Object-Oriented Shader Design

Roland Kuck
Virtual Environments Department, Fraunhofer IAIS, Germany

Short Papers, Eurographics 2007

Abstract

We present an extremely lightweight object-oriented
framework for writing shaders. It provides a way
to invoke methods of objects from the shading lan-
guage and to use references of objects as normal vari-
ables. Classes are declared and instantiated in the
application language using proxy classes. We then
apply object-oriented design to several typical shad-
ing problems showing their strength compared to the
standard methods.

1 Introduction

Graphics hardware has become extremely pro-
grammable. The previous fixed-function design has
been exchanged with stages that can execute an arbi-
trary program called a shader. Shaders are not only
used to perform the shading of the geometric primi-
tives, but can be used to transform vertices, perform
skinning of meshes or generate meshes as well.

Today shaders are written in C-like languages.
These shaders are uploaded to specific pipeline
stages. Therefore the structure and the granularity
of a shader is defined by the hardware design and
not the given problem. It is also difficult to write
maintainable and reusable code using these languages
alone.

Both problems can be solved by using object-
oriented programming. It structures the problem
naturally and allows for the development of reusable
components. Shading e.g. can be presented as a
surface object that interacts with possibly multiple
light source objects. Adding a light source to a scene

should then be possible by creating a light object and
connecting it appropriately.

We therefore introduce an object-oriented frame-
work for writing shaders. It is extremely lightweight
and has no runtime costs. It also does not hide the
actual shading language and hence can be adapted
easily to new hardware features. It provides a way to
invoke methods of objects from the shading language
and to use references of objects as normal variables.
Classes are declared and instantiated in the applica-
tion language using proxy classes.

We then apply object-oriented design to several
typical shading problems showing their strength com-
pared to the standard methods. This list of problems
is by no means meant to be complete, but it was cho-
sen to highlight the advantages of using classes and
objects.

2 Related Work

One of the first higher-level shading languages was
the Stanford shading language]PMTHO1]. Shaders
are divided into different groups depending on their
purpose, e.g. surface shaders. It closely matches the
ideas of the Renderman shading language[HL90] with
changes required for graphics hardware. This ab-
straction makes programming easier but also imposes
restrictions. Our object-oriented framework allows a
similar abstraction to be used. It does not modify
the shading language but uses a library concept.
The Cg[MGAKO03] and the OpenGL Shading
language[Ros06] closely resemble the way the hard-
ware works. Only the lowest hardware levels are ab-
stracted using a C-like language instead of an assem-

bly language making larger scale, modularized devel-
opment difficult. Cg offers some support for inter-
faces but has no dynamic polymorphism used in the
state pattern (see section 4.4) and uses aggregation
for all attributes instead of associations leading to
duplication of data when multiple classes reference
the same data. It also only provides a complex run-
time API to manipulate these data structures making
them difficult to handle.

A different approach is used by Sh[MQPO02]: A
C++ API is used to write the shading code directly
in C++. The instructions are translated to the shad-
ing language. Due to this abstraction changes in the
graphics hardware require changes in the library. It
also does not support dynamic polymorphism. In
[MTP*04] a shader algebra is built using Sh, where
components are connected. While the paper stresses
the fact of reusable components and easy reconfigu-
ration, this type of data flow design does not allow
more complex control structures as described in sec-
tion 4.1.

In [MSPKO06] an abstract shade tree is presented.
Using building blocks that are connected shaders can
be written. A visual representation is available. No
interface to the host application is discussed. The
object-oriented approach presented here provides a
richer infrastructure of which the shading process is
only one part of.

The system in [LSKT06] has similarities to our ap-
proach. It focuses on building complex data struc-
tures for the GPU. No direct usage of objects to ex-
press behavior is discussed.

CUDA[NVIO07] is a low-level framework to perform
computations on the GPU. It extends C and offers a
library with little support for graphics tasks. The ac-
cess to the texture hardware is limited, while the ras-
terizer and the framebuffer are not accessible. Some
tasks can be easier expressed with this framework
though and an extension to the object system de-
scribed here could be used to combine it with the
graphics pipeline.

