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Abstract—Minimization of discrete energy functions consid-
ering higher-order potentials is a challenging yet an important
problem. In this work, a three-step procedure will be presented
and exemplified on a general problem related to the dense depth
map computation from multi-view configurations: Achieving a
joint reconstruction of structure and semantics with piecewise
planarity constraints. The three steps of the procedure are
binarization, quadratization, and energy minimization. While the
first and the third step are accomplished using procedures based
on alpha-expansion and max-flow algorithms, respectively, we
propose for the quadratization step a fast and simple module to
reformulate the higher-order problem as a quadratic one. This
module is based on edge statistics and is particularly useful for
regular graphs and for third- or fourth-order potentials.

I. INTRODUCTION AND RELATED WORK

Minimization of discrete energy functions is an indispens-
able tool for solving many problems in Computer Vision, an
important example being the generation of depth maps from
two or more images. Depth maps represent the most important
intermediate result for 3D surface reconstruction from images
and videos, because given an image with corresponding camera
matrix, the 3D coordinates of the scene can be parameterized
by means of scalar point depths. Depth map computation
is usually based on a trade-off between a data-dependent
photoconsistency term that can be computed for each pixel
individually and a smoothness term that acts as a prior for the
local configuration of depth values (e.g., assuming piecewise
smoothness), which helps to propagate the depths of the salient
pixels to regions of weak texture. In a Bayesian setting,
the data term can be interpreted as the likelihood, whereas
the smoothness term corresponds to the prior. This prior is
conventionally modeled as the sum of deviations between
depth values over pairs of neighboring pixels, and the problem
can be described by a Markov Random Field (MRF), in
which the image primitives (pixels) correspond to the nodes
of an undirected graph while the photo-consistency term and
the prior are referred to as unary and pairwise potentials,
respectively. Examples are [1], which is a method specially
developed for grid-based graphs, as well as [2], [3], which
can be applied to arbitrary graphs.

However, as mentioned in [4], the pairwise smoothness
terms (also called potentials) suffer from a number of prob-
lems, mostly because of being unable to ”understand” the
global connections between the data. For instance, if a scene
contains many slanted (non-frontoparallel) or curvilinear sur-

faces, the output depth image may nevertheless contain many
frontoparallel segments separated by depth jumps. The exis-
tence of numerous heuristic approaches to alleviate this prob-
lem demonstrates its actuality. For example, [5] suggested to
decompose an image into triangles with vertices at points with
known 3D coordinates; then, consideration of a triangle-based
term helps to mitigate discretization artifacts and to support
gradual changes of depth. However, only few contributions
exist which worked with more general penalty terms in their
optimization workflow. In [6], optimization is carried out over
both, the disparity map itself and its gradients. At the cost of
trebling the number of graph vertices, a pairwise smoothness
term is applied. In the highly iterative optimization method,
which depends a lot on the initial solution (normal vector
field), no report on the minimized energy was presented. A
piecewise planarity prior was formulated in [7], however, the
resulting binarized graph was particularly tailored to the prob-
lem. Besides, no care was taken of the number of additional
edges; it seems to depend on the number of images, even
though depth is a scene property.

Another important way to handle textureless surfaces is
to take a leap from pixels to higher-level instances. Thus,
generalizing the smoothness terms for matching problems from
pairwise to higher-order potentials has become increasingly
popular in the recent years. We can mention simultaneous
optimization of depth values and segmentation results [8], or
even hierarchical sequences of (not necessarily depth) labels
of pixels, segments and super-segments [4]. Finally, [9] and
[10] extract the joint information about 3D structure and
semantic properties of the scene using pairwise potentials and
a relaxation approach, that is, subsequently fixing one kind of
unknown variables (disparities or class) while optimizing over
the other one. The joint reconstruction, however, presupposes
simultaneous extraction of depth and context information.
Here, higher-order potentials emerge as soon as classes and
depths of neighboring pixels are considered to be correlated.
These considerations are important because on the one hand
reasoning on the semantics level can significantly improve the
performance of scene reconstruction algorithms in occluded,
weakly textured areas, areas of reflections, etc. On the other
hand, the part of 3D geometry in recognition of objects
is crucial especially if their appearances in the images are
not discriminative enough. To our knowledge, optimization
involving higher-order potential has been only successful for
a rather sparse class of functions, like robust potentials [11].



