
8th Int. Symp. on Measurement and Quality Control in Production (ISMQC) 
Erlangen, Germany, Oct. 12–15, 2004 
Session: B2 Coordinate Measuring Machines 2 
 
“Automatic Feature Identification in 3-D Measuring Data” 
S.J. Ahn, I. Effenberger and L. Bolboaca 
Fraunhofer IPA, Stuttgart, Germany 
 
 

 

 



8th Int. Symp. on Measurement and Quality Control in Production, Erlangen, Germany, Oct. 12–15, 2004 

Automatic Feature Identification in 3-D Measuring Data 

S.J. Ahn, I. Effenberger, L.I. Bolboaca 

Fraunhofer Institute for Manufacturing Engineering and Automation (IPA), Stuttgart, Germany 

 

Abstract:  
The automatic feature identification in 3-D measuring data is of great interest in many 
application fields e.g. metrology, computer vision or reverse engineering. In this paper we 
present a software tool for the fully automatic object detection and parameter estimation in 
unordered incomplete and even noisy point clouds with a large number of points. The 
software consists of three interactive modules each for model selection, point segmentation 
and model fitting, in which our newly developed algorithms for orthogonal distance fitting 
(ODF) play an important role. The ODF algorithms estimate the model parameters by 
minimizing the square sum of the shortest distances between the model feature and the 
measurement points. The local quadric surface fitted through ODF to a randomly touched 
small initial patch of the point cloud provides the necessary initial information for the overall 
procedures of model selection, point segmentation and model fitting. The performance of the 
presented software tool will be demonstrated on different point clouds. 

 

1. Introduction  
A fully automatic and generally applicable solution to Parametric model recovery (PMR) 
might be realized only through a very sophisticated hardware and software technique 
analyzing all the available information on the objects, such as point cloud, object database, 
object surface color and texture. In this paper we strive to increase the accuracy and the 
automation degree of PMR by exploiting the immediately available information on the objects 
namely the 3-D point cloud. 

If we restrict our interest field to the industrial environment, we find out that a large portion of 
industrial objects including manufacturing facilities and work pieces can be modeled as exact 
features, i.e. planes, spheres, cylinders or cones [6]. Thus, even when we limit the range of 
our interest model features to geometric primitives, there is still a large demand on the fully 
automatic identification of these features in fields like reverse engineering, robotics or 
digitizing plants.  

 
Real Object 

Application:  
robotics, reverse 
engineering, digitizing 
plants 

Object description: 
size, form, position and 
rotation parameters 

3D point cloud 
unstructured, 

incomplete 

3D measurement: 
photogrammetry, laser, 
CT,  CMM  

Data processing : 
segmentation, 
curve/surface fitting 

 
Figure 1: Parametric Model Recovery of real objects via 3-D point cloud 



B2-2 

Under the circumstances mentioned above, we have developed a software tool for the fully 
automatic extraction of exact features from point cloud, based on our previous work on a 
semi-automatic solution [2]. The functionality of the software tool is analogous to that of the 
human intelligence searching for the objects of exact feature in a dark room environment. In 
this paper we describe in detail the algorithmic techniques implemented in our software tool. 
Beside the experimental result given in this paper, the performance of the software tool on a 
variety of point clouds generated by different 3-D measuring techniques is demonstrated.  

 

2. Parametric Model Recovery 

Real Object, Point Cloud and Model Feature 
Before the algorithmic details of the software tool are described we like to survey the 
conditions under which the parametric model recovery (PMR) from point cloud takes place 
(Fig. 1). To bear in mind is:  

-  The point cloud is subject to measurement errors; 

-  The model feature represents only roughly the true surface of the real object; 

-  The model parameters are to be estimated from the point cloud, of which results are 
subject to the applied estimation method. 

This means all the three passages between the three parties (real object, point cloud, and 
model feature) cause inevitably errors in PMR comprised of 3-D measurement, model 
selection and parameter estimation. In order to layout the feasible technical solution to this 
inconvenient situation, we review the very fact of PMR. 

 

Model Features for Real Object 
For representing an object surface we can consider two ways namely a facet model or an 
analytic model. The facet model consists of a set of polygons. Although the facet model is 
suitable for object visualization and lithography, it does not provide applications with the 
information on shape, size, position, and orientation of the object. The analytic model 
describes an object surface through mathematical formulas with an appropriate set of model 
parameters, which is adopted by our software tool. 