3 Framework

We present a framework that consists of two depen-
dent parts: an object system for the OpenGL Shad-
ing Language (GLSL) and proxy objects in C++ that
are used to directly manipulate the objects. We first
describe the usage and then give details about the
implementation.

3.1 Usage
The fundamental type we added to GLSL is the ref-
erence type and is used to access objects. Using a
reference texture to an object we can call a method
like a normal function passing the reference as the
first argument:

color = TextureArray texture2D(texture, index, uv);

Classes are declared in C++ as shown in figure 1.
The C++ classes have two purposes: they are used
to define the data structure of the class in GLSL and
they function as a proxy[GHJV93] to this data struc-
ture. Objects are also very closely related. For every
C++ object there exists exactly one GLSL object.
This makes lifetime management easy as one only
has to manage the C++ object.

The C++ declaration code makes heavy use
of advanced template programming like the Curi-
ously Recurring Template Pattern|Cop96] and some
static data structures (hidden by the macros DE-
RIVED DECL and CLASS INIT) to compensate
for the lack of introspection support in C+-+.

The exported attributes of the C+—+ class can be
hidden just like any other member variable of a C++
class. This can be used to offer a more convenient in-
terface to the host application and to ensure encapsu-
lation from the implementation. The exported meth-
ods are not meant to be called directly from C++ but
are only used to declare the required function signa-
ture. The implementation of the C++ class returns
the name of the GLSL function to be called when the
method is invoked. We need to specify this function
as in figure 2.

vec3 HardwareTA texture2D(HardwareTextureArray SELF,
int index, vec2 uv)
{

vec3 coord = vec3(uv, float(index));
return texture2DArray (texture, coord);

}

class TextureArray;

class HardwareTextureArray :

public Shader<HardwareTextureArray, TextureArray>
{

public:

HardwareTextureArray (list <Image> tiles);

/xvirtualx/ vec3 texture2D(int index, vec2 uv)
{ return invoke<vec3>("HardwareTA texture2D"); };

private:
// Declare attributes as usual in CH++
sampler2D Array<uniform> texture;

DERIVED DECL(HardwareTextureArray, TextureArray)
}s
CLASS INIT(HardwareTextureArray, "TextureArray.glsl"
(texture2D), (texture))

class EmulatedTextureArray :

public Shader<EmulatedTextureArray, TextureArray>
{

public:

Emulated TextureArray (list <Image> tiles);

/xvirtualx/ vec3 texture2D(int index, vec2 uv)
{ return invoke<vec3>("EmulatedTA texture2D"); };

private:
sampler2D<uniform> texture;
int _<uniform> num _rows;
vec2<uniform> scale;

DERIVED DECL(EmulatedTextureArray, TextureArray)
b
CLASS_INIT(EmulatedTextureArray, "TextureArray.glsl"
(texture2D), (texture)(num rows)(scale))

vec3 EmulatedTA_texture2D(EmulatedTextureArray SELF,
int index, vec2 uv)
{

float u = floor(index / num rows);

float v = mod(index, num rows);

vec2 coord = scale * vec2(u, v);

return texture2D(texture, uvsscale + offset);

}

Figure 2: Implementation of classes in GLSL. The
simplified emulation code does not correctly sample
the border of tiles.

3.2 Implementation

b

The exact definition of the reference type can be use-
ful to encode this information into the vertex data or
a texture. We therefore see this definition as part of
the interface and not as an implementation artifact.
References are simple integer numbers. All refer-
enced objects are enumerated and these numbers are
used in the GLSL code. A dispatch function is au-
tomatically generated (see figure 3). Normally the
object references are constants and therefore the dis-
patch code is optimized out. Using objects thus does
not influence the performance of the program. Ob-
ject references do not need to be constant and we
describe such a situation in section 4.4. If a method
is called with an object reference to an object that
| does not exist, the default behavior is to provide a
standard return value. This is defined behavior and

Figure 1: Class declaration of two derived classes of
TextureArray. The declaration of the base class is
omitted.

can thus be relied on (see section 4.1).

