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Abstract: Long fiber reinforced thermoplastics (LFT) appear to be promising for the cost 

efficient manufacture of lightweight structures by injection or compression molding. One 

major concern persists in their inherent tendency to creep due to continuous sliding within the 

thermoplastic matrix. To enable the application of LFT components under significant static 

loads, a profound knowledge of the interactions between the viscoelastic matrix and the 

nonwoven, discontinuous fiber reinforcement is necessary. In the present work, these 

interactions are investigated by micromechanical finite element simulations of computer 

generated LFT structures. The viscoelastic properties of the neat matrix are experimentally 

characterized and implemented into the microstructural models by an appropriate constitutive 

law in the form of a four parameter Burgers model. Since a distinct degree of nonlinearity is 

observed, the applied model is extended to the nonlinear viscoelastic regime and found to be 

suitable for an accurate reproduction of the experimental data. Micromechanical creep 

simulations which incorporate the viscoelastic matrix behavior are then validated against 

creep experiments on LFT specimens of three material variants with a different fiber fraction 

(PPGF10, PPGF20 and PPGF30), which are loaded under two different orientations at 

multiple stress levels. The model predictions show a good agreement to the experimental 

results in particular for the lower and medium stress levels, whereas a slightly increased error 

can be observed for the highest stress levels. By the application of different variants of the 

viscoelastic matrix model it is shown that the effects of nonlinearity on the effective creep 
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behavior of the composite are quite considerable. Finally, the evolution of stress and strain 

within the microstructure during the creep period is visualized by contour plots at different 

times. The redistribution of stress from the viscoelastic matrix to the elastic fibers can clearly 

be observed. 

Keywords: Long fiber reinforced thermoplastics (LFTs), A. Polymer-matrix composites 

(PMCs), B. Creep, C. Finite element analysis (FEA), C. Multiscale modeling 

1. Introduction 

Thermoplastic matrix composites like long fiber reinforced thermoplastics (LFT) gain 

increasing importance for the manufacturing of lightweight structures in automotive industry. 

They represent a good tradeoff between the mechanical performance and costs due to their 

suitability for mass production by technologies like injection or compression molding and 

their sufficiently high fiber length, resulting in a high mass related strength [1]. Furthermore, 

they are recyclable due to the reversibility of the solidification process of the thermoplastic 

matrix. However, a limitation toward the application in structural parts under significant static 

loads persists due to their inherent tendency to creep deformation. This results from the load 

driven, continuous sliding of the polymeric chains of the thermoplastic matrix. The lack of a 

side-chain network, as compared to thermosets, is responsible for the more pronounced creep. 

Whereas the viscoelastic properties of monolithic thermoplastic materials were studied to a 

rather high degree, only few works have been reported on fiber reinforced thermoplastics. 

This applies in particular to discontinuous fiber reinforced composites with a nonwoven 

structure. To enable their application in structural parts, a profound understanding of the 

microstructural interactions between the thermoplastic matrix and the fibers is of crucial 

importance. 
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A variety of viscoelastic models has been proposed in the literature. Most of them were 

originally developed to describe the mechanical behavior of bulk polymeric materials, but can 

also be applied to composites or - within a microstructural model - to describe the viscoelastic 

phase of the composite. These include the classical Maxwell and Kelvin-Voigt elements and 

their combination to the four parameter Burgers model. Usually, Boltzmann’s superposition 

principle in the form of convolution integrals is applied for their mathematical description, 

yielding the memory function, restricted to linear viscoelastic behavior in its original form. 

Fundamental contributions toward the extension to nonlinear viscoelasticity by the 

introduction of nonlinearizing functions into the convolution integral were made by 

Leaderman [2]. Schapery [3] proposed a more general and thermodynamically consistent 

form of Leaderman’s modified superposition principle, which is widely accepted today. 

Findley et al. [4] followed a different route by describing the time-dependent deformation by 

a power law, which is restricted to a single relaxation time in contrast to the Schapery model. 

A variety of finite element implementations of such models and their application to various 

loading scenarios is presented in the literature. Lai and Bakker [5] and Haj-Ali and Muliana 

[6] described the implementation of the Schapery model. An excellent overview and 

comparison of multiple models with respect to their numerical implementation was given by 

Woldekidan [7]. 

A general review of the creep behavior of polymer matrix composites (PMCs) and related 

experimental and modeling techniques to characterize them was published by Scott et al. [8]. 

Macroscopic material laws applicable to fiber reinforced plastics were presented by Lou and 

Schapery [9].  Greco et al. [10] studied the flexural creep of a thermoplastic composite with a 

woven structure and applied an analytical model to describe the experimental findings. The 

influence of a varying fiber volume fraction on the creep behavior of polypropylene-based 

composites has been examined by Houshyar et al. [11]. Howard and Hollaway [12] 

characterized a randomly oriented glass fiber / polyester composite and applied the Schapery 
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model to describe the experimental data. All these approaches are restricted to the 

macroscopic level - the micromechanical interactions within the heterogeneous materials are 

not considered. 

