
Abstract
Car infotainment systems feature an increasing number of functions
to keep pace with consumer needs. The GENIVI Alliance aims to
facilitate this evolution of infotainment systems by developing a
common baseline where services of different suppliers can easily be
integrated on a single hardware platform. Since the huge number of
services creates more dependencies and interactions, more effort is
required to ensure the same level of quality. We present a novel
approach and effective tooling to reduce the effort for the interface
verification of in-vehicle software components. Our models create
different views of the system. Consistency checks and automated
transformations between the views reduce the modeling effort and
ensure compatible interactions of distributed software components.
Layered reference models separate the description of the structure
and the behavior of the services' communication. This simplifies the
behavior descriptions and facilitates the usage of different
communication technologies, e.g., D-Bus or CAN. Since the
reference models are executable specifications, they can be used to
verify the communication of the modeled services. This can be tested
live or from a trace. In case of required changes to an interface,
regression testing can be performed automatically using only the
model. We evaluate the benefits and implications of our approach and
tool with a case study of an in-vehicle audio function.

Introduction
In-car infotainment systems are a good example for the increasing
complexity of software features in networked embedded systems.
Generally, common basic architectures are utilized to enable faster
development cycles, reuse, and shared development of non-
differentiating functionality. For infotainment systems the GENIVI
Alliance [15] defines an interoperable infotainment standard which
enables the integration of software components from multiple

vendors into one platform. Such integration requires that the
interoperability and interactions of these components are guaranteed.
For this, the definitions of the interfaces and interactions are a main
concern. However, today specifications only consider static
definitions of the interfaces. The behavior - which often is the most
critical part for the integration - is only described in natural language,
if it is explicitly defined at all. This hinders the integration of
black-box components from different vendors as their interworking
and interaction behavior cannot be ensured. Therefore, also the
dynamic part of the software components must be specified and
verified during the different development stages.

With this paper we present a methodology, specification and tool
which automatically verify multi-vendor software components
throughout the phases of the development process. Presently, the
application is designed for in-vehicle infotainment systems. However,
its concepts and methodology can also be adapted to other domains
with integrated software architectures, such as AUTOSAR. Our
approach provides:

• Methodology for the specification of interface and behavior
definitions

• Consistent views on the system for specific concerns
• Automatically derived regression tests
• Verification of implementations utilizing executable specifications

We use the audio functions of an in-vehicle infotainment system to
demonstrate the viability of our approach. We can show that its
complex interactions can be specified consistently utilizing different
views of the system. Furthermore, this executable specification can
be used for the verification of audio function implementations. By
following our approach, the development of such interconnected
embedded software systems can be improved considerably.

Reducing the Verification Effort for Interfaces of Automotive
Infotainment Software

2015-01-0166

Published 04/14/2015

Christian Drabek, Annette Paulic, and Gereon Weiss
Fraunhofer ESK

CITATION: Drabek, C., Paulic, A., and Weiss, G., "Reducing the Verification Effort for Interfaces of Automotive Infotainment
Software," SAE Technical Paper 2015-01-0166, 2015, doi:10.4271/2015-01-0166.

Copyright © 2015 SAE International

© S
AE In

ter
na

tio
na

l

Copyright 2015 © SAE International. This paper is posted on this website for your personal use only. It
may not be shared, duplicated, or transmitted in any manner, or stored on any additional repositories or
retrieval system. Further use or distribution is not permitted without permission from SAE

jsheldon
Highlight

The remaining paper is structured as follows. In the next section, we
discuss related work to our approach. Afterwards we present the
methodology and concepts for the specification and modeling of
software components. Then we introduce the verification which
builds upon the presented concepts and executable specifications.
Finally we discuss the benefits and limitations of our approach and
conclude the paper.

Related Work
Model-based development is widely applied in the automotive
domain. For instance, MATLAB/Simulink is utilized for modeling
and testing continuous systems or software functions. However, in
interactive systems of the automotive infotainment domain, event-
driven and state-based characteristics are predominant. In the context
of infotainment systems, nowadays models are commonly created on
the basis of UML (Unified Modeling Language). State-of-the-art
CASE tools (e.g., Enterprise Architect [16] or Rational Rhapsody
[17]) enable the creation of models for specification and code-
generation. The generated code usually includes target code and test
cases. Additional frameworks provide interfaces to certain physical
busses, for example, MODENA [18] for the MOST (Media Oriented
Systems Transport) [19] bus. Recently the automotive industry also
utilizes Eclipse [20] based open source tools such as ARTOP [21] or
EATOP [22]. However, there is no framework available today for
novel communication mechanisms in upcoming multi-vendor
platforms, e.g., for D-Bus [23] used by GENIVI [15]. We present an
approach which is close to traditional modeling approaches for
infotainment systems but can be easily adapted to new highly
integrated platforms and diverse communication mechanisms.

