Determination of the capillary pressure – saturation relation for paper based on its 3D microstructure

Prof. Dr. Volker P. Schulz¹

Dr. Stefan K. Rief²

Dr. Konrad Steiner²

- ¹ Baden-Wuerttemberg Cooperative State University, Mannheim, Germany
- ² Fraunhofer ITWM, Kaiserslautern, Germany

May 18-21, 2015

Overview

- Motivation: Paper Research at Fraunhofer ITWM
- Virtual Paper Generation
- New Multiple Contact Angle Pore Morphology Method
- Capillary Pressure Saturation Curves of Virtual Paper
- Application and Summary

Paper Research at Fraunhofer ITWM

Paper Research at Fraunhofer ITWM

Virtual Paper Generation

PaperGeo Options ? GEO DICT		Use PaperGeo to generate realistic paper models
µm ▼ O001 Fiber 1 0011 Fiber 2 1001 Filling Cellulose Fiber ▼ Finite Fiber ▼ Rounded Ends Random Oscillation ▼	Paper Layer Generate Periodic Structure Senerate Filling Number of Fiber Types Allow Fiber Overlap	Parameters
Relative Solid Volume Fraction 0.9 Fiber Density 1500 kg/m^3 Diameter 1 [µm] <uniformly [25,45]="" in=""> Edit Diameter 2 [µm] Vinformly in [10,24]> Edit Fiber Wall Thickness [µm]</uniformly>	Set HC Distance -12 µm Grammage ▼ Grammage 50 g/m^2 Height of the Layer 100 µm Random Seed 35	 Cellulose, ellipsoidal, and circular fibers
Fiber Angle in Plane [9] <uniformly [0,360]="" in=""> Edit Rotation Angle [9] <gaussian> Edit Fiber Length [µm] 2000 Edit Amplitude Lateral Oscillation 10 µm Correlation Length Lateral Oscillation 250 µm</gaussian></uniformly>	Size Length X 500 μm Length Y 500 μm Length Z 200 μm Voxel Length 1 μm NX 500 \$500 μm	 Fillers and fines Random structure
Amplitude Vertical Oscillation 2 µm Correlation Length Vertical Oscillation 250 µm	NY 500 → 500 μm NZ 200 → 200 μm OK Cancel	• Fiber lay down

Virtual Paper Generation

Simulation of wetting and non-wetting phase distribution

- Solving two-phase Navier-Stokes equation requires large ressources
- We use a morphological operations are used to simulate the phase distribution according to a drainage experiment (Hilpert et al. 2001)
- Drainage of the wetting phase if

$$p_c \ge \frac{2\sigma}{r} \cos \theta$$

- Initial conditions: Void space is completely filled with wetting phase
- Algorithm based on the calculation of the Euclidean distance

Wetting phase reservoir

Illustration of the wetting phase distribution

V.P.Schulz, P.P. Mukherjee, J. Becker, A. Wiegmann, and C.Y. Wang: "Modeling of Two-phase Behavior in the Gas Diffusion Medium of Delymor Electrophysics Evel Cells via Evel Marphalagy Approach," *Journal of the Electrophamical Society* 154, P410 (2007).

Polymer Electrolyte Fuel Cells via Full Morphology Approach," Journal of the Electrochemical Society, 154, B419 (2007).

New Multiple Contact Angle Pore Morphology Method

• For totally wetting (left hand side), the meniscus is determined by a sphere of diameter D

$$p_c = \frac{4\sigma}{D}$$

• For partially wetting (right hand side), the meniscus is determined by a sphere of diameter D', where

$$p_c = \frac{4\sigma}{D}\cos\theta$$
 $D' = D \cdot |\cos\theta|$

Volker P. Schulz, Eric A. Wargo and Emin C. Kumbur: "Pore-Morphology-Based Simulation of Drainage in Porous Media Featuring a Locally Variable Contact Angle", Transp Porous Med (2015) 107:13–25

Porous media with locally different contact angle

Locally variabl contact anlge leads to (locally) different satuaration at the same capillary pressure

Two different fibers, 50x384x1000 voxel, resolution of 1µm/voxel

•The pore morphology simulation has been already successfully used to simulate the paperboard edge wicking

A. Mark, J. Tryding, J. Amini, F. Edelvik, M. Fredlund, E. Glatt, R. Lai, L. Martinsson, U. Nyman, M. Rentzhog, S. Rief and A. Wiegmann: "Modeling and simulation of paperboard edge wicking", Nordic Pulp and Paper Research Journal, Vol 27, No.2/2012, pp. 397-402

•In this approach, the capillary pressure-saturation relation is used in a multi scale model

•With the shown extension, one can study 3D micro structures of paper featuring locally variable contact angles

Thank you for your attention!