
Combined Trajectory Generation and Path

Planning for Mobile Robots Using Lattices with

Hybrid Dimensionality

Janko Petereit, Thomas Emter, and Christian W. Frey

Fraunhofer Institute of Optronics, System Technologies
and Image Exploitation IOSB, Karlsruhe, Germany,

{janko.petereit, thomas.emter, christian.frey}@iosb.fraunhofer.de

Abstract. Safe navigation for mobile robots in unstructured and dy-
namic environments is still a challenging research topic. Most approaches
use separate algorithms for global path planning and local obstacle avoid-
ance. However, this generally results in globally sub-optimal navigation
strategies. In this paper, we present an algorithm which combines these
two navigation tasks in a single integrated approach. For this purpose,
we introduce a novel search space, namely, a state× time lattice with hy-
brid dimensionality. We describe a procedure for generating high-quality
motion primitives for a mobile robot with four-wheel steering to define
the motion in this lattice. Our algorithm computes a hybrid solution for
the path planning problem consisting of a trajectory (i.e., a path with
time component) in the imminent future, a dynamically feasible path in
the near future, and a kinematically feasible path for the remaining time
to the goal. Finally, we provide some results of our algorithm in action
to prove its high solution quality and real-time capability.

Keywords: mobile robot motion planning, hybrid-dimensional plan-
ning, state lattice planner

1 Introduction

A common usage scenario for autonomous mobile robots is the support of rescue
teams after natural disasters or industrial accidents. Robots can assist by ex-
ploring and mapping the disaster area, acquiring important environmental data,
searching for victims or simply carrying heavy loads. This task is characterized
by a mostly unknown and unstructured environment, which is highly dynamic
due to human rescue workers and other rescue vehicles operating in the close
vicinity of the robot.

In order to efficiently accomplish the mission while at the same time moving
safely between the (possibly dynamic) obstacles in such an environment, the
robot needs fast and high-quality path planning as well as a strategy for reliable
obstacle avoidance. In the last few years mainly two approaches for global path
planning that consider the kinematic constraints of car-like robots have emerged
for planning in unstructured environments. The first one combines continuous

motion primitives with a discrete search space by spanning a tree of continu-
ous states, thus constituting a hybrid search space (Hybrid A* [1]). The sec-
ond approach utilizes specifically constructed motion primitives which cause the
reachable set to form a lattice structure in the robot’s state space [2]. Therefore,
the graph search, although using motion primitives which represent continuous
motion, operates in a discrete search space.

In their original versions these global path planners focused merely on the
search of kinematically feasible paths. However, for the application to autono-
mous vehicles, it is favorable to guarantee that the found solutions are also dy-

namically feasible. This naturally results in a search space with increased dimen-
sionality, which makes the path planning even more challenging and complex. In
the last two decades a lot of effort went into the development of algorithms to
tackle this increased complexity. Two examples are the well-known Probabilistic
Roadmaps [3] and Rapidly-exploring Random Trees (RRTs) [4]. Although both
algorithms are probabilistically complete and have been applied to mobile robots
in the past, they have some disadvantages for this particular application area.
Probabilistic Roadmaps lose their benefit of precomputed roadmaps of complex
configuration spaces in a rapidly changing environment, which is the case in the
presence of dynamic obstacles. RRTs generally provide non-optimal solutions
and it is very hard to incorporate additional information (like terrain quality
or traversal risk) into the search. To overcome these limitations, particularly
with regard to mobile robot applications, state lattices have been successfully
extended to search spaces of higher dimensionality to allow for a planning of dy-
namically feasible maneuvers [5]. However, the algorithm proposed in [5] plans
a completely dynamically feasible maneuver from the start to the goal, which is
generally not necessary and thus may waste valuable computation time. For this
purpose, we propose a novel algorithm that relaxes the accuracy requirements
of the motion plan with increasing time while still guaranteeing dynamically
feasible motions in the close future.

1.1 Problem Statement and Proposed Solution

Especially in a highly dynamic environment (e.g., in the presence of human
rescue workers), it is important to include these dynamic obstacles already in the
global path planning as an unaware global path planner followed by a subsequent
local obstacle avoidance would generally lead to sub-optimal driving strategies.

