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Abstract: Fouling is a permanent problem in process technology and is estimated to cost 0.25% of the
gross national product. Evaporative cooling systems are especially susceptible to air-side fouling: as
they work with untreated outside air, they are exposed to both natural (e.g., pollen) and human-made
(e.g., industrial dust) contaminants. In addition, suspended solid particles and dissolved salts in
the spray water are an issue. In this study we analyzed an approach for fouling detection based on
a semi-physical (grey-box) cooling tower model which we calibrated with measurement data. A
test series with reliable laboratory data indicates good applicability of the model. In three datasets,
the performance decreases due to fouling (scaling, which was provoked intentionally) in the range
of 5–11% were clearly detected. When applied to measurement data of two cooling towers in real
applications, the model also proved to be well calibratable with relatively little data (two to four
operating days). For two data sets, the model yielded reasonable results when applied to long term
data: a cooling tower cleaning could be retraced and nominal operation was verified during the
remaining time. During the analysis of a third data set a temporary performance deviation was found,
which could not be explained with the recorded data. Thus, the approach turned out to be generally
applicable but requires further verification and refinement in order to increase the robustness. If
successful, it can be transferred to a commercial product for need-oriented maintenance in order to
reduce cooling tower operating costs and environmental impact.

Keywords: fouling; scaling; closed cooling tower; performance; heat transfer rate; fouling resistance

1. Introduction

Fouling is a persistent issue in process engineering. Over 90% of heat exchangers in
industry suffer from it [1]. The estimated costs due to oversizing, downtime and increased
energy consumption sum up to 0.25% of the Gross Domestic Product in industrialized
countries [2]. Evaporative cooling systems, which are frequently used in refrigeration
systems and industry processes to dissipate condenser or waste heat to the environment,
are also subject to fouling due to contaminants in the ambient air (e.g., dust, pollen) as well
as suspended and diluted solids in the spray water.

Most publications on the effect of fouling on cooling tower performance refer to
open cooling towers, their fills or externally connected heat exchangers. In this context,
numerous publications are dedicated to the modelling and prediction of fouling processes
and their effect on the thermal performance of cooling towers, e.g., Khan and Zubair study
the effect of fouling on counter flow wet cooling towers [3]. They develop a fouling model,
validate it with measurement data from previous publications literature and use it to
evaluate the performance reduction due to fouling in different cooling towers geometries.
Similarly, Cremaschi and Wu measured the impact of fouling on a condenser connected to
an open cooling tower and use this data to evaluate their fouling model performance [4].
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For large scale open cooling towers, methods for monitoring fouling are already
available. A system presented by the energy provider Exelon compares measured data
to predicted data based on characteristic curves derived from manufacturers’ data [5].
The company Suez refers to the continuous monitoring of water chemistry and test tube
sections operated under reference conditions in this context [6] (chapter 36). Successful
fouling detection for an industrial size open cooling tower is also reported by Jin et al. [7].
They calibrate their model with operation data of the cooling tower under clean conditions
and quantify the performance degradation due to fouling over time by comparing the
modelled performance of a clean cooling tower with the measured real performance.

Information regarding the influence of air-side fouling on the performance of closed
cooling towers available in literature is scarce, lacks information on the operating conditions
as well as cooling tower geometries and shows large variations: while Qureshi reports
a performance decrease of ~5% for a scaling thickness of 0.1 mm on the air-side of the
tube bundle, which is the same order of magnitude specified by CTI, Hartvig claims it to
be around 30% under these conditions [8–10]. At 1 mm scaling thickness, the literature
reports performance reductions in the range of 20% to 35% (Hartvig does not specify
results for this thickness) [8,9,11]. Zaza et al. model the scaling process on different
types of cooling tower tubes in good agreement with their experiments on laboratory
scale [12]. They determine performance decreases in the range of 3% to 4% during their
tests but provide no information on the layer thickness. Despite the broad range of values
reported it is very clear that air-side fouling can lead to a significant decrease in cooling
tower performance with the negative consequences stated above. A graphical method for
performance monitoring and detecting fouling based on its degradation which also seemed
promising for smaller closed circuit cooling towers was found unsuitable in practice [13,14].

