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ABSTRACT
Identity theft has deep impacts in today’s mobile ubiquitous
environments. At the same time, digital identities are usu-
ally still protected by simple passwords or other insufficient
security mechanisms. In this paper, we present the TrustID
architecture and protocols to improve this situation. Our ar-
chitecture utilizes a Secure Element (SE) to store multiple
context-specific identities securely in a mobile device, e.g.,
a smartphone. We introduce protocols for securely deriving
identities from a strong root identity into the SE inside the
smartphone as well as for using the newly derived IDs. Both
protocols do not require a trustworthy smartphone operat-
ing system or a Trusted Execution Environment. In order
to achieve this, our concept includes a secure combined PIN
entry mechanism for user authentication, which prevents at-
tacks even on a malicious device. To show the feasibility of
our approach, we implemented a prototype running on a
Samsung Galaxy SIII smartphone utilizing a microSD card
SE. The German identity card nPA is used as root identity
to derive context-specific identities.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection

Keywords
Identity Derivation; Smartphone; Mobile Security; Com-
bined PIN Entry; Secure Element; Identity Provider; An-
droid; nPA

1. INTRODUCTION
In today’s world characterized by personalized, Internet-

driven services, every user possesses a multitude of digital
identities for authentication to these services but also to
physical entities. These identities are often presented in form
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of email addresses, user names or user identification numbers
and secured by a diverse set of security mechanisms, e.g.,
passwords, Personal Identification Numbers (PINs), Trans-
action Authentication Numbers (TANs), and smart cards
or other physical tokens in highly secure environments. The
achieved security level of most of these mechanisms depends
on how the user handles them. For example, the security
of an identity protected by a password is only as strong as
the password chosen by the user. Consequentially, identity
theft is a widespread problem [8]. To address these issues,
we propose the TrustID concept. Our four main contribu-
tions are:

1. An architecture for deriving and using context-specific
IDs on mobile devices utilizing a Secure Element (SE)
as credential store.

2. A protocol for secure ID derivation on a possibly un-
secure or even malicious smartphone.

3. A protocol for secure ID usage on a possibly unsecure
or even malicious smartphone covering several power-
ful use cases.

4. A secure combined PIN entry mechanism for user au-
thentication without relying on a Trusted Execution
Environment (TEE) in the smartphone or additional
hardware like a trusted display/pinpad for the SE as
opposed to, e.g., One-Time-Password (OTP) tokens.

In our concept, the user possesses one strong, long-term
issued, generic root identity, called RootID. This RootID
could, for instance, be a government-issued Electronic Iden-
tity Card (EIC). The user then uses this RootID to derive
all kinds of different, context-specific IDs storing them in a
certified SE in his off-the-shelf smartphone. The TrustID
ID derivation protocol relies on a trusted third party, the
Trusted Identity Provider (TIP), to decide about ID requests
based on the information stored in the RootID. The derived
IDs can then be used via all interfaces the smartphone pro-
vides, typically including Near Field Communication (NFC)
but also the Internet, while the RootID remains at the user’s
home or some other secure place avoiding the risk of loss.

Moving the security basis away from the user towards
highly secure SEs substantially increases overall security.
Most users already own a smartphone and carry it with
them, so its the most natural place to store the IDs the user
needs on a daily basis. The certified SE can be included into
the smartphone flexibly in different form factors, including
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embedded SEs, microSD cards and Universal Integrated Cir-
cuit Cards (UICCs). The concept also takes into consider-
ation that there may be several different SE manufacturers
who are allowed to produce SEs certified for the TrustID
system. Nevertheless, using the user’s smartphone, which
is an untrusted and possibly malicious device, in a security
relevant context requires some further security measures to
be taken into consideration. We therefore propose a secure
combined PIN entry mechanism, which allows to establish
a secure channel between SE and RootID by using the cor-
responding secret PINs without the user entering them in
clear via the smartphone’s untrusted touchscreen. So the
security of the ID derivation mechanism and the resulting
ID does not rely on the security of the smartphone software
stack, which is increasingly important since the past years
show the growing relevance of smartphones as targets for
diverse attacks [6, 1]. If the user loses his smartphone, he
can use his RootID to revoke the IDs stored in the SE of
the lost device. Our concept covers several use cases such
as financial transactions, physical access control, car-sharing
access to access control for online services.