In this paper, we present a novel algorithm, which combines the trajectory
generation (i.e., planning in state× time space) with global path planning. It
exploits the fact that the requirements imposed on the accuracy of the planned
robot motion decrease the more it extends into the future. For this purpose,
the dimensionality of the search space is successively reduced: The search starts
in the full-dimensional state× time space for the immediate future (thus gener-
ating time-parametrized trajectories), then continues through still dynamically
feasible maneuvers, and finally considers merely kinematically feasible paths in
the far future. For distant regions an even further reduction could be made by
also dropping the kinematic feasibility and reducing to a simple grid search.

However, we deliberately refrain from this option as we impose some minimum
requirements on the resulting path (namely, kinematic feasibility).

1.2 Related Work

There are some recent research results closely related to our approach. For ex-
ample, Ziegler and Stiller [6] used spatiotemporal lattices for planning on-road
driving maneuvers. However, this algorithm is not suitable for planning in un-
structured environments. In [7] a hybrid approach which considers time during
planning for a specific time horizon is proposed, but after reaching this point
in time, it reduces to a simple 2D grid search not considering dynamic or kine-
matic constraints any more. In past research, we have extended this approach
to at least guarantee the kinematic feasibility of the resulting motion plan [8],
and proposed a multi-resolution concept to speed-up the hybrid-dimensional
planning algorithm [9]. However, all these previous research results share the
drawback of an abrupt transition from full-dimensional state× time states to
only kinematically feasible states. The contribution of this paper is to fill this
gap by introducing a concept of successive dimensionality reduction in order to
lower the fidelity of the robot’s state representation in a more gradual way. This
will allow for a better trade-off between planning quality and computational
performance.

The general idea of path planning in a search space with adaptive dimension-
ality has been addressed in [10], however, it is restricted to mere path planning
– trajectories are not considered.

2 Algorithm

The presented algorithm consists mainly of the following three steps, of which
steps 1 and 2 can be precomputed off-line.

1. Construction of a state× time lattice L0 with full dimensionality.
2. Repeated projection of the state× time lattice L0 to state lattices with lower

dimensionality: L1, L2, . . . , Lmax

3. Graph search in the generated state lattices, starting in L0 and weaving
through the state lattices with decreasing dimensionality. Special edges con-
nect lattices of subsequent dimensionality to allow for transitions from Lk

to Lk+1.

Throughout this paper, we will explain the algorithm using the example of a
mobile robot, whose dynamics can be described using a general nonlinear system
model

ẋ = f(x,u) (1)

where the state x consists of the robot’s position x and y, its orientation θ, and
its translational velocity v. The input u contains the commanded acceleration ua

and the steering angle uβ .

However, our approach is not restricted to this specific system model, which
is why we do not go into detail here. In fact, it can be applied to a wide range
of robotic systems which shall be empowered to act in a dynamic environment.

2.1 Motion Primitive Generation

State lattice planners are commonly based on a set of motion primitives which
span the search space. A motion primitive is a short time driving strategy which
connects a state s to a succeeding state s′ in the robot’s state space. By storing
the associated inputs that are needed to drive the system from s to s′ along with
each motion primitive, an overall driving strategy can be reconstructed from
the motion primitives that form the solution of the trajectory/path planning
problem.

There is a vast variety of approaches for the construction of these motion
primitives. Bicchi et al. have shown in [11] which conditions a system and its
inputs must satisfy so that its reachable set forms a lattice. However, for mobile
robot applications this generally has the disadvantage of non-uniform heading
discretization. Rufli and Siegwart overcome this limitation by bending the state
lattice towards an a priori known path [12] but this approach is not well suited
for heavily unstructured environments. Pivtoraiko et al. [2] use the approach
presented by Kelly and Nagy [13], which is based on curvature polynomials,
which approximate the vehicle motion.