Therefore, the objectives of this paper is to fill the knowledge gap concerning closed
cooling towers found in the available publications with the following steps: (a) provide
reliable measurement data of a closed cooling tower which is subject to fouling/scaling
on a laboratory scale, (b) employ a model-based approach with minimum need of sensors
to detect the performance degradation due to fouling and (c) test the applicability of this
approach to real installations based on field measurements.

2. Methodology
2.1. Cooling Tower Lab Tests

In order to generate detailed measurement data, a market available closed counter-
flow cooling tower (Gohl VK8/5, specifications see Table 1) was continuously monitored
during operation on a test rig. On the process fluid side, the volume flow could be varied
up to 5300 L/h and the inlet temperature into the cooling tower up to 60 ◦C. On the air side,
the cooling tower operated with ambient air, so temperature and humidity could not be
regulated. However, the fan speed was regularly varied between 25%, 50%, 75% and 100%
via a frequency converter. The spray pump could be switched on or off but not controlled.
Figure 1 shows a scheme of the setup.

Table 1. Key characteristics of the investigated cooling tower.

Description Unit Value

Nominal capacity kWth 35
Fan electric power kWel 1.5

Spray pump electric power kWel 0.7
Nominal air volume flow rate m3/h 5350

Vertical passes - 18
Horizontal tubes - 10

Tube distance hor./vert. mm 30
Tube diameter mm 26.3



Energies 2021, 14, 695 3 of 15

Figure 1. Simplified scheme of the cooling tower test setup including sensor positions; ambient air
conditions were measured next to the cooling tower.

The installed sensors record values every minute. Three measuring points are located
in the cooling circuit (inlet/outlet temperature and volume flow). The supply air conditions
(temperature, humidity, pressure) as well as the operating status of the spray pump (on/off)
and the electrical power consumption of the fan are measured. The most important techni-
cal data of the measurement technology are listed in Table 2. The combined temperature
and humidity probe is covered by an actively ventilated radiation shield produced by Thies
Clima.

Table 2. Description and specifications of the installed sensors.

Description Type of Sensor Max. Error Resolution

Dry bulb temperature Combined T/H-Probe (Pt100 +
capacitive sensor)

+/− (0.3 K + 0.3 K) * 0.02 K
Relative humidity +/− (2% + 0.3%) * 0.02%

Air pressure Piezo-resistive pressure sensor +/− (1 h Pa + 0.5 h Pa) * 0.04 h Pa
Temperatures cooling fluid

(in/out) Pt100, 4-wire +/− 0.05 K 0.005 K

Volume flow cooling fluid magnetic-inductive +/− (0.5% + 0.3%) * 0.1 L/h
Fan electric power +/− 1.5% 10 mW

* (sensor + data acquisition).

A measuring device “Blomat” by Dr. Hartmann Chemietechnik controls the blow-
down based on the conductivity of the spray water. The device additionally monitors the
pH value and the redox potential. Biofouling is controlled by regular addition of biocide.
Naturally, the requirements of the latest German Federal Emissions Control Regulation,
such as biweekly quick test for Colony Forming Units (CFU) and quarterly legionella
sampling by an accredited laboratory, were also complied with.

2.2. Cooling Tower Field Measurements

In order to collect further operation data, two cooling towers in the range of 550 to
910 kW nominal capacity were monitored during operation in their respective applications
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(dissipation of waste heat from chillers and free cooling). The same sensors as in the
laboratory tests were selected for measuring the ambient conditions and fluid temperatures.
The electricity consumption could not be measured in these cases, instead the fan signal
(2 speeds) was recorded. The volume flow of the process fluid (water-glycol) was recorded
with ultrasonic clamp-on meters. An overview on the specifications of the installations is
given in the following:

• CT1: Closed circuit wet cooling tower with air inlet and outlet at the top, design
capacity 910 kW, nominal fan power 5.3 kW/21.4 kW,

◦ Water-glycol flow measurement with Flexim Fluxus F601, automatically switch-
ing between transit time and Doppler method due to insufficiently bled piping

◦ Water-glycol temperature measurements with immersed 4-wire-Pt100,
◦ T/H-probe as specified above but with passive radiation shield Davis PN

7714 (best results for passive shields in a comparative study by the World
Meteorological Organization [15])

• CT2: Closed circuit wet cooling tower, design capacity 550 kW, nominal fan power
3.3 kW/14.0 kW,

◦ Water-glycol flow measurement with Systec deltawaveC,
◦ Water-glycol temperature measurements with contact sensors (3-wire-Pt100),
◦ Ambient conditions measured as with CT1.

