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Abstract: Long fiber reinforced thermoplastics (LFT) appeabé promising for the cost
efficient manufacture of lightweight structuresibjection or compression molding. One
major concern persists in their inherent tendenay¢ep due to continuous sliding within the
thermoplastic matrix. To enable the applicatiohlBT components under significant static
loads, a profound knowledge of the interactionsveen the viscoelastic matrix and the
nonwoven, discontinuous fiber reinforcement is ssaey. In the present work, these
interactions are investigated by micromechanicatdielement simulations of computer
generated LFT structures. The viscoelastic progedf the neat matrix are experimentally
characterized and implemented into the microstratimodels by an appropriate constitutive
law in the form of a four parameter Burgers mo&ahce a distinct degree of nonlinearity is
observed, the applied model is extended to themeanl viscoelastic regime and found to be
suitable for an accurate reproduction of the expenital data. Micromechanical creep
simulations which incorporate the viscoelastic imdiehavior are then validated against
creep experiments on LFT specimens of three mateniants with a different fiber fraction
(PPGF10, PPGF20 and PPGF30), which are loaded amdefifferent orientations at
multiple stress levels. The model predictions slaogyood agreement to the experimental
results in particular for the lower and medium sdrievels, whereas a slightly increased error
can be observed for the highest stress levelsh8wgpplication of different variants of the

viscoelastic matrix model it is shown that the efffeof nonlinearity on the effective creep



behavior of the composite are quite considerabfally, the evolution of stress and strain
within the microstructure during the creep perigdisualized by contour plots at different
times. The redistribution of stress from the vidastic matrix to the elastic fibers can clearly

be observed.
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1. Introduction

Thermoplastic matrix composites like long fibemferced thermoplastics (LFT) gain
increasing importance for the manufacturing oftiggight structures in automotive industry.
They represent a good tradeoff between the medigmecformance and costs due to their
suitability for mass production by technologieslikjection or compression molding and
their sufficiently high fiber length, resulting amhigh mass related strength [1]. Furthermore,
they are recyclable due to the reversibility of slefidification process of the thermoplastic
matrix. However, a limitation toward the applicatim structural parts under significant static
loads persists due to their inherent tendencydepdeformation. This results from the load
driven, continuous sliding of the polymeric chagrighe thermoplastic matrix. The lack of a
side-chain network, as compared to thermosetssigansible for the more pronounced creep.
Whereas the viscoelastic properties of monolithermoplastic materials were studied to a
rather high degree, only few works have been repavh fiber reinforced thermoplastics.
This applies in particular to discontinuous fibeinforced composites with a nonwoven
structure. To enable their application in strudtpeats, a profound understanding of the
microstructural interactions between the thermdjamsatrix and the fibers is of crucial

importance.



A variety of viscoelastic models has been propasele literature. Most of them were
originally developed to describe the mechanicableir of bulk polymeric materials, but can
also be applied to composites or - within a miecregtiral model - to describe the viscoelastic
phase of the composite. These include the cladgiaaivell and Kelvin-Voigt elements and
their combination to the four parameter Burgers ehddsually, Boltzmann’s superposition
principle in the form of convolution integrals ig@ied for their mathematical description,
yielding the memory function, restricted to lin@&coelastic behavior in its original form.
Fundamental contributions toward the extensionotdinear viscoelasticity by the
introduction of nonlinearizing functions into thenvolution integral were made by
Leaderman [2]. Schapery [3] proposed a more geaedhthermodynamically consistent
form of Leaderman’s modified superposition prineipihich is widely accepted today.
Findleyet al.[4] followed a different route by describing theé-dependent deformation by
a power law, which is restricted to a single retepratime in contrast to the Schapery model.
A variety of finite element implementations of sunbdels and their application to various
loading scenarios is presented in the literatuae aihd Bakker [5] and Haj-Ali and Muliana
[6] described the implementation of the SchaperdehcAn excellent overview and
comparison of multiple models with respect to tlmeimerical implementation was given by
Woldekidan [7].

A general review of the creep behavior of polymeaitnm composites (PMCs) and related
experimental and modeling techniques to chara&ehiem was published by Scettal.[8].
Macroscopic material laws applicable to fiber renoked plastics were presented by Lou and
Schapery [9]. Grecet al.[10] studied the flexural creep of a thermoplasbposite with a
woven structure and applied an analytical modelescribe the experimental findings. The
influence of a varying fiber volume fraction on ttreep behavior of polypropylene-based
composites has been examined by Houshyat.[11]. Howard and Hollaway [12]

characterized a randomly oriented glass fiber yggibr composite and applied the Schapery
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model to describe the experimental data. All tregg@roaches are restricted to the
macroscopic level - the micromechanical interactiaithin the heterogeneous materials are
not considered.