Different suppliers implement infotainment components based on a
specification given by the car manufacturer or integrator. The
manufacturer commonly provides these specifications in natural
language which may additionally be enriched with software models.
In today's automotive software engineering, the specification models
are often used as a visual representation of specific aspects only. We
aim at maximizing the automation of verification processes by using
these specification models. Current verification methods for
automotive systems rely on sequence-based tests [1]. Considering all
the possible interactions, it is hard work to manually create test cases
required for sufficient test coverage. Therefore, a common approach
is to design distinct test models, which are used for automated
generation of test cases (e.g., [2]). In contrast, we reuse the
specification models for generating test cases.

Testing usually involves some kind of oracle [3,4] to determine the
expected outcome of test cases. If the outcome is predicted manually,
the task of creating the oracle becomes extensive with a large number
of tests. An automated test oracle can be provided by executing
specification models. This provides the possibility to simulate and
visually observe the reactions of the model to a given sequence of
events and helps to validate the specified mechanisms. The execution
of models is a well explored field of science and various tools provide
readily available execution environments [5,6,7,8]. With the help of
model execution, we use the specification for monitoring executed
implementations in order to find deviations. Such a monitor is “a

system that observes and analyses the behavior of another system”
[4]. Passive testing of the model with a monitor can be seen as a form
of runtime verification [9]. Runtime verification checks if a certain
run of a system under test (SUT) satisfies or violates a correctness
property. It is focused on the detection of deviations and well suited
for black box systems, as no details about the inner states of the
system under test are needed. Other verification methods like model
checking require more details than a black box system can provide,
have the problem of state explosion, or do not capture potential
differences in the behavior of the model and its implementation [9].
The core of a monitor is an analyzer which is created from the
requirements [10]. Different languages can be used to specify an
analyzer [10]. For example, Leucker et. al. [9] use linear temporal
logic as a high-level language and generate finite state machines as
analyzers. Our approach already uses state machines for specification
and reuses them as analyzers in our monitor. In this case the
specification model is seen as correct reference implementation. The
communication of infotainment components is well observable from
outside the system; therefore, we keep the verification separate from
the target system.

Methodology & Design
In this section the developed modeling methodology is described. It
is the basis for our verification approach. The most defining
challenges for the verification of infotainment interfaces with respect
to their communication are (cf. [11]):

1. Abstraction: The interface behavior description abstracts from
technical details, but is connected to the middleware interface
description.

2. Parallel interactions: Independent and dependent
communication sequences can be described as needed.

3. Synchronization (Initialization): The verification
mechanism must be able to identify and assume the current
communication state.

4. Timeouts: Timing requirements are captured in the model and
checked during verification.

5. Error detection: Abnormal operations must be reliably detected
and identified.

6. Executable interface specification: Only a specification that can
be processed by a machine can be used for automated verification.

In this paper we show how these challenges can be solved with
minimal additional effort for the specification modeler compared to
creating a specification model without any verification support.

Different views are introduced in order to simplify the modeling
process. For reducing the modeling effort a UML profile has been
created. Additionally, the developed models can be reused by means
of model-to-model-transformations. We use open, standardized tools
and methods to increase the acceptance and facilitate the use of the
presented solution.

Figure 1 depicts an overview of the developed verification
framework. The system under test is connected to the verification
framework through a communication bus. The behavioral model

© S
AE In

ter
na

tio
na

l

describes the expected communication behavior of the SUT. The
messages sent to and from the SUT are transferred via the bus and are
the input for the behavioral model. The bus messages with their
according interfaces are defined by attributes, broadcasts and methods
in the Franca IDL (Interface Definition Language) [24]. Franca is
used as IDL by the GENIVI consortium. The IDL allows the
definition of objects and their methods independent of a programming
language. From the defined interfaces, the code to access remote
objects can be generated. Before the messages can be processed by
the behavioral model they are mapped to events. These events are
described in a DSL (Domain Specific Language), in which every
event directly references a Franca element. The once defined events
are used as triggers of the behavioral model. The behavioral model
receives all messages of the SUT as events. If an incoming event
cannot be processed by the model, a failure is detected and logged. In
this way, the communication behavior of the SUT is verified solely
by its bus communication. Therefore, our approach is well suited for
black box testing. Another possibility is to verify a trace recorded
from the SUT. In this case, the messages contained in this trace are
the input for the behavioral model. Besides traces also test cases can
be an input for the verification and used for regression testing.

