
Table 12: Mapping of ARINC 653 services to services in VerSaI . An “x” in the matrix denotes that 

the specific part of the ARINC API is addressed by the respective service class. 

ARINC 653 \ 
Classification 

Partition 
Mgmt. 

Process 
Mgmt. 

Time 
Mgmt. 

Inter-
Part 
Com 

Intra-
Part 
Com 

Health 
Mgmt. 

Synchronization 
Mechanisms 

   x   

Communication    x x  

I/O Access is not directly covered by ARINC 653 

Time Services   x    

NV Memory 
Access 

is covered by ARINC 653 Part 2 

Scheduling x x scheduling implementation by OS 

Health 
Monitoring 

x x    x 

As the tables show, the standard services are well covered by the VerSaI 
approach. Based on these standard services, we identified the failure 
modes included in the VerSaI language by performing a state-of-the-art 
safety analysis. The analysis was conducted using a guide-word-driven 
process widely used in academia and industry (see section 4.4.1 for more 
information regarding the analysis technique). Where possible, we cross-
checked the results of our failure analysis with existing failure models 
specified in the related safety standards (e.g., IEC 61508-2 Table A.1 [59] 
and ISO 26262-5 Table D.1 [46]) to further align our failure models with 
existing and accepted failure models. Of course, it is almost impossible to 
identify a complete set of failure-modes for such a complicated set of 
services. However, through various iterations in the SPES2020 and 
ARAMiS project as well as through discussions with industrial partners, 
we believe that we have reached a stable set of failure-modes for the 
covered services. However, should the VerSaI language not cover a 
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certain aspect, the language can be extended as we discuss later in this 
section. 

The second dependency class, the health monitoring class, allows the 
VerSaI user to specify demands and guarantees regarding mechanisms 
for both application monitoring and failure control reactions provided by 
a standard execution platform. 

The completeness of the available application monitoring mechanisms 
with regard to the application monitoring mechanisms available in 
AUTOSAR and ARINC 653 is shown in Table 13, where we map the 
VerSaI mechanisms to the AUTOSAR and ARINC 653 mechanisms. If the 
reader is familiar with AUTOSAR or ARINC 653, he or she might notice 
that the corresponding standards contain additional monitoring 
mechanisms that are not listed in the table. These mechanisms, like ISR 
disable budget monitoring in AUTOSAR or illegal OS service call 
monitoring in ARINC 653, serve the protection of other applications 
running on the same platform and do not assist the application safety 
concept of the causative application. Therefore, these mechanisms are 
not listed as application monitoring mechanisms in VerSaI but are 
covered by the resource protection class. 

Table 13: Mapping of monitoring mechanisms to the VerSaI language . This table lists the different 
application monitoring mechanisms provided by AUTOSAR and ARINC 653 and maps them 
to the platform failure reaction provided by the VerSaI health monitoring package (see 
section 4.4.3) 

AUTOSAR 
OS 

AUTOSAR 
Watchdog 
Manager 

ARINC 653 
Health 

Monitoring 

VerSaI Health 
Monitoring 

execution 
time 

  execution time  

inter-arrival 
time 

  inter-arrival time 

 alive  inter-arrival rate 

 sequence  logical sequence 

 deadline deadline deadline 

The completeness of the available platform failure reactions is shown in 
Table 14. Please note that some mechanisms are labeled differently in 
AUTOSAR, ARINC, and our technique. Please note further that the 
VerSaI language is not capable of differentiating between shutting down 
the OS, restarting the MCU, and restarting the complete platform via 
watchdog reset. Since this is a very AUTOSAR-specific differentiation we 
chose to abstract and map them to the platform restart reaction. 
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Table 14: Mapping of platform failure reactions to the VerSaI language : This table lists the different 
platform failure reactions provided by AUTOSAR and ARINC 653 and maps them to the 
platform failure reaction provided by the VerSaI health monitoring package (see section 
4.4.4). Acronyms in the table: FIM stands for Function Inhibition Manager. DEM stands for 
Diagnostic Event Manager. 

AUTOSAR 
OS 

AUTOSAR 
Watchdog 
Manager 

AUTOSAR 
FIM & 
DEM 

ARINC 653 
Health 

Monitoring 

VerSaI 
Health 

Monitoring 

shutdown 
OS 

   shutdown 
platform 

   stop module shutdown 
platform 

   restart 
module 

restart 
platform 

terminate 
partition 

terminate 
partition 

 stop 
partition 

shutdown 
partition 

restart 
partition 

  restart 
partition 

restart 
partition 

terminate 
task 

  stop process shutdown 
task 

restart task   restart 
process 

restart task 

call error 
hook 

  user 
callback 

handler 
execution 

 MCU reset   shutdown 
platform 

 watchdog 
reset 

  shutdown 
platform 

 indication (rule-based) 
indication 

 indication 

The resource protection package provided by the VerSaI language is the 
third of four dependency classes and allows specifying demands and 
guarantees regarding the protection of shared resources in order to 
prevent inadvertent interferences between different application 
components. The structure and completeness of this dependency class 
were evaluated in an industrial context together with a tier-1 automotive 
supplier. During a joint project we analyzed an example multicore 
platform running AUTOSAR regarding potential interferences and 
available protection mechanisms. Among other aspects, the analysis 
included almost every AUTOSAR service directly accessible from the 
application level (NVRAM Manager, Communication Manager, 
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Diagnostic Event Manager, Function Inhibition Manager, Watchdog 
Manager, and BSW Mode Manager), as well as certain peripherals (ADC, 
GPIO, timer, CAN controller, FlexRay controller, and DMA controller) and 
the service, memory, and timing protection provided by the AUTOSAR 
OS. The protection demands and guarantees resulting from the 
interference analysis were used to refine and validate the soundness of 
the resource protection package. 

The final dependency class covered by the VerSaI language is called 
service diversity. This class allows the user to demand or guarantee the 
availability of diversely developed services to support a heterogeneous 
redundancy concept on the application level. This class of dependency 
represents a relatively special and rarely used case. Therefore, we did not 
design it for completeness but rather so that it is suitable for covering 
the relevant safety architectures that require this dependency class (e.g., 
certain implementations of the standardized e-gas safety concept from 
the automotive domain). Should the advancement of integrated 
architectures cause these architectures to be used more often, we need 
to extend and refine this dependency class. 

In the previous paragraphs, we argued that the VerSaI language covers 
the standardized services specified in AUTOSAR and ARINC 653. 
However, both standards further allow for non-standardized interfaces 
between applications and platforms (see complex device drivers in 
AUTOSAR or system partitions in ARINC 653). These non-standardized 
interfaces allow the developer to introduce application-specific features 
into the platform. Since these services are customary in nature, they are 
not covered by the VerSaI language. However, both standards 
discourage the use of these features as they impair application 
portability. Yet, should the user require a specific custom service more 
frequently, the VerSaI language can be extended to cover the service. 

Now that we have argued the attainment of our first contribution by 
showing that the VerSaI language covers the relevant parts of the 
AUTOSAR and ARINC 653 standards, our evaluation continues with the 
second contribution, the automated mediation of VerSaI interfaces. In 
order to demonstrate that the concepts and algorithms for interface 
mediation presented in chapter 5 can be implemented to produce an 
automatic mediation tool, we developed a tool prototype. This prototype 
was implemented based on Java, Eclipse, and the Eclipse modeling 
framework. The prototype will be introduced in more detail in section 
7.3. 