Micromechanical methods which determine the effective composite properties based on the 

constituent behavior are widely used to predict the elastic properties. In contrast, relatively 

few works extend the classical homogenization schemes to viscoelasticity. Such methods 

usually include a viscoelastic description of the matrix, the fibers or the interface to represent 

their time-dependent behavior. Analytical approaches like the Mori-Tanaka scheme [13] offer 

the advantage of very low computing times but require significant simplifications with respect 

to the geometry and the interactions of the inclusions. The analytical approaches were found 

to be sufficiently accurate to describe the time-independent, elastic properties of LFTs with a 

distinct fiber orientation and length distribution [14,15,16]. However, this is not necessarily 

the case for their viscoelastic behavior. Finite element (FE) models which explicitly depict the 

microstructure in the form of representative volume elements (RVEs) overcome these 

simplifications, but they usually require massive computational resources. Brinson and Lin 

[17] used the Mori-Tanaka approach to model a composite of viscoelastic phases by the 

application of the elastic-viscoelastic correspondence principle and compared it to FE 

simulations of a unidirectional composite. Brinson and Knauss [18] analyzed multiphase, 

viscoelastic solids by FE simulations. Matzenmiller and Gerlach [19] presented a 

micromechanical model of viscoelastic composites with compliant fiber-matrix bonding based 

on the generalized method of cells. Viscoelastic interphases were also treated by Fisher and 

Brinson [20]. The nonlinear viscoelastic behavior of laminated composites was examined by 

Haj-Ali and Muliana [21] by combining the Schapery model to describe the matrix and a four-

cell micromodel to account for the unidirectional, elastic fibers. 

Specific micromechanical models to describe the creep behavior of a nonwoven fiber 

structure with a distinct fiber orientation and length distribution are currently not available. 
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Therefore, this work extends a microstructural model for LFTs [22,23] to include a 

viscoelastic description of the matrix to examine its creep behavior. For this purpose, artificial 

LFT structures of three materials with different fiber fractions are generated under compliance 

of experimentally measured microstructural data: fiber orientation distribution, fiber length 

distribution and fiber volume fraction (Section 3.1). The viscoelastic properties of the matrix 

are determined on substance specimens of the neat matrix. Based on the experimental 

findings, an appropriate constitutive law in the form of a four parameter Burgers model is 

implemented into the FE software and calibrated on the creep tests (Section 3.2). Since the 

experimental results reveal a strong degree of nonlinearity, the model is extended to the 

nonlinear viscoelastic regime. Finally, creep simulations are performed on the computer 

generated LFT microstructures using the viscoelastic matrix model. The predictions are 

compared to experimental creep tests on LFT specimens in Section 4.1. To visualize the 

effects of the nonlinear matrix behavior on the effective creep curves of the composite, 

different variants of the viscoelastic constitutive law are applied and compared. Moreover, the 

evolution of microscopic stress and strain is studied by contour plots of the microstructure at 

different times (Section 4.2). Potential applications of our model are discussed in Section 4.3. 

2. LFT material and experimental methods 

The investigated LFT material consists of a polypropylene matrix (DOW® C711-70RNA) and 

glass fibers (TufRov® 4575). Three material variants PPGF10, PPGF20 and PPGF30 were 

produced with different fiber weight fractions of 10, 20 and 30 wt-% (corresponding fiber 

volume fractions of 3.8, 8.2 and 13.2 vol-%). PPGF30 and PPGF20 are of special interest for 

structural application and commonly used by the automotive industry, whereas PPGF10 is 

rather of academic interest to provide additional data for the model validation. Plates with 

dimensions of 400 x 400 x 3 mm3 were manufactured by compression molding as described 

by Henning et al. [24]. The LFT strand as it came out of the extruder was positioned 



6 
 

asymmetrically in the mold. The material flow during the compression of the mold generates 

a rather high degree of fiber orientation everywhere outside the strand inlay position. This so-

called flow region of the plate was investigated in the following. For mechanical testing, 

tensile specimens were machined in 0° (flow direction) and 90° (transverse direction) relative 

to the mean orientation of the fibers. Micro computer tomographic (CT) measurements were 

conducted to determine the fiber orientation distribution of the material which is required for 

the microstructural models. The fiber length distribution was determined by analysis of 

incinerated specimens. More details of these procedures are given in previous contributions 

[22,23]. To measure the mechanical properties of the neat polypropylene, matrix substance 

specimens were manufactured by injection compression molding. To ensure the mechanical 

compatibility between the matrix specimens and the matrix within the LFT samples, the same 

coupling agents and stabilizers as used in the LFT process were added for the matrix 

substance specimens. 

Creep tests on matrix and LFT specimens (geometry according to DIN EN ISO 3167 with a 

reduced section of 70 x 10 x 3 mm³) were performed at standard climate (23 °C temperature, 

50 % relative humidity). At the beginning of the load period of 6⋅105 s, a load defined by the 

product of specimen cross section and desired nominal stress level was applied in the form of 

a lead weight. For the lower stress levels up to 5 MPa, the load was directly attached to the 

specimen clamps, whereas a lever mechanism with a transmission ratio of 10 was used for the 

higher stress levels. The strain was measured with an Instron® 2620-604 axial clip-on 

extensometer with a gauge length of 50 mm. Up to a time of 3600 s, a recording interval of 

1 s was chosen for data acquisition. Thereafter - up to the total testing time of 6⋅105 s - the 

recording interval was increased to 600 s. 