Figure 1. Overview of the verification framework

Description of Interface Behavior
In our approach the communication behavior of components is
modeled using different views. As the interface behavior of
components has to be verified it is not necessary to consider the
internal behavior of components, but only the communication behavior
of the components' interfaces. This behavior is defined in the form of
messages which are sent to and from the respective component.

Because it is a widely accepted standard for modeling, UML is
applied to model the communication behavior. Especially, UML state
machines have been selected in this case, because they allow defining
different states during the communication of a component.
Transitions between these states describe how the communication

state is changed. Every transition of a state machine is triggered by a
specific event (e.g., a message is sent from one component to another
component). The trigger decides which transition is taken. A
transition can also contain an optional action, which specifies the
response message of the component to the incoming message.

For modeling, we use the LUNA version of the UML tool Papyrus
[25], which is integrated in Eclipse [20]. Papyrus adheres closely to
the UML specification of the OMG (Object Management Group)
[26], and supports the creation and use of UML profiles.

In order to limit the number of elements provided by the general
purpose language UML, we have defined a UML profile. This profile
only contains the minimum elements required for the models. This
reduces the effort for modeling and keeps the models simple and
maintainable. The selected subset of modeling elements does not
limit the types of systems which can be modeled. If necessary, the
behavior of excluded elements can be recreated by combination of
the remaining elements. The following elements are used for
modeling state machines:

• State: A rectangle that describes the state of a communication
• Initial State: A circle that indicates the starting point in a

state machine
• Transition: An arrow that shows the connection between states
• Region: Every state can have one or more (parallel) areas which

in turn contain further sub states
• Join: A bar that combines paths going out of parallel regions
• Comment: A text field which may include a comment

Additionally, with our profile, timing information can be added to
states. Thereby, modelers can define for how many milliseconds at
most a state can be active before the next incoming message is
expected. The timeout can also be used to trigger a transition. This
can be used to define a minimum time interval in which a state is
active and no message is expected to be received.

A Matter of Perspective
A communication between components can be observed from
different perspectives. Thus, it is helpful for the modeler to create
several models with different views of the same communication. For
instance, this may include the view on one service with its reactions
to received messages or a different view considering the observation
of messages between two services.

From the viewpoint of a certain component, the communication
behavior describes which messages are sent to the individual
component, and which messages are transmitted in response.
Therefore, in this view the trigger (the incoming message) and the
action (the outgoing message) of a transition are modeled. This view
is called the ComponentView. The modeler uses this view to design
the communication behavior of a single component.

From the viewpoint of the communication between components, the
communication behavior describes which messages are exchanged
between the components. For instance, in this case it is not important
which message is seen as request or as reply. These models only

© S
AE In

ter
na

tio
na

l

include triggers without actions. This view is called the
CommunicationView. The modeler uses this view to design the
communication flow between interacting components.

The views describe different concerns and details. In case of the
ComponentView, the model contains more detailed information about
the complete communication behavior of the regarded component.
Whereas in the CommunicationView, the main focus is the interaction
between two specific components. The communication behavior of
these components with any other component is not the concern in this
view, and thus, not part of the model.

For all views the same editor is provided. The only difference is in
the UML elements which are available for modeling.

SystemStructure
The SystemStructure models the composition of the system. This
contains all components which are involved in the system and the
communication relationships between these components. The
communication relationships describe which components interact
with each other. The SystemStructure is the basis for all other models.
For every component in the SystemStructure a ComponentView
model can be created. Every communication relationship in the
SystemStructure can be defined using a CommunicationView model.

The model in Figure 2 shows an example of a SystemStructure. In
this case study, there are three components: the AuxiliaryInput
(AuxIn), the AudioManagement (AudioMgmt), and the
ConnectionManagement (ConnMgmt). The communication
relationships (annotated with the stereotype ≪Communication≫)
indicate, that AuxIn exchanges messages with AudioMgmt and
ConnMgmt. AuxIn provides the interface PlayerControl, which is
accessed by AudioMgmt and ConnMgmt.

For clarity reasons, the example models presented in this paper only
show a small excerpt of the actual case study. The models used for
testing the presented approach are considerably bigger and contain
about 50 states and 60 transitions each.

Figure 2. Example of a SystemStructure model

ComponentView
As mentioned before, the ComponentView models the
communication behavior from the perspective of a single component.
The transitions in this model view contain triggers and actions. The
triggers are the messages sent to the component, and the actions
denote the reply from the component to incoming messages.