In [8] we have shown that in the case of a simplified system model of a mo-
bile robot with four-wheel steering the integration of the system of differential
equations (1) can be done analytically for constant inputs ua and uβ . This al-
lows for a very efficient simulation of robot trajectories which are the basis for
acquiring the needed motion primitives. In this section we will recap from [8] the
procedure for constructing a high dimensional state× time lattice by sampling
high-dimensional motion primitives, however, we will put it on a more formal
basis in order to be able to conveniently derive the gradual dimensionality re-
duction in the following sections and to enable the smooth integration in the
multi-resolution concept that we have proposed in [9].

First, the desired quantization of each dimension of the full-dimensional
state× time lattice

L0 = X × Y ×Θ × V × T (2)

has to be set. Although, in principle, these could be chosen arbitrarily, the final
choice has a huge impact on the outdegree of the lattice points. Furthermore, as
we require only “translational invariance” of a motion primitive with respect to
the x, y, and t dimensions, the remaining θ and v dimensions may be discretized
in a non-equidistant way, which is especially useful for the v dimension. The
consequence of the fact that motion primitives are only “translationally invari-
ant” with respect to the x, y, and t dimensions is that it is necessary to sample
individual motion primitive sets for states that start at different θ and v con-
figurations. Because of its shape, we call the set B(θ, v) of all motion primitives
that originate from an identical start configuration a bunch.

For each θ ∈ Θ and v ∈ V the system model (1) is now used to run a large
number of simulations of the robot’s motion for randomly sampled inputs ua

and uβ in order to generate the motion primitives that constitute each B(θ, v).
After each time interval ∆t, which corresponds to the quantization of the t di-
mension, we assess the quantization error eQ of the end point of the motion
primitive. The quantization error eQ is simply calculated as the normalized dis-
tance to the closest state in L0. If eQ is larger than a given threshold eQ,max

(e.g. 5%), we continue simulating the robot’s motion until a simulation horizon
tmax. If by then eQ is still too large, we drop the motion primitive. If eQ is less
then eQ,max, we check whether another motion primitive exists in the bunch
ending at an identical state. If this is the case, we score both motion primitives
by a weighted sum of their length and eQ in order to decide which one to keep.

The union of all bunches that are generated using the above-described proce-
dure constitutes the high-dimensional motion primitive set M0 that defines the
valid state transitions for L0.

M0 =
⋃

θ∈Θ
v∈V

B0(θ, v) (3)

The index “0” indicates that the bunch/motion primitive set has not been pro-
jected to a lower dimensionality so far.

The presented approach is capable to generate and test several million motion
primitives per second, which enables the algorithm to quickly generate a set of
high-quality motion primitives with small quantization errors eQ. Furthermore,
additional constraints on the state variables (like a larger turning radius for
higher velocities) can be easily integrated in our approach. However, for more
complex systems a numerical integration of the system of differential equations
might be necessary, but as all this is done off-line, computation time is not
an issue. Furthermore, a simple stop criterion for this probabilistic sampling
approach can be employed by using a performance measure like the RMS of the
quantization error eQ.

2.2 Repeated Projection of High-dimensional Lattice

The high-dimensional state lattice L0 can guarantee a good planning quality of
the robot motion, however, due to its high number of dimensions it is prone to
the curse of dimensionality, which may result in a very poor planning speed.
Therefore, we propose a novel concept of successive dimensionality reduction of
the search space in order to gradually lower the planning fidelity with increasing
time. For this purpose, we start by projecting the full-dimensional state× time
lattice L0 onto its X×Y ×Θ×V subspace in order to define a new state lattice

L1 = X × Y ×Θ × V . (4)

This essentially means that the corresponding set of – still dynamically fea-
sible – motion primitives M1 is generated by projecting the set M0 of motion

primitives corresponding to L0 onto L1. This is done for each motion primitive
in each bunch separately. Although an arbitrarily chosen projection rule would
be possible, we perform the projections by simply dropping the t dimension.

The projection process generally results in multiple motion primitives ending
in an identical state. For these cases, we assign a cost to each of them using the
same cost function as the subsequent graph search will use, and drop all motion
primitives except the one with the least cost. Furthermore, the motion primitive
which results from the “wait” action in M0 (i.e, the robot does not move at all)
is removed from M1 because of its identical start and end state. Although the
motion primitives of

M1 =
⋃

θ∈Θ
v∈V

B1(θ, v) (5)

do not contain an explicit time component any more, the duration for executing
a motion primitive is still stored to allow the graph search to incorporate this
information into the cost function.