3. Modeling 

3.1. Computer generation of LFT structures 
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The applied structure generation procedure suitable for the reproduction of the complex 

nonwoven fiber structure of the LFT material is described in [22,23]. An alternative voxel 

discretization of the same structures is presented in [25]. A stack of straight fibers with dilute 

concentration is generated according to the desired planar fiber orientation and length 

distribution. The fibers are then compressed in a FE simulation until a realistic value of fiber 

volume fraction is reached. A contact formulation prevents interpenetration of adjacent fibers 

and fiber waviness develops in analogy to the manufacturing process of the real material 

produced by compression molding. Finally, the deformed fibers are placed in a cuboid volume 

and the remaining gaps are filled with a tetrahedral mesh representing the matrix.  

A close-up of the mesh for an exemplary structure is shown in Fig. 1. A small section of a 

computer generated fiber structure is compared to a section of the corresponding CT scan in 

Fig. 2 (left). A high degree of similarity can be observed with respect to characteristic features 

like fiber waviness and packing density. However, the depicted sections are too small to fully 

represent the measured fiber orientation. Therefore, the fiber orientation distributions 

(probability density functions of the in-plane fiber angles) of the computer generated structure 

and the corresponding CT scan are compared in Fig. 2 (right) for the complete analyzed 

volume. For this purpose, the same image correlation technique based on the plugin 

Directionality for ImageJ [26] was applied on two dimensional images of the artificial 

structure and the CT scan. The images were extracted by equidistant cuts through the LFT 

structure and the CT scan. The computer generated structures agree well with experimental 

data and are therefore well suited for the micromechanical simulations. This said, it is noted 

that the applied procedure represents a pragmatic way to generate a nonwoven fiber structure 

and does not account for the complex physical mechanisms which govern the evolution of the 

microstructure during the compression molding process in reality. Furthermore, it is worth 

mentioning that even if the computer generated structures are based on statistical distributions 

in the form of a fiber orientation and length distribution, they cannot be referred to as a 
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classical representative volume element (RVE) since the separation of scales is not possible 

for the present material: The maximum fiber length (50 mm) is not small compared to the 

maximum dimensions of the volume element (50 mm) or (in some cases) of the whole part. 

Further discussion and a study of the influence of varying dimensions of the structures can be 

found in [23]. 

In this work, the creep behavior of the same structures which were previously investigated 

with respect to their elastic properties [22] is studied. These include the computer generated 

microstructures for LFT materials with three different fiber fractions (PPGF10, PPGF20 and 

PPGF30, see Table 1). Time-independent, elastic fiber properties (see Table 2) and a perfect 

interface were assumed and viscoelastic behavior of the polypropylene matrix was 

implemented into the simulations as described next. 

 

3.2. Viscoelastic matrix model 

3.2.1 Model choice  

Motivated by the experimental findings (Section 3.2.3), the Burgers model is considered as 

the most realistic mathematical description of the viscoelastic behavior of the polypropylene 

matrix. Due to its feature of a free dashpot (η0, Fig. 3), the viscous character of the model is 

dominant and thus a stationary creep rate results after the relaxation of the Kelvin-Voigt 

element (E1 and η1). This corresponds to the assumption of a continuous sliding of the 

polymeric chains under load. It is coupled to an irreversible strain component which remains 

during the recovery phase after unloading. These common characteristics of amorphous or 

semi-crystalline thermoplastics could also be observed for the investigated polypropylene and 

motivate the choice of the model. The experimental results described later also reveal a strong 

nonlinearity of the creep curves as a function of stress. It is therefore mandatory to extent the 

Burgers model to the nonlinear viscoelastic regime. An alternative would have been to fit the 

Schapery model [3] to the experimental data. Since the Schapery model is based on a 
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generalized Maxwell model which does not feature a free dashpot, it is more appropriate to 

model the response of thermosetting materials, as discussed by Brinson [27]. Therefore, the 

Schapery model is less adequate for the thermoplastic polypropylene matrix treated in this 

work. 

3.2.2 Model formulation and implementation 

A general form of the one dimensional constitutive equation of the Burgers model can be 

derived in the form of the differential equation 

���� � + �1 + ���� + ����	 �
 + ���� �� = ��
 + ��� (1) 

with the elastic stiffness of the springs E0, E1 and the viscosity of the dashpots η0, η1 (Fig. 3). 

Eq. 1 can be solved under the boundary condition of a constant stress σ0 (corresponding to the 

load case of creep). The time-dependent part, denoted as creep compliance C(t), can then be 

separated: 

��� = �� � 1�� + ��� + 1�� �1 − e��� 	� = ������ (2) 

where τ = η1 / E1 denotes the relaxation time of the Kelvin-Voigt element.  

To describe more general loading scenarios, the creep compliance C(t) can be combined with 

an arbitrary load history by Boltzmann’s superposition principle (also known as memory 

function), resulting in the convolution integral with the time integration variable τ: 

��� = ���� − ���
 	d��

�
 

(3) 

In its original form, the superposition principle suffers from the major restriction to linear 

viscoelasticity (the creep response being independent of load).  