Micromechanical methods which determine the effectiomposite properties based on the
constituent behavior are widely used to predictelastic properties. In contrast, relatively
few works extend the classical homogenization s@setm viscoelasticity. Such methods
usually include a viscoelastic description of thatmx, the fibers or the interface to represent
their time-dependent behavior. Analytical approadiie the Mori-Tanaka scheme [13] offer
the advantage of very low computing times but regsignificant simplifications with respect
to the geometry and the interactions of the indisi The analytical approaches were found
to be sufficiently accurate to describe the timgejpendent, elastic properties of LFTs with a
distinct fiber orientation and length distributifiidt,15,16]. However, this is not necessarily
the case for their viscoelastic behavior. Finiement (FE) models which explicitly depict the
microstructure in the form of representative volugtements (RVES) overcome these
simplifications, but they usually require massieenputational resources. Brinson and Lin
[17] used the Mori-Tanaka approach to model a campof viscoelastic phases by the
application of the elastic-viscoelastic correspamdeprinciple and compared it to FE
simulations of a unidirectional composite. Bringomd Knauss [18] analyzed multiphase,
viscoelastic solids by FE simulations. Matzenmilled Gerlach [19] presented a
micromechanical model of viscoelastic compositas wompliant fiber-matrix bonding based
on the generalized method of cells. Viscoelastierphases were also treated by Fisher and
Brinson [20]. The nonlinear viscoelastic behaviblaminated composites was examined by
Haj-Ali and Muliana [21] by combining the Schapengdel to describe the matrix and a four-
cell micromodel to account for the unidirectioredgstic fibers.

Specific micromechanical models to describe themkmehavior of a nonwoven fiber

structure with a distinct fiber orientation anddémdistribution are currently not available.
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Therefore, this work extends a microstructural mdéaoleLFTs [22,23] to include a

viscoelastic description of the matrix to examitsecreep behavior. For this purpose, artificial
LFT structures of three materials with differemiter fractions are generated under compliance
of experimentally measured microstructural datzerfiorientation distribution, fiber length
distribution and fiber volume fraction (Section 3. The viscoelastic properties of the matrix
are determined on substance specimens of the ragaknBased on the experimental

findings, an appropriate constitutive law in thenficof a four parameter Burgers model is
implemented into the FE software and calibratethercreep tests (Section 3.2). Since the
experimental results reveal a strong degree ofimeaity, the model is extended to the
nonlinear viscoelastic regime. Finally, creep siaiohs are performed on the computer
generated LFT microstructures using the viscoalas#trix model. The predictions are
compared to experimental creep tests on LFT spexsnmeSection 4.1. To visualize the
effects of the nonlinear matrix behavior on theetive creep curves of the composite,
different variants of the viscoelastic constitutiaes are applied and compared. Moreover, the
evolution of microscopic stress and strain is gddiy contour plots of the microstructure at

different times (Section 4.2). Potential applica®f our model are discussed in Section 4.3.

2. LFT material and experimental methods

The investigated LFT material consists of a polggtene matrix DPOW® C711-70RNpand
glass fibersTufRov® 457k Three material variants PPGF10, PPGF20 and PO GES
produced with different fiber weight fractions d¥,120 and 30 wt-% (corresponding fiber
volume fractions of 3.8, 8.2 and 13.2 vol-%). PPGBRAd PPGF20 are of special interest for
structural application and commonly used by themative industry, whereas PPGF10 is
rather of academic interest to provide additiorsahdor the model validation. Plates with
dimensions of 400 x 400 x 3 mMmwere manufactured by compression molding as destri

by Henninget al.[24]. The LFT strand as it came out of the extruslas positioned



asymmetrically in the mold. The material flow duyithe compression of the mold generates
a rather high degree of fiber orientation everywhmitside the strand inlay position. This so-
called flow region of the plate was investigatedhe following. For mechanical testing,
tensile specimens were machined in 0° (flow dimgtand 90° (transverse direction) relative
to the mean orientation of the fibers. Micro congsubmographic (CT) measurements were
conducted to determine the fiber orientation disition of the material which is required for
the microstructural models. The fiber length disition was determined by analysis of
incinerated specimens. More details of these pruaesdare given in previous contributions
[22,23]. To measure the mechanical properties@hdat polypropylene, matrix substance
specimens were manufactured by injection compraessigding. To ensure the mechanical
compatibility between the matrix specimens andntlagrix within the LFT samples, the same
coupling agents and stabilizers as used in theuBtess were added for the matrix
substance specimens.

Creep tests on matrix and LFT specimens (geometgrding taDIN EN ISO 3167 with a
reduced section of 70 x 10 x 3 mm3) were perforatestandard climate (23 °C temperature,
50 % relative humidity). At the beginning of thetbperiod of 610° s, a load defined by the
product of specimen cross section and desired rairsiress level was applied in the form of
a lead weight. For the lower stress levels up kP&, the load was directly attached to the
specimen clamps, whereas a lever mechanism witinarhission ratio of 10 was used for the
higher stress levels. The strain was measuredasithstrorn® 2620-604axial clip-on
extensometer with a gauge length of 50 mm. Uptimea of 3600 s, a recording interval of

1 s was chosen for data acquisition. Thereaftertouhe total testing time of BY s - the

recording interval was increased to 600 s.