2.3. Data Treatment

As the measurements contain unsteady data due to changes in set values and ambient
conditions, quasi-stationary data is extracted for all model calibrations. For this purpose,
the standard deviation is determined for five consecutive measurements (three before the
actual measurement and one after) for

• ambient temperature;
• water inlet temperature;
• flow rate;
• fan signal.

The utilized data is then restricted to all values with a standard deviation lower than
twice the average over all standard deviations.

2.4. Cooling Tower Calculation Model

For the data evaluation a cooling tower calculation model based on the Merkel theory
and effective NTU method was employed [16]. As it reduces the heat and mass transfer
within the cooling tower to a 1D-problem it requires little computational resources. At the
same time, it has shown decent accuracy in past studies [17,18]. The relevant assumption
of this model is that the heat transfer process on the air and water side can be simplified
in such way that they basically only depend on the respective mass flow and operating
conditions, as shown in Figure 2 and Equations (1)–(3).

Quaint = 1/Rint = δ ; ṁ0.8
w /µ0.5

w = f(ṁw, tw,in) (1)

UAext = 1/Rext = γ ; cpsat ; ṁ0.8
a = f

(
ṁa, cpsat

)
(2)

cpsat = (ha,out − ha,in)/(Twb,out − Twb,in) (3)

From these heat transfer coefficients, the effective cooling capacity is then calculated
following the ε-NTU method. All the required input values except the air mass flow were
directly measured or calculated within the model. The air mass flow cannot be measured
accurately without either imposing a significant pressure drop (and thus influencing
the cooling tower performance) or costly measurement technology (e.g., laser Doppler
anemometer). Therefore, it was derived from the control signal of the fan. As the exact
fan curve is not usually known, an additional offset to the fan signal was introduced and
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calibrated together with the respective coefficients for air and water side heat transfer
properties (γ and δ, respectively), which are specific for every cooling tower.

Figure 2. Schematic of the simplifications applied by the selected cooling tower model.

The model was implemented in Python 3.1. Humid air properties were determined
by Cool Prop [19]. The calibration was performed by minimizing the sum of the squared
difference between measured and calculated power of the selected data set. It was realized
in Python with the L-BFGS-B algorithm available in the function minimize of the package
scipy [20].

3. Results

In the following the workflow and results of the measurements are presented and
discussed. The first subchapter concentrates on the laboratory tests. The second part
focusses on the field measurements and thus the applicability of the method in practice.
All presented performance measurements correspond to one minute values.

3.1. Results of Cooling Tower Lab Tests
3.1.1. Description of Operating Period

Measurements were carried out from September 2017 until September 2018 and from
May 2018 until November 2019, with short downtimes due to minor revisions in the setup
or annual closing. Initially the process fluid loop was operated with pure water as heat
transfer medium. In the end of November 2017, it was replaced by a glycol mixture for
frost protection. After a leakage in July 2018 water was used as heat transfer fluid again
and operation continued until September. Since the scaling progress was much slower than
expected with city water, the concentration factor was varied over time and the deposition
of carbonate was accelerated by adding NaHCO3 + CaCl2. Table 3 contains an overview
on all experiments.

Table 3. Overview on executed lab experiments.

Period (DD.MM.YY) Objective of
Experiment Makeup Water Composition Dataset Code

03.09.17–13.09.17 Reference measurements Decarbonized water Lab-Cal1
14.09.17–27.11.17 Scaling test 1 City water Lab-Scal1a

30.11.17–09.07.18 1 Scaling test 1 City water + NaHCO3 + CaCl2 2 Lab-Scal1b
13.07.18–10.09.18 Scaling test 1 City water + NaHCO3+ CaCl2 2 Lab-Scal1c

18.05.19 Descaling Descaling of tube bundle with
acid, subsequent passivation -

05.06.19–28.08.19 Scaling test 2 City water + NaHCO3++ CaCl2 2 Lab-Scal2

During the test period the thickness of the scaling layer was determined regularly
with a Rotec BB20 magneto-inductive appliance. The results of four tubes at the top of the
bundle (accessible via a service hatch at the side of the cooling tower housing, counting
from the top) and the average over all ten tubes at the bottom (accessible via a second
service hatch) for the first year of operation are plotted in the Figure 3. Figure 4 shows
photos of the top tubes at different stages of scaling.
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Figure 3. Thickness measurement at four tubes at the top and all bottom tubes (averaged) of the
bundle.

