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A new approach is proposed to model and simulate numerically heterogeneous catalysis in rare�ed

gas 
ows. It is developed to satisfy all together the following points: i) describe the gas phase at the

microscopic scale, as required in rare�ed 
ows, ii) describe the wall at the macroscopic scale, to avoid

prohibitive computational costs and consider not only crystalline but also amorphous surfaces,

iii) reproduce on average macroscopic laws correlated with experimental results and iv) derive ana-

lytic models in a systematic and exact way.

The problem is stated in the general framework of a non static 
ow in the vicinity of a catalytic and

non porous surface (without ageing). It is shown that the exact and systematic resolution method

based on the Laplace transform, introduced previously by the author to model collisions in the gas

phase, can be extended to the present problem. The proposed approach is applied to the modelling

of the Eley-Rideal and Langmuir-Hinshelwood recombinations, assuming that the coverage is locally

at equilibrium. The models are developed considering one atomic species and extended to the gen-

eral case of several atomic species. Numerical calculations show that the models derived in this way

reproduce with accuracy behaviours observed experimentally.

I. INTRODUCTION

Heterogeneous catalysis a�ects the gas composition as well as the surfacic heat 
uxes of gas 
ows in

chemical nonequilibrium in the vicinity of surfaces, in order to tend towards chemical equilibrium. As an

illustration, the additional heat 
ux due to catalytic recombination at the wall of a vehicle can reach up to

30% during an atmospheric reentry. Chemistry at the gas-wall interface is involved not only in hypersonic


ow problems1 but also in many industrial processes2;3 such as chemical reactors or laser nozzles. However,

in spite of its strong in
uence on heat 
uxes, heterogeneous catalysis has been little treated up to now in

the particular framework of rare�ed gas 
ows.4�9

The catalytic e�ect of a surface generally expresses itself through a reduction in the energy of activation

of chemical reactions and an increase in transitions from unstable precursor of the molecule to stabilized

molecule. Indeed, the energy released to stabilize the molecule can be given to the surface while in the gas

phase an additionnal collision should still take place, during the short life time of the unstable precursor, to

release this energy in excess.

* Permanent address
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The necessary precursor stage of heterogeneous catalysis3;10�13 is the capture of gas particles by the

wells of the surfacic potential. A given surface can have various types of adsorption sites of chemisorption

and/or physisorption. The di�erence between these two kinds of adsorptions lies in the nature of the physical

forces linking a gas atom to the surface. Generally, the energy of chemisorption is an order of magnitude

higher than the energy of physisorption. Physisorption can thus be a precursor stage for chemisorption but

not for chemical reactions, by contrast with chemisorption. The number of adsorption sites, as well as their

nature, depends on the chemical composition and structure of the wall.

Adsorption applies to gas atoms, as well as gas molecules, which translational energy is not su�cient

to cross the surfacic potential and go back to the gas phase. A gas atom Ai (or Aj) can then be adsorbed

by a free surfacic site, S (or well of the surfacic potential), to form an adatom, AiS (or AjS) according to

Eq. (1a).

Ai + S ! AiS (1a)

AiAj + 2S ! AiAjS2 (1b)

AiAj + S ! Ai + AjS (1c)

AiAj + 2 S ! AiS + AjS (1d)

AiS ! Ai + S (1e)

AiAjS2 ! AiAj + 2S (1f)

Ai + AjS ! AiAj + S (1g)

AiS + AjS ! AiAj + 2 S (1h)

In very rare cases molecules can be adsorbed without dissociation, Eq. (1b). This adsorption is restricted to

the particular case of an interatomic distance (of the gas molecule) similar to the distance between adjacent

sites. Most of the time, molecules are adsorbed with dissociation. Then, within the frame of diatomic

molecules, the two atoms, Eq. (1d), or only one, Eq. (1c), are adsorbed and the other one is re
ected in

the gas. Adsorbed particles can form one or several layers, depending on the surface and gas composition.

They can also be �xed, or move over the surface, according to the surface composition and temperature.

Adsorbed particles can be desorbed, Eqs. (1e-f), due to the thermal motion of the wall atoms. This

desorption, corresponding to the reverse processes of Eqs. (1a-b), is activated when the wall atoms can give

to the adsorbed particles a thermal energy su�ciently high to break the link with the surface and also to

cross the surfacic potential.

Adatoms adsorbed through chemisorption can also undergo recombinations which are generally described

by the Eley-Rideal (ER) and the Langmuir-Hinshelwood (LH) mechanisms. The ER recombination, Eq. (1g),

involves a �rst reactant coming directly from the gas phase, Ai, and a second one, Aj , adsorbed at the gas-

wall interface. Concerning the LH recombination, Eq. (1h), both reactants are adatoms. The molecule AiAj,

2



3

obtained through ER or LH mechanism, is desorbed and emitted in the gas and one or two surfacic sites S

are released. These two recombination processes can be concomitent. However, the ER recombination seems

to be predominent at low surfacic temperature, when the fraction of adsorbed particles is high, while the

LH recombination is predominent at higher surfacic temperature, when adsorbed particles can move over

the surface.

This set of elementary processes, Eqs. (1a-h), is often characterized by two global parameters, which are

strongly coupled, and that will be useful in what follows: the coverage, �, or fraction of occupied surfacic sites,

and the reaction coe�cient, 
, or fraction of recombined atoms per gas atom colliding with the surface. The

coverage, and more often the reaction coe�cient, are the quantities experimentally measured to determine

the catalytic activity of surfaces.

A �rst approach used to model gas-wall interaction is molecular: gas and surface are both described at

the molecular scale. This approach assumes that atoms constituting the surface are regularly arranged in a

periodic lattice. It is thus applied to crystalline surfaces, such as metals slowly cooled which are used to coat

wind tunnel testing models for instance. It includes molecular dynamics14;15 and bond order conservation

methods.16 The latter assumes a rigid surfacic lattice, which leads to lower numerical costs compared with

the former.