There are three description forms of the analytic model (curve/surface), i.e., explicit, implicit 
and parametric form [3], [4], [8]. In general, diverse applications handling dimensional models 
or objects use the implicit or the parametric form. In addition, many applications, e.g. the bin-
picking and the obstacle-avoidance task in robotics, involve describing the real objects in 
terms of shape, size, position, and orientation. Thus, we group the model parameters of a 
curve/surface into form ag, position ap, and rotation parameters ar as follows: 



 =

),(
0),(

g

g

uax
xaf

 
: implicit feature 

: parametric feature 
(1) 

,)(or o,,o
1

,, XXRxXxRX −=+= −
κϕωκϕω  (2) 

.),,,,,,,,(),,( ooo1
T
r

T
p

T
g

T κϕωZYXaa lK=≡ aaaa  (3) 

The form parameters represent the shape and size of the canonical model feature (1) 
defined in model coordinate frame xyz and are invariant to the rigid body motion (2) of the 
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model feature in reference coordinate frame XYZ. Our software tool extracts the model 
features of exact feature from the given point cloud and estimates their model parameters in 
terms of form, position, and rotation parameters (3). 

 

3-D Point Cloud 
The optical 3-D measuring devices available on the market can generate millions of dense 3-
D points in a few seconds [10]. However, the point cloud is usually not dense enough to 
cover the details of the object surface. This means we should hold back from under-sampling 
the point cloud. And, it is generally assumed that the point cloud is not ordered. Furthermore, 
because of the limited accessibility of the measuring devices to the object surface, the point 
cloud covers only partially the object surface. On the other hand, with the point cloud 
generated by CT technology enjoying a full accessibility to the object surface, the 
segmentation of the closely neighboring object surfaces is a challenging task. Our software 
tool can handle the unordered incomplete and complex point cloud with a large number of 
data points. 

A measurement point is the probable observation of an unknown nearest point on the object 
surface to the measurement point [1]. The distance between the measurement point and the 
unknown object point is the true measurement error. In practice, because the true object 
surface is unknown, it is substituted by the associating model feature [6] and the true 
measurement error is substituted by the minimum distance (geometric distance, Euclidean 
distance) between the model feature and the measurement point. This error definition solely 
outlines the algorithmic functionalities which should be implemented in the software tool for a 
reliable and accurate PMR from point cloud. The minimum distance should be used not only 
as the decision measure between the inliers and the outliers of the model feature 
(segmentation), but also as the error measure to be minimized by the estimation of model 
parameters (model fitting) [1], [6]. Although the calculation and minimization of the minimum 
distances are computationally expensive, they are of vital importance to a reliable and 
accurate PMR from point cloud. 

 

Orthogonal Distance Fitting 
We briefly describe the orthogonal distance fitting (ODF) that estimates the model 
parameters by minimizing the square sum of the error distances between the model feature 
and the given points. Interested readers are referred to [3] for the complete description of the 
ODF algorithms that estimate the model parameters in terms of form, position, and rotation 
parameter (1)–(3). 

 
Fig. 2: Interpretation of the orthogonal distance fitting as an energy minimization problem 
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The ODF task can be interpreted as an energy minimization problem illustrated in Fig. 2, with 
which the energy (cost) function is defined as: 

,or)()( TT2
0

TT2
0 PdPdXXPPXX ≡′−′−≡ σσ  (4) 

where the vectors XT=(XT
1, . . . , XT

m) and X'T=(X'T1 , . . . , X'Tm) are the coordinate row vectors 
of the m given points and of the m corresponding points on the model feature, respectively. 
dT=(d1, . . . , dm) is the distance row vector with di = ||XT

i - X'Ti||. The diagonal elements of the 
weighting matrix PTP correspond to the spring constants {ki}m

i=1 in Fig. 2. To minimize the 
cost functions (4) the ODF algorithm minimizes not only the square sum but also every single 
distance {di}m

i=1 between the model feature and the given points. Because the minimum 
distances {di}m

i=1 are nonlinear to the model parameters, the ODF task is inherently a 
nonlinear minimization problem that must be solved through iteration. The computing cost 
and the memory space usage of the ODF algorithms in [3] are proportional to the number of 
data points, thus the algorithms are suitable for processing a massive point cloud. By 
investigating the resulting cost (4) and the parameter covariance matrix, we can test the 
overall performance and reliability of the model selection and model fitting.  

 

3. Fully Automatic Feature Extraction 
For a given set of points the feature extraction procedure consists of two substantial sessions 
of segmentation and model fitting, respectively (Fig. 1). At this point we confront a chicken-
and-egg dilemma. Namely, without the geometric information on the model feature we 
cannot decide between the inliers and the outliers of the model feature (segmentation), and 
reversely, without the inliers we cannot get the geometric information on the model feature 
(model fitting). To resolve this information deadlock, either of the two sides should provide 
the seed information triggering the other side. 