This paper is organized as follows. In Section 2, we de-
scribe our attacker model. In Section 3, we give an overview
of existing research results. Section 4 introduces the basic
concept, architecture and the protocol for the TrustID ID
derivation and usage. Aspects of our prototype implemen-
tation are discussed in Section 5. Section 6 evaluates our
protocol regarding its security. We conclude in Section 7.

2. ATTACKER MODEL
The attacker has complete control over the entire network.

On the smartphone, he is able to modify software, to run
arbitrary programs, to read out RAM, and to eavesdrop bus
systems. Attacks on the SE as well as the RootID are out-
of-scope because these devices are hardened against software
and hardware attacks. The attacker has no knowledge about
the PINs protecting the SE and the RootID, but he might
be able to gain knowledge of the combined PIN. Attacks on
the TIP are also out-of-scope.

3. RELATED WORK
Leicher et al. [12] provide an OpenID based approach for

mobile SSO across different devices. In contrast to our ap-
proach, their concept relies on the Mobile Network Operator
(MNO) as root for the derivation of mobile identities and on
a fully trusted mobile device.

Urien et al. [13] provide a mobile ID in form of an EAP-
TLS smart card. Similar to our approach they store a key
pair as identity credential in the smart card. For securing
the communication, they use the TLS stack of those special
smart cards to form secure channels between the different
entities of their protocol. However, they do not scope a
compromised smartphone in any case.

In [11], Hyppönen describes a protocol for deriving an ID
from an identity issuer which is sending the credentials to
the SE over an identity proxy (a mobile phone). Neverthe-
less, this approach does not deal with identity theft by the
means of a relay attack as described in our security evalu-
ation (see Section 6) or with a possible compromisation of
the mobile device. Chen et al. [5] propose a mobile payment
ID derived from the Citizen Digital Card (CDC), which is a
governmental PKI-based ID card, onto an NFC smartphone.
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Figure 1: Overview of the TrustID system

This is similar to our scenario of ID derivation. However,
their protocol relies on the MNO as trusted ID provider as
he owns the SE used in their scenario (the SIM card). Fur-
ther, the PIN for the CDC is entered in clear allowing an
attacker compromising the smartphone to eavesdrop it.

Dmitrienko et al. [7] provide an approach for delegable
access control utilizing NFC-enabled smartphones. Their
system is not based on a RootID, but relies on users di-
rectly delegating their credentials to each other. In contrast
to our approach where the smartphone can be completely
untrusted, they rely on a large trusted computing base.

Summarizing, none of the previous contributions covers
the full process of deriving multiple identities from a strong
root identity employing a trusted identity provider, that
might be integrated in a governmental PKI, while taking
a compromised smartphone into account.

4. CONCEPT
The goal of the proposed TrustID architecture and proto-

col is to derive a context-specific identity from a RootID by
interacting with a remote Trusted Identity Provider (TIP)
and to store the derived ID into a SE inside a smartphone.
An app on the smartphone acts as a hub and mediates the
communication between the different entities without being
able to discover any sensitive information. An identity in our
concept basically consists of an asymmetric key pair and an
associated certificate containing all additional information
about the context and usage of the identity. The entities
which are involved in the derivation process and their con-
nections are depicted in the system overview in Figure 1.
These entities are described in the following:

Smartphone. The smartphone mainly acts as a carrier for
the SE and as runtime environment for the TrustID
app providing the hardware interfaces necessary for
the communication with the other entities (e.g., Wifi,
NFC, SDIO) and with the user (via the touchscreen).