A second approach of heterogeneous catalysis modelling is macroscopic: gas and surface are both de-

scribed at the macroscopic scale. This approach is widely applied to continuous 
ows. Models are then

obtained doing kinetic or statistical or thermodynamic derivations. They involve parameters determined by

correlation with experimental results. At �rst, macroscopic models have been developed assuming a coverage

at equilibrium, that is to say adsorption processes faster than recombination reactions. These models give

the global change of gas composition in the vicinity of the surface, de�ning the coverage and recombination

coe�cients for the ER and LH reactions.3 A higher level of modelling has been handled more recently17�21

to study reentry 
ows. As required for such 
ows, it is no longer assumed that the coverage is at equilibrium.

Forward and reverse reactions are then clearly dinstinguished and the reaction rates associated with each

elementary process are determined.

There is still few published studies4�9 about heterogeneous catalysis in rare�ed 
ows. They can also

be divided into the two sets of approaches mentioned above. The macroscopic approach, although applied

to rare�ed 
ows, is investigated Refs. [4-5] by Bergemann for instance. This author describes the ER

recombination and dissociation of oxygen and nitrogen on amorphous surfaces (Reaction Cured Glass or

RCG, used to coat the protective tiles of reentry vehicles) assuming a coverage locally at equilibrium. His

model is expressed as a function of the gas temperature and not of microscopic variables. It is thus used

numerically when the macroscopic variables can be calculated (i.e. after the transient regime).

The molecular approach is treated Refs. [8-9] by Simons for instance, using the bond order conservation

method. His study applies to cristalline surfaces (not to amorphous surfaces) and assumes a coverage close

to unity. It is mainly focussed on the improvement of adsorption modelling with an energy of adsorption
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which depends on the coverage, by contrast with the model proposed Refs. [4-5].

As heterogeneous catalysis should apply to crystalline as well as amorphous surfaces, and rare�ed gas


ows should be modelled at the microscopic scale, another approach is proposed here to satisfy all together

the following points:

i) describe the gas phase at the microscopic scale, as required in rare�ed 
ows,

ii) describe the wall at the macroscopic scale, to avoid prohibitive computational costs and consider not

only crystalline but also amorphous surfaces,

iii) reproduce on average macroscopic laws correlated with experimental results and

iv) derive the models in a systematic and exact way, and express them under analytic form.

To that purpose, the problem is stated Sec. II in the general framework of a non static 
ow in the

vicinity of a catalytic surface. The wall is supposed to be non porous. Moreover, it is assumed that the

structure of the surface is not modi�ed by the chemical reactions: there is no ageing or ablation of the surface

since the wall atoms are not involved in the �nal products of the chemical reactions.

A systematic and exact resolution method of this problem, which is based on the Laplace transform, is

proposed Sec. III. This resolution method has been previously introduced by the author to model rotational22

and vibrational23 nonequilibria in the gas phase. It has been also extended to the modelling of chemistry24

in the gas phase (see also Ref. [25]).

This new approach is then applied to the modelling of the ER and LH recombinations assuming, in this

�rst part, a coverage locally at equilibrium. The demonstrations are detailed within the frame of one atomic

species. The models are then extended to the general case of gas 
ows including several atomic species.

Numerical applications are proposed to check that these models reproduce with accuracy behaviours

observed experimentally.

II. STATEMENT OF THE PROBLEM

The problem proposed below is stated to de�ne the microscopic probabilities, denoted by p, for the

various elementary processes described Eqs. (1a-h) to take place. To ful�ll the conditions i) and ii) precised

Sec. I, these probabilities are expressed as functions of microscopic and macroscopic variables concerning

respectively the gas phase and the wall contributions. To satisfy the condition iii), the microscopic prob-

abilities p are de�ned to reproduce on average, through < p >, laws correlated with experimental results.

Let us underline that the average procedure applies only to the gas phase contribution. This is the reason

why one will indicate explicitely, using square brackets, the functional dependance of the microscopic and

macroscopic probabilities, p and < p >, with regards to the average procedure and neglect to indicate the

functional dependance concerning the wall contribution for instance.

The problem is stated within the general framework of a non static 
ow, assuming that the surface is not

porous. Its statement consists in linking the microscopic probabilities to be derived, p, to the macroscopic

probabilities to be reproduced, < p >. To that purpose, let us consider again the set of elementary processes
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one wants to model. One can notice that adsorption processes with or without dissociation, Eqs (1a-d),

as well as the ER recombination, Eq. (1g), are all initiated by a collision between a gas particle and

empty or occupied surfacic sites. The LH recombination, Eq. (1h), can also be interpreted in this way

remembering that it is coupled with adsorption. The macroscopic probability associated with one of these

elementary processes is thus the 
ux of gas particles impinging on the surface that undergo the process under

consideration, with the probability p, divided by the total 
ux of particles colliding with the surface

< p > [T ] =

Z Z Z
~v:~n�0

p ~v:~n f [~v � ~vo; T ] d~vZ Z Z
~v:~n�0

~v:~n f [~v � ~vo; T ] d~v

(2a)

where ~v is the gas particle velocity, ~vo the mean molecular velocity, ~n the normalized surfacic vector, T

the gas temperature. The integrals involved in Eq. (2a) are calculated over the half space ~v:~n � 0, since

the surface is not porous. The thermal velocity distribution function of the gas particles, f , is given by a

Maxwellian since the macroscopic laws to be reproduced are de�ned in the literature assuming equilibrium

f [~v � ~vo; T ] =
� m

2�kT

�3=2
exp

�
�
m(~v � ~vo)

2

2kT

�
(2b)

where m is the mass of a gas particle and k the Boltzmann's constant.

This statement of the problem is valid for all the elementary processes except desorption de�ned Eqs.

(1e-f). Indeed, these desorptions are only initiated by the surface, cf. Sec. I. Opting for a macroscopic

description of the surface, the probability of desorption per unit time and surface should be directly infered

from a macroscopic rate of desorption correlated with experimental results, cf. Part 2. However, the problem

de�ned Eqs. (2a-b) has still to be solved.

III. RESOLUTION OF THE PROBLEM

To simplify the notations without restricting the problem, let us consider cartesian coordinates with the

molecular velocity ~v = (vx; vy; vz), the mean molecular velocity ~vo = (vox; voy; voz) and a surface perpendic-

ular to the z axis, thus ~v:~n = vz. The z component of the mean molecular velocity, voz , is set equal to zero

since the surface is not porous. Slip e�ects can be taken into account with vox 6= 0 and/or voy 6= 0.