For numerical implementation into a finite element framework, the memory function (Eq. 3) 

is converted to an incremental form. It is then no longer necessary to integrate the strain 

response over the complete load history, since a recursive form can be derived in analogy to 
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the work of Taylor et al. [28], where the strain of the Kelvin-Voigt element is inherited from 

the previous to the current time increment. The incremental approach is also advantageous for 

the extension of the model to the nonlinear viscoelastic regime, since the global nonlinear 

behavior can be approximated by a series of sectional linear time increments. To derive the 

incremental form of the Burgers model, the total strain increment ∆εtot is decomposed into an 

elastic ∆εe, a viscous ∆εv and a viscoelastic ∆εve part as follows: 

Δ��� = Δ + Δ! + Δ! =	∆�	���� = 	∆�#� ��� + �!��� + �! ���$ (4) 

Each component ε(t) is then transformed to its incremental form ∆ε(t). The detailed derivation 

can be found in the work of Woldekidan [7] and is omitted here. The strain components in 

incremental form are given by: 

Δ = Δ���  
(5) 

Δ! = Δ��� ���� − Δ�� + Δ�2 � (6) 

Δ! = Δ��� − �e�&�� − 1� '()�� − Δ�� − 1�� Δ�Δ� � �1 − e�&�� � (7) 

where εinh(t-∆t) denotes the inherited strain of the Kelvin-Voigt element from the previous 

time increment and τ = η1 / E1 the relaxation time.  

In the following, the incremental form of the linear viscoelastic Burgers model (Eq. 4 - 7) is 

generalized to three dimensions under the assumption of isotropic behavior of the neat 

polypropylene matrix within the composite. Therefore, the one dimensional creep compliance 

C(t) is decomposed into a shear J and a bulk component B with a time-independent, constant 

Poisson’s ratio ν : 

*��� = 2�1 + +����� (8) 

,��� = 3�1 − 2+����� (9) 

+ = const. (10) 
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These assumptions affect the viscoelastic response to be compressible in analogy to an elastic 

solid and thus both the shear and the bulk components of the viscoelastic deformation to be 

time-dependent. According to Lai and Bakker [5], such treatment is justified for semi-

crystalline thermoplastics as the investigated polypropylene.  

The three dimensional, linear viscoelastic Burgers model in incremental form can be 

expressed by the combination of Eq. 8 - 10 with Eq. 4 - 7. For this purpose, the strain tensor is 

decomposed into deviatoric and volumetric components, for which the time-dependent 

response can then be calculated separately under application of J(t) and B(t), respectively (Eq. 

8 - 9). More details and the fully three dimensional equations can be found in the appendix 

and the work of Woldekidan [7]. Due to its recursive formulation, a very efficient numerical 

implementation is enabled and the calculation of the current stress increment ∆σ is possible 

with the knowledge of the current strain increment ∆ε(t) and the inherited strain εinh(t-∆t) from 

the previous time increment, stored in history variables at each integration point.  

Motivated by the experimental findings on matrix substance specimens (Section 3.2.3), where 

a nonlinear viscoelastic response and thus, a distinct stress-dependence of the Burgers 

parameters is observed, the model has to be extended to the nonlinear viscoelastic regime. 

This is done in analogy to the modified superposition principle, introduced by Leaderman [2]. 

The nonlinear viscoelastic behavior is treated numerically by the consideration of stress-

dependent model parameters E1, η0 and η1, which are implicitly calculated for each time 

increment ∆t. The material subroutine needs therefore to be extended by a Newton-Raphson 

procedure to identify the model parameters as shown in Fig. 4: First, a trial stress increment 

∆σtr is calculated based on the model parameters of the previous time increment. The stress-

dependent model parameters are then updated with this trial stress σtr (as detailed in Section 

3.2.3). Using the updated model parameters, the trial stress increment ∆σtr is transformed to a 

trial strain increment ∆εtr. A residual strain increment ∆εres =  ∆εtr - ∆ε between the trial strain 
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increment ∆εtr and the strain increment ∆ε, provided by the FE software, can then be formed. 

If the Eulerian norm of ∆εres is larger than a specified tolerance, it is minimized by a iterative 

Newton-Raphson loop by choosing a new trial stress increment ∆σtr and repeating the 

procedure until the norm of the residual strain increment ∆εres is sufficiently small. In order to 

provide a scalar equivalent stress to describe the stress-dependence of the model parameters, 

the von Mises stress σeq (Eq. 14) is calculated from the trial stress tensor σtr = σ(t-∆t)+∆σtr. The 

stress-dependent model parameters E1, η0 and η1 are then derived based on the empirical 

functions specified in Section 3.2.3. 

 

3.2.3 Model calibration 

The model parameters as applied for the microstructural simulations presented in Section 4 

are summarized in Table 2. To calibrate the model, the creep function (Eq. 2) was fitted to the 

experimental data of creep-recovery experiments on matrix substance specimens (Fig. 5) for 

each individual stress level by application of a least squares procedure. In this way, a set of 

Burgers parameters E0, E1, η0, η1 was identified for each discrete stress level. It is remarkable 

that the shape of the experimental curves (Fig. 5) can be reproduced by the model to a very 

high level of accuracy and that the irreversible strain component of the recovery period is well 

captured (as discussed in Section 3.2.1). It is evident that the slope of the creep curves 

increases significantly with stress, which indicates a strong nonlinear viscoelastic behavior. 