Secure Element. The SE (e.g., a microSD card or UICC)
used in the TrustID protocol must be certified, i.e.,
must contain some key material for which the TIP is
able to do a verification. This is discussed in detail in
Section 4.3. This key material is not user-specific, but
is used to provide a guarantee that the newly derived



ID is stored in an actual SE which matches the required
security standards. Therefore, such SEs could be dis-
tributed/sold to the users without any personalization
or pre-provisioning.

TrustID App. The TrustID app on the smartphone acts as
a hub for all communication between the other entities
and is responsible for presenting information to and
getting input from the user via its User Interface (UI).
In the TrustID protocols, all software on the smart-
phone can be untrusted because of the special PIN
entry mechanism described in Section 4.3.

RootID. The RootID is some kind of long-term issued smart
card, which securely stores the personal data of the
user. The RootID must contain key material to au-
thenticate itself towards the entity reading the data
and to make sure that only authorized entities may
read out its data. A typical example for RootIDs ful-
filling these requirements are government-issued EICs
like the German identity card nPA used in our proto-
type implementation (see Section 5).

Trusted Identity Provider. The TIP provides the back-
end of the system architecture and is connected to the
smartphone through the Internet. In the ID derivation
protocol, the TIP must decide if an identity request by
a user is fulfilled based on the user’s RootID and the
SE in the user’s smartphone. The TIP is also respon-
sible for generating the certificate for the new ID.

4.1 Architecture
During ID derivation, several logical channels are estab-

lished. Figure 2 shows the system architecture with named
channels between the entities. We differentiate channels
which conceptually directly connect two entities (solid lines)
and channels which are established between two entities
through a third TrustID entity (dashed lines):

RootID-Channel. This channel connects the TrustID app
with the RootID. It is unprotected and is realized dif-
ferently depending on the smartphone hardware and
RootID form factor. For example, the channel could
be established using an NFC connection to a contact-
less smart card RootID.

SE-Channel. This channel connects the TrustID app with
the SE. It is unprotected and established differently de-
pending on the SE form factor, e.g., via Secure Digital
Input Output (SDIO) in case of a microSD card.

TIP-Channel. This channel connects the TrustID app with
the TIP. The channel is established via the Internet
and does not have to be protected, but can optionally
use Transport Layer Security (TLS).

TIP-SE-Channel. This channel connects the TIP and the
smartphone’s SE. It is mutually authenticated and en-
crypted and established based on static asymmetric
keys present in the involved entities.

RootID-SE-Channel. This channel connects the RootID
and the smartphone’s SE. Similar to the TIP-SE-Chan-
nel above, this channel is also mutually authenticated
and encrypted but uses the PIN mechanism described
in Section 4.3 to be established.
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Figure 2: TrustID system architecture

RootID-TIP-Channel. This channel connects the RootID
and the TIP. The channel is mutually authenticated
and encrypted. It is established through the TIP-SE-
Channel and the RootID-SE-Channel using the static
key material in RootID and TIP. After this channel is
established, any further communication between TIP
and RootID is routed through this channel, which there-
fore replaces the two previous logical channels.

Attacks on these channels are discussed in the security eval-
uation in Section 6 after introducing the ID derivation pro-
tocol in detail in the next sections.

4.2 Protocol Prerequisites
As mentioned before, there are some prerequisites regard-

ing the key material which has to be present on the entities
to successfully run the TrustID protocol for ID derivation.

First, the RootID must contain an asymmetric key pair
(e.g., ECC or RSA) SKRootID (private), PKRootID (public).
For the public key PKRootID the RootID additionally con-
tains a certificate issued by the TIP or some other Certificate
Authority (CA) which can be validated by the TIP depend-
ing on the used Public Key Infrastructure (PKI). Further-
more, the RootID contains the public key of the root of the
PKI. In our concept description, the TIP is assumed to be
the issuer of the certificate CertTIP(PKRootID) as well as the
root of the PKI to simplify the protocol discussion. Access
to the RootID is protected by a PIN called PINRootID.

