
Vol. 49

Michail Anastasopoulos

Evolution Control for
Software Product Lines:
An Automation Layer over
Con uration ana ement

Editor-in-Chief: Prof. Dr. Dieter Rombach
Editorial Board: Prof. Dr. Frank Bomarius

Prof. Dr. Peter Liggesmeyer
Prof. Dr. Dieter Rombach

FRAUNHOFER VERLAG

P

eses in
 E

erim
en

tal So
ftw

are En
in

eerin

PhD Theses in Experimental Software Engineering
Volume 49

Editor-in-Chief: Prof. Dr. Dieter Rombach

Editorial Board: Prof. Dr. Frank Bomarius
Prof. Dr. Peter Liggesmeyer
Prof. Dr. Dieter Rombach

Zugl.: Kaiserslautern, Univ., Diss., 2013

Printing:
Mediendienstleistungen des
Fraunhofer-Informationszentrum Raum und Bau IRB, Stuttgart

Printed on acid-free and chlorine-free bleached paper.

All rights reserved; no part of this publication may be translated, reproduced, stored in a
retrieval system, or transmitted in any form or by any means, electronic, mechanical,
photocopying, recording, or otherwise, without the written permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. The quotation of those designations in whatever way does not
imply the conclusion that the use of those designations is legal without the consent of the
owner of the trademark.

© by Fraunhofer Verlag, 2014
ISBN (Print): 978-3-8396-0702-2
Fraunhofer-Informationszentrum Raum und Bau IRB
Postfach 800469, 70504 Stuttgart
Nobelstraße 12, 70569 Stuttgart
Telefon +49 711 9 70 - 25 00
Telefax +49 711 9 70 - 25 08
E-Mail verlag@fraunhofer.de
URL http://verlag.fraunhofer.de

Evolution Control for
Software Product Lines:

An Automation Layer over
Configuration Management

Beim Fachbereich Informatik
der Technischen Universität Kaiserslautern
zur Verleihung des akademischen Grades

Doktor der Ingenieurwissenschaften (Dr. Ing.)

genehmigte Dissertation
von

Dipl. Math. Michail Anastasopoulos

Fraunhofer-Institut für Experimentelles Software Engineering
(Fraunhofer IESE)

Kaiserslautern

Berichterstatter: Prof. Dr. Dieter Rombach
 Prof. Dr. Ulrich Eisenecker

Dekan: Prof. Dr. Arnd Poetzsch-Heffter

Tag der Wissenschaftlichen Aussprache: 29.11.2013

D 386

To Caroline

Abstract

 v

Abstract

Modern software organizations increasingly aim at the development of
individualized customer solutions in a cost-effective way. Product line
engineering is a paradigm on the rise that addresses this goal and
achieves true order of magnitude improvements in efficiency, quality and
time-to-market.

In order to achieve these improvements product line engineering builds
on strategic software reuse. In this regard the development lifecycle is
decomposed in two major parallel running activities: family and
application engineering. The former develops software assets for reuse
across the product line while the latter applies reusable assets in the
context of particular products. In order to keep the evolution of a
product line under control family and application engineering must be
continuously coordinated.

Software Configuration Management (SCM) is an established and
mature technology for evolution control of software systems. However
traditional SCM does not address explicitly the particular needs of
product line engineering. When a product line evolves the number of
product line members and variations increase significantly. In terms of
scalability SCM systems can deal with the increased complexity.
However, the execution of multiple configuration management
operations becomes necessary in order to carry out evolution control
scenarios within a product line.

Therefore, users of SCM systems can easily get overwhelmed while
trying to make use of SCM mechanisms in order to keep product line
evolution under control. In this context a serious amount of effort is
often spent in practice to synchronize changes between family and
application engineering. In some cases the synchronization is even
neglected as the additional burden is not bearable. This in turn leads to
unnecessary duplication of work and other serious problems. In the long
term an organization possibly faces significant deficiencies in the timely
delivery of software products.

Overall problem addressed by this thesis is that software
configuration management requires significant effort, when used for the
coordination of product line engineering processes.

Abstract

 vi

Main Goal of this thesis is to reduce the software configuration
management effort for the coordination of product line engineering
processes.

This thesis introduces a virtual layer – called Customization Layer in the
following – that bridges the gap between product line engineering and
SCM. The layer offers a set of specialized evolution control operations
for product lines, while conventional SCM operations are used behind
the scenes and in an automated way.

The idea of the Customization Layer is accompanied by a method that
enables the specification of the product line at hand and the selection of
the necessary evolution control scenarios. Subsequently the method
provides guidelines for the implementation of the scenarios based on the
configuration management system available within an organization.

The approach has been validated through structural and usability
evaluation, experimental studies as well as partially through a case study
with an industrial organization. The results have shown potential for
significant improvements in terms of efficiency and effectiveness of
evolution control.