3. Modeling

3.1. Computer generation of LFT structures
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The applied structure generation procedure suit@bléne reproduction of the complex
nonwoven fiber structure of the LFT material isad®ed in [22,23]. An alternative voxel
discretization of the same structures is preseintézb]. A stack of straight fibers with dilute
concentration is generated according to the degiiathr fiber orientation and length
distribution. The fibers are then compressed i aifulation until a realistic value of fiber
volume fraction is reached. A contact formulatioayents interpenetration of adjacent fibers
and fiber waviness develops in analogy to the mastufing process of the real material
produced by compression molding. Finally, the dekxl fibers are placed in a cuboid volume
and the remaining gaps are filled with a tetrahletiiesh representing the matrix.

A close-up of the mesh for an exemplary structsirghiown in Fig. 1. A small section of a
computer generated fiber structure is comparedstcton of the corresponding CT scan in
Fig. 2 (left). A high degree of similarity can bleserved with respect to characteristic features
like fiber waviness and packing density. Howeviee, depicted sections are too small to fully
represent the measured fiber orientation. Theretheefiber orientation distributions
(probability density functions of the in-plane fiengles) of the computer generated structure
and the corresponding CT scan are compared ir2Kigght) for the complete analyzed
volume. For this purpose, the same image correlatiohnique based on the plugin
Directionality for ImageJ[26] was applied on two dimensional images ofattéicial

structure and the CT scan. The images were extrdgtequidistant cuts through the LFT
structure and the CT scan. The computer generaigetiges agree well with experimental
data and are therefore well suited for the micrdmadcal simulations. This said, it is noted
that the applied procedure represents a pragmaldoevgenerate a nonwoven fiber structure
and does not account for the complex physical nréshe which govern the evolution of the
microstructure during the compression molding pssda reality. Furthermore, it is worth
mentioning that even if the computer generatedsiras are based on statistical distributions

in the form of a fiber orientation and length distition, they cannot be referred to as a
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classical representative volume element (RVE) siheeseparation of scales is not possible
for the present material: The maximum fiber len@® mm) is not small compared to the
maximum dimensions of the volume element (50 mn{)rosome cases) of the whole part.
Further discussion and a study of the influenceanying dimensions of the structures can be
found in [23].

In this work, the creep behavior of the same stmest which were previously investigated
with respect to their elastic properties [22] isds¢d. These include the computer generated
microstructures for LFT materials with three di#fet fiber fractions (PPGF10, PPGF20 and
PPGF30, see Table 1). Time-independent, elastc ploperties (see Table 2) and a perfect
interface were assumed and viscoelastic behavittregbolypropylene matrix was

implemented into the simulations as described next.

3.2. Viscoelastic matrix model

3.2.1 Model choice

Motivated by the experimental findings (Section.3)2the Burgers model is considered as
the most realistic mathematical description ofviseoelastic behavior of the polypropylene
matrix. Due to its feature of a free dashpg Fig. 3), the viscous character of the model is
dominant and thus a stationary creep rate resitéisthe relaxation of the Kelvin-Voigt
element E; and/,). This corresponds to the assumption of a contiswshiding of the
polymeric chains under load. It is coupled to aeversible strain component which remains
during the recovery phase after unloading. Thegs@oon characteristics of amorphous or
semi-crystalline thermoplastics could also be olestfor the investigated polypropylene and
motivate the choice of the model. The experimemslilts described later also reveal a strong
nonlinearity of the creep curves as a functiontdss. It is therefore mandatory to extent the
Burgers model to the nonlinear viscoelastic regiArealternative would have been to fit the

Schapery model [3] to the experimental data. SiheeSchapery model is based on a
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generalized Maxwell model which does not featufieea dashpot, it is more appropriate to
model the response of thermosetting materialsisasissed by Brinson [27]. Therefore, the
Schapery model is less adequate for the thermaplasiypropylene matrix treated in this

work.

3.2.2 Model formulation and implementation
A general form of the one dimensional constituggeiation of the Burgers model can be
derived in the form of the differential equation

Ey Ey m\. M. ) . (2)
—a+(1 +—+—)a+—a=E £+ mné
No Ey 1o Eo ! !

with the elastic stiffness of the springs E; and the viscosity of the dashpais /71 (Fig. 3).
Eg. 1 can be solved under the boundary conditiamainstant stres% (corresponding to the
load case of creep). The time-dependent part, ddrast creep complian€Xt), can then be

separated:

8@)=06P£+~5+~—<1—e?j]=cmca) (2)

wherer = 1/ E; denotes the relaxation time of the Kelvin-Voigtraknt.
To describe more general loading scenarios, trepartemplianc€(t) can be combined with
an arbitrary load history by Boltzmann’s supergosifprinciple (also known as memory

function), resulting in the convolution integraltivithe time integration variabte

; (3)
dw:]aa—ﬂdm

0

In its original form, the superposition principleffers from the major restriction to linear
viscoelasticity (the creep response being indepgnafdoad).