Second, the SE must contain key material quite similar to
the one in the RootID, i.e., an asymmetric key pair (SKSE,
PKSE), a certificate for the public key and the public key
of the CA in charge. The certificate is issued by the manu-
facturer of the SE and vouches for a genuine and authentic
SE. The SE contains a PIN called PINSE to be used in the
ID derivation protocol and depending on the chosen usage
protocol (see Section 4.4) an additional PINUse protecting
usage of the derived IDs. Again, for simplicity, we use the
TIP as CA but the PKI can be designed quite flexible. The
only requirements regarding the overall PKI are:

• The TIP must be able to validate the certificates of
both, the RootID and the SE.
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Figure 3: An example PKI for the TrustID system

• The TIP must be able to provide a certificate or a cer-
tificate chain which can be validated with the root CA
keys contained in the SE and RootID (in our protocol
description PKTIP for both).

A simple example for a PKI is depicted in Figure 3. The
depicted PKI allows for a system in which there are different
TIPs, which are certified by the RootID issuer. The TIPs
themselves certify different SE manufacturers.

4.3 Protocol
The real-life scenario for the TrustID protocol for ID deriva-

tion is the following: A user wants to store a context-specific
identity in his smartphone, for example, some kind of vir-
tual bank card, to get access to this specific service with
his smartphone and without having to carry around his
RootID and/or physical bank card. Therefore, the user
starts the TrustID app on his smartphone, which he pre-
viously equipped with some certified SE (see Section 4.2),
and generates the specific bank card request via the UI. This
is where the TrustID ID derivation protocol starts. The pro-
tocol is depicted in Figure 4 and its single steps are described
in the following. The key material prerequisites described in
the previous section are also summarized in Figure 4 below
each entity. At the end of the protocol, the new identity is
stored securely in the certified SE inside the smartphone.

4.3.1 TIP-SE-Channel Establishment
In a first step, the SE and TIP establish the mutually

authenticated and encrypted TIP-SE-Channel. The TIP-
SE-Channel is established by using the static keys of both
entities. With these, many different channel establishment
protocols are possible, for example, a mutually authenti-
cated certificate-based form of TLS. Since the SE is com-
pletely passive, all communication must be relayed by the
smartphone and converted between the different transmis-
sion formats, for example, from Application Protocol Data
Units (APDUs) to Hypertext Transfer Protocol (HTTP) re-
quests and vice versa.

4.3.2 Secure Combined PIN Entry
A special PIN mechanism is used to establish the RootID-

SE-Channel between RootID and SE. As described in Sec-
tion 4.2, both the RootID and the SE each have a secret PIN
(PINRootID and PINSE). These PINs are known to the user,
who receives them together with the RootID/SE. Instead

of entering one of the PINs directly via the touchscreen and
therefore exposing it to the possibly malicious software stack
of the smartphone, the user has to do a simple calculation on
both PINs to derive a combined PIN named PINSE+RootID.
This calculation is denoted in Figure 4 as function f and
takes PINSE and PINRootID as arguments:

PINSE+RootID = f(PINSE,PINRootID)

The function should be chosen to be easily calculable by the
user. The calculation must be invertible by the SE with the
knowledge of PINSE in the next step. The function is there-
fore formally parameterized by PINSE resulting in the func-
tion fPINSE which only takes PINRootID as single argument.
The SE receives the combined PINSE+RootID and because of
its knowledge about PINSE is able to calculate PINRootID

with the inverse function f−1
PINSE

. To put it another way,
only the SE intended to store the ID by the user is able to
calculate the secret necessary to establish a channel to the
RootID. After this calculation, both entities share a secret
password in form of PINRootID, which never went through
the possibly malicious software stack on the smartphone.
This password is then used in the next step to establish the
RootID-SE-Channel. The combined PIN entry binds the
SE and RootID to each other for the protocol run prevent-
ing certain relay attacks as discussed in the evaluation in
Section 6.

To make the PIN mechanism more clear, consider the fol-
lowing simple but realistic example for the PIN calculation
function f :

f(x, y) := x + y

fPINSE(x) := PINSE + x

f−1
PINSE

(y) := y − PINSE

In a concrete example with this specific PIN function, we
assume PINSE = 123456 and PINRootID = 345678. The user
uses the introduced function and calculates

PINSE+RootID = fPINSE(345678) = 469134

and enters it through the untrusted touchscreen. The SE
then calculates

PINRootID = f−1
PINSE

(469134) = 345678

to obtain the shared secret for the channel establishment
with the RootID. This example also shows that the calcula-
tion to be done by the user does not have to be complicated.

