Pyrolysis – as an innovative Technology to increase Metal-Recycling from WEEE

16th International Electronics Recycling Congress – IERC 2017 January 18th 2017, Salzburg

M.Sc. Peter Hense M. Eng. Jonathan Aigner Dipl.-Ing. Katharina Reh Dr.-Ing. Matthias Franke Prof. Dr. Andreas Hornung

Thermochemical Treatment – Feedstocks

Critical Metals and Residual Fractions in the Focus

Selected Components with Critical Metals

- Printed Wiring Boards
 - Ta, Nd, Ag

Ga

In, Sn

- **Glass Fiber Cables**
 - Ge

Recovery of Critical Metals from WEEE gagendta⁺

Thermochemical Treatment – Feedstocks Critical Metals and Residual Fractions in the Focus

Selected Components with Critical Metals

- Printed Wiring Boards
 - Ta, Nd, Ag

Ga

- LC-Displays
 - In, Sn
- Glass Fiber Cables
 - Ge

Residual Fractions from WEEE Treatment

Shredder-Residues

Plastics with Flame Retardants

Dust

Treatment of WEEE

Manual & Mechanical Treatment

Potential in Germany

References: 1scheideanstalt.de; 2Buchert et al. 2012; 3Hagelüken et al. 2005; 4Monolithos 2015

Status Quo of Treatment

- ✓ Recycling of up to 17 Metals
- ✓ Recycling Rates >95 %
- No Recycling of Al and many critical Metals (Ge, Ta, REE, ...)
- Limited Input Amounts¹ (<10 % of EU Amounts)^{2,3,4,5}

- ✓ "Production" of Power & Heat
- ✓ Recovery of Fe, Al, Cu (>2 mm)
- No Recovery of Metals <2 mm (87 %)</p>
- Oxidation of Metals
- ★ High Costs (>100 €/t)

References: ¹Brusselaers et al. 2006; ²Eurostat 2016; ³Kawohl 2011; ⁴Boliden 2016; ⁵Katz 2013

Enabling Metal Recycling – Challenges

Challenges

- > Accumulation of Metals
- > Reduction of Heating Value
- > Transportable Products

Enabling Metal Recycling by Pyrolysis Treatment

Thermo-chemical Process

- > Accumulation of Metals in a solid Product
- Decomposition of Plastics
- Formation of high-heating by-products
- > Flexible Scalability
- Profitable and innovative Solution

Recycling @ Fraunhofer UMSICHT

Thermo-chemical Process

Pyrolysis Oil & Gas

Application Scenario I: Recovery of Metals

Application Scenario II: Recovery of Metals & Energy

*including PP and Auxiliary Energy (1,001 kWh Natural Gas + 5.6 kg Heating Oil)

Application Scenario: Product Quality

Solid Product	Oil			Gas	
Cl: 0.81 wt%	H _o : 37.7	MJ/kg	H _o :	28.5	MJ/kg
Br: 0.46 wt%	H ₂ O: 1.2	wt%	H _o :	35.7	MJ/m ³
∑ PCDD/Fs < GGVSEB*	ρ: 0.948	g/cm³	ρ:	1.27	kg/m³
∑ PBDD/Fs < GGVSEB*	v: 1.159	mm²/s			

^{*} GGVSEB: German Dangerous Goods Regulation for domestic and transboundary Transports

Picture Source Gas: PSC Wisconsin

Application Scenario: Product Quality

Application Scenario: Economical Evaluation

Application Scenario I: Economical Evaluation

Business Case: Scenario I with 70 kg/h - 385 t/a

-5.9 t€/a

-5.3 t€/a

Application Scenario I: Economical Evaluation

Key assumptions:

Power

Nitrogen

10 years duration
Tax Rate 29.8 %
Power (purchasing) 130.8 €/MWh

OPEX	-66 t€/a
Labor	-44 t € /a
Maintenance	-13 t € /a
Transports	-6.0 t€/a
Insurance	-3.6 t € /a

Depreciations -36 t€/a

EBITDA 126 t€/a
EBIT 90 t€/a
Net Profit 63 t€/a
IRR 24.4 %
Pay-Off 3.6 years

222 t€/a

224 t€/a

-1.9 t€/a

Application Scenario I.I: Economical Evaluation

Key assumptions:

10 years duration
Tax Rate 29.8 %
Power (purchasing) 130.8 €/MWh

Heat (Sell) 31.6 €/MWh Imputed Earnings from Shredder Residues (110 €/t)

OPEX	-66 t€/a
Labor	-44 t € /a
Maintenance	-13 t € /a
Transports	-6.0 t€/a
Insurance	-3.6 t € /a

Depreciations -36 t€/a

EBITDA 155 t€/a
EBIT 119 t€/a
Net Profit 83 t€/a
IRR 43.6 %
Pay-Off 2.2 years

Conclusions

Thermo-chemical Treatment of Shredder Residues

- Profitable, innovative and patented Process
- Added Value due to Metal Recycling from Shredder Residues
- Recovery of Energy Production of Power & Heat
- Individual Integration in existing Processes
- Flexible Scalability for a decentralized treatment
- Available on the Market from May 2017

Thank you very much for your kind attention!

You are welcome to visit us at our exhibition booth!

Contact:

M.Sc. Peter Hense Fraunhofer UMSICHT, Institute Branch Sulzbach-Rosenberg

Phone: +49 9661-908 435

E-Mail: peter.hense@umsicht.fraunhofer.de Internet: www.umsicht-suro.fraunhofer.de