Figure 4. Top tubes after measurements with softened water (a) and after 1 (b) and 12 (c) months of operation with hard
water, respectively (Scaling test 1).

The cooling tower was emptied during the following winter (2018/19). Unintendedly,
the inside of the tube bundle corroded during this period, leading to higher turbulence
and thus pressure drop and heat transfer coefficient on the water side. After chemically
removing the scale layer on the outside of the tubes, the scaling test was repeated in
summer 2019 in order to validate findings.

1 Operation with water glycol as heat transfer medium. 2 Addition of NaHCO3 for
accelerated scaling after January 2018, after April 2018 additionally CaCl2.

As explained in Section 2.1, the laboratory cooling tower was operated at a test facility
which allowed the control of the water flow rate and temperature as well as the fan speed.
Ambient conditions were defined by the weather. An overview on the covered operation
conditions during the respective tests is given in Table 4.

3.1.2. Results of First Scaling Test

The model was calibrated with the data recorded during the initial reference measure-
ments (Lab-Cal1). Figure 5a shows the good agreement of the calculated (by the model)
and measured (in the cooling water loop) powers. A total of 99.7% of the data points are
within the +/−10% boundaries (black solid/dotted lines), 94.9% even have a deviation
below +/−5%.
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Table 4. Overview over the datasets of the laboratory cooling tower used for model calibration and
evaluation; ranges are marked with “MIN . . . MAX”, steps are delimited with “/”.

Dataset Code
Ambient

Temperature
[◦C]

Wet Bulb
Temperature

[◦C]

Water Inlet
Temperature

[◦C]

Water Flow
Rate [m3/h]

Number of
Data Points

Lab-Cal1 12.3 . . . 27.5 10.5 . . . 17.6 20.2 . . . 36.1 3.3/4.2/5.2 5737
Lab-Scal1a −2.1 . . . 29.5 −3.3 . . . 20.6 17.8 . . . 39.8 3.9 . . . 5.3 5161
Lab-Scal1b 12.5 . . . 33.6 11.0 . . . 21.3 26.3 . . . 35.6 2.5 . . . 4.2 30,205
Lab-Cal2 13.7 . . . 29.9 12.6 . . . 20.5 26.2 . . . 28.0 4.1 . . . 4.2 1824
Lab-Scal2 8.0 . . . 39.9 7.5 . . . 26.2 20.0 . . . 32.1 3.9 . . . 4.3 102,084

Figure 5. (a) Result of model calibration prior to scaling test 1 (dataset Lab-Cal1); (b) Comparison of measured and
calculated cooling tower power after one year of operation (dataset Lab-Scal1b).

The calibrated model was then used to recalculate the values measured at the end of
the first scaling test (dataset Lab-Scal1c). As Figure 5b indicates there is a clear deviation
between the model and the measurements. From the inverse of the slope of the linear trend
through the data points it can be derived that the degradation is about 11%. Considering
a thickness of the scale layer of 1 mm (averaged over the entire bundle, see Figure 3) and
assuming a linear behavior of the thickness on the performance reduction, this corresponds
to a specific performance decrease of 11% per mm fouling layer. As the thermal resistance
for a cylindrical layer depends on the natural log of the ratio of the external to the internal
radius, the specified assumption is a simplification. The resulting values can only be com-
pared for similar thicknesses or in terms of order of magnitude. A continuous evaluation of
this period is not possible as the heat transfer medium was temporarily exchanged during
the winter and spring 2018/19 (see Section 3.1.1 for explanation).

Thus, the period with a water-glycol mixture needs to be evaluated separately. For the
graph in Figure 6 the model was calibrated with the initial measurements of the dataset Lab-
Scal1b. Subsequently the relative deviation (difference between calculated and measured
capacity divided by the measured capacity) was evaluated for entire measurement period.
A continuous slight increase of the value, corresponding to a decrease in cooling tower
capacity, can be observed. At the end of the regarded period the average decrease is about
5%. Considering a scale thickness of approximately 0.4mm and under the assumption
of a linear correlation between the thickness and the performance change, this leads to a
specific performance decrease of 12.5%/mm.
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Figure 6. Trend of relative decrease of cooling tower power (calculated minus measures divided by
measured) during the operation with water-glycol (data set Lab-Scal1a); model was calibrated with
data recorded in the first week of December); blue dots: all fan speeds; red dots: only 100% fan speed;
black lines: linear regression (solid: all fan speeds, dashed: only 100% fan speed).