Both, SE and RootID, must implement try counters for
the PIN entry to prevent brute force attacks.

4.3.3 RootID-SE-Channel Establishment
After the secure combined PIN entry, the SE and RootID

share a secret password PINRootID which they use in the
next step to establish the secure RootID-SE-Channel. For
that, a balanced Password-Authenticated Key Agreement
(PAKE) protocol is used [3, 4, 10]. Such a protocol allows
the two parties to derive a common cryptographic key based
on a common human-memorable password. In our afore-
mentioned example and implementation scenario where the
RootID is the German ID card nPA, the PAKE protocol
used is the Password Authenticated Connection Establish-
ment (PACE) protocol [9], which is the standard way to es-
tablish a PIN based connection to the nPA. In this context,
the SE in a way takes the role of an nPA terminal.
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4.3.4 Read-out of the RootID Information
After the establishment of the RootID-SE-Channel and

the TIP-SE-Channel, the RootID can be reached by the TIP
going over the SE without data being sent unencrypted or
unauthenticated at any point. The SE acts as a channel end-
point for both channels and tunnels the communication ac-
cordingly. This tunnel is used for establishing another chan-
nel, the RootID-TIP-Channel which allows an end-to-end
encrypted and mutually authenticated communication be-
tween RootID and TIP, i.e., without even the SE being able
to eavesdrop information. Just as for the TIP-SE-Channel,
the available key material in RootID and TIP allow for a
certificate-based channel establishment protocol similar to
TLS or the like. The newly set up RootID-TIP-Channel
then replaces the two channels ending in the SE for all com-
munication between RootID and TIP and is used to read
the user’s identity information stored in the RootID.

4.3.5 ID Generation, Validation and Transmission
As soon as the TIP has successfully read the RootID

identity information, the derived ID generation is started.
Therefore, the TrustID app on the smartphone encapsulates
information regarding the identity requested by the user (via
the UI) into an infoID data structure and sends it to the

SE. The SE stores the infoID object and generates an new
key pair (PKID, SKID) for the new ID. It is important
that the key pair is generated directly on the SE to make
sure that the private key for each ID does not ever leave
the SE. Afterwards, the public key PKID is sent together
with the infoID object encrypted and authenticated through
the previously established TIP-SE-Channel to the TIP. The
channel ensures that the TIP only accepts a public key for
certification which was generated in the particular SE with
which the protocol was previously initiated.

The TIP is now responsible for validating the ID request
based on the information read from the RootID and the
information to be contained in the new derived ID, i.e.,
the infoID object. The actual mechanism for the decision
about granting or refusing an ID request is highly context-
dependent and therefore not specified in the presented pro-
tocol. The TIP could, for example, consult a backend at a
bank before granting a virtual bank card ID to a user.

If the TIP grants the request, it generates a certificate
containing the public key for the newly derived ID as well
as the infoID object. So the ID is always bound to the
specific context it was created for. The certificate is then
sent via the TIP-SE-Channel to the SE where it is stored
together with the ID’s key pair.



4.4 ID Usage
With the asymmetric key pair and the certificate for the

public key including context-specific information (infoID),
the newly derived ID provides everything to be used in di-
verse, and application-specific ways. Basically, there are two
major cases to be differentiated for a terminal using the de-
rived ID: Either only the ID authenticates itself towards the
terminal or the authentication is done mutually. In the first
case, it is sufficient for the terminal to have access to the
certificate chain by which the ID was certified to be able
to validate the ID. In the second case, the terminal infras-
tructure must be included into the PKI (see Figure 3), so
that every terminal gets an own certificate which can be val-
idated by the SE using its pre-installed public root key, e.g.,
PKTIP in our concept.