Our goal is to propose a more general workflow for
minimizing energy functions defined on 1) discrete random
variables over 2) preferably regular graphs and 3) containing
higher-order potentials. This workflow will be tested for a
problem related to depth map estimation from images and
reflecting contents of the previous paragraphs: Firstly, it will
be a generalization of work of [7] which permits model-
ing the piecewise differentiability of the underlying surface.
Secondly, given near-nadir aerial images, we simultaneously
extract the information on 3D geometry and semantics; within
the proposed joint minimization algorithm, the dependence
of depth differences of two neighboring pixels on their class
labels will be modeled by fourth-order potentials. The problem
will be explained in Sec. II after a short reminder about
image-based the data cost extraction for depth maps. The
main contribution of the paper, Sec. III shows our algorithm
for energy minimization. The three steps constituting this
algorithm are binarization, which is slightly different to the
conventional alpha-expansion, quadratization by means of a
purpose-built modification of the algorithm of [12] and the
method of [13], and graph-based minimization which worked
well for both state-of-the-art methods [14] and [15]. The main
goal of the paper is thus to demonstrate the feasibility of energy
minimization with diverse higher-order potentials rather than
sophisticated choice and adjustment these potentials. Thus, we
compute the data cost for classification by means of a very
simple algorithm and introduce heuristic mixed potentials of
order four. The penalty terms for piecewise differentiability
will be limited to the piecewise planarity and thus have the
order three. We present the results for a well-known dataset in
Sec. IV and summarize the contents of this article in Sec. V.

II. PROBLEM STATEMENT

A. Preliminaries on multi-view cost aggregation

Given several images with known parameters of the un-
derlying cameras, we wish to compute for every pixel x of a
reference image J the depth dx, that is, the distance from the
principal image plane to the first intersection of the camera
ray emanating from this pixel with the object surface. The
reference image may be one of the input images or an image at
a virtual camera position. A hypothesized 3D intersection point
can be projected into the input images, after which deviations
based on a photo-consistency measure, f (·, ·), are obtained
from pairs of the images Jp(xp,d) and Jq(xq,d) in a small
neighborhood of projected points xp,d and xp,d . To obtain the
data energy term ED, the values of f are aggregated to:

ED(dx) = ∑
p,q∈I

gp,q,x · f (Jp(xp,d),Jq(xq,d)), (1)

where f is a photo-consistency term, such as normalized cross
correlation, and I is a set of pairs of images to be considered.
Finally, gp,q,x are the aggregation weights which are important
for modeling occlusions, because not all 3D points of the
surface are visible in all images [5], [16]. In practice, this
procedure can be significantly accelerated if the calculation
of xp,d is performed 1) without the intermediate result of
3D points and 2) simultaneously for a dense set of pixels.
To omit calculation of 3D points, homographies induced by
planes [17] are applied. The sweep-plane equation depends
on the unknown dx and the plane normal vector, which can
either coincide with the normal of the principal plane of the

reference camera or – in case of known absolute orientation –
the horizontal plane. The latter approach has the advantage of
less distortion of correlation windows in (1), see [6]. Once the
homographies inducing planes have been computed, one can
perform image-to-image warping and interpret all operations
as filtering procedures, see [16] for details.

The energy ED, computed using (1) at discretized values
of d, is thus the first main input for our optimization problem:

L∗ = argmin(ED(L)+EP(L,N)) , (2)

while the remaining terms L,N and EP depend on the particular
problem and will be explained in the following section.