This nonlinearity is accounted for by empirical functions which mimic a stress dependence of 

the model parameters. Three of the four Burgers parameters (E1, η0, η1) show a distinct stress 

dependence, whereas the instantaneous elastic stiffness E0 was found to be independent of 

stress and assigned to a constant value of E0 = 1250 MPa. To visualize this dependency, the 

values of E1, η0, η1 as determined by the creep-recovery experiments are plotted against the 

stress in Fig. 6 (symbols). The stress dependence can be described by empirical functions (Eq. 
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11-13) which are shown as lines in the same figure. These equations were used to calculate 

the stress-dependent model parameters in the material subroutine (Section 3.2.2, Fig. 4): 

�� = 3292.34	MPa ∙ 0.86788	>?@/BCD (11) 

�� = 3.0602 · 10FMPa ∙ s − 1.11126 · 10FMPa ∙ s ∙ 	ln	�� H/MPa − 0.4369� (12) 

�� = 5.38979 · 10JMPa ∙ s − 1.78557 · 10J	MPa ∙ s ∙ ln	�� H/MPa − 1.73967� (13) 

where the equivalent stress σeq refers to the unidirectional stress for the creep experiments and 

the von Mises stress (Eq. 14) for the three dimensional model, respectively. 

 

4. Results and discussion 

4.1 Effective behavior / macroscopic creep curves 

Three variants of the microstructural model, featuring a different fiber fraction (PPGF10, 

PPGF20, PPGF30, see Table 1) were analyzed by FE simulations under application of the 

viscoelastic matrix model. Their unidirectional creep response was compared to 

corresponding experiments on LFT specimens to validate the modeling approach. A period of 

6⋅105 s (approximately one week) was chosen which is identical to the time period of the 

calibration experiments on matrix substance specimens (Section 3.2.3). Two different 

orientations with the load direction parallel to the flow direction (0°) and transverse to the 

flow direction (90°) were studied. The stress levels were chosen in the range up to 

approximately 50 % of the quasi static strength for each material variant and orientation. The 

results are shown in Fig. 7 - 9. Overall, a good agreement between the experiments and the 

simulations is observed. The maximum deviation is mostly within the range of tolerance of 

the strain measurement device of approximately 0.0005 strain. For the lower and medium 

stress levels (PPGF10: 3.3 and 10 MPa in 0°, 2.5 MPa in 90° load direction, Fig. 7 / PPGF20: 

10 and 20 MPa in 0°, 5 MPa in 90° load direction, Fig. 8 / PPGF30: 15 and 25 MPa in 0°, 

5 MPa in 90° load direction, Fig. 9) the deviation between simulations and experiments is 
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particularly low and also the almost constant creep rate of the simulations in the range of 

2⋅105 to 6⋅105 s fits well to the experimental results. For the highest stress levels (PPGF10: 

15 MPa in 0°, 5 MPa in 90° load direction, Fig. 7 / PPGF20: 30 MPa in 0°, 7.5 MPa in 90° 

load direction, Fig. 8 / PPGF30: 40 MPa in 0°, 7.5 MPa in 90° load direction, Fig. 9), the error 

of the predictions is slightly increased: In particular, the creep rate above 2⋅105 s is 

overestimated by the simulations. Possibly, a more accurate calibration of the viscoelastic 

matrix model at higher stresses would be needed to increase the precision, e.g. by evaluation 

of more experimental data and a finer incrementation of the stress levels (e.g. increments of 

0.5 to 1 MPa instead of the current value of 2.5 MPa, see Fig. 5). Another reason could be the 

presence of plastic deformation within the matrix at higher stress levels, which is not captured 

by the purely viscoelastic model, even if all investigated stress levels are significantly below 

the macroscopic yield strength for each material variant. In 90° load direction, the 

microstructures are not expected to be representative due to the drastically reduced 

dimensions in transverse direction (PPGF30: 1.5 mm - PPGF20 & PPGF10: 2.75 mm, see 

Table 1) compared to the flow or longitudinal direction (50 mm for all materials). Thus, the 

structures do not represent the fiber length distribution (with a maximum fiber length of 

50 mm) adequately in this direction (90°) and precision of the models is lost. To address this 

issue, an additional set of LFT structures which incorporate a much larger fraction of the fiber 

length distribution in transverse direction would be necessary.  

The effects of the nonlinearity of the polypropylene matrix on the effective creep behavior of 

the composite were studied by comparing simulated creep curves for different variants of the 

matrix model and an exemplary structure (PPGF30, 0° load direction, 40 MPa stress) in Fig. 

10. The nonlinear model (stress dependent parameters, Eq. 11-13) is compared to the linear 

model (constant parameters) which was fed with the highest and lowest values for E1, η0 and 

η1 of the investigated range (Fig. 6, Table 2), yielding a lower and upper boundary curve. It 
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can be seen that the difference between the boundary curves is quite large and that the 

nonlinear model clearly shows the best agreement with the experimental data. It is thus  

concluded that a linear viscoelastic model cannot be applied with reasonable accuracy since 

the effects of the nonlinear viscoelastic behavior of the matrix are significant. 