The IDs stored on the SE must be protected from unau-
thorized usage. Under our general assumption that the
smartphone might be compromised, this protection can be
provided using different PIN-based schemes. Note that it
might also be possible to have no PIN protection for less
security-critical identities and use cases where it is sufficient
to have the smartphone as token without proving any knowl-
edge (e.g., cafeteria micro-payments). We propose two dif-
ferent PIN-based schemes.

4.4.1 Basic Protection Scheme
In the first scheme, the usage of the IDs stored on the

SE is protected by a single PIN, which we call PINUse in
the following. This PIN is distinct from the PINSE used for
the ID derivation. When an ID is to be used by a terminal,
the user approves the usage by entering this PINUse on the
terminal which is assumed to be trustworthy. The PINUse

can then be used as shared secret for a PAKE protocol be-
tween SE and terminal like described previously for the ID
derivation protocol. The untrusted smartphone is not able
to gain knowledge about the PINUse.

4.4.2 Reverse Secure Combined PIN Entry
The first scheme requires the terminal to be fully trusted

because it gains knowledge of the single PINUse necessary
for unlimited use of all IDs stored in the SE. The second
scheme allows to restrict this trust in the terminal by using
a mechanism which we call reverse secure combined PIN
entry. This mechanism is quite similar to the PIN entry
mechanism described in the course of the ID derivation but
reverses it. The steps are the following:

1. The user initiates the usage of an ID, e.g., by choos-
ing the ID and putting the smartphone on a terminal
reader. The terminal and/or the smartphone app send
a usage request for the ID to the SE.

2. The SE generates a random one-time valid PINID, cal-
culates the previously introduced (see Section 4.3.2)
function f−1

PINSE
on this PIN to produce a combined

PINSE+ID and returns it.

3. The combined PIN is presented to the user on the dis-
play of the smartphone. The user is able to reverse the
calculation with the knowledge of the secret PINSE us-
ing fPINSE .

4. The user enters the calculated PINID on the terminal
which is then able to use it in a PAKE protocol to
establish a channel to the specific ID on the SE.

The first approach is quite easily usable requiring the user
only to memorize an additional PINUse but requires the ter-
minal to be more trustworthy than in the second approach.
The second approach provides the improvement that the ter-
minal only gains knowledge of a one-time valid shared secret.
It furthermore restricts the access to only one specific ID.
Nevertheless, the user cannot be sure that the used ID is
the one he expects without any trust in either the terminal
display or the smartphone display. As a partial solution to
this problem, it could be required that both displays have
to show which ID is about to be accessed. Furthermore, it
must be ensured that an attacker might not gain access to
the PINSE+ID displayed on the smartphone and the PINID

entered on the terminal at the same time. This would allow
him to calculate the secret PINSE only known to the user
and the SE. Both attacks require control over the terminal
and the smartphone at the same time, significantly reducing
their potential.

5. IMPLEMENTATION
Our prototype implementation uses the government-issued

German ID card nPA as RootID, an Android smartphone
running the TrustID App and a JavaCard-based SE in a
microSD form factor in the corresponding slot of the smart-
phone. Due to the architecture necessary for the usage of
the data stored in the nPA via the eID protocol [9], the TIP
in the implementation consists of two distinct entities: The
eID-Server and the actual TIP. In the following we discuss
important aspects of the implementation regarding the dif-
ferent involved entities.

5.1 Trusted Identity Provider
As mentioned before, the TIP from the concept is divided

in two distinct entities in the implementation. There is the
actual TIP which is under our control and there is the eID-
Server which is responsible for reading-out the nPA on behalf
of our TIP. All communication is conducted via HTTP(s)
requests/responses, which the app on the smartphone trans-
lates into APDUs to be sent to the SE or RootID and vice
versa. The TLS protection on this layer is optional as the
security of the communication is enforced by the TrustID
protocol on top of it.

5.2 Applet on the SE
The applet in the prototype is running on a G&D Mobile

Security Card SE 1.0. This SE provides the JavaCard API in
version 2.2.1 and the applet is therefore programmed against
this API version.