B. Potentials for semantic depth maps

The random variables x1, ...,xn ∈ J represent the n pixels
of the image J and correspond to the nodes X of an undirected
graph associated with J. Any possible assignment of labels to
the random variables is called a labeling and denoted by L.
Similarly to [9], we wish to compute both the 3D position
(given by depth label d) and its semantic representation c of
every pixel, thus leading to a bivariate Markov Random Field.
For reasons of convenience, the graph is extended to a new
graph G with 2n nodes. For the first n nodes, labels for depth
are assigned while for the latter n nodes, the labels 1 to u of
the variable c correspond to u classes, in our case {building,
tree, grass, ground}, and u = 4. Overall, we have

L(x) = (dx,cx) = (d(Xd),c(Xc)) , (3)

where Xd and Xc denote the same pixel in J and two different
nodes in the graph G. The data term resulting from a labeling
L in (2) is:

ED(L) = ∑
x

ED(dx)+∑
x

ED(cx), (4)

where ED(dx) is from (1). To compute ED(cx), we first obtain
features, such as relative elevation, normalized difference veg-
etation index, planarity and entropy. Finally, we combine these
features into terms similar to those described by [18]. Note that
the relative elevation is obtained from the preliminary result
of depth map computation [5] followed by extraction of the
digital terrain model (DTM) using [19].

We are now ready to describe the neighborhoods relations
of the graph G as well as the corresponding smoothness priors
EP. We use the well-known notion of cliques, which are the
fully-connected subsets of vertices of the graph. For example,
a pairwise clique between the nodes x,y implies that there is a
(pairwise) penalty term involving their labels. There are three
types of pairwise cliques in G. Firstly, for neighboring pixels in
J (clique type N2a = {x,y : ‖x−y‖= 1} in G), the differences
of depths are punished by a truncated linear function:

EP(dx,dy) = gd(x,y) ·min(|dx−dy|,md) , (5)

where gd(x,y) is employed to represent radiometric similarity
of x and y: The more similar the colors, the higher gd .
However, in our first experiments, the terms m and g in this
and upcoming potentials are constants.

Secondly, the term EP(cx,cy) is the Potts function, see
[9], Equation (2) with gc(x,y)) and the neighborhood in G is
denoted by N2b =N2a). Thirdly, joint potentials, defined for the



neighborhood type N2c = {Xd ,Xc}, are supposed to monitor
how the depth of the pixel x influences its class:

EP(dx,cx) = γcd
(
c, d̃(x)

)
. (6)

Here, d̃ is the relative elevation, which for an almost plain
terrain can be set independent on x, and γcd(·,d) is a sigmoid
function, which is monotonically increasing if c corresponds
to one of both classes grass or road and is decreasing for the
building and tree class.

In order to allow the piecewise planarity of the surface,
we introduce the third-order potentials defined over cliques
N3 = {x−v,x,x+v}, where x = (x,y) and v takes on one of
two values (0, 1) or (1, 0), except of pixels at the image border:

EP(dx,dx±v) = gx,x±v ·min(|dx−v−2dx +dx+v|,mx,x±v). (7)

Finally, we define four-order cliques N4 = {Xd ,Xc,Yd ,Yc} for
all (x,y) ∈ N2a and the corresponding fourth-order potential:

EP(dx,dy,cx,cy) = m ·min(|dx−dy|,γcc(cx,cy)) , (8)

where γcc(cx,cy) is 0 if cx 6= cy. In case cx = cy = tree, γcc = 0.5
and otherwise, it is 1. This is done to permit more variance in
depth of neighboring pixels if they belong to the tree class or
to different classes. Combining equations (5)-(8), we have:

EP(L,N) = ∑
N2a

EP(dx,dy)+∑
N2b

EP(cx,cy) (9)

+∑
N2c

EP(dx,cx)+∑
N3c

EP(dx,dx±v)+∑
N4

EP(dx,dy,cx,cy).