In Figure 5 (see Appendix) the ComponentView model of the
component AuxiliaryInput is depicted. After the system has started,
the ConnMgmt sends a request to the AuxIn in order to allocate the
source (allocate_StartResult). If the allocation worked fine, the AuxIn
sends back a response (allocate_Result). After the allocation is
finished the source has to be activated by exchanging the messages
sourceActivity_StartResult_On and sourceActivity_Result_On
between ConnMgmt and AuxIn. Now, the AuxIn is activated and
playing music. The AudioMgmt utilizes the interface of the AuxIn to
pause or stop the music by sending deckStatus_Set_Pause or
deckStatus_Set_Stop. The AuxIn receives the message and replies
with its present status.

This view is also used for the simulation of a component. The
incoming messages are processed in the model, and the messages
defined in the actions of the transitions are sent as a response. If a
component is not implemented yet, a simulation of the component
can be used for the verification of another component in a so-called
restbus simulation. Thereby an early verification of the components is
already possible, even though not all implementations of its
communication partners are available.

CommunicationView
The CommunicationView describes the communication behavior
from the perspective of a communication relationship between two
components. All messages sent from one of the two modeled
components to the other are modeled as triggers.

Figure 6 (see Appendix) shows the CommunicationView model of
the communication between the components AuxiliaryInput and
AudioManagement. For instance, the allocation and activation of the
AuxIn is not part of this model, because it only describes the
communication between AuxIn and AudioMgmt. The
CommuncationView model has more states and transitions than the
ComponentView model. The reason is that the actions of the
transitions in the ComponentView model are triggers of additional
transitions in the CommunicationView model.

As there are no actions in this model view, it cannot be used for
simulation. However, it can be used for verification, since therefore only
a monitor is required. All messages sent between the two components
can be processed by the triggers of the model. If an incoming message
cannot be processed by the model, an error is detected.

Transformations & Checks
In order to further minimize the effort for modeling, also model-
to-model transformations are provided. With these transformations
a model view can be transformed to another view automatically. In
a ComponentView model the regarded component receives

© S
AE In

ter
na

tio
na

l

messages from several other components and responds to them.
For every communication relationship between the considered
component and another component contained in the
ComponentView model, a separate CommunicationView model
can be generated automatically. Additionally, for each component
contained in a CommunicationView model, a separate
ComponentView model can be generated. This reuse of existing
models simplifies the modeling process and reduces the effort for
the modeler. The automatic transformation moreover ensures the
compatibility between the different model views.

In addition, several modeling constraints have been implemented and
the compliance with these constraints is checked continuously during
modeling. This is necessary in order to enable an automatic
transformation between the model views. An example for such a
modeling constraint is that every CommunicationView model has to
be assigned to a communication relationship in the SystemStructure.
The constraints are implemented using Eclipse's model validation
framework. The framework allows including additional constraints
and checks with little overhead. For example, if lockable resources
are managed using the monitored communication, checks for known
deadlock conditions could be created.

We also applied further consistency checks for the created models.
For example, the modeler can analyze several CommunicationView
models to check their consistency and detect contradictory
communication sequences. The result of the analysis is displayed
using a Labeled Transition System (LTS), and the contradictory parts
of the CommunicationView models are marked. This enables the
modeler to find inconsistencies between different models
immediately, which is nearly impossible to do manually without tool
support [12].

Input Classification
The interface behavior description should not contain technical
details that are only relevant for a certain middleware or a specific
bus technology. This allows the modeler to focus on the description
of the actual behavior. He can create the behavior specification
independently from the used middleware or bus. The specification
can be created before the decision for a certain communication media
is made and also be reused if the media is changed. This challenge
can be resolved with an additional layer of abstraction.

Franca IDL is used to define software interfaces [24]. In a Franca file
the interface of a component is defined. It contains all attributes and
methods the interface provides, along with their parameters. It is a
description of all the available messages.

The events that are used as triggers and actions in the
ComponentView and CommunicationView models are defined in a
separate file for each component interface. The events are
equivalence classes for the messages. All messages that are mapped
to the same equivalence class will have the same impact on the
interface behavior. Equivalence classes have already been
successfully used to reduce the complexity of learning state machines
[13]. We see the same potential for the manual creation. For an event,

different child events can be created. In a child event, parameter
values or ranges of values can be set. For example, the events
sourceActivity_StartResult_On and sourceActivity_StartResult_Off
are child events of the base event sourceActivity_StartResult. In the
first child event, the parameter sourceActivity is set to the value
“On”; in the second event, it is set to “Off”. The advantage of
defining these child events in a separate file is that the values of the
parameters do not have to be specified in the models. Furthermore,
the defined child events can be used in several models, but are only
defined once. This also facilitates the consistency checks between the
different views, as the events are easier to match than regions in the
parameter space.