Main task of the applet is to store IDs and to provide func-
tions to derive, manage and use them. An ID in the applet
basically consists of an asymmetric RSA key pair (currently
2048 bit) and a certificate (X.509) issued by the TIP for the
public key, which additionally contains information about
the ID (infoID) as X.509 extensions.

As a basic restriction of the current version of the pro-
totype, the RootID-SE-Channel does not terminate in the
JavaCard applet but directly in the TrustID Android app.
This is mainly due to the fact that the JavaCard API of
currently available microSD card SEs does not support the
specific Elliptic Curve Cryptography (ECC) operations nec-
essary for the PACE protocol channel establishment, which
is the PAKE protocol to access the nPA. With an SE avail-
able supporting the required functionality, it would be nec-



essary to port the related parts of the Android app into the
SE applet to provide a complete implementation of the con-
cept. Since the other parts of the prototype can be reused,
this should only involve a moderate effort.

5.3 Android App
In the center of the implementation is the TrustID An-

droid app. In the current prototype, the app is running on
a Samsung Galaxy SIII (i9300) device with Cyanogenmod.
The app provides a Graphical User Interface (GUI) which
shows a list of IDs stored on the SE. The GUI allows to
delete and activate the present IDs and to derive new ones.
The usage of IDs is realized via the Card Emulation feature
provided by the Cyanogenmod 10 release for the Galaxy
SIII. This feature allows the smartphone to act as a con-
tactless, i.e., NFC enabled, smart card while forwarding all
incoming communication to software and vice versa. The
TrustID app forwards this communication to the SE. This
means that using one of the IDs stored on the SE is as easy
as activating it and placing the smartphone on a reader.

The establishment of the secure channel between eID-
Server and nPA is realized in the app using the open source
library eIDClientCore [2].

Because of incompatibilities between the NFC hardware
of the nPA and the Galaxy SIII, the prototype uses a so
called relay host to enable their connection. An off-the-shelf
smart card reader is connected to this relay host which reads
the nPA and relays communication to the smartphone via
wireless LAN.

The app listens for events indicating an NFC reader in
reach and as soon as such an event is triggered provides a
card emulation relay from this reader to the SE inside the
smartphone. Therefore, it is only necessary to implement
the ID usage functionality in the SE applet from where it
can be directly used by a terminal reading the smartphone
via card emulation.

6. SECURITY EVALUATION
In the following, we analyze the different channels and

entities in the architecture for ID derivation (see Figure 2)
regarding potential attacks and how the protocol prevents
them. Security aspects for each entity are examined in the
following based on our attacker model (see Section 2):

Trusted Identity Provider. This entity is assumed to be
trusted and uncompromised and attacks against the
backend are out of scope of the evaluation.

Secure Element and RootID. These entities are assumed
to be trusted and unmodified. This is reasonable since
they are distinct pieces of hardware hardened against
software as well as physical attacks. Furthermore, both
are protected by a PIN including a try counter.

TrustID App. This part of the system is assumed to be
untrusted, i.e., may be maliciously modified. This
must especially be considered in the evaluation with
regards to user input/output.

We differentiate conceptually direct connection channels,
i.e., the SE-Channel, the TIP-Channel and the RootID-
Channel (solid lines in Figure 2), and the indirect connection
channels, i.e., the TIP-SE-Channel, the RootID-SE-Channel

AttackerApp 1 User's 
Secure 
Element

User's Smartphone

RootID

Trusted 
Identity 
Provider

Internet

Malicious

Unmodified

AttackerApp 2
Attacker's 

Secure 
Element

PINSE+RootID
Entry

TIP-SE-Channel

Relay

Arbitrary Attacker's Device

RootID-SE-Channel fails!

Figure 5: Relay attack and its prevention

and the RootID-TIP-Channel (dashed lines). Their security
is evaluated in the following:

Direct Channels. All direct channels are unprotected, i.e.,
provide neither authentication nor encryption or in-
tegrity protection. They can more or less be thought
of as physical connections and attacks are prevented
by the secure channels on top of them.