Besides, one should choose a microscopic variable associated with the impinging gas particle to express p.

It is generally assumed that the energy of activation of catalytic elementary processes is given by the velocity

component of the gas particle which is normal to the surface. Consequently, the individual probabilities to

be de�ned, p, are expressed as functions of vz . Taking into account these notations and assumptions, the

problem de�ned Eqs. (2a-b) can write

< p > [T ] =

Z
1

0

vz p[vz] f [vz; T ] dvzZ
1

0

vz f [vz ; T ] dvz

(3a)

5



6

where

f [vz ; T ] =
� m

2�kT

�1=2
exp

�
�
mv2z
2kT

�
(3b)

The unknown p should then be derived from this integral equation assuming that the macroscopic

probability, < p >, is given. To obtain a systematic and exact derivation, it is shown below that the

resolution method based on the Laplace transform, introduced previously by the author to model thermal

nonequilibria in the gas phase,22�23 can be extended to the present problem. Indeed, doing the following

changes of variables:

� = m (2kT )�1 and � = v2z ; (4a)

the problem formulated Eqs. (3a-b) yields

��1 < p >
h m
2k�

i
=

Z 1
0

p[�1=2] exp[� � �] d� (4b)

which is identi�ed with

p[�1=2] = L
�1

n
��1 < p >

h m
2k�

i o
(5)

where L�1 denotes the inverse Laplace transform. Consequently, individual probabilities of adsorption,

dissociation and recombination at the gas-wall interface, p, can be de�ned in a systematic and exact way

deriving the inverse Laplace transform of the function ��1 < p >, where < p > can be correlated with

experimental results.

IV. APPLICATION TO A COVERAGE AT EQUILIBRIUM

To treat progressively the di�culties, it is assumed in this �rst part that recombination processes are

slow compared with adsorption. Consequently it is not necessary to consider both adsorption and desorption

processes since the coverage is supposed to be locally at equilibrium.

Several models of coverage can be found in literature10 such as Langmuir's, Freundlich's and Temkin's

isotherms. These macroscopic models are developed assuming that the coverage is monolayer : adsorption

is localized, it takes place only through collision of particles with vacant sites and there is no more than one

adsorbed atom per site. The di�erences between these models lie in the energy of an adsorbed particle. While

Langmuir's model assumes that the energy of adsorption is the same at any site of the surface, independently

of the presence or absence of nearby adsorbed particles, Freundlich's and Temkin's models assume that it

decreases with the coverage. This last behaviour could be interpreted as a surface heterogeneity or as an

increasing surface repulsion with an increasing coverage. For the former the fall with the coverage is linear

and for the latter it is logarithmic. Others models take into account the formation of di�erent types of

adsorbed layers. Although Freundlich's and Temkin's isotherms seem to be more realistic, we are going to

consider Langmuir's isotherm. This choice is simply dictated by the available parameters, cf. Refs. [26-27]

for instance, derived from experimental data.
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Langmuir's isotherm is obtained from kinetic derivations, for one atomic species,

� =
[n] Kad

1 + [n] Kad
(6a)

where [n] is the numerical density of the gas particles subject to adsorption which are in the vicinity of the

surface. The equilibrium constant of the adsorption and desorption reactions, Kad, is given by an Arrhenius

law

Kad = Cad exp[+Dad=(kTw)] ; with Dad > 0 (6b)

where Cad and Dad are constants depending on both the gas and the wall compositions and Tw is the wall

temperature.

In the general framework of N chemical species which are in competition to occupy surfacic sites, one

easily derive, under the same assumptions, the coverage associated with the chemical species j

�j =
[nj] K

ad
j

1 +

NX
k=1

[nk] K
ad
k

(6c)

where [nk] and K
ad
k = Cad

k exp[+Dad
k =(kTw)], with D

ad
k > 0, are respectively the numerical density of the

gas particles in the vicinity of the surface and the equilibrium constant of the adsorption and desorption

reactions, associated with the chemical species k.

The determination of the numerical density of the gas particles in the vicinity of the surface, [n] or

[nk], raises a di�culty: the de�nition of the vicinity, that is to say of the gas volume one should consider

in numerical applications. Within the frame of the assumptions precised Sec. II, the numerical density [n]

(or [nk]) can be expressed as a function of both the rate of particles-wall collisions, [ _n] (or [ _nk]) and the gas

temperature

[n] =

r
2�m

kT
[ _n] (6d)

The determination of the number of gas particles colliding with the wall per unit time and surface, [ _n] or

[ _nk], raises none di�culty. This is the reason why this rate is retained in what follows as a variable of the

problem rather than the numerical density of the gas particles in the vicinity of the surface.

In this �rst part one starts from the ER and LH macroscopic models of chemistry at the gas-wall

interface. These models assume that dissociation reactions, Eqs. (1c-d), are negligeable compared with

recombination reactions, Eqs. (1g) and (1h), (which corresponds with an impinging gas 
ow strongly dis-

sociated). They provide the global change of gas composition in the vicinity of the surface de�ning the

recombination coe�cients, 
, for both ER and LH mechanisms. Referring to the de�nition of 
, which is re-

called in Sec. I, it follows immediatly that the macroscopic probability to be reproduced is the recombination

coe�cient

< p > = 
 (7)
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A.1. Eley-Rideal recombination: particular case of one atomic species

To lighten the notations, let us �rst consider a gas 
ow made of one atomic species and the related

diatomic molecules. The ER recombination coe�cient3 is the fraction of gas atoms colliding with the surface

that recombine with adsorbed atoms, according to the mechanism described Eq. (1g),



ER

= 2

�
2�m

kT

�1=2

k
ER

r � (8a)

where the ER recombination reaction rate, k
ER

r , is given by an Arrhenius law

k
ER

r = C
ER

r exp[ � E
ER

r =(kT )] ; with E
ER

r > 0 (8b)

and C
ER

r and E
ER

r are constants depending on both the gas and the wall compositions. One can notice

that for low surfacic temperature, Tw, that is to say predominent adsorption compared with desorption, the

asymptotic behaviour of 

ER

is independent of the gas pressure, or [ _n]. For high surfacic temperature, and

thus predominent desorption, the asymptotic behaviour of 

ER

is proportional to [ _n].