 

Model Selection and Initial Model Parameters 
We obtain the geometric seed information on the model feature from a small patch of point 
cloud, which is comparable with touching an object then guessing its geometry in a dark 
room environment: 

1. Cut (touch) a small initial patch from the point cloud. 

2. Fit a plane to the patch through the moment method (non-iterative linear ODF) [7]. 

3. Fit a quadric surface to the patch through ODF starting from the plane parameters. 

4. Get the orthogonal footing point on the surface from the mass center of the patch. 

5. Calculate the surface normal, principal curvatures and axes at the footing point [5]. 

6. Choose the model type for the patch by analyzing the signed curvature radii (Fig. 3). 

7. Derive the initial values for size, center, and orientation of the chosen model feature 
from the surface normal, curvature radii and principal axes at the footing point. 

8. Fit the initial model feature to the initial small patch through ODF starting from the 
model parameters derived in the last step. 

The classification of the local surface types (Fig. 3a [5]) according to the local curvatures 
(including the mean and Gaussian curvatures) of a curved surface fitted to a small point 
patch is known in literature [9]. Instead of the curvatures, our software tool employs the 
curvature radii which correspond to the feature radius (Fig. 3b).  During the above procedure, 
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  (a) 

 
 (b) 

Fig. 3: Classification of local surface types according to the two principal curvatures k1 and 
k2. (a) Flat for plane, elliptic for sphere/torus, parabolic for cylinder/cone, and hyperbolic for 
torus [5]; (b) Curvature radius map for local surface types (r1 = 1/k1, r2 = 1/k2) 
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Figure 4: “Touch & Clear” in point cloud for automatic feature extraction 
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the ODF algorithm plays an important role in determining the parameters of the intermediate 
quadric surface and of the initial model feature from the small initial patch. Other fitting 
algorithms than the ODF algorithm, which minimize some error measures other than the 
minimum distance, are prone to fail to fit a model feature to a small point patch. 

 

Overall Process and Experimental Result 
Once the model type and parameters are initialized, the interaction loop between the 
segmentation and the model fitting can be triggered. As noted in Sect. 2, the minimum 
distance of a given point to the model feature should be used as the decision measure 
whether a point is inlier point of the model feature. However, with regard to a specific model 
feature, the large part of a point cloud is occupied by plain outliers, causing a high computing 
cost of unnecessarily calculating the minimum distances. Through utilizing the parameter 
grouping (1)–(3) and the properties of the implicit model description, we can efficiently 
eliminate the plain outliers from the point cloud. The overall process of the automatic feature 
extraction can be described below (see Fig. 4): 

1. Initialize the model feature (model type, size, position, and orientation). 

2. Put a domain box enclosing the interest volume of the model feature in xyz frame. 

3. Stamp all the points lying outside the domain box as plain outlier. 

4. Except for the inlier candidates lying between the two (inner and outer) iso-features of 
the model feature, stamp all points as plain outlier. 

5. Evaluate the rms distance of the inlier candidates to the model feature. 

6. Stamp only the inlier candidates as inlier, of which distances to the model feature are 
not larger than 2–3 times the rms distance. 

7. Update the model parameters through ODF to the inliers. 

8. If necessary, repeat from the second step (’Refining’ in Fig. 4). 

9. Save the model parameters, and, clear the inliers from the point cloud. 

10. Repeat from the first step until no more dense point patch can be found (touched). 

As an experimental example for the automatic feature extraction from point cloud, we applied 
our software tool to a point cloud generated by X-ray CT (Fig. 5a). All the relevant model 
features could be extracted fully automatically and correctly (Fig. 5b). 

 

4. Summary  
We have developed a software tool for the fully automatic extraction of geometric primitives 
from unordered incomplete and error-contaminated 3-D point clouds. The necessary 
information for model selection, segmentation, and model fitting could be obtained from an 
local quadric surface fitted to a small initial patch of the point cloud. The geometric error 
measure is of vital importance to both the segmentation and the model fitting, although the 
required computing cost is relatively high. In order to save the computing cost of the 
segmentation, we exploited the parameter grouping and the properties of the implicit model 
description. We demonstrated the outstanding performance of the software tool on a set of 
real measurement points generated by X-ray CT. 
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Figure 6: Feature extraction from a point cloud. (a) Unordered and incomplete point cloud of 
X-ray CT technology; (b) Fully automatically extracted exact features 
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