
VDMA-Veranstaltung »MES«

»Innovationsalianz Green Carbody Technologies«

Planung der Niedrigenergie-Produktion

Dipl.-Inf. Tino Langer, Fraunhofer IWU Chemnitz

Agenda

- (1) Energiewende the German point of view
- (2) Forschung für energieeffiziente Fabriken"Innovationsallianz Green Carbody Technologies"
- (3) Total Energy Management
 - Energiesensitive Steuerung
 - Energiesensitive Materialflusssimulation
- (4) Energieeffizienz 2.0 der nächste Schritt?

Das FRAUNHOFER IWU

Ein Institut der Fraunhofer-Gesellschaft

Kurzprofil

- etwa 510 Mitarbeiter
- 29 Mio. € Forschungsbudget (2012), ~50% Industrie
- 4 000 m² Versuchsfeld
- Institutsteile in Chemnitz und Dresden

Forschungsgebiete

- Werkzeugmaschinen
- Mechatronik
- Funktionsleichtbau
- Spanende Technologien
- Umformtechnologien
- Füge- und Montagetechnologien
- Produktionsmanagement

Agenda

- (1) Energiewende the German point of view
- (2) Forschung für energieeffiziente Fabriken "Innovationsallianz Green Carbody Technologies"
- (3) Total Energy Management
 - Energiesensitive Steuerung
 - Energiesensitive Materialflusssimulation
- (4) Energieeffizienz 2.0 der nächste Schritt?

Energiewende – Der Deutsche Weg

1991 Gesetz über die Einspeisung von Strom aus erneuerbaren Energien

1998 "Die Grünen" werden Regierungspartei

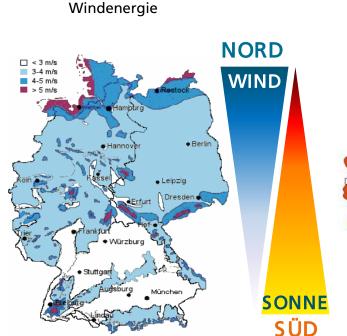
2000 Erneuerbare-Energien-Gesetz, Vereinbarung zum Atomausstieg

2004 EEG 2

2009 EEG 3

2012 Endgültiger Atomausstieg bis 2022

Es war nicht nur Fukushima!



Beschränkungen in der Energieproduktion (Deutschland)


Industrie beeinflusst Höhe des Energiebedarfs

Wertschöpfungsanteile und Kernkraftwerke in Dtsl.

Energieausbeute bei erneuerbaren Energien

Sonnenenergie

Zukünftige Herausforderungen / Probleme

SUBSTITUTION

- Unflexible ad-hoc Erzeugung und Bereitstellung von Energie
- Hoher Aufwand für den Transport von Energie zwischen Nord und Süd
- Fehlende Speicherkapazität/hohe Umwandlungsverluste

Using a mobility approach ...?

USA

Houses follow jobs ...

Deutschland

Factories follow energy allocation?

Agenda

- (1) Energiewende the German point of view
- (2) Forschung für energieeffiziente Fabriken"Innovationsallianz Green Carbody Technologies"
- (3) Total Energy Management
 - Energiesensitive Steuerung
 - Energiesensitive Materialflusssimulation
- (4) Energieeffizienz 2.0 der nächste Schritt?

Fraunhofer-Strategie »Ressourceneffiziente Produktion« Leitprojekte

Spitzentechnologiecluster eniPROD

- Vision: quasi energieautarke Fabrik
 - effizienz-optimiert
 - geschlossene Energiekreisläufe
 - erneuerbare Energien

Studie im Auftrag des Bundesministeriums für Bildung und Forschung

Ressourceneffizienz in der Production – JETZT

Identifizierung von Einsparpotentialen und Bedarf für Forschungsaktivitäten

Fraunhofer Future –

Energieeffiziente Powertrain-Technologien

- Schlüsselprodukte: Niedrigenergie-Motor
 - Leichtbau-Getriebe
 - Leichtbau-Kardanwelle

Innovationsallianz

Innovations-

Green Carbody Technologies

ressourceneffiziente Optimierung der Prozesskette Lackierte Innovations-*Fahrzeugkarosserie*