In order to formally describe the child messages we defined an
event definition DSL. An example of the specification of the child
messages sourceActivity_StartResult_On and sourceActivity_
StartResult_Off using the DSL is depicted in Figure 3. The given
constraint makes sure that the child message is only triggered if the
constraint is fulfilled. The methodRef relates to an element defined
in a Franca file.

Figure 3. Example of message definition

Verification using Executable Specification
In this paper, we want to show how we can reduce the effort for the
verification of automotive infotainment software interfaces. The
previous sections focused on how the specification can be created
with a minimum effort. In this chapter we will show how this
specification is used for verification. No further effort by the modeler
is required. Our main goal is to compare a run of a system to its
specification and find deviations in the communication. Nevertheless,
we will also show how our approach can be used to reduce the effort
for test case driven testing and regression testing.

The specification provides all information needed to verify the
communication of its implementations [11]. Obviously, if the
specification was used as implementation it would behave as
specified. However, usually there are several steps involved to get
from a specification to an implementation. Each step can introduce
unwanted deviations. The specification only contains details about the
communication, not about internal details, e.g., how certain values
are to be retrieved or calculated. So even with code-generation
methods in place, some gaps still have to be filled by other means and
deviations can occur. However, the specification tells exactly when
and what information is expected to be exchanged between the
components. For verification we execute the specification in a passive

© S
AE In

ter
na

tio
na

l

mode. The executed specification will not generate its own output,
but it can monitor the output of an implementation. If the observed
output is not expected from the specification, a deviation has been
found. With this monitor we can detect the following failures:

• missing messages
• additional messages
• malformed messages
• timing violations

Monitor Maxims
A monitor should adhere to the two maxims impartiality and
anticipation to be neither premature nor overcautious during runtime
verification [9]. Impartiality requires the monitor to only evaluate to
true or false if further events cannot change this result anymore and
needs at least three different truth values: true, false and inconclusive.
In normal operation our verification mechanism reports deviations
from the specification when they are observed. A deviation is an
event that was not specified, i.e., the observed event was not expected
and no further events can change this observation. As deviating
events may occur even with the last message of the system, true can
only be reported if no error has been found when the verification
ends. Anticipation requires the monitor to report true or false as soon
as no further events can change this result. When observing
deviations from the specification this coincides with the moment the
deviation can be observed. Deviations can only be observed if the
communication that just happened was not specified, i.e., the
observed event, including timeout events, was not expected.
Predicting the deviation before it is observed would require
knowledge of an internal error of one of the components in the
system which is not available as verification aims to find them.

Monitors that follow these two maxims work on a prefix of an
execution [9], i.e., from the start of a component or system up to now.
If a failure is detected, the monitor reports this failure. Monitors
should follow an additional maxim to be usable efficiently:
resumption. Resumption requires that the monitor can ignore failures
in a trace that appeared before any given event and starts to reliably
report new failures as soon as possible. This is needed to resume the
operation of the monitor after a failure was detected. Resumption is
especially useful in offline monitoring and batch processing of traces.
For example traces of a car recorded during an extended period of
use. When analyzing this trace, you want to find all the deviations
from the specification, not just the first. This maxim of resumption
coincides with the challenge of synchronization. A monitor able to
synchronize to the state of a system is always resumable. After a
failure it can be restarted and will assume the state of the system and
resume operation. A monitor that adheres to resumption can be
synchronized by declaring the prefix before the first message as faulty
- it is missing.

Implementation Overview
A monitor is composed of an observer and an analyzer [10]. The
observer detects events and the analyzer checks them. In our
implementation the observer reads messages from a bus trace and maps
them to a queue of events. For example, we use the available D-Bus
bindings for Java [23] to receive messages from the D-Bus of the tested
system. The mapping is specified with the interface and event definition

languages. It is generated automatically and filters the reported events
to the currently verified set. The mapping also observes the analyzer to
detect if a state remained active for a longer period than specified in the
state's max-property. It will then generate a timeout event. The timeout
event is treated like any event for a communication message. The
behavioral model is used as the analyzer. If no transition that is
reachable from an active state has a trigger for an observed event, a
deviation has been found and is reported. For initialization and after a
failure, the monitor can resume operation with the help of a
synchronization module. The synchronization module uses the events
from the observer to identify the current state of communication and
changes the analyzer accordingly.