The ER recombination coe�cient associated with the recombination of oxygen on RCG surfaces is

plotted Fig. 1, assuming a thermal equilibrium between the gas and the surface, i.e. T = Tw and various

atomic pressures. The experimental values3;28�31 plotted Fig. 1, and given Table 1, have been used by

Willey26;27 to determine the parameters Cad, Dad, C
ER

r and E
ER

r which are grouped together Table 2 and

used for this example.

The microscopic probability we propose is thus the probability for a gas particule colliding with a surface

to collide with an occupied site and recombine. It is derived from the inverse Laplace transform, de�ned Eq.

(5), and the macroscopic data of Eqs. (6a-b) and (6d-8b)

p
ER

r [vz] = 4 �1=2 C
ER

r H
�
v2z > 2E

ER

r =m
� ( 1�

� (v2z � 2E
ER

r =m)
�1=2

� � exp

�
�2 (v2z � 2E

ER

r =m)

�
Erfc

h
� (v2z � 2E

ER

r =m)1=2
i �

(9a)

with

� = exp
�
�Dad=(kTw)

� �
2 �1=2 [ _n] Cad

�
�1

(9b)

where H is the Heaviside function32 and Erfc the complementary Error function.32 Let us recall that rigor-

ously, cf. Sec. II, one should write p
ER

r [vz; [ _n]; Tw] instead of p
ER

r [vz].

Demonstration

The macroscopic probability to be reproduced is derived from Eqs. (6a-b) and (6d-8b) and can be

expressed by

< p
ER

r > [T ] = 2 C
ER

r

r
2�m

kT
exp

�
�E

ER

r =(kT )]
1

1 + �
�
2kT=m

�1=2 (10)
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where � is de�ned Eq. (9b). Taking into account the �rst change of variable de�ned Eq. (4a), and replacing

< p > by Eq. (10) in Eq. (5) one can obtain

p
ER

r [�1=2] = L
�1

�
4 �1=2 C

ER

r exp
�
�2E

ER

r �=m]
1

�+ �1=2

�
(11)

Due to a similarity property of the Laplace transform,33 Eq. (11) writes immediatly

p
ER

r [�1=2] = 4 �1=2 C
ER

r L
�1

�
exp

�
�2E

ER

r �=m]
1

�+ �1=2

�
(12)

Next, showing that33

L
�1

�
1

a
exp[�b �=a] G[�=a]

�
= H[� > b=a] g[a�� b] (13)

with a; b > 0, g[�] = L
�1
fG[�]g, and where H denotes the Heaviside function, one can obtain

p
ER

r [�1=2] = 4 �1=2 C
ER

r H[� > 2E
ER

r =m] L�1
�

1

�+ �1=2

�
[�� 2E

ER

r =m] (14)

where the last square brackets of Eq. (14) underline that the inverse Laplace transform depends now on

�� 2E
ER

r =m, and no longer on �. Finally, showing that33

L
�1

�
1

a + �1=2

�
= (� �)�1=2 � a exp[a2 �] Erfc[a �1=2] (15)

with a > 0 since � > 0, and where Erfc denotes the complementary Error function,32 Eq. (14) leads to

p
ER

r [�1=2] = 4 �1=2 C
ER

r H
�
� > 2E

ER

r =m
� ( 1�

� (�� 2E
ER

r =m)
�1=2

� � exp

�
�2 (�� 2E

ER

r =m)

�
Erfc

h
� (�� 2E

ER

r =m)1=2
i �

(16)

The individual probability given Eq. (9a) is then derived from Eq. (16) doing the second change of variable

de�ned Eq. (4a).

A.2. Eley-Rideal recombination: general case of several atomic species

Most of the time gas 
ows are made of several atomic species. Various of them are then in competition

to occupy surfacic sites and recombination can lead to the formation of heteronuclear molecules. In that

general case the recombination coe�cient, Eq. (8a), associated now with an impinging gas atom and an

adsorbed atom belonging respectively to the chemical species i and j, gets



ER

ij = (1 + �ij)

�
2�mi

kT

�1=2

k
ER

r;ij �j (17a)

with the ER recombination rate

k
ER

r;ij = C
ER

r;ij exp[ � E
ER

r;ij=(kT )] ; with E
ER

r;ij > 0 (17b)
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and the coverage �j de�ned Eq. (6c). �ij represents the Kronecker's symbol. Taking into account Eq. (6d)

and grouping together the terms in a di�erent way, this coverage can also write

�j = �ij =
�j

1 + �ij (2kT=mi)1=2
(17c)

where

�ij = �j

�
2 �1=2 [ _nj] C

ad
j

r
mj

mi

�
�1

exp[�Dad
j =(kTw)] (17d)

and

�j =
� NX
k=1

[ _nk]

[ _nj ]

r
mk

mj

Kad
k

Kad
j

�
�1

(17e)

do not depend on the gas temperature T . The macroscopic probability to reproduce expresses thus

< p
ER

r;ij > [T ] = (1 + �ij) C
ER

r;ij

r
2�mi

kT
exp

�
�E

ER

r;ij=(kT )]
�j

1 + �ij
�
2kT=mi

�1=2 (18)

A derivation similar to that detailed above, in the particular case of only one atomic species, leads to the

microscopic probability associated with the ER recombination within the general frame of several atomic

species

p
ER

r;ij[vz] = 2 �1=2 (1 + �ij) �j C
ER

r;ij H
�
v2z > 2E

ER

r;ij=mi

� 8<: 1�
� (v2z � 2E

ER

r;ij=mi)
�1=2

� �ij exp

�
�2ij (v

2
z � 2E

ER

r;ij=mi)

�
Erfc

h
�ij (v

2
z � 2E

ER

r;ij=mi)
1=2
i �

(19)

where the impinging gas atom, of velocity vz , belongs to the chemical species i and p
ER

r;ij [vz] should rigorously

write p
ER

r;ij [vz; [ _n1]; :::; [ _ni]; [ _nj]; :::; [ _nN]; Tw].