We emphasize that further modifications are possible; for
example, a meaningful combination of (7) and (8) for the class
building would yield six-order potentials. We also note that
the functional (9) is the generalization of both problems [7]
and [9]. The energy function (9) without N3 neighborhoods
was minimized by [9] by subsequently keeping one of the
variables c and d constant while optimizing over the other
ones, thus neutralizing the effect of the fourth-order potentials.
In Sec. III, we will show how to perform a simultaneous energy
minimization over all 2n nodes of G. This leads to higher
computational effort of O(|c| · |d|) instead of O(|c|+ |d|) for
non-simultaneous approaches, but allows a wider range of
moves and thus a better local minimum.

III. MAIN ALGORITHM

A. Binarization

The quintessence of a move-making algorithm is to rep-
resent the energy function as a problem in binary variables.
Consider a mapping B from X to {0,1}. For example, in the
case of alpha-expansion, given an initial configuration L0 and
i ∈ X, we have: B(i) = (bi) = 0 if L(i) = L0(i) and bi = 1
if L(i) = α. As it was pointed out in [7], B may serve as a
switch between two configurations L0 and Lα. This observation
is particularly important for our problem because we define
the configuration L1 = Lα to take on fixed values of d for
the first n nodes and fixed values of c for the latter n nodes.
Thus, the optimization runs over all pairs (d,c), possibly in a
randomized order, while the local solution L0 = argminED(L)
serves as the initialization and it is subsequently updated after
each iteration.

For binarization, we define the binary potentials U0
i ,U

0
i

(unary), U00
i j ,U

01
i j ,U

10
i j ,U

11
i j (pairwise), U000

i jk , ...,U111
i jk (triple),

etc., such that the energy of the problem formulated in binary
variables is the same as that of the corresponding configuration.
That is, for each node i and for each clique {i1, ..., in}, we have:

Ubi
i = ED(L0(i)) and Ub1,...,bn

i1,...,in = EP (Lb1(i1), ...,Lbn(in)) , (10)

where L(i) as in (3). Using libraries optimized for matrix
operations, the terms U can be computed very fast for different
choices of functions ED,EP. The goal of the next section is
to eliminate the higher-order potentials in (10), because the
vast majority of energy minimization algorithms applicable in
practice handle functionals with second-order potentials only.

B. Quadratization

The common way to get rid of higher-order potentials is
to calculate coefficients of a so-called Pseudo-Boolean (PB)
polynomial function

E(B) = a0 +∑
i

aibi +∑
N2

ai jbib j +∑
N3

ai jkbib jbk + · · · , (11)

and then to replace it by another one which has the same
minimum as the original problem, but is of at most second
degree. The PB polynomial (11) is binary in the variables bi
and has the same degree as the highest potential order. The
calculation of its coefficients a0,ai, etc. from the potentials
in (10) is carried out using the recursive algorithm presented
in [12]. Note that in general, the neighborhoods N2,N3, ...
etc. may change because sub-neighborhoods from higher-order
potentials add to lower-order neighborhoods. Collecting terms
from the additional higher-order sub-neighborhoods is not triv-
ial for big problems unless considerable memory is provided
in order to keep all the occurring combinations of variables.
At present, we use sparse matrices formats for second-order
neighborhoods, while for higher orders, union find algorithms
as well as special data types (associative containers) could be
used. However, in our special case it is easy to see that thanks
to the regular graph structure, a higher-order term as in (11) can
stem from exactly one higher-order potential Ub1,...,bn

i1,...,in , where
n = 3 or 4.

Starting from the function given in (11), our intention is
to obtain a modified energy function consisting of at most
quadratic terms, but having the same minimum as the original
problem. This can be achieved by replacing some products of
variables by new, so-called dummy variables. In the following,
we will describe our modification of one of the first reduction
methods, which was adopted and didactically well-prepared by
[12], and the state-of-the-art method of [13].

The key idea of the algorithm described in [12] is to
replace any occurrence of the product bib j by β and add
M · (bib j + 3β− 2biβ− 2b jβ) to the energy function E(B).
The added term links the dummy variable in the way that
the condition β = bib j cannot hold unless B is the global or
a strong local minimum of (11). This can be guaranteed for
M >−A, where A is the sum of all negative coefficients. The
remaining question is the strategy of choice of products to
minimize the number of dummy variables, which is itself an
NP-hard problem. However, we use the fact that the maximal
clique size is moderate in order to obtain a fast procedure



based on the edge statistics (ES) which aims at reducing the
number of dummy variables.