3.1.3. Results of Second Scaling Test

Since the switching of the heat transfer medium did not allow a continuous evaluation
of the scaling process in the first test, it was repeated. A significant difference to the
first test was that the water flow rate was now limited to approximately 4 m3/h since
the tubes corroded on the inside during the operation pause. The positive effect was a
significantly higher heat transfer coefficient confirmed by the model calibration. This
time the measurement data of the first two operation days with city water were used for
model calibration. An initial characterization with decarbonized spray water did not seem
necessary as the slow scaling progress in the first test showed. Figure 7 shows the results
of the calibration with 100% and 95.4% of the data points lying within the +/−10% and
+/−5% boundaries, respectively.

Figure 7. Result of model calibration prior to scaling test 2 (data set Lab-Cal2), measured vs. calcu-
lated thermal power of cooling tower; black solid/dotted lines show +/−10% boundaries.

Figure 8 contains information on the effect of the scaling on the cooling tower perfor-
mance. Despite fluctuations the decrease in capacity is evident. At the end of the operation
period the capacity dropped by approximately 8% compared to the model. As the average
scale layer was only about 150 µm, the specific performance decrease was about 53% per
mm fouling layer.
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Figure 8. Trend of relative decrease of cooling tower power (calculated minus measured divided by
measured) during scaling test 2 (data set Lab-Scal2); blue dots: all fan speeds; red dots: only 100%
fan speed black dashed line: linear regression only 100% fan speed.

3.2. Results of Field Measurements

In the following the results are presented for the two monitored field cooling towers.

3.2.1. Results for CT1

For the interpretation of the results for CT1 the following points regarding its installa-
tion and operation must be kept in mind:

• The tower can either dissipate waste heat from a chiller or provide free cooling; the
respective set temperatures are 20 ◦C and 8–11 ◦C. Therefore, the two step fan switches
frequently in part load, leading to unsteady operation;

• For sound protection the air intake is located on the top of the tower, next to the outlet;
thus, depending on the weather conditions, a varying recirculation can be expected
which is not accounted for in the measurements;

• In fall and winter 2018/19 the cooling system of the building was refurbished; due to
the downtimes and changes in operation the operation periods before and after may
not be comparable;

• The tower is installed on the roof of a three-story building while the bleed valves
are located next to the chiller in its basement; therefore the circuit is insufficiently
bled which may partly lead to faulty flow measurements (the flow sensor switches
automatically between transit time and Doppler method).

The following Table 5 gives an overview on the datasets used during the evaluation
of the results. The cooling tower operated with a deficient spray water treatment and
blowdown system until 11th of July which lead to visible scale depositions on the tube
bundle and partly clogged spray nozzles. Therefore, it was mechanically cleaned by the
manufacturer on July 12th/13th (no data for those days). The subsequent two days of
measurement data were selected for the calibration of the model. As before, the calibration
yielded good results with most data points inside the +/−10% boundaries (see Figure 9).

The application of the calibrated model to the measurement data during the respective
summer clearly shows the effect of the cooling tower cleaning (Figure 10): the average
deviation before July 11th is 3.9%, while there is no evident trend or deviation visible
afterwards. Thus, it can be deducted that the effect of the cleaning is detectable. At full
fan speed the scattering of the data mostly is within the +/−10% boundaries as during the
calibration of the model. At the low fan speeds there are periods with significantly higher
positive deviations. A possible explanation is that the cooling tower performance suffers
from recirculation of air promoted by wind.
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Table 5. Overview over the datasets of CT1 used for model calibration and evaluation; ranges are marked with “MIN . . .
MAX”.