The analyzer of our monitor needs means to execute the specification
given as UML state machines to use it as a reference. UML itself
provides no execution semantics. The Semantics of a Foundational
Subset for Executable UML Models (FUML) is an addition to UML
that gives execution semantics to certain diagrams, but not for state
machines. Therefore, we use State Chart XML (SCXML), which
provides well-defined semantics for executable state machines.
SCXML is not based on UML state machines, but it is sufficiently
similar to be used as execution semantics for the selected subset of
elements [11]. The executed specification is fed with the events from
the mapping. For each of the events it can decide if the event is
acceptable and also change its active state to be prepared for the next
event. If the event cannot be accepted, the analyzer reports the failure
and utilizes the synchronization module to restore an active state
concise with the current communication state.

The synchronization modules are generic algorithms that infer the current
state of the communication. The algorithm can be exchanged, because
each has its strengths and weaknesses. An example for a synchronization
algorithm is waiting for a unique event, i.e., an event that is only used in
one transition. A detailed examination of the algorithms has not been
completed yet and is beyond the scope of this paper.

The monitor mechanism is integrated into the Eclipse [20] debugging
framework. An Eclipse Debug configuration is used to specify the
state machine used for verification, the source of events, the
synchronization module, and the filter for relevant events. We are
using the specification model as a passive monitor and no actions
may be used in the state machine. Therefore, only the
CommunicationView can be used, but a ComponentView may always
be transformed into a CommunicationView. The source of events can
be a file with a trace, a stream of preprocessed messages or directly
the D-Bus of the target system. New communication media are
supported by implementing a connector module that reads from the
media and converts the messages into API calls.

When the configuration is done, the verification may be started.
Eclipse will then switch to the debug perspective that should be
familiar to anyone who already used Eclipse for debugging. But
instead of running code, the state machine is executed and animated.
Animation means that the active states and the transitions used to
enter them are highlighted. If the execution of the analyzer is paused,
the stack trace shows the history of states passed. The analyzer can
pause on found failures, breakpoints or the press of the pause button.
While the analyzer is paused, the observer continues to record events.
An event queue is used to decouple observer and analyzer. The queue
is especially necessary for processing live traces as it is not always

© S
AE In

ter
na

tio
na

l

desirable to halt the implementation system while investigating a
suspicious sequence of events. The queue also enables to slow down
the animation, so that events received in quick succession are still
visually observable. Found failures are marked in the state machine
and are listed in the problem view of Eclipse.

Test Cases and Regression Tests
The reuse of the specification is not limited to runtime verification.
Our specification model can also be used to generate a test suite. The
generation has three phases:

1. Elimination of parallel regions
2. Elimination of hierarchical states
3. Selection of test cases

The first two phases facilitate the third phase because many selection
algorithms for test suites are readily available for flat finite state
machines. Parallel regions can be removed from the state machine by
replacing them with several hierarchical states. Each of these states
contains one possible sequence of states considering all parallel
regions, e.g., first the states of one region, then the states of the
second region, and so on. Each time the parallel state would be
entered, one of the non-parallel states is chosen randomly instead.
Generating all possible parallel regions would lead to a state
explosion without much gain in many cases. Therefore, we limit the
number of generated states for each parallel state. Hierarchical states
can be resolved by moving the inner states out of the containing state
and adding all the transitions leaving the containing state to the inner
states. Incoming transitions of the containing state are redirected to
the first inner state. The containing state can then be removed, as all
its semantics were transferred to the inner states. The final test suite is
created to fulfill the all-transitions coverage criteria. The algorithm is
a reimplementation based on [14]. The selection of the test cases can
easily be improved by implementing different coverage criteria.

Figure 4. Example of a generated test case

The test cases are generated as UML sequence diagrams. Figure 4
shows an example of a generated test case from the ComponentView
model displayed in Figure 5 (see Appendix).

These generated test cases can be used for regression testing. For this
purpose, we automatically generate a trace file for every test case.
These trace files can then be used as input for testing. With every
change in the system these tests can be executed again to see if they
are still valid. The following text is a part of the generated trace file
of the test case in Figure 4:

The trace file is similar to a trace that would be obtained by recording
the communication of real implementations of the components
executing the same sequence. It can be used also in the same way as
the other traces, for example, to perform regression or compatibility
tests of models. The trace is fed into the verification framework and
checked for failures. If the trace was generated from the same model
it is verified with, no failures are expected to be found. However, the
generated traces can be used after a model was altered, to see if the
new model is still compatible with the execution of the old model.