During collection of polynomial coefficients of the second
order into sparse matrices in step 1, we obtain information
about the occurrence of edges. Then, within an inner loop over
the cliques of highest order, for the current clique, we find an
edge which either was already marked as a dummy variable
before or has the highest occurrences statistics. In the latter
case, this edge is marked as a dummy variable as well and
replaced in all subsequent occurrences. After this inner loop,
the maximal clique size is reduced by one and the algorithm
begins again, until at most second-order terms remain.

The main disadvantage of the algorithm of [12] and the
modification ES is the presence of many positive coefficients
resulting from the terms of the type M · bib j in the reduced
polynomial. Such terms represent non-submodular edges of the
auxiliary graph constructed for the minimal cut computation;
however, in such graphs, global minimum cut extraction cannot
be performed in polynomial time. Moreover, the computational
complexity is directly connected to the number of submodular
edges. Therefore, the algorithm of [13], which will be denoted
by Fix throughout this paper, aims at the elimination of as
many non-submodular edges as possible. In the first step, the
positive higher-order terms are replaced by linear combinations
of terms that either are positive and have a smaller degree, or
that are negative and have at most the same degree; in this
step, the dummy variables replace some common subset of
original variables. As soon as there are no higher-order positive
terms, the higher-order negative terms are replaced by linear
and submodular quadratic terms.

From the coefficients of the reduced polynomial (like in
(11), but with at most quadratic terms ai jbib j), one can easily
obtain proper potentials for the upcoming energy minimization.
For example, we choose the function:

Ẽ(B) = ∑
i∈N1

V bi
i + ∑

(i, j)∈Ñ2

V
bi,b j
i j with (12)

V i
0 = a0/|Ñ2|,V i

1 = ai−a0/|Ñ2|,V 00
i j =V 01

i j =V 10
i j = 0,V 11

i j = ai j,

which is equivalent to (11) except for the additive constant a0.

C. Energy minimization

The task of this section is to obtain a strong local minimum
for the energy functional given by the unary and pairwise
potentials V as formulated in (12). As the energy functional is
highly non-submodular (not even in its original formulation!)
its global minimum cannot be obtained in polynomial time
[15]. Introducing dummy nodes with edge weights having
extremely large positive values ai j in (12) bears the risk of
ending up in a weak local minimum, when the energy of the
obtained configuration exceeds that of the initial configuration,
because one or several dummy variables take on a forbidden
value β 6= bib j. Nevertheless, we identified two methods which
always yield configurations of non-increasing energy.

First, we considered the Boykov-Kolmogorov (BK) algo-
rithm based on [14]. In the graph constructed for computation
of maximum flow, the edges with negative capacities are
ignored every time while searching for the augmented path.
Thus, the resulting energy E(B1) does not exceed the previous

energy E(B0), though B1 does not necessarily achieve the
global minimum of (12) when there are no remaining aug-
menting paths. This method has turned out to be significantly
faster that others for the problem of Sec. II.

Second, we employed the modified Quadratic Pseudo-
Boolean Optimization (QPBO) algorithm [15]. In this method,
called QPBO+I (Improve), a subset of vertices stemming from
an approximating configuration B0 is fixed and the original
QPBO algorithm [20] is run to obtain the labeling B1 for the
remaining nodes. The algorithm in its original implementation
leaves some nodes unlabeled if there are non-submodular
terms; hence, replacing these nodes by values from B1 yields
a configuration which does not have unlabeled nodes anymore
and for which, as has been proved in [15], E(B1) ≤ E(B0).
Now, the algorithm is run again, but with solution B1 and a
different subset of fixed nodes. Such an iterative application
of the QPBO+I algorithm leads to a considerable reduction of
E, however, at the cost of computation time.