 

4.2 Evolution of stress and strain fields at the microscopic level 

The evolution of the stresses and strains within the microstructure of an exemplary structure 

of PPGF30, 0° load direction and the highest investigated stress level of 40 MPa is shown in 

Fig. 11 for two points of time (600 s and 6⋅105 s), which represent the beginning of the creep 

period shortly after the application of the load (600 s) and at an advanced state (6⋅105 s). To 

visualize the redistribution of stress and strain within the microstructures, the following 

equivalent measures are introduced and assigned to the color scale of the contour plots: 

� H = K32 	σij' 	σij'  
(14) 

 HL = 11 + +K32 	ij' 	ij'  
(15) 

M = 13 NN 
(16) 

where σeq denotes the von Mises equivalent stress, ε’eq the equivalent deviatoric strain (in 

analogy to the von Mises form) and εH the hydrostatic strain. σ’ ij and ε’ ij are the deviatoric 

stress and strain tensor, respectively. 

Fig. 11 (top) shows the stress redistribution within the composite material during creep. With 

increasing time, creep in the matrix decreases its load carrying capability and therefore, the 

load is subsequently shifted to the time-independent, elastic fibers. At the beginning of the 

creep period, the maximum von Mises stress within the fibers amounts to approximately 

1150 MPa (maximum value of the color scale). At the end of the creep period of 6⋅105 s, the 

maximum value has significantly increased to approximately 2000 MPa, which is still below 
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the nominal fracture stress of the glass fibers of approximately 2500 MPa. This agrees well to 

the experimental observations, where no creep fracture could be observed even for the highest 

investigated stress level of 40 MPa (Fig. 9 left). 

In Fig. 11 (middle and bottom), the deviatoric and volumetric strain components of the matrix 

are visualized by respective measures (Eq. 15 and 16). It is remarkable that the equivalent 

deviatoric strain (Fig. 11 middle, scale maximum of 0.05) is significantly larger than the 

equivalent volumetric (hydrostatic) strain (Fig 11 bottom, scale maximum of 0.01) anywhere 

and to any time within the investigated structure. This indicates that although a volumetric 

component of time-dependent deformation is accounted for by the viscoelastic matrix model, 

the dominant deformation mechanism within the microstructures is governed by shear. 

 

4.3 Potential applications of the model 

As mentioned in the introduction, models to describe the time-dependent deformation of LFTs 

are mandatory to enable the application of the material in components under significant static 

loads. The proposed approach offers the advantage that the time dependent matrix properties 

can be experimentally characterized on neat substance specimens which feature isotropic 

behavior. Thus, the number of calibration experiments can be significantly reduced since no 

dependence on the load direction exists. The influence of the fibers on the effective creep 

behavior is then computed by the FE model. Instead of experimental data of the 

microstructure, arbitrary orientation states (e.g. from process simulation at multiple positions 

within a part) could be fed into the model. However, the proposed model appears not to be 

suitable for integrative simulation of components in the near future due to the high 

computation times. Instead, a multiple step procedure seems more realistic, in which our 

model can provide additional data for the development and the calibration of novel effective 

creep laws. Within this framework, our model may act as a powerful tool for the virtual 

development of materials accounting properly for all essential microstructural features. Based 
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on the homogenization results obtained thereby, appropriate macroscopic constitutive 

equations to describe the material can be derived and used in structural analyses. In contrast, 

mean field homogenization schemes based on Eshelby’s solution (like the Mori-Tanaka 

model [13]) cannot describe a variation of stress within the matrix phase. However, our work 

shows that such variations need to be accurately captured since the matrix material shows a 

distinct nonlinear viscoelastic behavior and the effects on the creep behavior are quite 

considerable (see Fig. 10). This is also the case if local damage mechanisms are of interest. In 

the future, it is therefore necessary to develop new analytical approaches which account for 

such effects. These models can then be precisely calibrated on microstructural models like 

ours. Another application could be the use of time-temperature superposition principles: As 

discussed by Brinson [29], a global thermorheologically complex behavior of the composite 

can be decomposed into thermorheologically simple phases by the application of a 

micromechanical FE model. Thus, superposition techniques like the time-temperature 

correspondence principle can be applied to the constituents. In contrast, no such treatment is 

justified at the homogenized effective level. 

 

5. Conclusions 

A micromechanical finite element model to describe the creep behavior of long fiber 

reinforced thermoplastic was proposed, accounting for their characteristic, discontinuous 

nonwoven fiber structure, using a viscoelastic constitutive law to describe the time-dependent 

behavior of the matrix. It was shown that the creep behavior on the effective composite level 

can be accurately described based on the knowledge of the constituent properties and the 

microstructural characteristics. A classical four parameter Burgers model was chosen to 

describe the creep behavior of the matrix and calibrated with creep experiments on matrix 

substance specimens. Motivated by the experimental findings which reveal a high degree of 

nonlinearity within the viscoelastic range, the model was modified to account for these effects 