Our VerSaI prototype was structurally tested with various example inputs 
to evaluate the correctness of the proposed algorithms. The test set was 
designed to achieve decision coverage of each of our five mediation 
algorithms presented in section 5.4.1 to section 5.4.5. The reader can 
best follow up on the various decision points involved in each algorithm 
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via the activity diagrams shown for each algorithm. In total, we required 
54 test runs to achieve decision coverage as listed in Table 15. Naturally, 
we found many software bugs during testing. Yet, more interestingly, 
during the implementation of the algorithms we found several cases in 
which we were not capable of retrieving information via the meta-model 
as initially assumed during conception. Mostly this was because of 
missing references that did not allow us to traverse the model as 
intended. As a consequence, we had to adjust the meta-model in more 
than one case. 

Table 15: An overview of the VerSaI testing : This table lists the different test runs required to reach 
decision coverage for the individual mediation algorithms. The table also provides a link to 
the chapter where the corresponding mediation algorithm is described as well as a link to 
the figure showing the activity diagram depicting the algorithm. 

Mediation 
Algorithm 

Chapter Figure Decisions# Test 
Runs# 

Platform Service 
Demand Mediation 

5.4.1 Figure 65 10 11 

Application 
Monitoring Demand 
Mediation 

5.4.2 Figure 67 9 10 

Reaction Demand 
Mediation 

5.4.3 Figure 68 12 13 

Resource Protection 
Demand Mediation 

5.4.4 Figure 69 10 11 

Service Diversity 
Demand Mediation 

5.4.5 Figure 70 8 9 

We discussed the VerSaI technique in the context of several industrial 
and research projects. Our approach was generally perceived as helpful, 
but it was criticized for having solely model-based representation of 
demands and guarantees, which does not fit into the current 
development life-cycle of a safety-critical system. 

In the development life-cycle of a safety-critical system, safety-related 
demands and guarantees are represented by safety requirements. A 
demand specifies the need for the implementation of a safety 
requirement requested by a component that is otherwise unable to 
execute safely. A guarantee, on the other hand, specifies that a specific 
safety requirement has been successfully implemented. In the ideal case, 
the model-based specification of the requirement with the VerSaI 
language replaces the manual specification of the requirement entirely. 
Yet, since developers and assessors require a natural-language 
representation to read and understand the safety requirements, the 
semi-formal specification of the requirement using VerSaI has to be 
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additional in nature, and cannot replace the natural language 
specification. 

In order to circumvent the expensive redundant specification of model-
based safety requirements, we evaluated an automatic import/export 
function based on a structured-text-based approach known from 
requirements engineering. In a prototypical implementation that 
included approximately 40% of all demands and guarantees specifiable 
with the VerSaI language, we showed that the demands and guarantees 
can be transformed from a natural language representation into their 
model-based VerSaI representation and vice versa. For the 
implementation of the import function we used EBNF (Extended Backus-
Naur Form) rules and a structured text representation for the safety 
requirements. Some example EBNF rules created during the evaluation 
are shown in Appendix C. Since a VerSaI interface specification can be 
imported automatically from a natural language specification, the 
additional effort for generating a VerSaI interface can be reduced. 

However, there are certain restrictions for the application of the VerSaI 
approach: First, the specification of the demands and guarantees in 
natural language has to follow the rules of predefined structured text 
templates and the engineer cannot specify them freely. Second, to 
specify a demand or a guarantee using the VerSaI language, and to 
import it, too, there has to be a model-based representation of the 
applications and the platforms involved in the system. For our approach 
we assume that these models are already specified as a part of the 
regular state-of-the-art engineering process, as, for example, demanded 
by the AUTOSAR development methodology. Yet, if these models have 
to be generated in an additional work step, the efficiency of the VerSaI 
technique is reduced. 

7.2 Deployment Evaluation 

The VerSaI technique takes the deployment specification, i.e., the 
mapping of the application to execution platforms, as input to match 
application demands with their corresponding platform guarantees. To 
assist the automated derivation of a suitable deployment plan, we 
specified an objective function in chapter 6 to be used as a module in a 
multi-criteria deployment optimization. The development of this 
objective function corresponds to the third and last contribution of this 
thesis, in which we stated our goal as “developing an objective function 
for evaluating and optimizing the deployment of a functional 
architecture onto a platform topology from a safety perspective.” 

More precisely, the aim of our objective function is to evaluate the 
additional costs of mapping mixed-critical functions into an open 
integrated system. Such additional costs can either accumulate by not 
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strictly partitioning software components with different criticality levels, 
or by additional communication protection mechanisms resulting from 
the distribution of safety-critical functions over the nodes of the platform 
topology. In this section, we will evaluate whether our objective function 
produces valid assessments of a given deployment. 

Our objective function was evaluated in an industrial context together 
with experts of a major tier-1 automotive supplier. The evaluation was 
performed in a two-stage process. In the first phase of the evaluation, 
we assessed the objective function in an “open-loop” setting that did 
not involve an iterative optimization; in the second phase, we integrated 
and evaluated the objective function in an optimization setting that used 
a genetic algorithm. 

The “open loop” optimization was performed using an early prototype 
that required the user to manually specify the deployment of a given 
function network onto a give platform topology. Together with a set of 
configuration parameters, the objective function would take the 
specified deployment, calculate the costs of the given deployment, and 
provide it as output to the user. Using this early prototype, the user was 
capable of specifying several deployments, let the prototype calculate 
the costs for each deployment, and compare the results of the objective 
function to the expected results. This first open-loop evaluation of the 
objective function is depicted in Figure 79. 
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Figure 79: The open-loop evaluation of the objective function using our first prototype 
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We used the open-loop set-up to focus the evaluation on the objective 
function itself. The evaluation was performed by an expert from the tier-
1 automotive supplier mentioned above. In the first step, the expert 
specified a simple function network and platform topology. In the 
second step, the expert specified several deployments and evaluated 
each deployment manually to compare the expert judgment with the 
assessment results produced by our objective function. This evaluation 
revealed two major weaknesses of that early version of the objective 
function. 

The first weakness was related to the addition of both metrics (see 
section 6.2.1 and section 6.2.2), which yields the result of our objective 
function. This direct addition required the user to weight both metrics 
carefully against each other, so that one metric would not superimpose 
heavily on the other metric. Finding a good weight was very tedious, 
since both metrics were influenced by a number of parameters that all 
required simultaneous adjustment. We addressed this issue by 
introducing an overall weight parameter that allowed the specification of 
an amplification factor for a metric as introduced in chapter 6. 

The second weakness was based on the cost calculation for protecting 
safety-critical signals sent via communication links. In the original version 
of the metric, costs would increase linearly with each additional signal. In 
reality, however, certain costs (e.g., the acquisition or development of a 
high integrity com stack) are only incurred once, whereas other costs are 
incurred for every signal. As a result, we modified the cost function to 
allow the user to specify that certain costs are only counted for the first 
but not for every following signal that is transmitted via a 
communication link. 