One can easily see that, as expected, Eq. (19) reduces to Eq. (9a) in the particular case of one atomic

species, i.e. N = 1, since then �j = 1 and �ij = �.

Remark

One could prefer to opt for individual probabilities p
ER

r and p
ER

r;ij expressed as functions of the numerical

density of the gas atoms in the vicinity of the surface, rather than the rate of atom-wall collisions. In that

perspective, the approach proposed in the present paper can lead to the following individual probabilities of

ER recombination regarding respectively one and several atomic species:

p
ER

r [vz; [n]; Tw] = 4 C
ER

r � H
�
v2z > 2E

ER

r =m
�
(v2z � 2E

ER

r =m)�1=2 (20a)

and

p
ER

r;ij[vz; [n1]; :::; [ni]; [nj]; :::[nN ]; Tw] = 2 (1 + �ij) C
ER

r;ij �j H
�
v2z > 2E

ER

r;ij=mi

�
(v2z � 2E

ER

r;ij=mi)
�1=2 (20b)

where � and �j are given by Eqs. (6a) and (6c). The demonstrations are similar to the previous one up

to Eq. (14) but the remaining function to be inversed using the Laplace transform is simply ��1=2. The

individual probabilities, Eqs. (20a-b), are then obtained showing that L�1f��ag = �a�1=�[a] with a > 0,

and doing the second change of variable de�ned Eq. (4a). � denotes the Gamma function.32
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B.1. Langmuir-Hinshelwood recombination: particular case of one atomic species

One consider �rst a gas 
ow made of one atomic species and the related diatomic molecules, to lighten

the notations. The LH recombination coe�cient3 is the fraction of atoms colliding with the surface that

are �rst adsorbed and then recombine with another adatom encountered after migration over the surface,

according to the mechanism described Eqs. (1a) and (1h) for instance,



LH

=
2

[n]

�
2�m

kT

�1=2

k
LH

r �2 (21a)

where k
LH

r is the LH recombination reaction rate

k
LH

r = C
LH

r exp[�E
LH

r =(kT )] ; with E
LH

r > 0 (21b)

The main di�erence compared with the ER mechanism lies in the squared coverage, since the impinging gas

atom should now be adsorbed before recombination. One can notice that for low surfacic temperature, i.e.

predominent adsorption, the asymptotic behaviour of 

LH

is inversely proportional to the gas pressure, or [ _n].

For high surfacic temperature, i.e. predominent desorption, the asymptotic behaviour of 

LH

is proportional

to [ _n]. So, contrary to the ER recombination coe�cient, the LH recombination coe�cient depends, in both

limiting cases, on [ _n].

The LH recombination coe�cient associated with the recombination of oxygen on RCG surfaces is

plotted Fig. 2, assuming a thermal equilibrium between the gas and the surface, i.e. T = Tw and various

atomic pressures. The experimental values3;28�31 plotted Fig. 2, and given Table 2, have been used by

Willey26�27 to determine the parameters Cad, Dad, C
LH

r and E
LH

r which are grouped together Table 2 and

used for this example.

The related LH microscopic probability we propose, or probability for a gas atom colliding with the

surface to collide with an empty site, be adsorbed and recombine with another adatom, is derived from the

inverse Laplace transform, de�ned Eq. (5), and the macroscopic data of Eqs. (6a-b), (6d-7) and (21a-b)

p
LH

r [vz] =
4

[ _n]
CLH
r H[v2z > 2E

LH

r =m]

�

n
exp

�
�2 (v2z � 2E

LH

r =m)
�
Erfc

�
� (v2z � 2E

LH

r =m)1=2
� �1

2
+ �2 (v2z � 2E

LH

r =m)
�

�
�

�1=2
(v2z � 2E

LH

r =m)1=2
o

(22)

where H is the Heaviside function, Erfc is the complementary Error function and � is de�ned Eq. (9b).

Rigorously, one should write p
LH

r [vz; [ _n]; Tw] instead of p
LH

r [vz]

Demonstration

The macroscopic probability to be reproduced is derived from Eqs. (6a-b), (6d-7) and (21a-b). One can

write

< p
LH

r > [T ] =
2

[ _n]
C
LH

r exp
�
�E

LH

r =(kT )]
1�

1 + �
�
2kT=m

�1=2�2 (23)
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Taking into account the �rst change of variable de�ned Eq. (4a), and replacing < p > by Eq. (23) in Eq.

(5) leads to

p
LH

r [�1=2] = L
�1

(
2

[ _n]
C
LH

r exp
�
�2E

LH

r �=m]
1

�
�
1 + ���1=2

�2
)

(24)

Due to a similarity property of the Laplace transform, Eq. (24) writes immediatly

p
LH

r [�1=2] =
2

[ _n]
C
LH

r L
�1

(
exp

�
�2E

LH

r �=m]
1

�
�
1 + ���1=2

�2
)

(25)

Next, applying Eq. (13) one obtains

p
LH

r [�1=2] =
2

[ _n]
C
LH

r H[� > 2E
LH

r =m] L�1

(
1

�
�
1 + ���1=2

�2
)�

�� 2E
LH

r =m
�

(26)

Here again the last square brackets of Eq. (26) underline that the inverse Laplace transform depends now

on � � 2E
LH

r =m, and no longer on �. To derive the inverse Laplace transform involved in Eq. (26), let us

set two functions G1 and G2

G1[�] = �1=2 (27a)

G2[�] =
1�

1 + ��1� )2
(27b)

such that

L
�1

(
1

�
�
1 + ���1=2

�2
)

= ��2 L�1
n
G2

�
G1[�]

�o
(27c)

Referring to the properties of the Laplace transform and componned functions33 one knows that the right

part of Eq. (27c) can also write

L
�1

n
G2

�
G1[�]

�o
=

Z
1

0

g1[ ; �] g2[ ] d (28)

where g2[ ] = L
�1
�
G2[�]

	
and g1[ ; �] = L

�1
�
exp

�
�  G1[�]