We also support a list data type. To achieve this
aliases for the object numbers are created and all the
objects in one list get assigned additional consecu-
tive numbers. A list can then be represented by the
start and the end value and these references act like
iterators|[GHIV93].

One method is given as the entry point of a shader.
All required objects that are directly or indirectly ref-
erenced are automatically collected. A single object

#define HardwareTextureArray SELF \
OBJREF self, sampler2DArray texture

uniform sampler2DArray obj 0x1_texture;
uniform sampler2DArray obj 0x2 texture;

vec3 TextureArray texture(OBJREF self,
int argl, vec2 arg2)

if (self =1)
return HardwareTA texture2D(self, obj 0xl texture,
argl, arg2);
else if (self = 2)
return HardwareTA texture2D(self, obj 0x2 texture,
argl, arg2);
// Default return value
return vec3(0., 0., 0.);

}

Figure 3: Generated GLSL dispatcher code for two
instances of Hardware TextureArray

can be used in different pipeline stages at the same
time (see section 4.3).

4 Application

We apply the framework described above to selected
problems typically encountered in shader program-
ming. They should provide a good idea of how the
object-oriented design works in the shader program-
ming context.

4.1 TINlumination and Shading

The standard use of a shader is to calculate the color
of an illuminated surface element. This usually in-
volves a surface material and possibly several light
sources. We need to evaluate the BRDF of the mate-
rial given by some shader code for each light source.
It therefore seems logical to model the material and
the light source as classes and iterate over a list of
light source objects in the material class and retrieve
the received light amount from each. But what hap-
pens if some materials react differently to certain
kinds of light sources? A example for this is given
in [AG99]: UV light.

We can use the visitor pattern|GHJV93] or rather
the double dispatch technique here. The implemen-
tation for the material calls an illuminance() method
of the light source and passes a reference to itself.
The light source then calculates the light direction
and the intensity and calls illuminate() on the mate-
rial object passing this information along. It can also
call illuminate_wuv() to let the material receive UV
light. Materials that are not sensitive to UV light
simply do not implement this method.

4.2 Texture Array Access

A new feature of modern graphics hardware is tez-
ture arrays [Bly06]. These are multiple 2D textures
that are bound to the same texture unit and that
can be selected at runtime using an index. On older
hardware this can be emulated by tiling the different
textures in one larger 2D texture and transforming
the texture coordinates in the shader.

The layout of the tiles has to be stored in addition
to the sampler parameter. We can hide the details by
using classes. Two implementations are given: One
for the hardware that exposes direct support for tex-
ture arrays and the other one that provides the em-
ulation (see figures 1, 2 and 3).

The C++ interface can be designed to present the
host application a uniform interface hiding the tex-
ture binding process. A factory[GHJV93] can cre-
ate the instances depending on the capabilities of the
used graphics hardware.

4.3 Shared Data

There are two situations in which data needs to be
shared: The data from different pipeline stages in the
graphics hardware is propagated to the next stage
and therefore shared. It is also possible that different
stages require the same information and thus require
shared data.

Different shading languages provide direct support
for the first problem. In Cg the data from the previ-
ous stage is provided as arguments to the entry func-
tion of the next. Thus it is required that the entry
point knows about all shared data. In GLSL these

values are global parameters but global variables ex-
pose the data directly to the whole shader code.

Using objects we can provide a much cleaner so-
lution: Use one object in multiple pipeline stages at
the same time. Shared data is then identical in all
stages. Data written in one stage and read from an-
other can also be used by simply declaring attributes
with the appropriate qualifiers, e.g. wvarying for the
connection of vertex and fragment shaders. We can
also provide different interfaces for different stages to
encapsulate the implementation.

4.4 State

Assume we are implementing a particle system. We
want to color different groups of particles in differ-
ent ways: Some are colored with a fixed color, while
others are illuminated using a light source. If each
particle contains a group identifier we can use if-then
constructs to check the type and handle each case
appropriately.