For numerical implementation into a finite elem&amework, the memory function (Eq. 3)
is converted to an incremental form. It is thedorer necessary to integrate the strain

response over the complete load history, sincewrseve form can be derived in analogy to
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the work of Tayloret al.[28], where the strain of the Kelvin-Voigt elemésninherited from
the previous to the current time increment. Theamental approach is also advantageous for
the extension of the model to the nonlinear viszst@ regime, since the global nonlinear
behavior can be approximated by a series of setlmear time increments. To derive the
incremental form of the Burgers model, the totadistincremenfs™'is decomposed into an
elasticAc®, a viscous\s' and a viscoelastiis'® part as follows:

At = Ag® + Ag¥ + AeV® = Ao C(t) = Ac[CE(t) + CY(t) + CV¢(b)] (4)
Each componeni(t) is then transformed to its incremental folaft). The detailed derivation
can be found in the work of Woldekidan [7] andmsitbed here. The strain components in

incremental form are given by:

Ao 5
Ae® = E_ ( )
0
At Ao 6
ASV:n— O'(t—At)-}'?] ()
0
Ao [ At : 1 Ao —At (7)
AgVe = — — [e T —l]smh(t—At)———T[l—e T ]
E, E, At

wheres™(t-At) denotes the inherited strain of the Kelvin-Voilgneent from the previous

time increment and = 77,/ E; the relaxation time.

In the following, the incremental form of the limeascoelastic Burgers model (Eq. 4 - 7) is
generalized to three dimensions under the assumetisotropic behavior of the neat
polypropylene matrix within the composite. Therefahe one dimensional creep compliance
C(t) is decomposed into a shelaand a bulk compone& with a time-independent, constant

Poisson’s ratia/ :

J@) =21 +v)C() (8)
B(t) = 3(1 —2v)C(t) (9)
v = const. (20)
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These assumptions affect the viscoelastic resporse compressible in analogy to an elastic
solid and thus both the shear and the bulk comperadrihe viscoelastic deformation to be
time-dependent. According to Lai and Bakker [5kistreatment is justified for semi-
crystalline thermoplastics as the investigated pagylene.

The three dimensional, linear viscoelastic Burgeoslel in incremental form can be
expressed by the combination of Eq. 8 - 10 with£&q7. For this purpose, the strain tensor is
decomposed into deviatoric and volumetric compas)dot which the time-dependent
response can then be calculated separately undicamn ofJ(t) andB(t), respectively (Eq.

8 - 9). More details and the fully three dimensiaguations can be found in the appendix
and the work of Woldekidan [7]. Due to its recuesfermulation, a very efficient numerical
implementation is enabled and the calculation efdhrrent stress incremehy is possible

with the knowledge of the current strain incremg(t) and the inherited straif"(t-At) from
the previous time increment, stored in history alales at each integration point.

Motivated by the experimental findings on matrijstance specimens (Section 3.2.3), where
a nonlinear viscoelastic response and thus, axdistress-dependence of the Burgers
parameters is observed, the model has to be extéadke nonlinear viscoelastic regime.
This is done in analogy to the modified superposiprinciple, introduced by Leaderman [2].
The nonlinear viscoelastic behavior is treated mizaky by the consideration of stress-
dependent model paramet&ss o andss, which are implicitly calculated for each time
incrementAt. The material subroutine needs therefore to benebetd by a Newton-Raphson
procedure to identify the model parameters as showig. 4: First, a trial stress increment
Aoy is calculated based on the model parameters gfrtheous time increment. The stress-
dependent model parameters are then updated wattridi stress, (as detailed in Section

3.2.3). Using the updated model parameters, thkestiess incremeiitoy, is transformed to a

trial strain incremenh g, A residual strain incremetis.s= A&, - Acbetween the trial strain
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incrementAg, and thestrain incremenf\, provided by the FE software, can then be formed.
If the Eulerian norm ofA&gesis larger than a specified tolerance, it is mizied by a iterative
Newton-Raphson loop by choosing a new trial stiegementAs; and repeating the
procedure until the norm of the residual straimententAgesis sufficiently small. In order to
provide a scalar equivalent stress to describsttiess-dependence of the model parameters,
the von Mises stresgq(Eq.14) is calculated from the trial stress tengpfo(t-At)+Aoy. The

stress-dependent model paramekgrs;o andy; are then derived based on the empirical

functions specified in Section 3.2.3.