18 
 

by empirical functions which mimic the stress dependence of the model parameters. The 

effects of the nonlinearity of the matrix on the creep behavior of the composite were found to 

be significant. The evolution of stresses and strains within the microstructure was visualized 

by respective contour plots. The hydrostatic and deviatoric components of strain were 

quantified by effective measures. It was found that the deviatoric components play the major 

role in the time-dependent deformation of the matrix, whereas the effects of the hydrostatic 

components are rather weak.  
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7. Appendix 

In the following, the three dimensional, incremental form of the nonlinear Burgers model is 

specified in analogy to the work of Woldekidan [7]. For this purpose, the Voigt form of the 

stress and strain tensors is chosen in favor to a compact notation (vectors, tensors and 

matrices are printed in bold, up to second order in lower case, above in upper case): 

σσσσ	 = #���	�OO	�PP	�OP	��P	��O$	 (A.1) 

 

Q	 = #��	OO	PP	2OP	2�P	2�O$	 (A.2) 
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According to Eq. 8-10, the elastic parts of the Maxwell E0 and Kelvin-Voigt E1 elements (see 

Fig. 3 for a definition of the indices) are decomposed into shear J0, J1 and bulk B0, B1 

components 

*R = 2�1 + +��R  
(A.3) 

,R = 3�1 − 2+��R  
(A.4) 

with a constant (time independent) Poisson’s ratio ν as discussed in Section 3.2.2. The time-

dependent shear J*(t) and bulk B*(t) compliances correspond to the viscoelastic response of 

the Burgers model and are defined as 

*∗��� = 12 T*� + *� U1 + ��e�&�/� − 1�Δ� VW (A.5) 

,∗��� = 13 T,� + ,� U1 + ��e�&�/� − 1�Δ� VW (A.6) 

where τ =η1/E1 denotes the relaxation time of the Kelvin-Voigt element. The constitutive 

equation to calculate the trial stress increment is then given by 

XY�Z = �1*∗[\∗ + 1,∗[]	 � XQ − Δ��� �1*∗[\∗∗ + 1,∗[]� Y���
− ^e�&�/� − 1_ �1*∗[\∗∗∗Q\'()�� − Δ�� + 1,∗[]Q]'()�� − Δ��� 

(A.7) 

where the second term ∆t/η0[…]σσσσ(t) represents the viscous response due to the free dashpot 

of the Maxwell model and the strain components εεεεinh(t-∆t) refer to the inherited part from the 

previous time increment (Eq. A.15 and A.16). 

The coupling matrix for the deviatoric components (Md, M
*
d, M

**
d and M***

d) is defined as 

[\ = àa
aa
b 2/3 −1/3 −1/3−1/3 2/3 −1/3−1/3 −1/3 2/3

0 0 00 0 00 0 00 0 00 0 00 0 0
c 0 00 c 00 0 cde

ee
ef
 

(A.8) 
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with a=2 for Md, a=1 for M
*
d, a=3/2 for M

**
d and a=1/2 for M

***
d. For the bulk components, it 

takes the form of 

[] = àa
aa
b1/3 1/3 1/31/3 1/3 1/31/3 1/3 1/3

0 0 00 0 00 0 00 0 00 0 00 0 0
0 0 00 0 00 0 0de

ee
ef
 

(A.9) 

For each call of the material subroutine, the trial stress increment is initially calculated under 

application of the stress dependent model parameters E1, η0, η1 from the last time increment 

(an arbitrary value within the range specified in Fig. 6 can be chosen for the first time 

increment of the simulation step). The trial stress increment is then added to the old value of 

stress σσσσ(t)=σσσσ(t-∆t)+∆∆∆∆σσσσtr and the equivalent stress for σσσσ(t) is formed according to Eq. 14. 

Based on the equivalent stress σeq, the model parameters E1, η0, η1  are updated by Eq. 11-13 

and the values of J*(t) and B*(t)  are recalculated by Eq. A.5 and A.6. To apply the Newton 

procedure and to calculate a residual as specified in Fig. 4, the trial stress increment ∆∆∆∆σσσσtr 

needs to be converted into a trial strain increment ∆∆∆∆εεεεtr using the updated values of J*(t) and 

B*(t)  

XQ�Z = #*∗[\	 + ,∗[]	 $XY�Z + Δ��� [gY���
+ ^e�&�/� − 1_h[\	 Q\'()�� − Δ�� +[]Q]'()�� − Δ��i 

(A.10) 

where Md and Mb are specified by Eq. A.8 and A.9 and 

[g = àa
aa
b1 0 00 1 00 0 1

0 0 00 0 00 0 00 0 00 0 00 0 0
3 0 00 3 00 0 3de

ee
ef
 

(A.11) 

A residual strain ∆∆∆∆εεεεres=∆∆∆∆εεεεtr-∆∆∆∆εεεε is formed by substraction of the strain increment given by the 

FE software ∆∆∆∆εεεε from the trial strain increment. A convergence criterium is defined as 
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‖∆QZ k‖‖∆Q‖ ≤ 10�m = n��o (A.12) 

where ||⋅|| denotes the Euclidean norm. A maximum of nmax=15 Newton iterations is 

performed to compute the updated trial stress increment ∆∆∆∆σσσσtr
n+1 (otherwise, the procedure is 

aborted) 

∆Y�Zpq� = ∆Y�Zp − �1*∗[\∗∗∗ + 1,∗[]	 ∆QZ k (A.13) 

At the end of the material subroutine, the stress increment which is returned to the FE solver 

is updated with the latest value of the trial stress increment  

∆Y = ∆Y�Z(  (A.14) 

The strain components of the Kelvin-Voigt element need to be saved in state variables. For 

this purpose, they are updated according to 

Q\'()��� = e�&�/�Q\'()�� − Δ�� + *��2Δ� �1 − e�∆�/��[\XY 
(A.15) 

Q]'()��� = e�&�/�Q]'()�� − Δ�� + ,��3Δ� �1 − e�∆�/��[]XY 
(A.16) 

The current values of the model parameters E1, η0, η1  are saved in additional state variables. 