After this first validation of the objective function, we developed a 
second tool prototype that allowed us to evaluate the objective function 
in the loop with an optimization algorithm. Since our industrial partner 
was already evaluating genetic algorithms at that time, we selected 
genetic algorithms as well. Unlike the previous evaluation phase, which 
focused on the cost assessments produced by our objective function, this 
second tool prototype directly provided the user with an optimized 
deployment. This second evaluation set-up is shown in Figure 80. 

Since our second and final prototype produced a deployment, we were 
only able to judge the quality of the evaluation algorithm indirectly, i.e., 
based on the quality of the resulting deployment. However, the focus of 
this second evaluation phase was not directly on the evaluation of the 
objective function but on evaluating whether the objective function 
could be used to optimize a real-world example. 

The platform topology of our real-world example (taken from [78]) used 
for evaluation was a replication of a power train platform topology of a 
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high-end vehicle consisting of 13 platforms connected via FlexRay and 
CAN (some platforms were connected to both CAN and FlexRay). The 
function network on the other side consisted of several mock-up 
functions that were generated to the likeness of an example cruise 
control application provided by our industrial partner. In order to test our 
objective function with more than one example application, we took the 
cruise control and modified it several times to yield comparable 
applications. 

The resulting function network comprised three applications consisting 
of 27 ASWCs that exchanged 51 signals. According to the judgment of 
our industrial partner, the optimizer calculated valid deployments for this 
real-world example. However, even though the genetic algorithm 
generated valid deployments most of the time, we also experienced 
scenarios where the GA did not converge. 
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Figure 80: The closed-loop evaluation of the objective function using our second and final prototype. 

On a commercially available mobile CPU running with 2.40 GHz, the 
genetic algorithm terminated on average within 18.5 seconds for the 
optimization of the above-described real-world example. 

7.3 VerSaI Implementation

Our implementation of the VerSaI technique is based on Eclipse [79, 80] 
and the Eclipse modeling framework (EMF) [81, 82]. Basically, Eclipse is 
an extensible platform that is mainly used as a software development 
environment. However, Eclipse also offers a plug-in development 
environment to allow the user to develop extensions and integrate them 
into the Eclipse environment. Our VerSaI mediator and the above-
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mentioned Eeclipse modeling framework were both developed as Eclipse 
plug-ins. 

According to the authors of EMF, “the eclipse modeling framework is a 
framework and code generation facility for building tools and other 
application based on a structured data model.” To this end, EMF 
provides a developer with the Ecore meta-model. Using Ecore, the 
developer is able to specify a custom application model. For such an 
Ecore-compliant model, EMF offers many automated features, like model 
serialization, validation, or code generation. We used Ecore for the 
specification of the VerSaI meta-model, which was introduced over the 
course of chapter 4, and for the specification of the architectural model 
specified in Appendix A. 

Another feature of EMF is its capability of generating a simple but 
extensible tree-based editor for a user model. We used this feature to 
develop separate editors for application development and platform 
development, and for integrating applications and platforms into an 
open integrated system. The application editor allows an application 
developer to specify the application’s architectural model together with 
the application’s VerSaI interface. The platform editor offers an 
analogous functionality to a platform developer. The separation of the 
two editors allows simulating the separate development of applications 
and platforms as performed in an open integrated architecture 
development scenario. The editors use the serialization capability 
provided by EMF to persist the models using the XML format. The 
integrator is then capable of importing the XML models of applications 
and platforms and integrates them using the integrated system editor. 
Figure 81 shows this process using screenshots of the described editors. 
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Integrated System Editor

<XML>

<X
ML>

 

Figure 81: An overview of the VerSaI editors provided by the EMF-based implementation of the VerSaI 
technique. 

The integrated system editor is the control center from which the 
integrator controls the mediation. The system editor allows the 
integrator to configure and integrate the applications and platforms and 
to toggle the different states of the mediation shown in Figure 62 and 
described in chapter 5. Whenever the integrator triggers a transition that 
involves an automatic action of the VerSaI mediator, for example the 
transition between configuration and integration, the system editor 
automatically executes the appropriate mediator feature, e.g., the 
automatic evaluation of configuration-dependent conditions. 
Consequently, the integrator also triggers the actual interface mediation 
from within the system editor as shown in Figure 82. 

After the system editor triggers the interface mediation, the mediator 
generates a separate mediation report for every application as described 
in section 5.5.1. The mediation report itself is again based on an Ecore 
model and is capable of directly referencing the elements of the 
application and platform models for easy navigation from the report to 
the model. The implementation of the report viewer is based on a table-
tree view provided by the Eclipse platform. Figure 83 shows a screenshot 
of the mediation report viewer. 
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Figure 82: The system editor UI for controlling the mediation 

 

Figure 83: The mediation report viewer provided by the EMF-based implementation of the VerSaI 
technique. 

7.4 Deployment Implementation 

The implementation of our deployment evaluation prototype is based on 
Eclipse and EMF33, comparable to the implementation of the VerSaI 
prototype introduced in section 7.2. Among other advantages, sharing 
the same technology basis will allow us to integrate both prototypes 
more easily in the future. Comparable to the VerSaI meta-model, the 
deployment evaluation meta-model introduced in section 6.1 Figure 73 
was also specified using Ecore. 

33 For more information regarding Eclipse or EMF, please refer to section 7.2. 
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The tree-based editor automatically generated by the EMF framework 
provides the user of our prototype with a graphical user interface for 
specifying deployment problems consisting of a functional architecture 
and a platform topology. However, in order to find a suitable 
deployment with the help of a genetic algorithm, we have to translate 
the specified model-based Ecore representations into a chromosome-
based representation. Since we used the Java Genetic Algorithm Package 
(JGAP) ([83]) to implement the optimization, we had to develop a 
transformation from the Ecore models into a format predefined by the 
JGAP developers. After an Ecore model is translated into a chromosome 
format, JGAP is capable of generating an initial population and 
performing fitness-based selections and genetic operators like crossover 
and mutation. Besides some adaptations to our objective function that 
were necessary to plug it into the JGAP framework, JGAP performed the 
optimization without further assistance from our side. After the 
optimization produces a deployment solution, we translate it back into 
the Ecore format and display it in our EMF-generated editor. The whole 
process is illustrated in Figure 84. 

G1 G2 Gn... G1 G2 Gn...
JGAP 

Optimization 
Algorithm

EMF Editor: Model-based 
representation of 
deployment problem

EMF Editor: Model-based 
representation of 

deployment solution

JGAP format: chromosome-
based representation of 
deployment problem

JGAP format: chromosome-
based representation of 
deployment solution

transformation transformation

 

Figure 84: The tool chain used by our deployment optimization prototype 

Since the tree-based EMF editor does not provide a good overview for 
large models, we developed a prototypical graphical user interface using 
the graphical modeling framework (GMF). Like EMF, GMF is part of the 
Eclipse modeling project and allows developers to model and generate 
graphical editors based on EMF and Ecore models. Figure 85 shows our 
prototypical graphical editor. It illustrates the mapping of ASWCs to 
partitions using colors. The mapping of signals to communication 
channels is not depicted by the editor. 
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Figure 85: A GMF based visualization of a solved deployment problem (independence of redundant 
channels has not been considered as a factor for the deployment) 
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8 Conclusion 

In this closing chapter, we will summarize and evaluate the contributions 
and limitations of our approach (section 8.1), propose possible future 
areas of work (section 8.2), and conclude this thesis with a final 
comment (section 8.3). 