© S
AE In

ter
na

tio
na

l

Discussions
In addition to the audio function, we have successfully applied the
introduced methodology for specifying and verifying interface
behavior for several other examples. During these applications we
made several experiences. Our approach allows hiding technical
details from the behavior specification with an additional layer of
abstraction. This additional layer, the event mapping, removes the
otherwise necessary guards from the behavior model and transforms
them into events. Anything that could be expressed with guards can
also be expressed with events. However, events can be reused and
have a descriptive name. This strongly improves the understanding of
the specification.

Moreover, the events are currently organized in a hierarchy. We found
that for most of the models this is enough. Only on the rare occasion
that a method has numerous parameters this may lead to complex and
repeating child events, since every combination has to be captured.
On the one hand there are possible solutions for this problem. For
example, multiple orthogonal groups of equivalence classes could be
defined for each method. Each group checks only certain aspects of a
message. The equivalence classes could then be combined in the
behavioral model using binary logic. This is more similar to using
guards but still abstracts from technical details. The added complexity
for triggers and actions in the behavioral description would require
additional checks for consistency. On the other hand this might be
seen as an indication to revise the interface design as its high
complexity may be hardly manageable and maintainable in the end.

Another limitation we experienced is that it is hard to track the
communication of individual instances which are contained in a
single component. For example, if the AuxiliaryInput was altered and
starts a new playback instance on the event sourceActivity_
StartResult_On with a certain id, all the deckStatus calls need to
include this id. This id is the only identifier for the correct playback
instance during verification. The current state machine model does
not allow having multiple active markers in one state. This however
is necessary to track multiple playback instances which run in
parallel. Though, if the maximum number of parallel instances is
known beforehand, this can be circumvented by explicitly modeling
the state for each instance.

Conclusions
Because of the complex interaction behavior of software components
integrated in today's cars, the verification of these components is an
expensive task. Our methodology aims to significantly reduce this
expense. The approach allows for a multi-purpose specification of
in-vehicle infotainment software components' interfaces and
interactions. Different views and the separation of the communication
and application logic support the developers and testers throughout
the phases of the development process. For example, the specification
can be used for the verification of the distributed software
components. Furthermore, our approach enables a lightweight
expandability for other applications or communication technologies.
The applicability and advantages of our approach have been shown
by the example of a car's audio functions.

Future work will be the improvement of the verification algorithms
and the open source release of the tool framework, enabling further
application and customizations of the presented methodology.

References
1. Braun, A., Bringmann, O., Rosenstiel, W., “Testing with Virtual

Prototypes”, Elektronik Automotive Special Issue MOST, 49-
51, 2011

2. Benz, S., “Combining test case generation for component
and integration testing”, Proc. of the 3rd Int. Workshop on
Advances in model-based testing (A-MOST), 23-33, 2007,
doi:10.1145/1291535.1291538

3. Staats, M., Whalen, M., Heimdahl, M., “Programs, Tests, and
Oracles: The Foundations of Testing Revisited”, Proc. of the
33rd Int. Conf. on Software Engineering (ICSE), 391-400, 2011,
doi:10.1145/1985793.1985847

4. Peters, D., “Automated Testing of Real-Time Systems”,
technical report, Memorial Univ. of Newfoundland, 1999.

5. Fuentes, L., Manrique, J., Sánchez, P., “Pópulo: a tool
for debugging UML models”, Proc. of the 30th Int.
Conf. on Software Engineering (ICSE), 955-956, 2008,
doi:10.1145/1370175.1370205

6. Harel, D., Kugler, H., “The Rhapsody Semantics of Statecharts
(or, On the Executable Core of the UML)”, Integration
of Software Specification Techniques for Applications in
Engineering, 325-354, 2004, doi:10.1007/978-3-540-27863-4_19

7. Mayerhofer, T., “Testing and debugging UML models based on
fUML”, Proc. of the 34th Int. Conf. on Software Engineering
(ICSE), 1579-1582, 2012, doi:10.1109/ICSE.2012.6227032

8. Moura, R.S., Guedes, L.F., “Simulation of industrial
applications using the execution environment SCXML”, Proc.
of the 5th IEEE Int. Conf. on Industrial Informatics, 255-260,
2007, doi:10.1109/INDIN.2007.4384765

9. Leucker, M, and Schallhart, C. “A brief account of
runtime verification”. The Journal of Logic and Algebraic
Programming, The 1st Workshop on Formal Languages and
Analysis of Contract-Oriented Software (FLACOS'07), 78(5):
293-303, 2009, doi:10.1016/j.jlap.2008.08.004.

