FREEZE-FOAMING: A PROMISING NEW APPROACH TO MANUFACTURE STRENGTH ENHANCED BIOACTIVE MATERIALS

M. Ahlhelm¹, E. Gorjup², H. von Briesen², T. Moritz¹, A. Michaelis¹

¹ Fraunhofer IKTS, Winterbergstraße 28, 01277 Dresden, Germany

² Fraunhofer IBMT, Ensheimer Straße 48, 66386 St. Ingbert, Germany

AGENDA

- 1. Motivation
- 2. State of the Art
- 3. Freeze Foaming
- 4. Results
- 5. Conclusion and Future Prospects

1. Motivation

1. Motivation

- Initial situation:
 - Hydroxyapatite (HAp) is biocompatible
 - bioactive
 - relatively low compressive strength → no application as long-term implant
 - ZrO₂ is biocompatible
 - bioinert
 - high toughness → use as long-term implant (dental-,endoprosthetics...)

- Approach
 - Combination of both materials to strength-enhanced porous structures while maintaining the biocompatibility/-activity

 \rightarrow Possible use as all-ceramic implant

2. State of the Art

Replica Method (PU-foam)

- Dipping in the suspension
- Drying
- Burnout of the PUfoam

Placeholder Method

- Hollow beads
- Volatile polymers, sawdust, carbon black, wax
- Burnout of the placeholder

Direct Foaming

- Gasinjection •
- Gas development through chemical • reaction
- Mechanically mixed in air ۲

Freeze Foaming

- Pore generation:
 - Mechanically mixed in air •
 - **Rising water vapour** 0
 - **Sublimation** •
- Patent disclosed^[2]

^[1] Colombo, P.; Conventional and novel processing methods for cellular ceramics, Phil.Trans.R.Soc.A, Vol. 364, 2006, S.109–124 ^[2] Moritz, T.; Offenlegungsschrift DE 10 200800100A1 5 © Fraunhofer

3. Freeze Foaming

... Experimental Setup

Starting material

- Hydroxyapatite¹
- ZrO₂²
- + Water

+ organic additives (Suspension/Foam stabilizers)

Mold Filling

1 cm

7 cm

5 cm

Cm .

1 cm

Freeze Foaming

Debinding and Sintering

 1 HAp (Fa.SIGMA-ALDRICH), d_{50} = 2,6 μm $^{\odot}$ Fraunhofer BET = 72,76 m²/g

6

 2 ZrO2 (TZ3-Y-E, TOSOH), d₅₀ = 0,7 μ m, BET = 15,4 m²/g

3. Freeze Foaming

....The Technique

I: Pressure reduction in a freeze dryer

aqueous suspension starts to foam

II: System moving along the equilibrium line to the triple

increasing foaming

decreasing foam/suspension temperature

transition aqueous/gaseous state to solid state at TP

III: Further pressure

instantaneous freezing of the porous foam structure \rightarrow stabilization

IV: Sublimation

Foam drying through sublimational heat (panel

Foaming process

...Occuring effects

- Drainage
 - \rightarrow Struts are getting thinner
- Ostwald ripening
- Coalescence
 - \rightarrow small pore structures go amiss

4. Results

...Microstructure

• Microporosity

Structural requirements for cell cultivation

40 µm

...Microstructure

Hydroxyapatit e

Fractured view

Polished view

...Pore size distribution

Mercury intrusion porosimetry

Amount ZrO ₂ [Vol%]	0	20	40	60	80	100	
Pore size _{max} [µm]	0,6	1	0,2	0,6	0,9	0,3	HAp SA
Porosity [%]	27	33	50	41	33	40	

+ Makropores between 300 and 700 µm (per X-ray computed tomography)

...Compressive Strength

Amount ZrO ₂ [Vol%]	0	20	40	60	80	100	
Compressive strength _{max} average [MPa]	1,2	2,0	5,7	15,1	36,2	68,7	HAp SA
Porosity [%]*	73	75	71	72	60	72	

* geometrical

In cooperation with the Fraunhofer Institute for Biomedical Engineering IBMT Sankt Ingbert, Saarbrücken

- Starting with tests of cytotoxicity
 - Cell type: adulte stem cells from human bone marrow, mesenchymal origin
 - Morphology: fibroblast-like growing, adherent
 - Incubation: 37 °C, 5 % CO₂, ca. 90 % relative moisture

Flurorescein diacetate – Live staining

Propidium iodide – Dead staining

4x lens, incident fluorescent WIB (1x70)

Differentiation approach with alkaline phosphatase (ALP)

After 9 days

10x lens, transmitted light (IX70) Well sorrounding

5x lens, incident light (BX51) Sample surface

Differentiation approach with alkaline phosphatase (ALP)

After 21 days

5x lens, incident light (BX51) Sample surface

Differentiation approach with Collagene (Col1)

After 21 days

10x lens, incident fluorescent WIB (1x70) Cells in the well in the sample's sorrounding

10x lens, incident fluorescent WIB (1x70) Surface sample

5. Conclusion and Future Prospects

- Freeze foaming as environmentally method to achieve porous structures enabling cell growth
- Succeeded hybrid combination of two biocompatible materials
 - Successful enhancement of the compressive strength with rising amount of ZrO₂
 - Successful cell cultivation
 - Successful differentiation approaches
- Future Prospects
 - Cytotoxicity tests and
 - Differentiation approaches for all HAp-ZrO₂ pairings
 - Metabolic activity
 - Increasing the compressive strength
 - in-vitro und in-vivo tests
 - Customer adapted shaping and design of implants

5. Conclusion and Future Prospects

- Possibilities of the Additive Manufacturing (SLS, 3D printing, LOM, STL, etc.)
 - 3D printing

HAp (Co. MERCK) – pig bone (un-sintered)

HAp (Co. MERCK) – pig bone (sintered)

Thumb bone replica Freeze-foamed, 3D-printed

Aim: potential use as all-ceramic implant a huge step closer

additionally: use as bio reactors, cultivation media etc.

Many Thanks to you, to the Fraunhofer IBMT and the Fraunhofer Society!