Acknowledgements

 vii

Acknowledgements

The process of writing a PhD is a long-term endeavor that requires solid
foundations, proper guidance, great power of endurance and naturally hard
work. Many people have contributed to these four requirements and I would like
to take this opportunity to thank them.

I want to start with Dirk Muthig who was leading the department of product line
architectures at Fraunhofer IESE when I started with this PhD. He was the one
with the initial idea on the Customization Layer that was concretized during
several fruitful discussions. Dirk helped a lot in overcoming the initial inertia and
in getting this work on the right track.

Next, I would to like to refer to the exemplary supervision of this thesis by
Professor Dieter Rombach and by Professor Ulrich Eisenecker. Both have guided
me through this work and gave valuable feedback as the thesis was evolving.
Especially Professor Eisenecker joined the process at a later stage, yet showed a
great interest and provided constant and proficient support in spite of the
distance and in spite of repeated postponements. I would also like to
acknowledge the contribution of Martin Becker the later head of the product line
department at IESE. Martin helped in the finalization of this thesis by providing
significant organizational support. Actually, all members of the product line
department have helped me in the one or the other way. I want to give special
mention to my former colleagues Jens Knodel, Slawomir Duszynski, Adeline Silva-
Schäfer, Thiago Burgos and Vander Alves for their continuous assistance.

Regarding endurance and hard work I have to give all credits to my wife
Caroline. She was there to take care of our children, when I was working
overhours, she gave me all necessary faith during the difficult phases and she
was patient when things were taking longer than originally planned. Without her
this work would never get done and I am really grateful to her for that.

Table of Contents

 ix

Table of Contents

Abstract .. v

Acknowledgements .. vii

Table of Contents ... ix

List of Figures .. xiii

List of Tables .. xvii

1 Introduction .. 1
1.1 Software Reuse .. 2
1.2 Product Line Engineering .. 5
1.3 Problem Definition ... 7

1.3.1 Problem, Goals and Hypotheses 9
1.3.2 Research Questions .. 10
1.3.3 Basic Configuration Management Concepts 12
1.3.4 Computer Theoretical Contribution 13
1.3.5 Practical Contribution .. 14

1.4 Importance of the Problem... 20
1.5 Solution Approach ... 22
1.6 Methodological Approach .. 23
1.7 Output of this thesis ... 24
1.8 Outline of this thesis .. 25
1.9 Research Context ... 26

2 Related Work .. 27
2.1 Nature of product line evolution .. 28

2.1.1 A model of system families .. 28
2.1.2 Variability Specification Language 30
2.1.3 Product Line Evolution Scenarios 31
2.1.4 Process dynamics ... 33

2.2 Implementation of product line evolution 35
2.2.1 Molhado SPL .. 36
2.2.2 Product Line Asset Manager .. 36
2.2.3 Configuration Management .. 38
2.2.4 The KobrA method .. 45
2.2.5 Software Frameworks .. 46

2.3 Discussion .. 47
2.4 Section summary .. 50

Table of Contents

 x

3 Conceptual Model of Evolution Control 51
3.1 Introduction to control theory and feedback 51
3.2 Feedback in product line engineering 52
3.3 Introduction to control loops .. 53
3.4 Control loops and configuration management 54

3.4.1 Change management .. 55
3.4.2 Version management ... 55
3.4.3 Status accounting .. 55

3.5 Control loops in product line engineering 56
3.6 Types of product lines .. 57

3.6.1 Individual (or independent) Products 57
3.6.2 Product Generations .. 58
3.6.3 Standard Application ... 58
3.6.4 Professional or Customizable Application 58
3.6.5 Standardized Infrastructure .. 59
3.6.6 Platform ... 59
3.6.7 Product Population .. 59
3.6.8 Software Product Line .. 60
3.6.9 Hierarchical Product Lines .. 60
3.6.10 Production Lines .. 61
3.6.11 Adaptive Product ... 61

3.7 Conceptual model .. 61
3.7.1 Validation of instance models .. 63
3.7.2 Code Generation ... 64

3.8 Refined Conceptual Model ... 64
3.9 Role of the conceptual model ... 66
3.10 Section summary .. 68

4 Data Model of Evolution Control .. 69
4.1 Basic Asset Model .. 69

4.1.1 Core Assets .. 70
4.1.2 Instances and product-specifics 71

4.2 Asset State Model .. 73
4.2.1 Core asset states .. 74
4.2.2 Product asset states ... 77
4.2.3 Identified operations .. 79