Green Carbody Technologies

Fraunhofer

Fraunhofer IWU Forschungsfabrik Ressourceneffiziente Produktion

- Produktionstechnik: Karobau, Werkzeugbau, Powertrain
- ICT/Gebäude: Energiemanagement

Deutsche Forschungsgemeinschaft – Schwerpunktprogramm Entwicklungsmethoden für energie-

effiziente Produktionsprozesse

Evaluierung energieeffizienter Produktionsprozesse

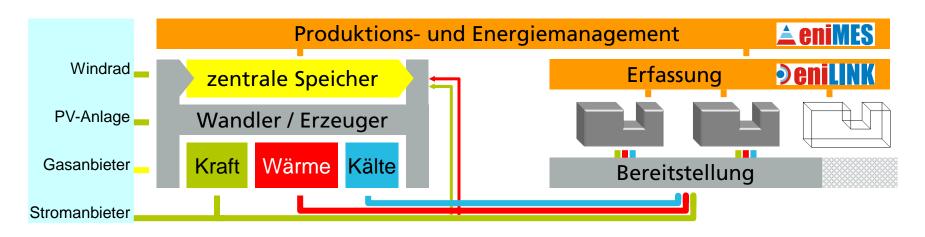
Forschungsschwerpunkte für energieeffiziente Fabriken

- Kostensteigerung Elektrizität 2000-2011: ca. 100 % (Automobilindustrie)
- Geschäftserfolg = f (Qualität, Produktivität, Flexibilität, Energiekosten)
- → E³-Fabrik: Energieautarke, Emissionsneutrale, Ergonomische Fabrik

3-Schritt-Vorgehen in der Produktionstechnik zur Senkung der Energiekosten

- Wirkungsgradoptimierte Produktion
 - Effizienztechnologien, Niedrigenergie-Fertigungsanlagen
 - → Effizienz
- Total Energy Management
 - Energieketten, "geschlossene" Energiekreisläufe
 - → Nachhaltigkeit
- Nutzung unabhängiger Energiequellen
 - → Substitution

E³ - Zukunftsfabrik (Fraunhofer IWU)


Energiekonzept

Dezentrale Energie- & Medienerzeugung unter Nutzung regenerativer Energieträger.

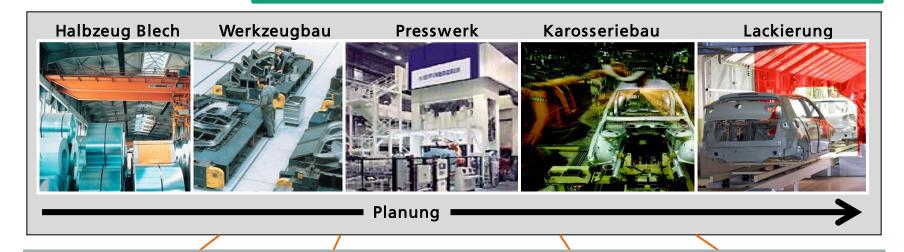
Energiespeicher (Kurz, Mittel-, Langfrist) zur Glättung von Spitzen, Rückführung von Verlustenergien und zum autarken Betrieb.

Energiesensitives Management zur vollständigen Erfassung und Synchronisation aller Auftrags-, Material- und Energieflüsse.

Leitprojekt

Innovationsallianz "Green Carbody Technologies"

- Entwicklungsziel: Ressourceneffiziente Prozesskette "Lackierte Karosse"
 - Energiereduktion
 - Ressourceneinsparung
- Partner (Industriegeführt):
 - Volkswagen (leading OEM), AUDI, Daimler
 - 60 Firmen (Automobilzulieferer, Komponentenhersteller, Stahlindustrie)
 - Fraunhofer-Institute (IPT Aachen, IPA Stuttgart, IWU Chemnitz)
- FuE-Budget: ~ 30 Mio. €
- Laufzeit: 3 Jahre (2009 2012)


Leitprojekte

Innovations allianz "Green Carbody Technologies"

Forschungsansatz

- Technologie und Anlagen orientierte Forschung für die Karosserieproduktion
- Ganzheitlicher Ansatz für frühzeitige Planung und permanente Steuerung