IV. EXPERIMENTAL RESULTS

The dataset used for our experiments is the well-known
Vaihingen benchmark dataset, which was generated by the Ger-
man Society for Photogrammetry, Remote Sensing and Geoin-
formation (DGPF) [21]. Several images with corresponding
camera matrices are provided. We applied [16] with changes
explained in Sec. II to five of these images in order to compute
the data energy. The reference image and the local result are
shown in Fig. 1. To evaluate the performance of our algorithm,
we consider two subproblems. The first problem, denoted by
P1, is depth map extraction using piecewise planarity term.
This term makes sense as long as the number K of labels for
depth (in our case, it is elevation) is large. Indeed, we are inter-
ested in finding parallaxes at subpixel level. It is also necessary
to perform linear discretization of elevation values while
calculating data energy. That is, dk = (kdmax+(K−k)dmin)/K,
where k = 0, ...,K. For the second problem (P2), namely joint
reconstruction of scene and semantics, K should not be too
high, since otherwise the term (8) will tend to compute trees
in all regions with changes of elevations. Thus, the term (7)
was dropped. In addition, because of a quite high number of
submodular edges, sub-images must be considered in order to
obtain tractable computation times. For the results reported for
the problem P2 in Table I, we worked with 300 × 400 images
as well as 20 depth and 4 class labels. From all methods we
mentioned, only BK could handle the image with 700 × 500
pixels and 20 labels in a reasonable time: 15 s per iteration
and below one hour in total.

We illustrate in the graphs on the left of Fig. 2 and Fig. 3 as
well as in Table I the performance on the energy minimization
and computing times for several combinations of the quadra-
tization (ES and Fix from [13]) and energy optimization (BK)
methods. For example, the combination ES+BK+QPBO+In

means that the proposed method on quadratization is followed
by the BK optimization, and then by n applications of the
Improve method. Other methods we tested did not result in a
decrease of the energy; even in the case where non-submodular
terms were omitted, the decrease of energy was slower than
of the methods discussed above. It becomes clear that the
BK algorithm achieved by far the fastest performance without
shortcomings in the quality. However, the global minimum



was not reached, since by applying QPBO+I to the result,
we obtain a further energy decrease. There were two fast
combinations ES+BK and Fix+QBPO, for which the time per
iteration is about 0.21 and 0.36 seconds, respectively. While
we could not yet test the combination Fix+BK, it is not
recommendable to combine ES and QPBO(+I), because the
ES method yields many submodular edges: Applying QPBO+I
brings about very high computing times while without I, too
many nodes remain unlabeled and the energy decrease is
thus less significant. Still, submodular edges also remain in
quadratization result of [13], because otherwise we would have
achieved the global minimum. Also, we see that the local result
is already rather good such that the reduction of energy is
only around 1.3-1.6%. With respect to the performance of the
quadratization method alone, we observed that for the problem
P1 the original implementation of [12] and its modification
ES yielded, averagely per iteration, 4.1 · 104 and 2.4 · 104

extra variables, respectively, while the quadratization using
[13] yielded 1.23 · 105 dummy variables. Thus, the numbers
– together with a lower computing times achieved after BK
minimization – speak for our method.

Fig. 1. Left: Reference image for the considered dataset. Right: result of the
per-pixel minimization of ED

Turning our attention to qualitative results, one can note
in the height profiles of Fig. 2, middle, the linear change of
depth for the green curves, where piecewise planarity is better
visible than in the noisy local result (red) and the optimization
with only pairwise smoothness term, which is susceptible to
fronto-parallel planes (blue). Especially in the areas where
part of the wall is visible, the gradual change of depth can
be observed. With respect to the joint reconstruction, shown
in Fig. 3, middle and right, we see in sub-image (A) the
rather noisy result for the depth reconstruction using only
data cost. We see that an application of the semi-global
optimization [1] followed by median filtering (C) improves
the elevation maps, but the building outlines are not that
much visible as in the result (E) of the joint optimization.
Starting from (C), the result of classification using merely the
four features is shown in image (B). Since no smoothness
prior is used, the features for neighboring pixels do not
”know” anything about each other and the result appears noisy.
Running semi-global optimization using likelihoods extracted
from the features slightly improves the output (D); however,