3.2.3 Model calibration

The model parameters as applied for the microstracsimulations presented in Section 4
are summarized in Table 2. To calibrate the mddelcreep function (Eq. 2) was fitted to the
experimental data of creep-recovery experimentsatnix substance specimens (Fig. 5) for
each individual stress level by application of askesquares procedure. In this way, a set of
Burgers parameteis, E1, 10, /71 was identified for each discrete stress levek temarkable
that the shape of the experimental curves (Figah)be reproduced by the model to a very
high level of accuracy and that the irreversibtaistcomponent of the recovery period is well
captured (as discussed in Section 3.2.1). It idextithat the slope of the creep curves
increases significantly with stress, which indisagéestrong nonlinear viscoelastic behavior.
This nonlinearity is accounted for by empirical étions which mimic a stress dependence of
the model parameters. Three of the four Burgerameatersk;, /7, /71) show a distinct stress
dependence, whereas the instantaneous elastiessH, was found to be independent of
stress and assigned to a constant vall® ©f1250 MPa. To visualize this dependency, the
values ofEy, 770, 71 as determined by the creep-recovery experimentglatied against the

stress in Fig. 6 (symbols). The stress dependentée described by empirical functions (Eq.
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11-13) which are shown as lines in the same figlinese equations were used to calculate
the stress-dependent model parameters in the adatakiroutine (Section 3.2.2, Fig. 4):
E; = 3292.34 MPa - 0.86788 ea/MPa (11)
no = 3.0602 - 10°MPa-s — 1.11126 - 10°MPa - s - In(geq/MPa — 0.4369)  (12)
17, = 538979 - 10’MPa - s — 1.78557 - 107 MPa - s - In(0q/MPa — 1.73967)  (13)
where the equivalent stresg, refers to the unidirectional stress for the cregperiments and

the von Mises stress (Eq. 14) for the three dinmradimodel, respectively.

4. Results and discussion

4.1 Effective behavior / macroscopic creep curves

Three variants of the microstructural model, feata different fiber fraction (PPGF10,
PPGF20, PPGF30, see Table 1) were analyzed bynfidadions under application of the
viscoelastic matrix model. Their unidirectional eperesponse was compared to
corresponding experiments on LFT specimens to &aithe modeling approach. A period of
6010° s (approximately one week) was chosen which istidal to the time period of the
calibration experiments on matrix substance spawni®ection 3.2.3). Two different
orientations with the load direction parallel te ftow direction (0°) and transverse to the
flow direction (90°) were studied. The stress lewgere chosen in the range up to
approximately 50 % of the quasi static strengthefmch material variant and orientation. The
results are shown in Fig. 7 - 9. Overall, a gooctagent between the experiments and the
simulations is observed. The maximum deviation @sthy within the range of tolerance of
the strain measurement device of approximately@h@@rain. For the lower and medium
stress levels (PPGF10: 3.3 and 10 MPa in 0°, 2.8 MPO0° load direction, Fig. 7 / PPGF20:
10 and 20 MPa in 0°, 5 MPa in 90° load directiog, B / PPGF30: 15 and 25 MPa in 0°,

5 MPa in 90° load direction, Fig. 9) the deviatlmetween simulations and experiments is
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particularly low and also the almost constant cre@ of the simulations in the range of
2010° to 610’ s fits well to the experimental results. For tighlest stress levels (PPGF10:

15 MPa in 0°, 5 MPa in 90° load direction, Fig. FFGF20: 30 MPa in 0°, 7.5 MPa in 90°
load direction, Fig. 8 / PPGF30: 40 MPa in 0°, MBa in 90° load direction, Fig. 9), the error
of the predictions is slightly increased: In partiz, the creep rate abovB@ s is
overestimated by the simulations. Possibly, a racoeirate calibration of the viscoelastic
matrix model at higher stresses would be need@atttease the precision, e.g. by evaluation
of more experimental data and a finer incrementadicthe stress levels (e.g. increments of
0.5 to 1 MPa instead of the current value of 2.5alv8ee Fig. 5). Another reason could be the
presence of plastic deformation within the mattikigher stress levels, which is not captured
by the purely viscoelastic model, even if all invgated stress levels are significantly below
the macroscopic yield strength for each materiagbwd In 90° load direction, the
microstructures are not expected to be represeatdtie to the drastically reduced
dimensions in transverse direction (PPGF30: 1.5-AGF20 & PPGF10: 2.75 mm, see
Table 1) compared to the flow or longitudinal dtres (50 mm for all materials). Thus, the
structures do not represent the fiber length distion (with a maximum fiber length of

50 mm) adequately in this direction (90°) and sieci of the models is lost. To address this
issue, an additional set of LFT structures whiadwoiporate a much larger fraction of the fiber
length distribution in transverse direction woukdriecessary.