Dataset Code Period
[DD.MM.YY]

Ambient
Temperature [◦C]

Wet Bulb
Temperature [◦C]

Water Inlet
Temperature [◦C]

Water Flow Rate
[m3/h]

Number of Data
Points

CT1-Cal1 16./17.07.18 17.9 . . . 30 14.9 . . . 18.9 21.2 . . . 27.5 78.4 . . . 82.5 2872 (7.7%) *
CT1-Eval1 21.06.18–21.09.18 11.9 . . . 35.7 7.9 . . . 23.9 20.3 . . . 41.1 60.0 . . . 99.7 76,576 (9.6%) *
CT1-Cal2 26./27.05.19 14.8 . . . 24.6 11.7 . . . 15.8 21.4 . . . 26.5 27.9 . . . 46.8 1837 (67.9%) *
CT1-Eval2 19.05.19–02.02.20 −1.9 . . . 39.0 −2.4 . . . 25.5 7.0 . . . 40.3 18.8 . . . 56.2 176,789 (30.8%) *

* Share of data points at low fan speed.

Figure 9. Result of model calibration with dataset CT1-Cal1, measured vs. calculated thermal
power of cooling tower (2.2% outside +/−10% boundary); black solid/dotted lines show +/−10%
boundaries.

Figure 10. Trend of relative decrease of cooling tower power (calculated minus measured divided
by measured) of dataset CT1-Eval1; blue dots: all data, red dots: only 100% fan speed, green line:
cleaning, dotted black lines: average before/after cleaning.

Figure 11 shows the model applied to measurement data of the following year 2019.
The lack of data during fall/winter is a consequence of the data treatment (see Section 2.3)
excluding strongly unsteady operating conditions. The results show a general deviation of
at least 20% compared to the 2018 data. This could be interpreted because of degradation.
Yet, the predominant water flow rates during the shown period are significantly below the
flow rates during calibration (see Table 5), so it is well possible that the model needs to be
recalibrated. A result of a recalibration with measurement data from May 2019 is shown in
Appendix A and proves that the offset can be avoided that way.
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Figure 11. Trend of relative decrease of cooling tower power (calculated minus measured divided by
measured) of dataset CT1-Eval2 calibrated with dataset CT2-Cal1; blue dots: all data, red dots: only
100% fan speed.

Another characteristic feature of the results with either calibration is that there seems
to be a temporary offset (capacity deviation) of approximately 15% from July until October.
Afterwards the results fall back to the initial order of magnitude. For this behavior no
explanation could be found in the recorded data or in the operations diary of the cooling
tower. This fact indicates that the model-based approach requires further investigation.

3.2.2. Results for CT 2

For the interpretation of the results for CT2 the following points regarding its installa-
tion and operation must be kept in mind:

• The tower dissipates waste heat from a chiller at a set temperature of 25 ◦C. Therefore,
the two step fan switches frequently in part load, leading to unsteady operation;

• the tower is installed inside a building with an uninsulated air duct of approximately
8m length at the inlet; therefore, the air inlet conditions at the evaporative section
of the cooling tower may differ somewhat from the ambient conditions measured
outside the building;

• recirculation of air is expected to happen only under very specific wind conditions.

Table 6 summarizes the key data of the operating periods used for calibration and
evaluation. The specified calibration period was selected in order to have a minimum
share of operating points at low fan speed. The calibration worked with decent accuracy as
Figure 12 shows. Only 2.4% of the data points are outside the +/−10% boundary. Yet, at the
low fan speeds, two groups of points appear, which are off the ideal slope. Consequently,
the coefficient of determination is low compared to the calibration results of the previous
data sets.

Table 6. Overview over the datasets of CT2 used for model calibration and evaluation; ranges are marked with “MIN . . .
MAX”.

Dataset Period
[DD.MM.YY]

Ambient
Temperature [◦C]

Wet Bulb
Temperature [◦C]

Water Inlet
Temperature [◦C]

Water Flow Rate
[m3/h]

Number of Data
Points

CT2-Cal1 11.07.19–15.07.19 14.5 . . . 28.5 12.3 . . . 20.2 26.1 . . . 33.2 81.6 . . . 85.2 4114
CT2-Eval1 01.07.19–25.01.20 −3.2 . . . 38.9 −3.6 . . . 24.9 24.4 . . . 39.9 28.8 . . . 85.2 170,796

* Share of data points at low fan speed.

Figure 13 presents the results for the model-based evaluation of CT2. For the period
until the end of October, the model yields good results with a deviation at 100% fan speed
(red dots) mostly oscillating around 0%. Starting from November there is not a significant
number of evaluable data due to low ambient temperatures and the resulting transient
cooling tower operation.
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Figure 12. Result of model calibration with dataset CT2-Cal1, measured vs. calculated thermal
power of cooling tower (2.4% outside +/−10% boundary); black solid/dotted lines show +/−10%
boundaries.