the information about elevation is considered only implicitly.
This could also be the danger, though to a smaller extent,
in case of relaxation as in [9]. Only in the proposed method
of joint reconstruction, the elevations are consistently included
into optimization; therefore the classes in image (F) look more
plausible, especially in the shadow region between trees in the
top right corner, see reference image (G). Unfortunately, the
intuitive, heuristic choice of the smoothness parameters and
terms does not allow a further, more successful improvement
of the joint reconstruction result. The parameters gd ,gc,γcd and
γcc from Sec. II-B are empirically chosen and their combination
is certainly not optimal. Furthermore, the introduced terms do
not always represent the actual model of the ground-truth.
For instance, the mixed unary potentials do not make much
sense without the DTM, which for itself is an output of the
interpolated elevation map. Also, elevation is basically the only
feature which differentiates between buildings and ground,
as well as trees and grass. The undesired consequence of
this is that the data cost features and the smoothness priors
become highly correlated with each other. However, this work
demonstrates the proof of concept that higher-order energy
functions, which bear enormous potential for problems related
with dense reconstruction, can be efficiently minimized.

Fig. 2. Left: Energy minimization, performance of different methods for
problem P1. Middle: Height profiles obtained from two black line segments
on the right, with directions left-to-right specified by arrows. The red lines
are from the local result (shown in Fig. 1, right). The results of non-local
optimization method with only second-order and only third-order potentials
are shown by blue and green curves, respectively. Right: Result of the non-
local optimization.

V. CONCLUSIONS AND OUTLOOK

We presented a method for energy minimization which
is fully automatic and modular, that is, each of the three
modules (binarization, quadratization, energy minimization)
can be modified or replaced as soon as a better version is
available. Currently, the optimization method [14] achieved
the best performance, but probably, it can be accelerated or
improved in the future with the quadratization result of [13].
This method aims at the elimination of non-submodular terms,
contrary to our procedure, which is based on edge statistics and
strives for reducing the number of extra variables. We achieved
a reduction to up to 41% and 80% compared, respectively, to
the original method and that of [13].



TABLE I. RUNNING TIME FOR AND DECREASE OF ENERGY (IN %)
AFTER ONE EXPANSION CYCLE (OVER ALL LABELS).

method ES+BK ES + Fix + ES+BK+
QPBO+I5 QPBO+I5 QPBO+I10

P1, time, s 17 745 76 1404
P1, energy% 1.32 1.23 1.37 1.38
P2, time, s 88 5510 178 10911

P2, energy, % 1.50 1.47 1.49 1.50

Fig. 3. Left: Energy minimization, performance of different methods for
problem P2. Middle: results for the elevation computation. Right: Classifica-
tion with building, tree, grass and street classes marked by blue, light blue,
orange and red, respectively. Bottom right: orthophoto fragment. See text for
more comments.

The established workflow for energy minimization can be
applied to other problems involving higher-order potentials,
such as extraction of active contours or fields-of-experts for
image restoration. Here this method was exemplified for a
challenging problem related to simultaneous reconstruction of
dense 3D structure and semantics. The considered problem is
a generalization of two previous works [7] and [9]. In our
future work, we have to perform quantitative evaluation of the
deviation of the elevation map and the classification result from
the reference. To achieve good results, it will be important
to modify the heuristic potentials of Sec. II-B for ED(c).
They and also the smoothness parameters should ideally be
subject of a training procedure, which, additionally, can enable
consideration of more classes than only four. The advantage of
the proposed method is that once the potentials of (5)-(8) are
modified, the computing time is not significantly changed. For
further reduction of computation time, four propositions can
be taken into consideration: better exploitation of information
about underlying graphs, using segments (super-pixels) instead
of pixels, discarding ”hopeless” combinations of labels for ele-
vation and class during alpha-expansion, and a decomposition
of the input image into overlapping tiles.
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