�	
. Next, showing that33

L
�1

n b

(1 + a�)2

o
=

b

a2
 exp[ �  =a] (29a)

and

L
�1

n
exp[ �  �1=2]

o
= (4 � �3)�1=2  exp[ �  2=(4�)] (29b)

Eq. (28) yields

L
�1

n
G2

�
G1[�]

�o
[�] =

�2

(4 � �3)1=2

Z
1

0

 2 exp[ � �  ] exp[ �  2=(4�)] d (30)

One can recognize, Eq. (30), a direct Laplace transform applied to the variables ~� =  2 and ~� = 1=(4�);

thus

L
�1

n
G2

�
G1[�]

�o
[�] =

�2

4 (� �3)1=2
L
+1

n
~�1=2 exp[ � � ~�1=2]

o
[~� =

1

4�
] (31)

12



13

where L+1 denotes the direct Laplace transform. Let us set a new function, g3, de�ned by

g3[ ~�] = ~��1=2 exp[ � � ~�1=2] (32a)

such that Eq. (31) can express

L
�1

n
G2

�
G1[�]

�o
[�] =

�2

4 (� �3)1=2
L
+1

n
~� g3[ ~�]

o
[~� =

1

4�
] (32b)

Then, referring to the derivation properties of the Laplace transform33 one knows that

L
+1

n
~� g3[ ~�]

o
[~�] = �

dG3[~�]

d~�
(32c)

where L+1
n
g3[ ~�]

o
[~�] = G3[~�]. Besides, showing that

33

L
+1

n
(� ~�)�1=2 exp[�2 (a ~�)1=2]

o
= ~��1=2 exp[a=~�] Erfc [(a=~�)1=2] (33)

and remembering that the �rst order derivative of the complementary Error function,32 Erfc(x), is

�2 ��1=2 exp[�x2], one obtains

L
+1

n
~� g3[ ~�]

o
[~�] = �1=2 ~��3=2 exp

�
�2 (4 ~�)�1

�
Erfc[� (4 ~�)�1=2

� �1
2
+ �2

�
4~�
�
�1�

� �
�
2~�2

�
�1

(34)

Next, ~� is replaced by 1=(4�) to derive L�1
n
G2

�
G1(�]

�o
, which is de�ned Eq. (32b), starting from Eq.

(34). The individual probability of Eq. (26) is then infered from the previous expression through Eq. (27c).

Finally, the individual probability given Eq. (22) is derived from this last result doing the second change of

variable de�ned Eq. (4a).

B.2. Langmuir-Hinshelwood recombination: general case of several atomic species

Within the general frame of various atomic species, the LH recombination coe�cient, Eq. (21a), asso-

ciated with an impinging gas atom of chemical species i and an adatom of chemical species j gets



LH

ij =
1 + �ij

[ni]

�
2�mi

kT

�1=2

k
LH

r;ij �ii �ij (35a)

with the LH recombination rate

k
LH

r;ij = C
LH

r;ij exp[ � E
LH

r;ij=(kT )] ; with E
LH

r;ij > 0 (35b)

the coverages �ii and �ij de�ned Eq. (17c) and where �ij denotes the Kronecker's symbol. Referring to Eq.

(7), the macroscopic probability to reproduce expresses thus

< p
LH

r;ij > [T ] =
1 + �ij

[ _ni]
C
LH

r;ij exp
�
�E

LH

r;ij=(kT )]
�i �j�

1 + �ii
�
2kT=mi

�1=2� �
1 + �ij

�
2kT=mi

�1=2� (36)
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where �ii, �ij, �i and �j are de�ned Eqs. (17d) and (17e). A derivation similar to that detailed above

leads to the microscopic probability associated with the LH recombination between adatoms belonging to

the same chemical species i

p
LH

r;ii[vz] =
4

[ _ni]
CLH
r;ii �

2
i H[v2z > 2E

LH

r;ii=mi]

�

n
exp

�
�2ii (v

2
z � 2E

LH

r;ii=mi)
�
Erfc

�
�ii (v

2
z � 2E

LH

r;ii=mi)
1=2
� �1

2
+ �2ii (v

2
z � 2E

LH

r;ii=mi]
�

�
�ii

�1=2
(v2z � 2E

LH

r;ii=mi)
1=2
o

(37a)

One can easily see that Eq. (37a) reduces to Eq. (22) in the particular case of one atomic species subject to

adsorption, i.e. N = 1.

When the LH recombination involves a gas atom belonging to the chemical species i (adsorbed after

collision with an empty surfacic site) and an adatom of chemical species j, with i 6= j, the derivation detailed

below leads to the individual probability

p
LH

r;ij[vz] =
1 + �ij

[ _ni]
CLH
r;ij

�i �j

�ij � �ii
H[v2z > 2E

LH

r;ij=mi]

�

n1
2

�
�ii � �ij

�
(v2z � 2E

LH

r;ij=mi)
�1=2

� �ii exp
�
�2ii (v

2
z � 2E

LH

r;ij=mi)
�
Erfc

�
�ii (v

2
z � 2E

LH

r;ij=mi)
1=2
�

+ �ij exp
�
�2ij (v

2
z � 2E

LH

r;ij=mi)
�
Erfc

�
�ij (v

2
z � 2E

LH

r;ij=mi)
1=2
� o

(37b)

The particular case i = j can be infered from Eq. (37b) passing to the limit �ij to �ii. Again, a rigorous

writing would be p
LH

r;ij[vz; [ _n1]; :::; [ _ni]; [ _nj]; :::[ _nN]; Tw] instead of p
LH

r;ij [vz].