8.1 Contributions and Limitations 

Open integrated architectures like AUTOSAR and IMA allow for more 
flexible composition of functionality-providing applications and general-
purpose execution platforms than traditional federated architectures. Yet 
if the system is safety-critical, this flexibility is reduced significantly as the 
safety of the integrated system has to be evaluated whenever the system 
changes. Therefore, the aim of this thesis was to maintain the flexibility 
of safety-critical open integrated systems by reducing the safety-related 
costs when integrating applications and platforms. To this end, this 
thesis specified and demonstrated a technique for automatically 
checking the safety compatibility of an application-platform combination 
as well as an objective function to support the identification of potential 
application-platform combinations, i.e., deployments. 

The technique presented for checking the safety compatibility of 
application-platform combinations is called VerSaI, which stands for 
Vertical Safety Interface. The first of the two parts that constitute our 
VerSaI technique is the VerSaI language, which allows for formalized 
model-based specification of the afore-mentioned vertical safety 
interfaces. In chapter 4, we showed that the VerSaI language provides 
an application-specific component that enables the application developer 
to modularly specify the application’s safety-related demands regarding 
the behavior of a platform and a complementary platform-specific 
component allowing the platform developer to specify the safety-related 
features provided by a platform. Consequently, the VerSaI language 
constitutes our first contribution, which was specified as follows: 

Contrib. 1 Interface Specification: Defining a formal language for the modular 
specification of safety-related demands and guarantees between an 
application and a platform in an open integrated architecture. 

One main characteristic of the model-based VerSaI language is its 
integration into the design models of applications and platforms. This 
feature is the key in allowing the second part of the VerSaI technique, 
called the VerSaI mediatior, to automatically reason about the safety 
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compatibility of an application and a platform. We described in chapter 
5 how the VerSaI mediator uses the model integration of the VerSaI 
language to navigate from an application demand to an application 
component, then via the deployment model to a platform resource, and, 
finally, from this resource via the language integration to the relevant 
platform guarantees. In the next step, the VerSaI mediator checks 
whether the corresponding demand can be fulfilled using the relevant 
platform guarantees and displays the result to the system integrator. 
Overall, the VerSaI mediator provides our second contribution, which 
was specified as: 

Contrib. 2 Interface Mediation: Developing an automated process for checking 
the safety compatibility of an application and a platform in an open 
integrated architecture. 

As mentioned above, the VerSaI mediator requires the planned mapping 
of application and platform, i.e., the deployment, as input to match 
demands with their related guarantees. To support the identification of 
suitable deployment candidates, we introduced a novel objective 
function for deployment evaluation in chapter 6. This objective function 
evaluates the aspects of mixed criticality and distribution of safety-critical 
applications, both inherently tied to the design of an integrated system. 
The objective function forms our third and final contribution: 

Contrib. 3 Deployment Evaluation: Developing an objective function for 
evaluating and optimizing the deployment of a functional architecture 
onto a platform topology from a safety perspective. 

While still involving the user, our overall approach automates safety-
related aspects of the integration of applications and platforms. 
However, certain limitations to the approach apply. 

In chapter 7, we showed that our language covers the relevant parts of 
AUTOSAR and ARINC 653. Yet, it is also possible to add application- or 
domain-specific services to these platforms that are not covered by the 
public standard. The VerSaI language as specified is not capable of 
covering such services. We addressed this issue by allowing the 
specification of “free-text” requirements that have to be manually 
mediated by the user, and by designing the VerSaI language and 
mediator in an extensible way whenever possible. 

A second issue is that the VerSaI language also does not cover the 
modular specification of demands and guarantees regarding random 
failure rates. This is because there already exist various approaches, such 
as component fault trees [55], that cover this aspect. 
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As a third limitation, we want to mention that the integration of the 
VerSaI language into the model-based design artifacts of applications 
and platforms also specifies a requirement for the residual development 
process. If the product-related design process used does not work with 
appropriate model-based techniques, the VerSaI technique cannot be 
applied. However, standards like AUTOSAR already prescribe a model-
based design methodology, which is why we believe that the market 
penetration of model-based techniques will further increase. 

The fourth and last limitation is the focus of the VerSaI approach on 
vertical safety dependencies, i.e. dependencies between applications and 
platforms. However, when integrating various applications with each 
other, we have to check the safety-compatibility on the horizontal level, 
i.e. between applications as well, which is not covered by VerSaI. We 
think that achieving a comparable level of automation for horizontal 
safety-dependencies is much more challenging than automatically 
mediating vertical dependencies as we did. This is because interfaces on 
functional level are not as standardized as interfaces we find between 
applications and platforms. 

8.2 Future Work 

In this section, we will specify two possible future areas of work based 
on the solutions already provided by this thesis. One addresses the tool-
supported integration of deployment optimization and VerSaI, the other 
a problem solver that assists the integrator in case a VerSaI mediation 
fails, i.e., if demands cannot be fulfilled by the given platform. 

Currently, deployment evaluation and optimization are decoupled from 
the VerSaI mediation. Deployment optimization identifies potential 
solution candidates; in the second step, the integrator uses the VerSaI 
technique to check if the given deployment allows for the fulfillment of 
all safety-related application demands. However, if the mediator fails, 
there is no automatic feedback for the deployment optimization that 
filters or reevaluates the incompatible deployment candidates. Here, it 
would be possible to use the automated VerSaI approach for evaluation, 
transform the currently qualitative answer into a quantitative result, and 
feed it back as input for the deployment optimizer. 

We see three major challenges for this approach: The first is to find a 
sensible transformation of the qualitative yes/no answers of the mediator 
to a quantitative result. The second is the scalability of the current 
mediation algorithm, since the algorithm might be too time-consuming 
for the evaluation of a large solution space. The third and maybe most 
difficult challenge lies in bridging the gap between the output of the 
deployment optimization and the required input of the VerSaI mediator. 
On the one hand, the deployment optimizer produces a mapping of 
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software components to partitions and signals to busses. The mediator, 
however, requires a partially configured execution platform. In order to 
automate this process, a tool would have to automatically configure the 
platform before being able to use the VerSaI mediation. 

Such an automated configuration would also help to solve the 
challenges introduced by the second area of potential future work. In 
the current system, the mediator produces a result that provides the user 
with detailed information about why a certain demand is treated as 
fulfilled or violated. In case a demand is violated, the mediator will also 
point towards a configuration parameter or a model property that might 
have “caused” the demand violation. However, the current mediator is 
not capable of suggesting changes to the configuration, the 
deployment, or maybe even the implementation of a platform that 
would help to solve the failed mediation. We think that the development 
of a component that would help the integrator find solutions for solving 
a failed mediation would be a challenging yet interesting topic for future 
research. 