10. Delgado, N., Gates, AQ., Roach, S., “A taxonomy and catalog
of runtime software-fault monitoring tools”. IEEE Transactions
on Software Engineering 30(12): 859-872, 2004, doi:10.1109/
TSE.2004.91.

11. Drabek, C., Pramsohler, T., Zeller, M., Weiss, G. “Interface
Verification Using Executable Reference Models: An
Application in the Automotive Infotainment”, ACESMB@
MoDELS, 2013.

12. Pramsohler, T., Kafkas, M., Paulic, A., Zeller, M. et al.,
“Control Flow Analysis of Automotive Software Components
Using Model-Based Specifications of Dynamic Behavior,”
SAE Int. J. Passeng. Cars - Electron. Electr. Syst. 6(2):2013,
doi:10.4271/2013-01-0435.

13. Berg, T., Jonsson, B., Raffelt, H., “Regular Inference for State
Machines with Parameters”, FASE 2006, LNCS 3922, pp. 107-
121, 2006, doi:10.1007/11693017_10.

14. Duan L., “Model-Based Testing of Automotive HMIs with
Consideration for Product Variability”, Dissertation, Ludwig-
Maximilians-Universitaet Muenchen, 2012

15. GENIVI Alliance, http://www.genivi.org/, October 2014

16. Enterprise Architect, http://www.sparxsystems.de/, October 2014

17. Rational Rhapsody, http://www.ibm.com/, October 2014

© S
AE In

ter
na

tio
na

l

http://dx.doi.org/10.1145/1291535.1291538
http://dx.doi.org/10.1145/1985793.1985847
http://dx.doi.org/10.1145/1370175.1370205
http://dx.doi.org/10.1007/978-3-540-27863-4_19
http://dx.doi.org/10.1109/ICSE.2012.6227032
http://dx.doi.org/10.1109/INDIN.2007.4384765
http://dx.doi.org/10.1016/j.jlap.2008.08.004
http://dx.doi.org/10.1109/TSE.2004.91
http://dx.doi.org/10.1109/TSE.2004.91
http://dx.doi.org/10.4271/2013-01-0435
http://dx.doi.org/10.1007/11693017_10
http://www.genivi.org/
http://www.sparxsystems.de/
http://www.ibm.com/

18. MODENA, http://www.berner-mattner.com/, October 2014

19. Media Oriented Systems Transport, http://www.
mostcooperation.com/, October 2014

20. Eclipse, https://www.eclipse.org/, October 2014

21. AUTOSAR Tool Platform User Group, https://www.artop.org/,
October 2014

22. EAST-ADL Tool Platform, https://www.eclipse.org/eatop/,
October 2014

23. D-Bus, http://www.freedesktop.org, October 2014

24. Franca, http://eclipse.org/proposals/modeling.franca/, October 2014

25. Papyrus, http://eclipse.org/papyrus/, October 2014

26. Object Management Group (OMG), http://www.omg.org/,
October 2014

Acknowledgments
The work has been funded by the Bavarian Ministry of Economic
Affairs and Media, Energy and Technology.

Definitions/Abbreviations
AudioMgmt - AudioManagement

AuxIn - AuxiliaryInput

ConnMgmt - ConnectionManagement

DSL - Domain Specific Language

FUML - Foundational Subset for Executable UML Models

IDL - Interface Definition Language

LTS - Labeled Transition System

MOST - Media Oriented Systems Transport

SCXML - State Chart XML

SUT - System Under Test

UML - Unified Modeling Language

© S
AE In

ter
na

tio
na

l

http://www.berner-mattner.com/
http://www.mostcooperation.com/
http://www.mostcooperation.com/
https://www.eclipse.org/
https://www.artop.org/
https://www.eclipse.org/eatop/
http://www.freedesktop.org
http://eclipse.org/proposals/modeling.franca/
http://eclipse.org/papyrus/
http://www.omg.org/

APPENDIX

Figure 5. ComponentView model of component AuxiliaryInput

Figure 6. CommunicationView model of communication between components AuxiliaryInput and AudioManagement

The Engineering Meetings Board has approved this paper for publication. It has successfully completed SAE’s peer review process under the supervision of the session organizer. The process
requires a minimum of three (3) reviews by industry experts.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or
otherwise, without the prior written permission of SAE International.

Positions and opinions advanced in this paper are those of the author(s) and not necessarily those of SAE International. The author is solely responsible for the content of the paper.

ISSN 0148-7191

http://papers.sae.org/2015-01-0166

© S
AE In

ter
na

tio
na

l

http://papers.sae.org/2015-01-0166