The effects of the nonlinearity of the polypropyenatrix on the effective creep behavior of
the composite were studied by comparing simulatedcurves for different variants of the
matrix model and an exemplary structure (PPGF30d&t direction, 40 MPa stress) in Fig.
10. The nonlinear model (stress dependent parasp&gr 11-13) is compared to the linear

model (constant parameters) which was fed withhtgkest and lowest values féy, 770 and

n of the investigated range (Fig. 6, Table 2), yiedda lower and upper boundary curve. It
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can be seen that the difference between the boydares is quite large and that the
nonlinear model clearly shows the best agreemehttive experimental data. It is thus
concluded that a linear viscoelastic model caneatfplied with reasonable accuracy since

the effects of the nonlinear viscoelastic behagifdhe matrix are significant.

4.2 Evolution of stress and strain fields at the naroscopic level

The evolution of the stresses and strains withénntiicrostructure of an exemplary structure
of PPGF30, 0° load direction and the highest ingattd stress level of 40 MPa is shown in
Fig. 11 for two points of time (600 s anfl@ s), which represent the beginning of the creep
period shortly after the application of the loa8@6) and at an advanced statd@s). To
visualize the redistribution of stress and straithin the microstructures, the following

equivalent measures are introduced and assigrtbe tlor scale of the contour plots:

; (14)
Oeq = E alfj oji
, 1 3 (15)
fea Ty J2 U
1 (16)
&y = §5kk

whereoeq denotes the von Mises equivalent stre'sgthe ecuivalent deviatoric strain (in
analogy to the von Mises form) angthe hydrostatic straim’; ande’jj are the deviatoric
stress and strain tensor, respectively.

Fig. 11 (top) shows the stress redistribution wttie composite material during creep. With
increasing time, creep in the matrix decreasdsats carrying capability and therefore, the
load is subsequently shifted to the time-indepetddastic fibers. At the beginning of the
creep period, the maximum von Mises stress withénfilbers amounts to approximately
1150 MPa (maximum value of the color scale). Atehd of the creep period ofi§® s, the

maximum value has significantly increased to appnaxely 2000 MPa, which is still below
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the nominal fracture stress of the glass fibergppiroximately 2500 MPa. This agrees well to
the experimental observations, where no creepuracould be observed even for the highest
investigated stress level of 40 MPa (Fig. 9 left).

In Fig. 11 (middle and bottom), the deviatoric amtLimetric strain components of the matrix
are visualized by respective measures (Eq. 15 @ndtis remarkable that the equivalent
deviatoric strain (Fig. 11 middle, scale maximun®di5) is significantly larger than the
equivalent volumetric (hydrostatic) strain (Figdditom, scale maximum of 0.01) anywhere
and to any time within the investigated structlieis indicates that although a volumetric
component of time-dependent deformation is accalfaeby the viscoelastic matrix model,

the dominant deformation mechanism within the nstmactures is governed by shear.

4.3 Potential applications of the model

As mentioned in the introduction, models to descthe time-dependent deformation of LFTs
are mandatory to enable the application of the nat@ components under significant static
loads. The proposed approach offers the advantagéhie time dependent matrix properties
can be experimentally characterized on neat substgmecimens which feature isotropic
behavior. Thus, the number of calibration experiteean be significantly reduced since no
dependence on the load direction exists. The inflaef the fibers on the effective creep
behavior is then computed by the FE model. Instéakperimental data of the
microstructure, arbitrary orientation states (&@n process simulation at multiple positions
within a part) could be fed into the model. Howewbe proposed model appears not to be
suitable for integrative simulation of componemtghe near future due to the high
computation timednstead, a multiple step procedure seems morestiealn which our

model can provide additional data for the developinaed the calibration of novel effective
creep laws. Within this framework, our model mayasa powerful tool for the virtual

development of materials accounting properly fbeasential microstructural features. Based
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on the homogenization results obtained therebyiampate macroscopic constitutive
equations to describe the material can be derimdduaed in structural analyses. In contrast,
mean field homogenization schemes based on Eskalbiution (like the Mori-Tanaka
model [13]) cannot describe a variation of streghiwthe matrix phase. However, our work
shows that such variations need to be accuratgtyicad since the matrix material shows a
distinct nonlinear viscoelastic behavior and tHea$ on the creep behavior are quite
considerable (see Fig. 10). This is also the ddseal damage mechanisms are of interest. In
the future, it is therefore necessary to develop aealytical approaches which account for
such effects. These models can then be preciskiyatad on microstructural models like
ours. Another application could be the use of tieraperature superposition principles: As
discussed by Brinson [29], a global thermorheolalyjoccomplex behavior of the composite
can be decomposed into thermorheologically simpbesps by the application of a
micromechanical FE model. Thus, superposition tieglas like the time-temperature
correspondence principle can be applied to thettoasts. In contrast, no such treatment is

justified at the homogenized effective level.