8.3 Final Comment 

In order to ultimately demonstrate the validity of the VerSaI technique, it 
would need to be applied in an industrial setting. No such direct 
evidence was produced. Nevertheless, we showed the applicability of the 
technique through extensive matching of our language to state-of-the 
practice standards like AUTOSAR and ARINC 653 and by applying the 
method using industral examples provided by our partners. These 
successful applications and the fact that we automated a process that 
was performed manually before allow the conclusion that our work is a 
step towards “efficiently deploying safety-critical applications onto open-
integrated architectures.” 
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Appendix A - Architectural Meta-Model 
 

Appendix A Architectural Meta-Model 

In this Annex we describe our architectural meta-model for the 
specification of applications and platforms. The architecture model is 
inspired by existing meta-models like the AUTOSAR meta-model [3] or 
the EAST-ADL meta-model [84]. Our architecture meta-model is 
referenced from the VerSaI language as shown in Figure 86.  

The architecture meta-model consists of four packages that are 
described separately in the following: First, there is the container 
architecture meta-model that defines the system-level aspects, which is 
described in A.1. Second, we introduce the application meta-model that 
defines application-specific elements in A.2. Third, we sketch the 
platform meta-model that defines platform-specific elements in A.3. And 
fourth, we introduce the deployment meta-model that specifies the 
modeling of the deployment in A.4. 

 

Figure 86: Relations between the VerSaI language and the architecture model 
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In the following we describe the individual classes of the meta-model. In 
the process we use the following specification conventions: (1) The string 
“classA -> classB” notates that the classA inherits from classB. (2) 
If a class is abstract it is written in italics “abstractClass”. 

Most of the classes inherit from a class called NamedElement, which 
provides a String attribute called name. For reasons of clarity, this 
repreated inheritance is not denoted in the following. 

A.1 System Meta-Model 

The system meta-model integrates the platform and application models, 
as well as the deployment model that links the application with the 
platform models. It further allows specifying external communication 
links (i.e. field busses) that connect the different platforms in our system 
together with the signals that are exchanged between applications. The 
system meta-model is shown in Figure 87. 

 

Figure 87: The system meta-model 

System 

The System class is the top-level container class in our meta-model. It 
contains the execution platforms (see relation platforms) and the 
applications (see relation applications) involved in the system, as well 
as the deployment plan (see relation deploymentPlan). It further 
contains all elements that are not directly assignable to a single platform 
or application. These are the external communications links (see relation 
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busses), and the signals that are exchanged between applications (via 
container class SignalContainer, see relation signalContainer). 

The System class further contains a member called status that tracks 
the development status of the system. This status variable controls the 
different mediation steps as described in chapter 5. 

SignalContainer 

The class SignalContainer is a container for signals (see relation 
signals) that are exchanged between different applications. Signals 
that are exchanged internally by one application are contained by the 
corresponding application itself. 

Signal 

The abstract class Signal represents a logical unit of information that is 
exchanged between components of an application. There are three 
different types of signals: SensorSignals, ComSignals and 
ActivationSignals. 

SensorSignal -> Signal 

A SensorSignal is a signal that is produced by a Sensor component 
(e.g. a position sensor, an acceleration sensor …) and consumed by an 
ASWC (application software component). 

ComSignal -> Signal 

A ComSignal is a signal that is produced by an ASWC (application 
software component) and consumed by an ASWC. 

ActivationSignal -> Signal 

An ActivationSignal is a signal that is produced by an ASWC 
(application software component) and consumed by an Actuator (e.g a 
throttle, a valve …). 

CommunicationLink 

A CommunicationLink is an abstract class representing an element that 
is capable of transmitting a Message. There are two types of 
CommunicationLink: ExternalCommunicationLink and 
InternalCommunicationLink (see platform model A.3). 
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ExternalComLinkInterface 

An ExternalComLinkInterface is a special type of 
CommunicationLink that connects different platforms (e.g. a CAN 
bus). The platforms that are connected by an 
ExternalComLinkInterface are identified via the connects relation. 

DevelopmentStatus 

DevelopmentStatus is an enumeration that lists the different 
development stages of a System, a Platform or an Application. The 
different development stages of a system, platform or application are 
introduced in chapter 5. 

A.2 Application Meta-Model 

In this section we describe the meta-model used to specify applications. 
A top-level overview of the application meta-model is shown in Figure 
88. 

Application 

The Application class represents an application as defined in RTCA 
DO-297 [7]: An application is a set of “software and/or application-
specific hardware with a defined set of interfaces that, when integrated 
with a platform, performs a function”. 

In accordance with this definition an Application contains Actuators 
(see relation actuators), Sensors (see relation sensors) and ASWCs 
(see relation swComponents). An application further contains a 
SignalContainer (see relation signalContainer) comparable to a 
System. The signal container of an application contains the Signals 
exchanged internally by the respective application. 
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Figure 88: The top-level application meta-model 

Actuator 

An Actuator is a component of an application used to affect its 
environment (e.g. a motor or a valve). The Actuator class contains 
ActuatorSignalInPorts (see relation activationSignalInPorts) 
to model the activation signals expected as input by the actuator 
component. 

Sensor 

A Sensor is a component of an application used to get information 
about its environment (e.g. a temperature, pressure or acceleration 
sensor). The Sensor class contains SensorSignalOutPorts (see 
relation sensorSignalOutPorts) to model the sensor signals produced 
as output by the sensor component. 

ASWC 

An ASWC class models a software component of the application 
containing the ASWC. An ASWC as represented by our meta-model is 
atomic w.r.t. to its deployment. This means that there can be logical sub-
components of an ASWC, but these are of no interest in our case. An 
overview of the ASWC class and its relation is shown in Figure 89. 

The interface of the ASWC to other application-level components (i.e. 
ASWCs, sensors and actuators) is specified by the application’s ports. An 
ASWC has four types of ports: (1) ActuatorSignalOutPorts (via 
reference activationSignalOutPorts) to model the interface 
between the ASWC and actuators. (2) ComSignalOutPorts (via 
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reference comSignalOutPorts) to model the signals provided by the 
ASWC for other ASWCs. (3) ComSignalInPorts (via reference 
comSignalInPorts) to model signals consumed by the ASWC provided 
by other ASWCs. (4) SensorSignalInPorts (via reference 
sensorSignalInPorts) to model the interface between the ASCW and 
sensors. 

The ExecutableEntities provided by the ASWC are modeled via 
separate containment references for Runnables (see reference 
runnables), and interrupt service routines (ISR; see reference ISRs). 

The direct memory usage of the ASWC is modeled via containment 
relations of MemorySections. We differentiate between memory 
sections containing code (CodeSections; see reference codeSections) 
and memory sections containing data (DataSection; see reference 
dataSections). Usually, memory usage is defined directly by an 
ExecutableEntity. However, if code is shared between different 
ExecutableEntities (e.g. a library) or if data are shared between 
different ExecutableEntities (e.g. global variables) this is modeled by 
a memory section contained by the ASWC. 

ServiceNeeds of the ASWC are modeled via the serviceNeeds 
containment reference. 
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Figure 89: Application meta-model with a focus on the ASWC element 

ExecutableEntity 

An ExecutableEntity represents a function provided by the ASWC 
that can be individually/concurrently executed by the platform. We 
differentiate between two kinds of ExecutableEntities: Runnables 
and ISRs. 