Energieaufwand für Ressourcen

Energiebedarf Technologien Energieverbrauch Betriebsmittel

Energiebedarf Infrastruktur

<u>Planung</u> vor SOP ("Digitale Fabrik")

Fertigungssteuerung (nach SOP)

VP1 »Planung der Niedrigenergie-Produktion«

InnoCaT 1

Heute:

- "Energie" als Planungs- und Steuerungskriterium unterrepräsentiert
- Bewertung der Energieeffizienz subjektiv geprägt und inhomogen

Forschungsschwerpunkt: "Energiedatensensitivität"

- 1. Planung vor SOP ("Digitale Fabrik")
- Gewerke übergreifende Energiekennwerte
- 2. Produktionsinformationssysteme
- **Energiebezogene Effizienzindikatoren**

3. Fertigungssteuerung (nach SOP)

Übergreifende Ressourcensteuerung

Agenda

!!!anpassen!!!

- (1) Energiewende the German point of view
- (2) Forschung für energieeffiziente Fabriken "Innovationsallianz Green Carbody Technologies"
- (3) Total Energy Management
 - Energiesensitive Steuerung
 - Energiesensitive Materialflusssimulation
- (4) Energieeffizienz 2.0 der nächste Schritt?

Motivation und Zielstellung

Heute:

- Produktionsmanagement orientiert sich überwiegend an der Produktivität
 - → Existierende Leitsysteme steuern nur die Produktion ohne Berücksichtigung von Energieaspekten
- Reduzierung des Energiebedarfs durch isolierte Betrachtung von Verbrauchern ohne Abhängigkeitsbetrachtungen
 - → Keine Nutzung verbraucherübergreifender Einsparpotentiale

Ziel:

→ Dynamisch minimierter Gesamtenergieeinsatz bei Erreichung eines vorgegebenen Produktionsziels

Anforderungen zur Zielerreichung

Zukünftig:

- Schaffung von Transparenz zu Ressourcenbedarfen und -flüssen in der **Produktion mittels Monitoring**
 - → Identifikation großer Energie- bzw. Ressourcenverbraucher
- Gleichzeitige Berücksichtigung von Produktionszielen und Ressourceneinsatz
 - → Funktionale Erweiterung und Kopplung existierender Leitsysteme um Ressourcen bedarfsgerecht bereitzustellen
 - → Koordinierte Steuerung der Komponenten aus Produktion, Produktionsinfrastruktur und Gebäudeinfrastruktur zur Optimierung des Ressourcenbedarfes im Anlagenbetrieb

Von der Energiedatenerfassung zum Ressourcenmanagement

Energiedatenerfassung

Energiedatenverarbeitung /-auswertung

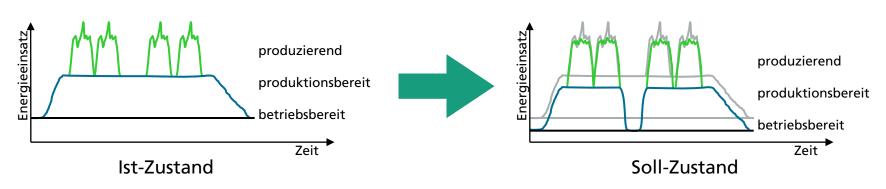
Energie- und Ressourcenmanagement

- Gegebenenfalls Erweiterung bestehender Systeme zur Prozessdatenerfassung um Energieaspekt
- Leistungsfähige Systeme zur Energiedatenerfassung vorhanden (vgl. ENDAV mobile)
- Datenaggregation auf unterschiedlichen Ebenen
- Bildung vergleichbarer komponentenübergreifender Kennzahlen
- Monitoring von Ressourcenverbräuchen/-bereitstellungen
- Berücksichtigung von Produktionsanlage, Infrastruktur und Gebäudeinfrastruktur durch gekoppelte Teilmodelle
- Nutzung komponentenübergreifender Einsparpotentiale
- Bedarfsgerechte Ressourcenbereitstellung
- → Energiesensitive Steuerung

Energiesensitive Steuerung

Energiesensitive Steuerung = bedarfsgerechte Betriebszustände von Komponenten der Produktion, Infrastrukturkomponenten, Gebäudeleittechnikkomponenten