Demonstration

When several atomic species are in competition to occupy surfacic sites and the LH recombination

involves adatoms belonging to di�erent chemical species, the demonstration is similar to the previous one

up to the de�nition of the function G1, Eq. (27a). Next, one should set a new function

~G2[�] =
1�

1 + ��1ii �)
�
1 + ��1ij �)

(38a)

such that

p
LH

r;ij[�
1=2] =

1 + �ij

[ _ni]
C
LH

r;ij �i �j H[� > 2E
LH

r;ij=mi] L
�1

n
��1ii ��1ij

~G2

�
G1[�]

�o
[�� 2E

LH

r;ij=mi] (38b)

Referring to Eqs. (28) and (29b) and showing that33

L
�1

n 1

(1 + a �) (1 + b �)

o
=

exp[ �  =a]� exp[ �  =b]

a� b
; with a 6= b (39)

yields to

L
�1

n
~G2

�
G1[�]

�o
[�] =

�ii �ij

(�ij � �ii) (4 � �3)1=2

Z
1

0

 
�
exp[��ii  ]�exp[��ij  ]

�
exp[� 2=(4�)] d (40)
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One can recognize, Eq. (40), a direct Laplace transform applied to the variables ~� =  2 and ~� = 1=(4�);

thus

L
�1

n
~G2

�
G1[�]

�o
[�] =

�ii �ij

(�ii � �ij) 4 (� �3)1=2
L
+1

n
exp[ � �ii ~�

1=2] � exp[ � �ij ~�1=2]
o
[~� =

1

4�
] (41)

This direct Laplace transform can be easily derived showing that33

L
+1

n
exp[ � 2(a ~�)1=2] = (a �)1=2

h
~��1 � ~��3=2 exp

�
a=~�

�
Erfc[(a=~�)1=2

� i
(42)

Next Eq. (38b) is expressed using this last result and Eq. (37b) is �nally obtained doing the second change

of variable de�ned Eq. (4a).

Remark

Here again one could prefer to opt for individual probabilities p
LH

r and p
LH

r;ij expressed as functions of the

numerical density of the gas atoms in the vicinity of the surface, instead of the rate of atom-wall collisions,

to obtain

p
LH

r [vz; [n]; Tw] =
4

[n]
C
LH

r �2 H
�
v2z > 2E

LH

r =m
�
(v2z � 2E

LH

r =m)�1=2 (43a)

within the frame of only one atomic specy and

p
LH

r;ij [vz; [n1]; :::; [ni]; [nj]; :::; [nN]; Tw] =
4

[ni]
C
LH

r;ij �i �j H
�
v2z > 2E

LH

r;ij=mi

�
(v2z � 2E

LH

r;ij=mi)
�1=2 (43b)

when several atomic species are in competition for adsorption. The coverage � is given Eq. (6a) and �i and

�j are de�ned Eq. (6c). One can refer to the Remark of the previous section concerning the demonstrations.

V. NUMERICAL APPLICATIONS

Heterogeneous catalysis can take place following collisions between gas particles and surfaces. Conse-

quently its numerical simulation belongs to the trajectography phase of numerical codes, whatever numerical

method one opts for (Monte Carlo34 or particle35�36 for instance). It includes two stages detailed below:

the selection, among the gas particles colliding with the surfaces, of the gas particles subject to elementary

processes of heterogeneous catalysis, and the distribution of energy between gas and surface during these

elementary processes.

A. Selection of particles subject to heterogeneous catalysis

Elementary processes of adsorption and desorption are not simulated in this �rst part since the coverage

is assumed to be locally at equilibrium. However, the selection of gas atoms subject to heterogeneous

catalysis is not restricted to the selection of gas particles colliding with surfaces that undergo an ER or

LH recombination process, Eqs. (1g-h). Indeed, assuming a coverage at equilibrium, one adsorbed atom

involved in the product of each recombination process should be replaced by another gas atom colliding with

the surface, to satisfy the conservation laws. So, for each gas atom selected for recombination, another one

15
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should be selected for removal. The following procedure is thus proposed. The list of gas particles colliding

with the surface is prepared at each time step and for each surfacic cell. Since it is assumed, in this �rst

part, that dissociation processes are negligeable compared with recombination ones, cf. Sec. IV, molecules

are simply re
ected in the gas and the list can be restricted to atoms. Re
ection can be specular, di�use, or

obey Cercignani-Lampis' model37 for instance. When the list is complete, it is split in two parts:

i) atoms colliding with the surface which are allowed to recombine according to the ER or LH mechanisms

and

ii) atoms colliding with the surface which are not allowed to recombine.

This selection obeys the recombination probability derived Eq. (9a) or (22) within the frame of a single

atomic species, and Eq. (19) or (37a-b) when various chemical species are in competition for adsorption. It

is done using the acceptance-rejection method.

Next, the list of atoms colliding with the surface which are not allowed to recombine is also split in two

parts:

i) atoms to be removed, to replace atoms desorbed through recombination, and

ii) atoms re
ected in the gas.

B. Energy distribution

The distribution of energy between a wall and the energy modes of a molecule obtained through recom-

bination at the gas-wall interface should di�er, depending on the recombination mechanism under consider-

ation.

Indeed, the ER mechanism involves a gas particle, an adatom which is partially or fully accommodated

and it leads to the formation of a molecule which is generally not fully accommodated with the surface. By

contrast, the LH mechanism assumes that the two adsorbed particles can accommodate with the surface,

while moving over it, and the molecule obtained after recombination is then fully accommodated with the

surface. But concretely there is only very few pieces of informations concerning this splitting of energy

between gas and surface38�39 and nearly none about the distribution of energy among the di�erent energy

modes of the new molecule. So, due to a lack of data, macroscopic models (such as those mentioned Sec.

IV and correlated with experimental results by Willey) often include in the recombination coe�cient the

fraction of energy exchanged between the surface and the desorbed molecule.

To be consistent with the macroscopic models and data26�27 we start from, it is thus assumed in

the present applications that the molecules formed at the gas-wall interface, through ER as well as LH

mechanisms, are fully accommodated with the surface and the energy of recombination is given to the

surface.