5. Conclusions

A micromechanical finite element model to descthrecreep behavior of long fiber
reinforced thermoplastic was proposed, accountinghfeir characteristic, discontinuous
nonwoven fiber structure, using a viscoelastic tiaris/e law to describe the time-dependent
behavior of the matrix. It was shown that the crieepavior on the effective composite level
can be accurately described based on the knowlefdfe constituent properties and the
microstructural characteristics. A classical foargmeter Burgers model was chosen to
describe the creep behavior of the matrix and etidlol with creep experiments on matrix
substance specimens. Motivated by the experiménthhgs which reveal a high degree of

nonlinearity within the viscoelastic range, the mogas modified to account for these effects
17



by empirical functions which mimic the stress degence of the model parameters. The
effects of the nonlinearity of the matrix on theep behavior of the composite were found to
be significant. The evolution of stresses and s$raiithin the microstructure was visualized
by respective contour plots. The hydrostatic andaderic components of strain were
guantified by effective measures. It was found thatdeviatoric components play the major
role in the time-dependent deformation of the matshereas the effects of the hydrostatic

components are rather weak.
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7. Appendix

In the following, the three dimensional, increméifvam of the nonlinear Burgers model is
specified in analogy to the work of Woldekidan [Fr this purpose, the Voigt form of the
stress and strain tensors is chosen in favor tmgact notation (vectors, tensors and
matrices are printed in bold, up to second ordéower case, above in upper case):

0 = [011 033 033 033 013 042 (A1)

£ = [&1 &35 £33 2653 2613 2£45] (A.2)
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According to Eq. 8-10, the elastic parts of the Mabk E; and Kelvin-VoigtE; elements (see

Fig. 3 for a definition of the indices) are decorsgad into shealy, J; and bulkBy, B,

components
21 +v) (A.3)
Ji = E,
3(1-2v) (A.4)
Bj=— "~
E;

with a constant (time independent) Poisson’s raths discussed in Section 3.2.2. The time-
dependent shedr(t) and bulkB’(t) compliances correspond to the viscoelastic respohs

the Burgers model and are defined as

1 —-At/Tt _ 1 A5

]*(t)ZEl]o + /1 (1 +%>l (A5)
—-At/t _

B = %[30 +B, (1 Mol 1))1 (A6)

wherer =1,/E; denotes the relaxation time of the Kelvin-Voigtret. The constitutive

equation to calculate the trial stress incremetties given by

1 1 AtT1 1 (A7)

Aoy, = [—M* +—=M ]As——[—M**+—M a(t)
tr ]* d B* b 770 ]* d B* b

1 , 1 .
— (e7AtT —1) []— MM (¢ — At) + ﬁMbs{,“h(t — At)
where the second ter&xt/rq[...] a(t) represents the viscous response due to thel&sgpot
of the Maxwell model and the strain componesit§t-At) refer to the inherited part from the

previous time increment (Eq. A.15 and A.16).

The coupling matrix for the deviatoric componemi,(M ¢, M~ gandM ™ ) is defined as

2/3 —1/3 -1/3 0 0 0] (A.8)
~1/3 2/3 -1/3 0 0 0
M, =|"1/3 -1/3 2/3 0 0 0
00 0 a 0 0
00 0 0 a 0
00 0 0 0 al
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with a=2 for Mg, a=1 forM g, a=3/2 forM”~ ganda=1/2 forM™ 4. For the bulk components, it

takes the form of

1/3 1/3 1/3 0 0 0] (A.9)
1/3 1/3 1/3 0 0 0
M, =|1/3 1/3 1/3 0 0 0
0 0 0 00 0
00 0 00 0
0 0 0 0 0 o

For each call of the material subroutine, the statéss increment is initially calculated under
application of the stress dependent model parasi¥tern,, /7; from the last time increment
(an arbitrary value within the range specified ig./6 can be chosen for the first time
increment of the simulation step). The trial sti@ssement is then added to the old value of
stressa(t)=o(t-4At)+Aa; and the equivalent stress fa(t) is formed according to Eq. 14.
Based on the equivalent stregg the model parameteks, 7, /1 are updated by Eq. 11-13
and the values af (t) andB’(t) are recalculated by Eqg. A.5 and A.6. To applyNiesvton
procedure and to calculate a residual as spedifiety. 4, the trial stress incremegr,

needs to be converted into a trial strain increm¥pusing the updated valuesbft) and

B'(t)
; ) At (A.10)
Agy = [J"M4 + B*My]Aoy, + n—MXa(t)
0
+ (e727 — 1)[Myel™ (t — At) + Myep™ (t — AL)]
whereM4 andMy, are specified by Eq. A.8 and A.9 and
L 00 0 0 0 (A.11)
[0 1. 0 0 0 O
{0 01 0 0 O
M<=10 0 0 3 0 0
lO 0 0 0 3 OJ
0 0 0 0 0 3

A residual straif\ges=A&-A€ is formed by substraction of the strain increnggwen by the

FE softwareAég from the trial strain increment. A convergenceerium is defined as
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l|Agres|l
llAg]]

(A.12)