Transitions from L0 to L1 are defined by connecting all states (x, y, θ, v, t) ∈
L0, t > t0 with the states reachable by the motion primitive m ∈ M1 that
starts at the corresponding projected state (x, y, θ, v) ∈ L1. The parameter t0
determines for which time horizon dynamic obstacles should be considered during
the planning. This threshold can be either a fixed value or computed adaptively
depending on the robot motion and the prediction of the motion of the dynamic
obstacles (cf. [7]).

In the following steps, the state lattices are repeatedly projected onto a sub-
space to successively reduce the order of the system of differential equations
associated with the state lattice until it finally contains no more dynamic com-
ponents but still maintains kinematic feasibility of the motion. For our given
exemplary motion model this is already the case for one further projection of
L1, which contains (x, y, θ, v) states, onto the X × Y × Θ space, thus gener-
ating the state lattice L2. The corresponding set of motion primitives M2 is
constructed in a similar manner. However, as the v dimension is dropped during
the projection, the new bunches that constitute M2 are only dependent on the
starting θ.

M2 =
⋃

θ∈Θ

B2(θ) (6)

Again, appropriate transitions from L1 to L2 have to be defined, which
are generated as needed during the graph search. For this purpose, each node
stores the time of it being first visited during the search. If this time exceeds
a given threshold t1, a transition from L1 to L2 is inserted defined by the mo-
tion primitive m ∈ M2 which starts at the projection of the corresponding state
(x, y, θ, v) ∈ L1 onto (x, y, θ) ∈ L2.

At this stage, the maximum depth of projections is reached as a further
projection (e.g. onto theX×Y sub-space) would discard the kinematic feasibility
of the representable motion. Thus, for our example, L2 = Lmax follows.

Due to the repeated projections of the state (× time) spaces, it is obvious
that the goal region for the subsequent graph search must be defined using the

Fig. 1. Set of motion primitives M2 = Mmax, |M2| = 812, average outdegree: 17.3,
average length: 2.02m.

farthest projected state lattice Lmax. Consequently, the graph search can easily
check an expanded node that belongs to any lattice L0, L1, . . . , Lmax by simply
projecting its corresponding state onto Lmax and testing if it lies in the specified
goal region.

3 Graph Search

The search space is completely defined by the procedure described in the previous
section. The corresponding graph is constructed during the search as needed
using the motion primitive sets M0,M1, . . .Mmax.

For finding the optimal trajectory/path through the sequence of lattices,
standard algorithms for finding shortest paths in graphs can be employed. As on
the one hand especially the first seconds of the search space are relatively high-
dimensional but on the other hand a fast generation of (possibly sub-optimal)
trajectories is required to allow a safe navigation in the presence of dynamic
obstacles, anytime graph search algorithms are particularly well suited for this
type of problem.

For our implementation of the presented algorithm, we chose to use the ARA*
algorithm (Anytime Repairing A*, [14]). It first starts a weighted A* search to
find a valid, but possibly ǫ-sub-optimal solution. For this purpose, it uses a
heuristic, which is inflated by a factor ǫ, to determine the order of the node
expansion. If a solution is found and there is still enough computation time
left, the search starts again using a decreased inflation factor ǫ. This step may
be repeated several times. To speed up planning, ARA* exploits intermediate
results from the previous iteration. The integration of such an anytime graph
search algorithm with our sequence of lattices is straightforward.

As especially in a highly dynamic environment a fast replanning is very im-
portant, it would be interesting to explore the potential of employing an explicit
replanning algorithm like D* Lite [15]. However, this is a rather challenging task
because all these replanning algorithms generally search backwards from the goal
to the robot’s current position to make use of their inherent advantages. This
conflicts with our approach, which uses the accumulated time of a node since
the start to determine the transition between two lattices. Of course, this time
is not available when searching backwards.

4 Results

We implemented the individual components of the presented algorithm in C++
and evaluated them on an Intel R© Xeon R© E3-1270 CPU using both simulated
and real data.