Figure 13. Trend of relative decrease of cooling tower power (calculated minus measures divided by
measured) of dataset CT2-Eval1; blue dots: all data, red dots: only 100% fan speed.

4. Discussion and Conclusions

A model-based approach for detection of fouling and operation monitoring has been
developed and tested under laboratory and field conditions.

To generate test data, a closed cooling tower at laboratory scale was operated and
measured twice over a period of several months with intentional scaling. During the first
campaign an average scale thickness of 1.1 mm (top/bottom tubes: 1.6 mm and 0.6 mm,
respectively) was achieved. During the second run the test was terminated at 150 µm
average thickness.

The cooling tower model could be well calibrated during both tests. The model-based
evaluation of the performance degradation yielded around 15% drop for the first and 8%
for the second campaign. Evidently the performance degradation due to fouling can be
detected with the chosen approach. Results at full fan speed show the lowest scattering as
the relative measurement errors and potential disturbances caused by the ambient (e.g.,
recirculation of air) is minimal.

Yet, the overall effect (and thus the achievable energy savings due to detection and
cleaning) is strongly dependent on the specific operating conditions. In addition, there are
periods with significant scattering in the results during continuous monitoring (especially
in the second run). Possible causes are:
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• (Temporary) defects not associated to the scaling of the cooling tower (e.g., partially
blocked pump or nozzles);

• Thermal inertia due to sump water volume;
• Variations due to make-up water being added or blow-off being purged;
• Wind affecting the air volume flow through the tower or/and causing recirculation of

air;
• (Temporary) pollution of sensors (e.g., dust on the ambient temperature sensor).

The applicability of the method was tested in two real cooling towers which were
equipped with the respective sensors. In general, the model could be well calibrated
also with their data, in more than 90% of the cases the deviation between modelled and
measured cooling capacity was below 10%. For two out of three datasets the model-based
evaluation over extended periods of time also showed reasonable results with variations
like the calibration period. Yet, for one dataset a prolonged period with a significant and
rather constant deviation and subsequent “return to normal” was observed. An explanation
therefore could not be found in the data. This indicates that further testing of this method
is necessary. An extension of the measurement technology and model for redundancy (e.g.,
measuring and calculating the evaporation loss) may also be helpful in order to assure that
the measurements are correct. Finally, a coupling of the performance monitoring with the
building control system may provide further valuable information on its operation mode.

If the described next steps are successful, the automated fouling detection has the
potential to yield financial savings to cooling tower operators: it will allow cooling towers to
be cleaned only when it is actually necessary because the performance is affected but before
the impact of the fouling leads to a significant increase in operating costs or even undesired
downtimes. As a positive side-effect, it would reduce the damage to the environment
due to use of chemicals for premature cleaning or increased energy consumption due to
fouling-related performance decrease.

Concluding, we found that it is challenging to provide reliable data with a minimum
number of sensors. With increasing experience on this approach and by taking further
influencing factors into consideration, this approach still seems promising for extended
application in practice.
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Abbreviations
Symbol Unit Description
tw,in

◦C Process fluid inlet temperature
ṁw kg/s Process fluid mass flow rate
ṁa kg/s Air mass flow rate
Rext/int K/W Air/process side heat resistance
cpsat kJ/kg/K Specific heat capacity of saturated air
ha,in/out kJ/kg Specific enthalpy of inlet/outlet air
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Twb,in/out K Wet bulb temperature of inlet/outlet air
UAext/int W/K Air/process side heat transfer coefficient
γ - Constant parameter for external heat transfer
δ W/m/K Constant parameter for internal heat transfer
µw kg/m/s Dynamic viscosity of water

Appendix A

Figure A1. Result of model calibration with dataset CT1-Cal1, measured vs. calculated thermal
power of cooling tower (41.2% outside +/−10% boundary); black solid/dotted lines show +/−10%
boundaries.

Figure A2. Trend of relative decrease of cooling tower power (calculated minus measures divided by measured) of dataset
CT1-Eval2 calibrated with dataset CT2-Cal2; blue dots: all data, red dots: only 100% fan speed.
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