The memory usage of an executable entity is modeled by a containment 
of MemorySections (see reference memorySections). 

ISR -> ExecutableEntity 

An ISR represents an interrupt service routine, i.e. a software function 
that can be mapped to a hardware Interrupt. This software function 
is executed when the corresponding interrupt triggers. 
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Runnable -> ExecutableEntity 

A Runnable is an abstract class that represents a software function 
provided by the ASWC that can be individually scheduled by the 
platform’s operating system. We differentiate between two kinds of 
Runnable: (1) ETRunnables and (2) TTRunnables. 

ETRunnable -> Runnable 

An ETRunnable represents an event-triggered runnable, i.e. a runnable 
that is activated by an event. 

TTRunnable -> Runnable 

A TTRunnable represents a time-triggered runnable, i.e. a runnable that 
is periodically activated. 

MemorySection 

The abstract class MemorySection represents a memory section as 
specified in the object file of the application. We differentiate between 
three kinds of memory sections: (1) CodeSection, (2) DataSection, (3) 
StackSection (stack is not defined in the object file but dynamically 
used and managed by the operating system). 

CodeSection -> MemorySection 

A CodeSection is a memory section containing code (i.e. a set of 
instructions). 

StackSection -> MemorySection 

A StackSection is a dynamic memory section containing the stack of 
an executable entity. 

DataSection -> MemorySection 

A DataSection is a memory section containing the data of the 
application (we do not further differentiate between initialized or 
uninitialized data. We do not take into account heap memory, since 
safety-critical systems as regarded by our approach do not allow for 
dynamic memory allocation). 

ServiceNeed 

A ServiceNeed is an abstract class representing the applications need 
for a Service provided by the platform. In total there are currently eight 
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different kinds of ServiceNeeds specifiable with the VerSaI language. An 
overview is given in Figure 90. Since the different kinds of 
ServiceNeeds are mostly self-explanatory, we will not introduce them 
separately. 

 

Figure 90: Application meta-model with a focus on the ServiceNeed element 

Port 

A Port is an abstract class representing a part of the application’s 
interface to other application elements. Signals are exchanged via ports. 
We differentiate between InPorts and OutPorts. 

An overview of the meta-model for specifying ports is shown in Figure 
91. 
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Figure 91: Application meta-model with a focus on the Port element 

InPort -> Port 

An InPort is an abstract class representing a piece of information / a 
signal that is required/consumed by the corresponding ASWC. 

OutPort -> Port 

An OutPort is an abstract class representing a piece of information / a 
signal that is provided/produced by the corresponding ASWC. 

CommunicationPort -> Port 

A CommunicationPort is an abstract class specifying that the 
corresponding port transports ComSignals. 

SensorSignalInPort -> InPort 

A SensorSignalInPort is a class used to model required/consumed 
SensorSignals (via reference requiredSignal) of an ASWC. 
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SensorSignalOutPort -> OutPort 

A SensorSignalOutPort is a class used to model provided/produced 
SensorSignals (via reference providedSignal) of a Sensor. 

ComSignalInPort -> InPort, CommunicationPort 

A ComSignalInPort is a class used to model required/consumed 
ComSignals (via reference requiredSignal) of an ASWC. 

ComSignalOutPort -> OutPort, CommunicationPort 

A ComSignalOutPort is a class used to model provided/produced 
ComSignals (via reference providedSignal) of an ASWC. 

ActuatorSignalInPort -> InPort 

An ActuatorSignalInPort is a class used to model 
required/consumed ActuatorSignals (via reference requiredSignal) 
of an Actuator. 

ActuatorSignalOutPort -> OutPort 

An ActuatorSignalOutPort is a class used to model 
provided/produced ActuatorSignals (via reference providedSignal) 
of an ASWC. 

A.3 Platform Meta-Model 

In this section we describe the meta-model used to specify platforms. A 
top-level overview of the application meta-model is shown in Figure 92. 
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Figure 92: The top-level platform meta-model 

Execution Platform 

The ExecutionPlatform class represents a platform as defined in RTCA 
DO-297 [7]: A platform as a combination of software and hardware to 
“provide computational, communication, and interface capabilities for 
hosting at least one application. […] Platforms by themselves do not 
provide any […] functionality”. 

An execution platform on the top-level contains Devices (via devices 
reference), Interrupts (via interrupts reference), 
ProcessingCores (via cores reference), MemoryModules (via 
reference memoryModule), Partitions (via partitions reference) and 
Services (via services reference). 

Interrupt 

An Interrupt is a signal produced by a CPU (synchronously) or by a 
device (asynchronously), which triggers the execution of an ISR. 

ProcessingCore 

The ProcessingCore class represents a CPU/core. 

MemoryModule 

The MemoryModule class represents an individual hardware component 
providing memory to the system (e.g. a flash, RAM or EEPROM module). 
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A MemoryModule can be logically separated into different 
MemoryRegions (via memoryRegion reference). 

MemoryRegion 

A MemoryRegion is a logical compartment of a MemoryModule. 
MemoryRegions can, for example, be used to configure a MPU or a 
MMU to separate and protect different memory regions. 

Partition 

A Partition is a logical compartment that is capable of hosting 
ASWCs. ASWCs in different Partitions can be protected from each other. 

Task 

A Task is a logical entity that can be individually scheduled by the 
platform’s operating system. Runnables of an ASWC can be mapped to 
Tasks. 

Device 

A Device is an abstract class that represents a hardware module that is 
peripheral to the CPU together with a software stack required to access 
the device from application level. 

Figure 93 gives an overview of the different devices in the platform 
meta-model. 

OutputChannel -> Device 

An OutputChannel is an abstract class that represents a device together 
with the software stack needed to physically connect an ASWC to an 
actuator. 
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Figure 93: Platform meta-model with a focus on the Device element 

AnalogOutputChannel -> OutputChannel 

An AnalogOutputChannel is an abstract class that represents a device 
together with the software stack needed to physically connect an ASWC 
to an actuator driven by an analog signal. 

PWMOutputChannel -> AnalogOutputChannel 

A PWMOutputChannel is a class that represents a device together with 
the software stack needed to physically connect an ASWC to an actuator 
driven by a PWM signal. 

DigitalOutputChannel -> OutputChannel 

A DigitalOutputChannel is a class that represents a device together 
with the software stack needed to physically connect an ASWC to an 
actuator driven by a digital signal. 

ComLinkInterface -> Device 

A ComLinkInterface is an abstract class that represents a device 
together with the software stack needed to physically connect an ASWC 
to a CommunicationLink. 

A ComLinkInterface contains Message (see messages reference) 

Message 

A Message is an element that transports signals on a communication 
link. A Message can contain several signals. 
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ExternalComLinkInterface -> ComLinkInterface 

An ExternalComLinkInterface is a special type of 
ComLinkInterface that allows connecting a platform to an 
ExternalCommunicationLink. 

InternalComLink -> ComLinkInterface -> ComLink 

An InternalComLink is a special type of ComLinkInterface and 
ComLink that allows transporting messages between ASWCs deployed 
to the same platform. 

InputChannel 

An InputChannel is an abstract class that represents a device together 
with the software stack needed to physically connect an ASWC to a 
sensor. 