Finally, the tangential matrix is updated with 

d∆Yd∆Q = 1*∗[\∗∗∗ + 1,∗[] 
(A.17) 
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9. Figures and Tables 

Figure 1: Close-up of the finite element mesh of a PPGF30 (13.2 vol-%) LFT structure. Full 

details on the applied microstructure generation procedure are described in [22,23]. 

 

 

Figure 2: A small section of a computer generated fiber structure (left, top) of PPGF30 

compared to a CT scan (left, bottom) and probability density functions of the planar fiber 

orientation distributions of the computer generated structure compared to the CT scan (right). 
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Figure 3: Rheological notation of the viscoelastic Burgers model. 

 

 

Figure 4: Flowchart of the nonlinear viscoelastic Burgers model as implemented by a user 

material subroutine. 
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Figure 5: Creep-recovery experiments on matrix substance specimens under varying stress 

levels from 2.5 to 12.5 MPa to calibrate the nonlinear viscoelastic Burgers model. 

 

 

 

 

 

 

Figure 6: Stress-dependent Burgers parameters E1, η0 and η1 and fit functions (Eq. 11 - 13). 

 

 



27 
 

Figure 7: Creep curves of PPGF10 (3.8 vol-%) under varying stress levels and two different 

orientations (0 and 90° relative to flow direction).  

 

 

 

 

 

Figure 8: Creep curves of PPGF20 (8.1 vol-%) under varying stress levels and two different 

orientations (0 and 90° relative to flow direction).  
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Figure 9: Creep curves of PPGF30 (13.2 vol-%) under varying stress levels and two different 

orientations (0 and 90° relative to flow direction). 

 

Figure 10: The effects of  nonlinearity demonstrated for PPGF30 (13.2 vol-%), 0° load 

direction and a stress level of 40 MPa by comparison of the resulting creep curves for 

different variants of the matrix model. The nonlinear model (stress-dependent parameters, Eq. 

11-13) is compared to two boundary curves of the linear model (constant parameters, lower 

boundary: E1=2310 MPa, η0=2.26⋅109 MPa⋅s, η1=5.88⋅107 MPa⋅s corresponding to an 

indicator stress of 2.5 MPa / upper boundary: E1=560 MPa, η0=2.93⋅108 MPa⋅s, η1=1.15⋅107 

MPa⋅s corresponding to an indicator stress of 12.5 MPa, see Fig. 6). 
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Figure 11: Evolution of the von Mises stress (Eq. 14, top), the equivalent deviatoric strain 

(Eq. 15, middle) and the hydrostatic strain (Eq. 16, bottom) within an exemplary section of 

the PPGF30 structure (cut through the model) under the highest investigated stress level of 40 

MPa at t = 600 s (left) and t = 6·105 s (right).
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Table 1: Characteristic values of the investigated LFT structures. Details can be found in 

[22,23]. 

Material Fiber vol. 

frac. [%] 

Dimensions 

[mm³] 

Element 

count 

Fiber 

count 

Total fiber 

length [mm] 

Mean weighted 

fiber length [mm] 

PPGF10 3.82 50 x 2.75 x 0.125 7.39⋅106 1633 3056 10.1 

PPGF20 8.03 50 x 2.75 x 0.099 8.73⋅106 2605 5048 9.4 

PPGF30 13.15 50 x 1.5 x 0.134 9.66⋅106 3256 6067 8.1 

 

Table 2: Parameters of the nonlinear viscoelastic model of the polypropylene matrix and the 

linear elastic model of the glass fibers. 

Parameter Value Unit Description 

E0 1250 MPa Instantaneous elastic stiffness (elastic branch of the 

Maxwell element) 

E1 560 - 2310  

(stress dependent) 

MPa Elastic branch of the Kelvin-Voigt element, 

stress dependency described by Eq.11 

η0 2.93⋅108 - 2.26⋅109 

(stress dependent) 

MPa⋅s Viscous branch of the Maxwell element, 

stress dependency described by Eq. 12 

η1 1.15⋅107 - 5.88⋅107 

(stress dependent) 

MPa⋅s Viscous branch of the Kelvin-Voigt element, 

stress dependency described by Eq. 13 

ν 0.35 - Poisson’s ratio of the matrix 

nmax 15 - Maximum number of Newton iterations (Eq. A.13) 

ctol 10-6 - Tolerance / convergence criterion (Eq. A.12) 

Ef 7.2⋅104 MPa Elastic modulus of the fibers 

νf 0.22 - Poisson’s ratio of the fibers 

 

 