S 10_6 - CtOl

where []] denotes the Euclidean norm. A maximumgf=15 Newton iterations is

performed to compute the updated trial stress inereAg;,"™*

(otherwise, the procedure is
aborted)

1 1 A.13
Aot = Aot — (]—* My + EMb) Ag, o ( )

At the end of the material subroutine, the strasseiment which is returned to the FE solver
is updated with the latest value of the trial nesrement

Ao = Ao}, (A.14)
The strain components of the Kelvin-Voigt elemee¢dto be saved in state variables. For
this purpose, they are updated according to

1T

: . A.15
ghnh(t) = e‘At/Tshnh(t —At) + AL (1-e /" )MyAa ( :

| | BT A.16
gmh() = e=At/Tginh(p _ Af) 4+ 3_21: (1-e /" M,Ac (419

The current values of the model paramekarsy, /71 are saved in additional state variables.
Finally, the tangential matrix is updated with

dAe 1 . 1 . (A.17)
dAae 4 T peTP
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9. Figures and Tables
Figure 1: Close-up of the finite element mesh of a PPGF3®(%8I-%) LFT structure. Full
details on the applied microstructure generati@c@dure are described in [22,23].
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Figure 2: A small section of a computer generated fiber stimec(left, top) of PPGF30
compared to a CT scan (left, bottom) and probahilénsity functions of the planar fiber

orientation distributions of the computer generatedcture compared to the CT scan (right).
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Figure 3: Rheological notation of the viscoelastic Burgerdeio
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Figure 4: Flowchart of the nonlinear viscoelastic Burgers si@s implemented by a user

material subroutine.
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Figure 5: Creep-recovery experiments on matrix substancarapes under varying stress

levels from 2.5 to 12.5 MPa to calibrate the nagdinviscoelastic Burgers model.
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Figure 6: Stress-dependent Burgers paramdigyg), ands; and fit functions (Eq. 11 - 13).
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Figure 7: Creep curves of PPGF10 (3.8 vol-%) under varyingsstlevels and two different

orientations (0 and 90° relative to flow direction)
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Figure 8: Creep curves of PPGF20 (8.1 vol-%) under varyingsstlevels and two different

orientations (0 and 90° relative to flow direction)
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Figure 9: Creep curves of PPGF30 (13.2 vol-%) under varyiress levels and two different

orientations (0 and 90° relative to flow direction)
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Figure 10: The effects of nonlinearity demonstrated for PPGE3.2 vol-%), 0° load

direction and a stress level of 40 MPa by compar@ddhe resulting creep curves for

different variants of the matrix model. The nonéinenodel (stress-dependent parameters, Eq.
11-13) is compared to two boundary curves of thedr model (constant parameters, lower
boundaryE;=2310 MPa/,=2.2610° MPas, /7,=5.8810’ MPas corresponding to an

indicator stress of 2.5 MPa / upper bound&y560 MPa,7,=2.9310° MPas, 7,=1.1510’

MPas corresponding to an indicator stress of 12.5 MPa,Fig. 6).
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Figure 11: Evolution of the von Mises stress (Eq. 14, topg, élquivalent deviatoric strain
(Eq. 15, middle) and the hydrostatic strain (Eq.dditom) within an exemplary section of
the PPGF30 structure (cut through the model) utidehighest investigated stress level of 40

MPa at t = 600 s (left) and t =18’ s (right).
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Table 1: Characteristic values of the investigated LFT dtres. Details can be found in

[22,23].
Material |Fiber vol. | Dimensions Element | Fiber Total fiber Mean weighted
frac. [%] | [mm?3] count count | length [mm] | fiber length [mm]
PPGF10 | 3.82 50 x 2.75 x 0.1257.391¢° | 1633 3056 10.1
PPGF20 | 8.03 50 x 2.75 x 0.0998.731¢° | 2605 5048 9.4
PPGF30 | 13.15 50 x 1.5 x 0.134 9.6610° | 3256 6067 8.1

Table 2: Parameters of the nonlinear viscoelastic moddh@fblypropylene matrix and the

linear elastic model of the glass fibers.

Parameter | Value Unit Description
Eo 1250 MPa Instantaneous elastic stiffness (elaséinch of the
Maxwell element)

E1 560 - 2310 MPa Elastic branch of the Kelvin-Voigt element,
(stress dependent) stress dependency described by Eq.11

o 2.9310% - 2.2610° MPds | Viscous branch of the Maxwell element,
(stress dependent) stress dependency described by Eq. 12

mn 1.1510" - 5.8810° MPas | Viscous branch of the Kelvin-Voigt element,
(stress dependent) stress dependency described by Eq. 13

vV 0.35 - Poisson'’s ratio of the matrix

Nmax 15 - Maximum number of Newton iterations (Eq. A.13

Ctol 10° - Tolerance / convergence criterion (Eqg. A.12)

E 7.210" MPa | Elastic modulus of the fibers

Vs 0.22 - Poisson’s ratio of the fibers
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