4.1 Construction of State (×Time) Lattices

The choice of an optimal quantization of the state× time lattice turned out to be
a challenging task. On the one hand, a relatively fine discretization is desirable
to enable planning of near optimal paths and to guarantee completeness of the
search. On the other hand, the outdegree of each node increases with higher
resolutions, which slows down the graph search because of the higher branching
factor.

After a thorough look at the tradeoffs, we finally chose the following quanti-
zation. For the discretization of x and y we chose ∆x = ∆y = 0.5m. To enable
sufficiently smooth paths, we allow 16 discrete orientations, which corresponds
to a heading resolution ∆θ = 22.5◦. For the discretization of the velocity, we
exploited the fact that the quantization may be done in a non-equidistant way,
thus, we chose the set {−2m

s
, 0m

s
, 3m

s
} to represent the admissible discrete ve-

locities. The duration of the time increment ∆t is set to 0.5 s and the maximum
duration tmax of a motion primitive is limited to 2∆t = 1 s.

With this quantization setup, we are able to generate and test roughly 8 mil-
lion motion primitives per second. This part of our algorithm profits enormously
from parallelization as each motion primitive can be generated independently. In
order to obtain a high-quality set of motion primitives, it is sufficient to run the
generation process for one minute. The generated set M0 consists of 1064 motion
primitives with an average length of 1.96m and an average outdegree of 22.6.
M1, which results from the projection of M0 onto L1, contains the same num-
ber of motion primitives as M0 does. This implies that no end states of any
two motion primitives from M0 share the same (x, y, θ, v) components. This is
due to the chosen quantization in conjunction with the short maximum motion
primitive duration of 2∆t = 1 s.

The subsequent projection of M1 onto L2 results in the expected reduction
of the motion primitive count. A total of 814 motion primitives remains in M2 =
Mmax (see Fig. 1). Consequently, the average outdegree decreases to 17.3, the
average length increases slightly to 2.02m.

start

goal

10m

Fig. 2. Three iterations of the ARA* algorithm. First pass (blue) with ǫ = 2.0 (com-
putation time 6ms), second pass (red) with ǫ = 1.3 (computation time 47ms), and
third pass (green) with ǫ = 1.0 (computation time 156ms). The robots shape is shown
every 0.25 s. The dark parts of the hybrid trajectory/path consist of states from L0,
i.e., they were planned in the X × Y × Θ × V × T space. The medium-dark patches
belong to L1 (i.e., the X×Y ×Θ×V space), and, finally, the light patches result from
planning in L2 = Lmax, i.e., the X × Y ×Θ space.

4.2 ARA* Graph Search

The integration of the sequence of lattices with the ARA* algorithm is straight-
forward. As expected, the anytime nature of this algorithm is beneficial for this
particular application. It has the ability to quickly find a hybrid trajectory/path
to initiate an obstacle avoidance maneuver if it encounters a critical situation like
an upcoming collision with a dynamic obstacle in the vicinity of the robot. How-
ever, this might come at the expense of the optimality of the solution. If there is
some computation time left, the path can be successively improved. Fig. 2 shows
three ARA* iterations for planning in an unstructured environment which has
been mapped by laser scanners.

From Fig. 2 also our concept for planning in sequences of lattices with vari-
able dimensionality becomes clear. The dark tiles of each solution represent the
trajectory part of the solution, i.e., they consist of states from L0, which ex-
plicitly contain a time dimension. This full-dimensional trajectory extends to
the point t0 = 5 s in time for the shown example. The subsequent medium-dark
tiles originate from planning in L1, thus, still representing a dynamically feasible
motion in the X × Y × Θ × V space. At the time t1 = 10 s the solution tran-
sitions to a pure path, which comprises only (x, y, θ) states; however, it is still
kinematically feasible (white tiles).

Overall, the dynamically feasible part of the solution extends to the time t1,
which results in planning a smooth trajectory in a relatively large vicinity of
the robot. However, due to the quantization of the heading dimension, it might
nonetheless be advisable to employ an additional trajectory smoothing for the
very first seconds of the path.