DigitalInputChannel -> InputChannel 

A DigitalInputChannel is a class that represents a device together 
with the software stack needed to physically connect an ASWC to a 
sensor that produces a digital signal. 

AnalogInputChannel -> InputChannel 

An AnalogInputChannel is an abstract class that represents a device 
together with the software stack needed to physically connect an ASWC 
to a sensor that produces an analog signal. 

CurrentInputChannel -> AnalogInputChannel 

A CurrentInputChannel is a special type of AnalogInputChannel 
class that represents a device plus software the stack needed to 
physically connect an ASWC to a sensor that produces a current signal. 

VoltageInputChannel -> AnalogInputChannel 

A VoltageInputChannel is a special type of AnalogInputChannel 
class that represents a device together with the software stack needed to 
physically connect an ASWC to a sensor that produces a voltage signal. 

Service 

The Service class is an abstract class that represents a mostly software-
based functionality provided by an execution platform. 
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Figure 94 gives an overview of the eight services currently specifiable 
with the VerSaI language. Since the different kinds of Services are 
mostly self-explanatory, we will not introduce them separately. 

 

Figure 94: Platform meta-model with a focus on the Service element 

A.4 Deployment Meta.Model 

In this section we describe the meta-model used to specify a deployment 
plan. An excerpt of the deployment plan meta-model is shown in Figure 
95. Since the model is relatively generic, we only show an excerpt of the 
model and provide the information w.r.t. the mapping of the different 
elements in Table 16. 

DeploymentPlan 

The DeploymentPlan class is the central container that holds all 
mappings between resource users (application elements) and resources 
(platform elements). 

Table 16: All resource mappings specified in the deployment model 

Application Element 
Resource User 

Platform Element 
Resource 

ASWC Partition 

MemorySection MemoryRegion 

ExecutableEntity Task 

ISR Interrupt 

CommunicationPort Message 

DigitalSensorInPort DigitalInputChannel 

CurrentSensorInPort CurrentInputChannel 
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VoltageSensorInPort VoltageInputChannel 

PWMActuatorOutPort PWMOutputChannel 

DigitalActuatorOutPort DigitalOutputChannel 

TimerServiceNeed Timer 

GlobalTimeServiceNeed Message 

WaitServiceNeed DigitalInputChannel 

MutexServiceNeed CurrentInputChannel 

EventServiceNeed Event 

ApplicationMonitoringNeed ApplicationMonitoringService 

PlatformFailureReaction-
Need 

PlatformFailureReactio-
nService 

 

 

Figure 95: Excerpt of the deployment meta-mode 
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Appendix B List of Common Failure Modes and 
Reactions 

Table 17 lists all failure modes, platform service failure modes as well as 
application failure modes, that have been specified in sections 4.4.2 and 
4.4.3. Table 18 lists the failure reactions specified in secion 4.4.4. 

Table 17: Failure modes specified in the common language 

Service Id Name Failure Class Parameter 

Synchronization synchFM-1 MutexAccess-
Commission 

Mutex Failure   

 synchFM-2 MutexAccess-
Omission 

Mutex Failure  

 synchFM-3 MutexRelease-
Commission 

Mutex Failure  

 synchFM-4 MutexRelease-
Omission 

Mutex Failure  

 synchFM-5 MutexTimeout-
Failure 

Mutex Failure TimeDeviat 

 synchFM-6 EventIndication-
Commission 

Event Failure  

 synchFM-7 EventIndication-
Omission 

Event Failure  

 synchFM-8 EventTimeout-
Failure 

Event Failure TimeDeviat 

Communication comFM-1 MessageCorruption Communication 
Failure 

 

 comFM-2 MessageInsertion Communication 
Failure 

 

 comFM-3 MessageLoss Communication 
Failure 

 

 comFM-4 IncorrectMessage-
Sequence 

Communication 
Failure 

 

 comFM-5 LateTransmission Communication 
Failure 

Latency 

 comFM-6 EarlyTransmission Communication Latency 
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Failure 

Input inFM-1 DigitalInput-
Omission 

DigitalInput 
Failure 

 

 inFM-2 DigitalInputLate-
Read 

DigitalInput 
Failure 

Latency 

 inFM-3 DigitalInputEarly-
Read 

DigitalInput 
Failure 

Latency 

 inFM-4 DigitalInputLate-
Return 

DigitalInput 
Failure 

Latency 

 inFM-5 DigitalInputEarly-
Return 

DigitalInput 
Failure 

Latency 

 inFM-6 DigitalInputFalse-
Positive 

DigitalInput 
Failure 

 

 inFM-7 DigitalInputFalse-
Negative 

DigitalInput 
Failure 

 

 inFM-8 AnalogInput-
Omission 

AnalogInput 
Failure 

 

 inFM-9 AnalogInput-
Commission 

AnalogInput 
Failure 

 

 inFM-10 AnalogInputLate-
Sampling 

AnalogInput 
Failure 

Latency 

 inFM-11 AnalogInputEarly-
Sampling 

AnalogInput 
Failure 

Latency 

 inFM-12 AnalogInput-
SamplingJitter 

AnalogInput 
Failure 

Jitter 

 inFM-13 AnalogInputLate-
Return 

AnalogInput 
Failure 

Latency 

 inFM-14 AnalogInputEarly-
Return 

AnalogInput 
Failure 

Latency 

 inFM-15 AnalogInputValue-
Failure 

AnalogInput 
Failure 

Error 

Output outFM-1 DigitalOutputLate DigitalOutput 
Failure 

Latency 

 outFM-2 DigitalOutputEarly DigitalOutput 
Failure 

Latency 

 outFM-3 DigitalOutputFalse-
Positive 

DigitalOutput 
Failure 
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 outFM-4 DigitalOutput-
FalseNegative 

DigitalOutput 
Failure 

 

 outFM-5 AnalogOutput-Late AnalogOutput 
Failure 

Latency 

 outFM-6 AnalogOutput-Early AnalogOutput 
Failure 

Latency 

 outFM-7 AnalogOutput-
ValueFailure 

AnalogOutput 
Failure 

Error 

Time timeFM-1 GlobalTimeFailure TimeService 
Failure 

TimeDeviat 

 timeFM-2 TimerFailure TimeService 
Failure 

TimeDeviat 

 timeFM-3 WaitTimeFailure TimeService 
Failure 

TimeDeviat 

Memory memFM-1 MemoryLateRead MemoryService 
Failure 

Latency 

 memFM-2 MemoryRead-
AccessDenial 

MemoryService 
Failure 

 

 memFM-3 MemoryRead-
DataFailure 

MemoryService 
Failure 

 

 memFM-4 MemoryLate-Write MemoryService 
Failure 

Latency 

 memFM-5 MemoryWrite-
AccessDenial 

MemoryService 
Failure 

 

 memFM-6 MemoryWrite-
DataFailure 

MemoryService 
Failure 

 

Scheduling schedFM-1 SchedulingJitter-
Failure 

Scheduling 
Failure 

Jitter 

 schedFM-2 Scheduling-
DeadlineFailure 

Scheduling 
Failure 

Latency 

 schedFM-3 LateInterrupt-
Execution 

Scheduling 
Failure 

Latency 

Basic basExFM-1 CPUFailure CPU Failure  

 basExFM-2 MainMemory-
Failure 

Main Memory 
Failure 

 

 basExFM-3 CPUClockFailure Clock Failure  

 basExFM-4 PowerSupply- Platform Failure  
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Failure 