C. Numerical test

A numerical test is proposed to check that the microscopic probabilities developed Sec. IV allow

to reproduce numerically, at equilibrium, the expected recombination coe�cients. To that purpose, the
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parameters involved in both the recombination reaction rates, C
ER

r , E
ER

r , C
LH

r and E
LH

r and the equilibrium

constants of adorption-desorption, Cad and Dad should be set. Let us consider for instance the parameters

obtained by Willey26�27 (cf. Table 2) by correlation with the experimental results recalled Table 1, to

model the recombination of oxygen on RCG surfaces. To satisfy the assumptions underlying the ER and LH

models correlated with these experimental results, the gas and the surface are supposed to be in thermal

equilibrium, thus T = Tw, and a low velocity 
ow is considered, ~vo = (0:1; 0:; 0:). The computational domain

is a small rectangular box (10x10 cells) which boundaries are 
uid except for a solid boundary located in

z = 0. The gas 
ow is made of monoatomic and diatomic oxygen and the atomic pressure remains constant

along a given calculation. Calculations are done for di�erent values of the temperature lying within the

range experimentally observed, that is to say from 1000=T = 0:5 to 3:5 for a given atomic pressure. Various

atomic pressures are also investigated: 10, 50 and 100Pa. This last value corresponds to the lower limit of

the domain of pressures used by Willey.

The fractions of atoms colliding with the surface that recombine are calculated numerically using re-

spectively the microscopic ER model, Eqs. (9a-b), and the microscopic LH model, Eqs. (9b) and (22). Their

values are written out Tables 3 and 4 for each converged calculation. Comparisons between these numerical

results and the macroscopic recombination coe�cients one would like to reproduce are presented Figs. 3 and

4.

The excellent agreement one obtains, as function of the temperature as well as the pressure, is inherent

in the proposed approach since the microscopic probabilities are developed to reproduce, on average, macro-

scopic models correlated with experimental results. One can notice that for low surfacic temperature the ER

recombination coe�cient does not vary with the pressure while the LH recombination coe�cient increases

with a decreasing pressure, as underlined Sec. IV.

VI. CONCLUDING REMARKS

The new approach proposed here to model heterogeneous catalysis in rare�ed 
ows combines a micro-

scopic description of the gas with a macroscopic description of the wall, by contrast with the previous studies

which describe gas and wall at the same scale. This allows us to consider both kinds of surfaces: crystalline

and amorphous and to propose analytic models directly applicable to rare�ed 
ows.

The systematic and exact change between the microscopic and macroscopic description of the gas, at

equilibrium, obtained using the Laplace transform, allows us to develop individual probabilities of catalytic

recombination correlated with available experimental results, without de�ning and thus adjusting new pa-

rameters.

The applications, proposed in this �rst part, to the ER and LH recombination, reproduce numerically

with accuracy the expected macroscopic data at equilibrium. They involve two assumptions rather important

since the coverage is supposed to be locally at equilibrium and the energy of adsorption does not depend on

the coverage. These assumptions will be reduced in the second part of this study.
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Table 1: Oxygen recombination on RCG surfaces: Experimental results.

Reference T (K) P (Pa) 
 (103)

1557 241 8:37

1552 134 27:93

1540 252 8:85

1527 253 10:81

1522 127 16:37

1518 241 8:17

Willey28 1501 237 15:34

1497 239 8:38

1486 230 21:48

1479 128 19:72

1458 225 24:32

1456 124 11:46

1449 231 15:00

Marinelli29 300 133 0:20

1831 824 3:70

1806 412 10:07

1742 412 18:93

Kolodziej 1726 824 5:25

and 1644 235 10:68

Sewards30 1617 412 9:68

1592 235 30:60

1450 235 17:90

1647 370 23:61

Scott31 1493 368 13:00

1419 351 7:75

Sewards 1556 451 17:33

et al.1 1344 406 11:20

Table 2: ER and LH recombination of oxygen on RCG surfaces: Willey's parameters26�27

Model Parameter Oxygen Nitrogen

Cad (m3/atom) 9:717 10�40 1:231 10�33

Eley Dad (kJ/mole) 574:3 404:2

Rideal CER
r 8:5446 9:6464

EER
r (kJ/mole) 15:7 15:97

Cad (m3/atom) 1:81 10�38 1:965 10�19

Langmuir Dad (kJ/mole) 574:3 574:3

Hinshelwood CLH
r (atom/m2/s) 8:148 10+22 1:528 10+23

ELH
r (kJ/mole) 12:68 14:21
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Table 3: ER recombination of oxygen on RCG surfaces.

Numerical results obtained using Eqs. (9a-b).

P (Pa) 10 50 100

T (K) 
 (103)

1800:00 0:20 1:15 0:26

1600:00 9:78 13:50 9:60

1333:33 12:3 12:4 12:3

1000:00 8:95 8:80 8:99

800:00 6:29 6:45 6:40

666:66 4:17 4:30 4:09

571:43 3:00 2:84 2:70

500:00 1:88 1:91 2:20

444:44 1:24 1:45 1:20

400:00 0:87 0:79 0:94

363:63 0:54 0:52 0:50

333:33 0:45 0:34 0:32

307:69 0:20 0:21 0:19

Table 4: LH recombination of oxygen on RCG surfaces.

Numerical results obtained using Eqs. (9b) and (22).

P (Pa) 10 50 100

T (K) 
 (103)

1800:00 28:0 34:6 0:04

1600:00 375: 75:3 3:60

1333:33 288: 57:0 29:2

1000:00 170: 34:0 19:5

800:00 103: 21:5 10:0

666:66 66:0 13:4 6:80

571:43 43:0 8:10 4:30

500:00 26:0 5:40 2:90

444:44 17:0 3:60 1:75

400:00 10:0 2:20 1:23

363:63 7:60 1:50 0:69

333:33 4:80 0:85 0:41

307:69 3:00 0:50 0:30
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FIGURE CAPTIONS

Fig. 1: Recombination of oxygen on RCG surfaces. Experimental results (Exp.) and Eley-Rideal

macroscopic model (ER) associated with various atomic pressures P.

Fig. 2: Recombination of oxygen on RCG surfaces. Experimental results (Exp.) and Langmuir-

Hinshelwood macroscopic model (LH) associated with various atomic pressures P.

Fig. 3: Eley-Rideal recombination of oxygen on RCG surfaces. Macroscopic model (Mac. mod.) and

numerical results (Num. res.) associated with various atomic pressures P.

Fig. 4: Langmuir-Hinshelwood recombination of oxygen on RCG surfaces. Macroscopic model (Mac.

mod.) and numerical results (Num. res.) associated with various atomic pressures P.

24