TIP-SE-Channel. This channel is established using the
static key material in a TLS-similar protocol. It is
therefore protected against eavesdropping, manipula-
tion and replay attacks. Since it is a remote channel via
the Internet, the channel is implicitly relayed without
introducing a security problem. With the authentica-
tion of the SE, the TIP can be sure that the channel
ends in a certified SE but at this point there is no asso-
ciation to a specific user. This leads to the relay attack
depicted in Figure 5. There, the attacker modifies the
app on the user’s smartphone to relay the communi-
cation remotely to an attacker’s device also containing
a certified SE. The goal of the attack is to have the
user authenticate an ID derivation (with RootID and
secret PINs) but storing the new ID in the attacker’s
SE. Since the TIP-SE-Channel is only guaranteed to
be established with any certified SE, the attacker is
able to set it up to his own SE. Still, the attack is pre-
vented with the RootID-SE-Channel and the secure
combined PIN entry as described in the following.

RootID-SE-Channel. The secure combined PIN entry
mechanism (see Section 4.3.2) is used to establish the
RootID-SE-Channel. This mechanism makes sure that
the shared secret in form of the PINRootID can only
be gained by the SE for which the user calculated
the combined PINSE+RootID. This effectively binds a
specific SE and RootID as intended by the user to
each other for one protocol run. Since the attacker’s
SE, despite its knowledge of PINSE+RootID, is not able



to calculate the shared secret, it cannot establish the
RootID-SE-Channel. In other words, the RootID will
not accept any connection attempt from the attacker’s
SE, effectively preventing the relay attack in Figure 5.
By entering the combined PIN, the user furthermore
guarantees the physical proximity of the three entities
smartphone, SE and RootID, preventing also other re-
lay attacks between these. Eavesdropping, replay and
manipulation are prevented by using a secure PAKE
protocol to establish the channel.

RootID-TIP-Channel. This channel is set up through the
other secure channels using a TLS-similar, mutually
authenticated certificate-based protocol. By establish-
ing the channel through the RootID-SE-Channel and
TIP-SE-Channel the different protocol steps are bound
together, effectively preventing interleaving attacks.

The attacker might be able to modify the ID request gener-
ated by the user which would result in a different derived ID
than intended by the user. Even if the attack is not detected
by the TIP when validating the request against the RootID
information, the wrongly derived ID would still not be un-
der control of the attacker and safely stored in the user’s SE.
The attacker might be able to continously generate valid IDs
on a compromised device containing a valid SE as soon as
he gains knowledge of the PINSE+RootID. However, this at-
tack is only possible as long as the RootID is in reach and,
again, can be considered uncritical as the attacker does not
gain control over the derived IDs. The attacker might also
manipulate the displaying of IDs present on the SE, which
we regard to be uncritical with the same argument as for
the previous attacks. The same holds for all kinds of ma-
nipulations of communication data going through the app,
including the PINSE+RootID.

7. CONCLUSION
In this paper, we introduced the TrustID architecture and

protocol. Our approach allows for secure storage, derivation
and usage of multiple context-specific identities on a possi-
bly insecure or even malicious mobile device utilizing a SE
as credential store. In the core of our concept, we introduced
the secure combined PIN entry mechanism for user authen-
tication, which does not rely on a trustworthy smartphone
operating system or a TEE. Instead, the PIN to be entered is
calculated by the user using a simple, invertible function on
the secret PINs of his SE and RootID. Only the intended SE
is then able to calculate the secret PIN necessary to estab-
lish a channel to the user’s RootID and to proceed with the
ID derivation. We also introduced a reverse secure combined
PIN entry which can be used to provide access protection for
the newly derived IDs even on a compromised smartphone.

We implemented a prototype running on a Samsung Galaxy
SIII utilizing a microSD card SE. Identities can be derived
from the German identity card nPA involving a Trusted
Identity Provider connected through the Internet.

All in all, our approach provides a higher level of security
than any pure software solution running on the application
processor of a mobile device including TEE-based solutions
are able to.
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