Application 
Monitoring 

appFM-1 ArrivalRateFailure Application 
Failure 

specific 

 appFM-2 InterArivalTime-
Failure 

Application 
Failure 

Latency 

 appFM-3 LogicalSequence-
Failure 

Application 
Failure 

 

  appFM-4 ExecutionTime-
Deviation 

Application 
Failure 

Latency 

 

Table 18: Failure reaction specified in the common language 

Service Id Name Reaction Class Parameter 

Failure 
Reactions 

react-1 Restart Process Process Reaction  

 react-2 Restart Partition Partition Reaction  

 react-3 Restart Platform Platform Reaction  

 react-4 Shutdown Process Process Reaction  

 react-5 Shutdown 
Partition 

Partition Reaction  

 react-6 Shutdown 
Platform 

Platform Reaction  

 react-7 SendDefault 
Message 

Com-Link 
Reaction 

 

 react-8 IssueAnalog 
Default Signal 

AnalogOutput 
Reaction 

specific 

 react-9 IssueDigital 
Default Signal 

DigitalOutput 
Reaction 

specific 

 react-10 Indicate Failure ASWC Reaction  

  react-11 Trigger Handler Executable 
Reaction 
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Appendix C NLR using EBNFs 

To enable importing and exporting requirements written in structured 
text into and from the model-based VerSaI language, we developed an 
example natural language representation (NLR) of the VerSaI language. 
The natural language representation is implemented using the Extended 
Backus-Naur Form (EBNF). 

The principal structure of an EBNF of an interface requirement is as 
follows: 

uniqueID = “Text describing the requirement followed by one or 
many”, nonTerminalSymbols, nonTSymbol “describing 
properties and relations”; 

nonTSymbol = “Production rule of the non-terminal Symbol”; 

Each specification of an interface requirement starts with the unique ID 
of the requirement followed by an equal sign and the definition of the 
production rule of the requirement. The production rule consists of 
terminal strings, which are printed in normal face and are encompassed 
by quotes, and non-terminal symbols which are printed in bold face. The 
non-terminal symbols are used to specify properties and architectural 
relations of the requirement. An example of the EBNF of a safety 
requirement regarding a failure mode of a digital input signal can be 
found in the following paragraph. 

inFM-1 = “A read omission of the digital input signal”, 
PortName, “must be”, DemandType, “.” 

Since the naming of non-terminal symbols as well as their production 
rules align well with the naming and the structure of the meta-model, 
we will not describe the algorithm for transforming natural language 
requirements to their model-based representation and back. 

The following table gives an overview of the notation of EBNFs that we 
have used in this document. For further information regarding EBNFs we 
recommend reading the following standard: [85]. 

Table 19: The notational elements of the EBNF used in this document 

Usage Notation 

definition = 
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concatenation , 

termination  ; 

alternation | 

option [ ... ] 

repetition { ... } 

grouping ( ... ) 

terminal string " ... " 

comment (* ... *) 

 

Time 

In order to specify time-related constraints using the natural language 
representations of a requirement, we define the following EBNF 
production rules: 

Latency = CompBound | UpperBound | LowerBound; 

CompBound = LowerBound, “or”, UpperBound; 

UpperBound = “of more than”, Time; 

LowerBound = “of less than”, Time; 

Period = “of more than”, Duration, “+-“, Jitter; 

IntvalDev = “of more than”, Time; 

Duration = Time; 

Jitter = Time; 

Time = Millisec, [“,”, Microsec], ”ms”; 

Millisec = digit, {digit}; 

Microsec = digit, [digit], [digit]; 

Example: (*a latency*) of more than 9ms or less than 10,999ms 

Example: (*a jitter*) of more than 20ms +- 0,5ms 

Example: (*a deviation*) of more than 0,5ms 
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Error 

In order to specify error-related constraints using the natural language 
representations of a requirement, we define the following EBNF 
production rules: 

Error = “larger than”, AbsoluteErr | RelativeErr; 

AbsoluteErr = AbErrValue, Unit; 

RelativeErr = RelErrValue, “%”; 

AbErrValue = double; 

Unit = string; 

RelErrValue = integer; 

Integrity Level 

In order to specify integrity level demands using the natural language 
representations, we define the following EBNF production rules: 

intLevel = “(“, (“QM” | “ASIL A” | “ASIL B” | “ASIL C” | “ASIL 
D”), “)”; 

Platform Service Demands 

In the following subsections we will introduce the failure models of the 
different service classes. Each failure model specification starts with a 
description of the corresponding service class including a description of 
the provided functionality and different use-case scenarios of the service 
class. After the introduction of the service class we illustrate the meta-
model that describes the failure model, which includes parameters and 
architectural references. Before we start describing the individual failure 
modes of the failure model, we specify the EBNF production rules for the 
natural language description that are common for all failure modes of 
the failure model. 

Demand = “must be”, DemandType, “.” 

DemandType = Detection | Avoidance 

Detection = “detected” [“within” Time] 

Avoidance = “avoided” 

 260 



Appendix C - NLR using EBNFs 
 

Every failure mode has a corresponding EBNF production rule. An 
exemplary production could look like this: 

comFM = “corruption of a message received via port” PortName; 

The production rule of the failure mode is than always combined with 
the Demand production rule we have specified before, yielding the 
following production: 

comFM-D = “A”, comFM, Demand; 

Example: A corruption of a message received via port v_act must 
be detected within 3ms. 

Examples 

synchFM-1 = “mutex access commission of”, SNeedName”; 

synchFM-1D = “A”, synchFM-1, Demand; 

Example:  A mutex access commission of mutex_0 must be avoided. 

 

synchFM-2 = “mutex access omission of”, SNeedName; 

synchFM-2D = “A”, synchFM-2, Demand; 

Example: A mutex access omission of mutex_0 must be avoided. 

 

comFM-2 = “insertion of a”, PortType, “message”, PortAction, 
“via port” PortName; 

comFM-2D = “An”, comFM-2, Demand; 

Example: An insertion of a required message received via port 
esc_available must be detected. 

 

comFM-5 = “transmission latency of the”, PortType, “message”, 
PortAction, “via port” PortName; 

comFM-5D = “A”, comFM-5, Latency, Demand; 
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Example: A transmission latency of the required message received 
via port esc_Available larger than 2ms must be avoided. 

 

inFM-7 = A sampling latency of the analog input signal”, 
PortName; 

inFM-7D = “A”, inFM-7, Latency, Demand; 

Example: A sampling latency of the input signal throttle_act 
larger than 0,1ms must be avoided. 

 

inFM-10 = A value failure of the analog input signal”, PortName; 

inFM-10D =“A” inFM-10, Error, Demand; 

Example: A value failure of the input signal throttle_act larger 
than 0,2V must be detected. 

 

memFM-2 = “denial of a read request entered via”, SNeedName; 

memFM-2D = “A”, memFM-2, Demand; 

Example: A denial of a read request entered via getErrorCode must be avoided. 
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