To focus the graph search towards the goal, we used the following very simple
heuristic.

h(x, y) = ‖(xgoal, ygoal)− (x, y)‖

(

1 +
λt

vmax

)

(7)

It is the sum of the Euclidean distance and the estimated time to reach the goal
using the maximum admissible velocity. The ratio of these two components is
controlled by the parameter λt.

To gain a sense for the computational effort of our algorithm, we simulated
the path planning for the scenario depicted in Fig. 2 for different values of the
transition time t0. The time parameter t1, i.e., the transition time from the
dynamically feasible to the kinematically feasible phase, was set to t1 = 2t0.
Fig. 3 shows the results. It can be seen, that according to the measured times,
an optimal (ǫ = 1) motion planning with 10Hz is possible for transition times
t0 ≤ 3 s and t1 = 2t0.

ǫ = 2.0

ǫ = 1.3

ǫ = 1.0

Fig. 3. Computation time for the trajectory/path planning of the scenario depicted in
Fig. 2. The transition time t1 is set to 2t0.

4.3 Dynamic Obstacles

The most interesting result is the behavior of our algorithm in the presence of
dynamic obstacles because, after all, the safe operation in dynamic environments
was our main motivation for the development of the presented algorithm on
the basis of a search space with variable dimensionality. In the following, we
will describe two exemplary scenarios for such a dynamic environment. The
prediction of the dynamic obstacles is done using the methods described in [8],
which model obstacles in a probabilistic way in order to incorporate a measure
for the collision risk into the cost function during the graph search.

In the first scenario (see Fig. 4), the robot arrives at an intersection to its
left, but it cannot turn left immediately because of an oncoming dynamic obsta-
cle. Therefore, the robot plans an avoidance maneuver and positions itself right
above the intersection to enter it as soon as the obstacle has passed. All this
is possible because the robot explicitly considers time (and, thus, also the pre-
dicted position of dynamic obstacles) during the planning for the first t0 seconds.
In our implementation of the algorithm, we set this transition time to a fixed
value of t0 = 5 s, however, as already mentioned, it would be also possible to
choose t0 depending on the predicted motion of the dynamic obstacles by using

start

goal

10m

dyn. obst.

t0

t1

Fig. 4. Planning of a turning maneuver (green) with oncoming traffic (red). Again the
dark-green tiles represent the trajectory part of the solution, the medium-dark tiles the
dynamically feasible part, and the light tiles the kinematically feasible path. The color
gradient of the dynamic obstacle directly encodes the time (lightness increases with
time).

an approach similar to the one described in [7]. From this scenario, it is particu-
larly apparent, that the local obstacle avoidance must not be decoupled from the
global path planning. If this had been the case, the robot would probably have
missed the intersection leading to an unnecessary detour and thus sub-optimal
solution of the path planning problem. Also note, how – in addition to the initial
full-dimensional trajectory till t0 – planning a still dynamically feasible motion
for the interval [t0, t1] leads to high smoothness of the planned motion till t1.

The second scenario (see Fig. 5) shows a more complex maneuver. Initially,
the robot is oriented towards the goal on the left when it encounters an on-
coming dynamic obstacle. As the passage is too narrow for both vehicles, the
robot backs off, lets the obstacle pass, and then proceeds towards the goal. The
whole maneuver is planned consistently only using the presented algorithm; no
additional rules or logic are necessary. Nevertheless, it takes only 43ms to com-
pute this relatively complex maneuver (even the optimal solution with ǫ = 1,
and including the probabilistic prediction of the dynamic obstacle). This is only
moderately more than planning a mere path (i.e., t0 = t1 = 0), which takes
12ms; however, of course, the mere path would not be able to cope with the
dynamic obstacle. On the other hand, planning a full-dimensional trajectory
from the start to the goal, would take about 1500ms, which is clearly infeasible
for real-time applications. These benchmarks demonstrate the capability of our
algorithm to significantly reduce the computation times while still guaranteeing
high-quality solutions for the close future of the motion plan.