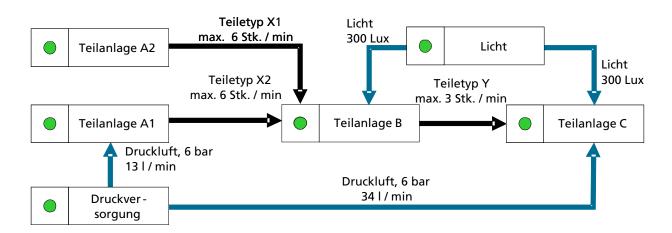
- Voraussetzungen
 - Zuordnung bereitgestellter und benötigter Ressourcen zu Betriebszuständen
 - Verknüpfung von Modellen für Anlage/Infrastruktur/Gebäudeleittechnik
 - Definition von Abhängigkeiten zwischen den Komponenten der Anlage/Infrastruktur/Gebäudeleittechnik



Energiesensitive Steuerung

- Modell der Abhängigkeiten zwischen den Komponenten der Anlage/Infrastruktur/ Gebäudeleittechnik (Abhängigkeitsgraph)
 - Bestimmung von Ressourcenbeziehungen zwischen Komponenten
 - Erkennung logisch unmittelbar benachbarter Komponenten
- Vorgehen während des Produktionsbetriebes
 - Reaktion auf Verbrauchsänderungen von Komponenten
 - Vorschläge für bedarfsgerechte Betriebszustände abhängiger Komponenten

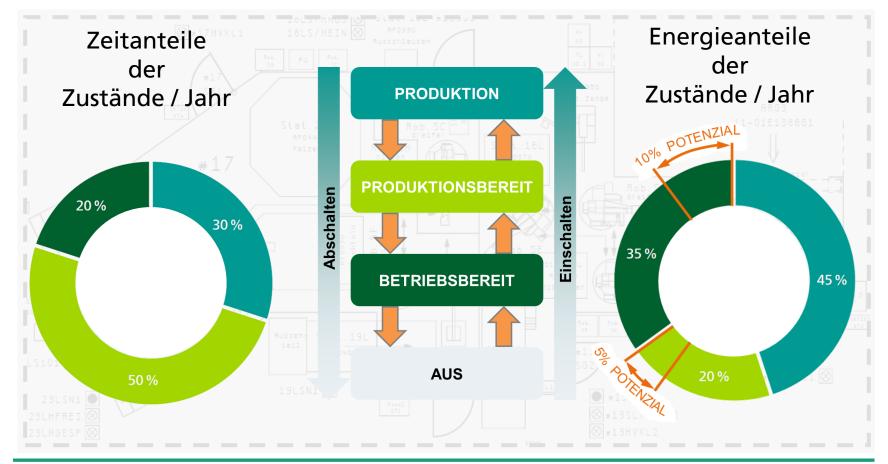
Ausnutzung von Einsparmöglichkeiten



Energiesensitive Steuerung

Reduzierter Ressourceneinsatz durch:

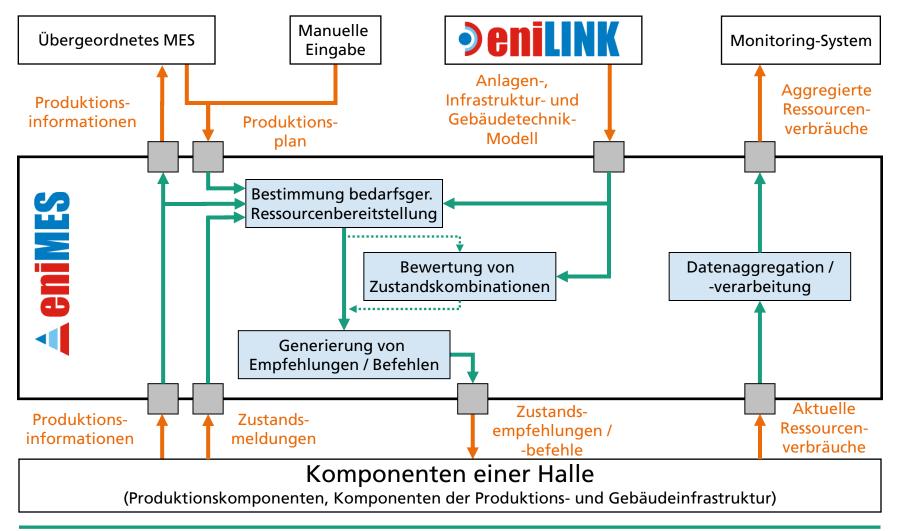
- Anlagen- und Bereichsübergreifende Vorschlagsgenerierung von Betriebszuständen für Komponenten der Anlage/Infrastruktur/Gebäudeleittechnik
- Welche Ressourcen werden von welcher Komponente wann für wie lange und in welchem Umfang benötigt?
- Welche Zustandsempfehlungen ergeben sich für vor- und nachgelagerte Komponenten basierend auf den ermittelten Ressourcenbedarfen?