Maintaining the dispatch function is an unneces-
sary bottleneck. The state pattern[GHJV93] provides
a simple solution. It uses the polymorphic dispatch
function and one simply associates a state object with
each particle. As the reference to an object is an in-
teger we can store it in the vertex data and invoke
the methods in the shader.

5 Conclusion and Future Work

We discussed object-oriented design in the context
of shading and showed how it improves the design.
We also introduced a lightweight framework to apply
these methods.

As described above the framework relies on the
compiler to optimize out the dispatch functions. Our
tests show that the compiler does perform this op-
timization reliably. A preprocessor can reduce this
dependency but it needs to be updated with new re-
visions of the shading language.

The object system creates a tight coupling between
the C++ and the GLSL parts of the program. This
can make it difficult to reuse the shading objects in
other languages. Normal methods to access objects

from other languages can be used, e.g. automatically
generated wrappers.

We are interested to continue this research and
evaluate more complex and larger shading algorithms
in the context of object-oriented design.

References
[AG99| Anthony A. Apodaca and Larry Gritz.
Advanced RenderMan: Creating CGI for
Motion Picture, pages 222-224. Morgan
Kaufmann Publishers Inc., 1999.

[Bly06] David Blythe. The Direct3D 10 system.
In Proc. SIGGRAPH 2006, pages 724—
734. ACM Press, 2006.

[Cop96] James O. Coplien. A curiosly recurring
template pattern. In Stanley B: Lipp-
man, editor, C++ Gems, pages 135-144.
Cambridge University Press, 1996.
[GHJV93] Erich Gamma, Richard Helm, Ralph
Johnson, and John Vlissides. Design
Patterns: Abstraction and Reuse of Ob-
ject - Oriented Design. Addison Wesley
Longman Publishing Co., Inc., 1993.
[HLIO] Pat Hanrahan and Jim Lawson. A lan-
guage for shading and lighting calcula-
tions. In Proc. SIGGRAPH 90, pages
289-298. ACM Press, 1990.

[LSK*T06] Aaron E. Lefohn, Shubhabrata Sen-
gupta, Joe Kniss, Robert Strzodka, and
John D. Owens. Glift: Generic, ef-
ficient, random-access gpu data struc-
tures. ACM Trans. Graph., 25(1):60-99,
2006.

[MGAKO3] William R. Mark, R. Steven Glanville,
Kurt Akeley, and Mark J. Kilgard. Cg: A
system for programming graphics hard-
ware in a c-like language. In Proc. Sig-
graph 2003, pages 896-907, 2003.

[MQP02]

[MSPKO06]

[MTP+04

[NVIOT]

[PMTHOL]|

[Ros06]

Michael D. McCool, Zheng Qin, and
Tiberiu S. Popa. Shader metaprogram-
ming. In Proc. SIGGRAPH/FEurograph-
ics Graphics Hardware Workshop 02,
pages 57—68. Eurographics Association,
2002.

Morgan McGuire, George Stathis,
Hanspeter Pfister, and Shriram Krishna-
murthi. Abstract shade trees. In Proc.
Symposium on Interactive 8D graphics
and games 06, pages 79-86. ACM Press,
2006.

Michael McCool, Stefanus Du Toit,
Tiberiu Popa, Bryan Chan, and Kevin
Moule. Shader algebra. In Proc. SIG-
GRAPH 04, pages 787-795. ACM Press,
2004.

NVIDIA. CUDA Programming Guide,
2007.

Kekoa Proudfoot, William R. Mark, Sve-
toslav Tzvetkov, and Pat Hanrahan. A
real-time procedural shading system for
programmable graphics hardware. In
Proc. SIGGRAPH 01, pages 159-170.
ACM Press, 2001.

Randi J. Rost. OpenGL Shading Lan-
guage. Addison Wesley Longman Pub-
lishing Co., Inc., 2006.