5 Conclusions

In this paper, we have presented a novel algorithm for the integrated global
path planning and local dynamic obstacle avoidance. For this purpose, we used
a state× time lattice with hybrid dimensionality. The algorithm can efficiently
generate the required motion primitives using a probabilistic sampling strat-
egy. We applied the ARA* algorithm to quickly find an initial solution for the

start

goal

10m

t0

t1

Fig. 5. Robot (green) with oncoming traffic (red). The robot backs off, lets the dynamic
obstacle pass, and proceeds. Again the dark-green tiles represent the trajectory part of
the solution, the medium-dark tiles the dynamically feasible part, and the light tiles
the kinematically feasible path. The color gradient of the dynamic obstacle directly
encodes the time (lightness increases with time).

planning problems in order to safely avoid collisions with moving objects. Our
algorithm finds hybrid solutions consisting of a trajectory in the imminent fu-
ture, a dynamically feasible path in the near future, and a kinematically feasible
path for the remaining time to the goal. Even for long paths the computation
time of our algorithm is quite moderate.

In future work, we will have a look at the practical application to systems
with higher dimensionality and investigate the use of improved heuristics.

References

1. Dolgov, D., Thrun, S., Montemerlo, M., Diebel, J.: Path planning for autonomous
vehicles in unknown semi-structured environments. The International Journal of
Robotics Research 29(5) (2010) 485–501

2. Pivtoraiko, M., Knepper, R.A., Kelly, A.: Differentially constrained mobile robot
motion planning in state lattices. Journal of Field Robotics 26(3) (2009) 308–333

3. Kavraki, L.E., Švestka, P., Latombe, J.C., Overmars, M.H.: Probabilistic roadmaps
for path planning in high-dimensional configuration spaces. IEEE Transactions on
Robotics and Automation 12(4) (1996) 566–580

4. LaValle, S.M., Kuffner, Jr., J.J.: Randomized kinodynamic planning. The Inter-
national Journal of Robotics Research 20(5) (2001) 387–400

5. Likhachev, M., Ferguson, D.: Planning long dynamically feasible maneuvers for
autonomous vehicles. The International Journal of Robotics Research 28(8) (2009)
933–945

6. Ziegler, J., Stiller, C.: Spatiotemporal state lattices for fast trajectory planning in
dynamic on-road driving scenarios. In: Proceedings of the IEEE/RSJ International
Conference on Intelligent Robots and Systems. (2009)

7. Kushleyev, A., Likhachev, M.: Time-bounded lattice for efficient planning in dy-
namic environments. In: Proceedings of the IEEE International Conference on
Robotics and Automation. (2009)

8. Petereit, J., Emter, T., Frey, C.W.: Safe mobile robot motion planning for waypoint
sequences in a dynamic environment. In: Proceedings of the IEEE International
Conference on Information Technology. (2013)

9. Petereit, J., Emter, T., Frey, C.W.: Mobile robot motion planning in multi-
resolution lattices with hybrid dimensionality. In: Proceedings of the IFAC In-
telligent Autonomous Vehicles Symposium. (2013)

10. Gochev, K., Cohen, B., Butzke, J., Safonova, A., Likhachev, M.: Path planning
with adaptive dimensionality. In: Proceedings of the Symposium on Combinatorial
Search. (2011)

11. Bicchi, A., Marigo, A., Piccoli, B.: On the reachability of quantized control systems.
IEEE Transactions on Automatic Control 47(4) (2002) 546–563

12. Rufli, M., Siegwart, R.: On the design of deformable input- / state-lattice graphs.
In: Proceedings of the IEEE International Conference on Robotics and Automa-
tion. (2010)

13. Kelly, A., Nagy, B.: Reactive nonholonomic trajectory generation via parametric
optimal control. The International Journal of Robotics Research 22(7–8) (2003)
583–601

14. Likhachev, M., Gordon, G., Thrun, S.: ARA*: Anytime A* search with provable
bounds on sub-optimality. In: Proceedings of the Conference on Neural Information
Processing Systems. (2003)

15. Koenig, S., Likhachev, M.: Fast replanning for navigation in unknown terrain.
IEEE Transactions on Robotics and Automation 21(3) (2005) 354–363

	Main
	Return