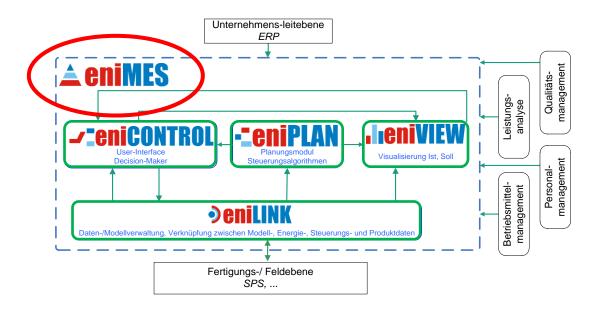
7. ICC PhoenixContact 2012-09-25 - Pz

If you can't measure it – you can't manage it! Energetische Untersuchungen an einer Karosseriebaulinie

Ergebnisse InnoCaT TP 4.2.2

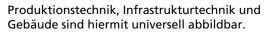


Architektur eines energiesensitiven Leitsystems

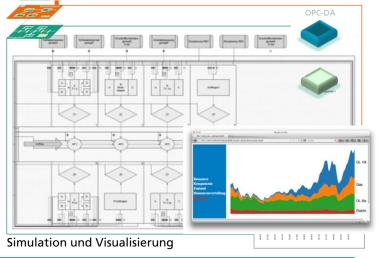


Konzept energiesensitives MES – eniMES

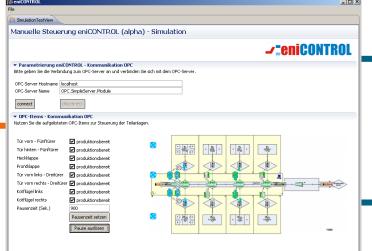
- eniPLAN: Zentrale Optimierung der Energienachfrage der Verbraucher
- eniCONTROL: Bedarfsgerechte Steuerung der Erzeuger/Verbraucher
- eniVIEW: Visualisierung von energetischen Informationen
- eniLINK: "Datenbank" zur Modell- und Datenverwaltung


Generischer Energiebaustein

- Energiesimulation für Produktionsanlagen UND Gebäude- sowie Versorgungstechnik
- orientiert am Standard der deutschen OEM (VDA Automotive Bausteinkasten)
- Entwicklungsziel: Virtuelle Inbetriebnahme realer Energie-Steuerungssysteme
- Energiedatenvisualisierung (Webservice)

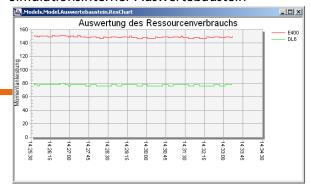


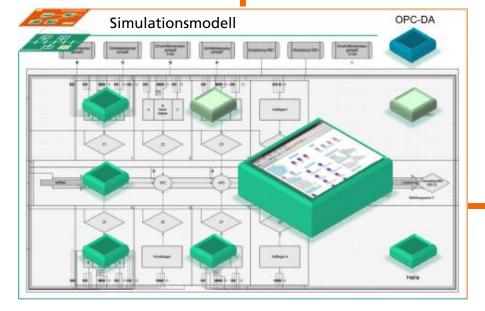
"Generischer Energiebaustein"



OPC-UA / (ProfiENERGY)

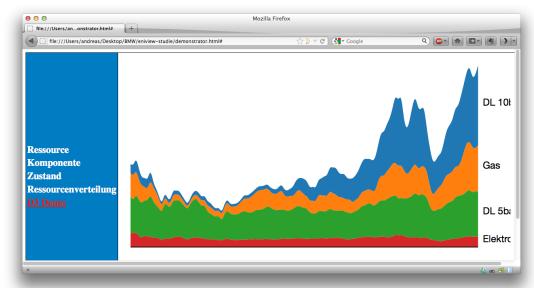
Kommunikationsnetzwerk, OPC-DA basierend: Verteilung und Aktualisierung Zustandsbefehle und -meldungen

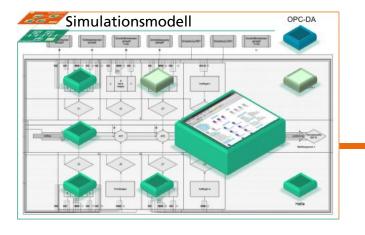


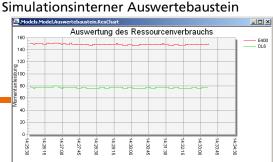

ERP

künftig: Virtuelle Inbetriebnahme realer Energie-Steuerungssysteme

Simulationsinterner Auswertebaustein






Energiedatenvisualisierung (nicht nur) für die Simulation

Visualisierung von Energiedaten aus der Simulation oder Realität - bereitgestellt als Webservice.

Lauffähig auf jedem standardkonformen Webbrowser - es sind keine Add-ons, Apps etc. dafür erforderlich!

Agenda

- (1) Energiewende – the German point of view
- **(2)** Forschung für energieeffiziente Fabriken "Innovationsallianz Green Carbody Technologies"
- (3)Total Energy Management
 - **Energiesensitive Steuerung**
 - **Energiesensitive Materialflusssimulation**
- **(4)** Energieeffizienz 2.0 – der nächste Schritt?

Energieeffizienz 2.0

Wohlstandssicherung in komplexer Energiewirtschaft

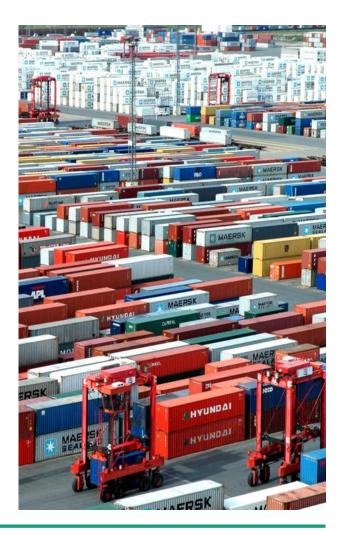
Energieeffizienz 1.0

Einsparung Energie wird knapp und teuer

2012?

Energieeffizienz 2.0

- Volatilität Energieknappheit und -überangebot wechseln sich ab, Speicherbedarf
- Regionalität Energie ist nicht beliebig transportierbar
- Rollenkonjunktion Verbraucher- und Erzeugerrollen vermischen sich
- Transparenz Entideologisierter, breiterer Meinungsbildungsprozess in der Bevölkerung


Energieeffizienz 2.0

Beitrag der Industrie

Steuerbare Lasten und Energiespeicher haben auf einem Kapazitätsmarkt denselben Wert.

- durch entsprechende Steuerung wird
 Industrieproduktion selbst zum Energiespeicher
- aus betrieblichen Gründen notwendige
 Energiespeicher sind nach außen vermarktbar
- eigene Energieerzeugung bringt Zusatzerlöse
- regionale Märkte benötigen industriellen Energieverbrauch als Gegenpol zum privaten Verbrauch, Imagewirkung

Vision: Die Fabrik qualifiziert sich vom Verbraucher zum aktiven Teilnehmer an den Energiemärkten.

VDMA-Veranstaltung »MES«

»Innovationsalianz Green Carbody Technologies«

Planung der Niedrigenergie-Produktion


Kontakt:

Dipl.-Inf. Tino Langer Fraunhofer IWU Chemnitz Reichenhainer Str. 88 09126 Chemnitz

tino.langer@iwu.fraunhofer.de

www.iwu.fraunhofer.de

Vielen Dank!