4.3 Role of the Basic Asset Model .. 80
4.4 Variability Management ... 81

4.4.1 Connection to Basic Asset Model 84
4.4.2 Connecting the Basic Asset Model to Decision Models ... 85

4.5 Section summary .. 87

5 Process Model of Evolution Control ... 89
5.1 Evolution Control Scenarios for Family Engineering 90

5.1.1 Creation of core asset change requests 90
5.1.2 Scenarios for version management of core assets........... 92

5.2 Evolution Control Scenarios for Application Engineering 95

Table of Contents

 xi

5.2.1 Creation of product asset change requests 96
5.2.2 Scenarios for Version Management of product assets 96

5.3 Common Status Accounting Scenarios 99
5.4 Change impact analysis .. 103

5.4.1 Comparing core assets with instances 103
5.4.2 Formal model for impact analysis 105
5.4.3 Change impact analysis activities 107

5.5 Interaction with Variability Management 112
5.5.1 Core asset creation .. 112
5.5.2 Instance creation .. 113
5.5.3 Further interactions .. 115

5.6 Section summary .. 115

6 Interaction with Configuration Management 117
6.1 Implementation Guidelines... 118

6.1.1 Guidelines for version management scenarios 118
6.1.2 Guidelines for change management scenarios 127
6.1.3 Guidelines for status accounting scenarios 130

6.2 CMS functionality and the Customization Layer 131
6.2.1 Main Functionality Blocks ... 131
6.2.2 Structuring ... 131
6.2.3 Controlling .. 132
6.2.4 Versioning ... 133
6.2.5 Construction .. 135
6.2.6 Accounting and Auditing ... 137
6.2.7 Team ... 137
6.2.8 Process .. 138

6.3 Section summary .. 138

7 A Customization Layer framework ... 139
7.1 Customization Layer ... 140
7.2 User Interface ... 141
7.3 Command Parser ... 143
7.4 Section summary .. 144

8 Adoption process ... 145
8.1 Characterization ... 146
8.2 Goal definition ... 150
8.3 Process selection .. 151
8.4 Execution ... 151
8.5 Analyze experiences ... 152
8.6 Prepare experiences for reuse ... 153
8.7 Section Summary ... 153

9 Validation .. 155
9.1 Structural evaluation .. 156

9.1.1 Core Decision: Layering.. 156

List of Figures

 xii

9.1.2 Data Model .. 158
9.1.3 Process Model .. 160

9.2 Usability evaluation .. 161
9.2.1 Planning... 161
9.2.2 Tasks .. 163
9.2.3 Interface descriptions ... 164
9.2.4 Analysis .. 165

9.3 Experimental validation .. 170
9.3.1 Customization Layer .. 170
9.3.2 Configuration Management... 171
9.3.3 Experiment 1 ... 175
9.3.4 Experiment 2 ... 184

9.4 Case Study ... 187
9.4.1 Setting ... 188
9.4.2 Implementation and experiences 189
9.4.3 Results and recommendations...................................... 190

9.5 Section summary .. 190

10 Conclusion ... 191
10.1 Research Questions .. 191
10.2 Validation ... 192
10.3 Limitations ... 192
10.4 Future Work ... 194

References .. 197

Appendix .. 209

List of Figures

 xiii

List of Figures

Figure 1: Software reuse activities and interrelations 3
Figure 2: Synchronization in single-system and product line

engineering... 9
Figure 3: Refining the goals of this thesis ... 10
Figure 4: Lifetime of an asset in terms of branches and versions 13
Figure 5: Example product line .. 15
Figure 6: Example Instantiation .. 15
Figure 7: Traceability through branching .. 16
Figure 8: Basic product line engineering coordination 17
Figure 9: Branching in open-source development (graph obtained

through mining of the GCC version history) 18
Figure 10: Merging in open source development (graph obtained

through mining of the GCC version history) 19
Figure 11: Customization Layer concept .. 23
Figure 12: Components leading to a Customization Layer 25
Figure 13: Model of product lines according to Belady and Merlin 29
Figure 14: Matrix of permitted product line members according to

Belady and Merlin ... 30
Figure 15: Representation of software reuse with process dynamics 34
Figure 16: PLAM operations .. 38
Figure 17: Configuration with build management 39
Figure 18: Voodoo version management approach 41
Figure 19: Closed loop feedback ... 52
Figure 20: Closed loop in Product Line Engineering 52
Figure 21: Control loop ... 53
Figure 22: Mapping control loop concepts to configuration

management .. 54
Figure 23: Control loops in product line engineering 56
Figure 24: Conceptual model of evolution control 62
Figure 25: Conceptual model (Xtext-based) ... 62
Figure 26: Refined conceptual model (Processes) 65
Figure 27: Refined conceptual model (Family Engineering) 66
Figure 28: Refined conceptual model (Application Engineering) 66
Figure 29: Example application of the conceptual model 67
Figure 30: Types of assets and change requests 69
Figure 31: Core assets ... 71
Figure 32: Instance and product-specific assets 72
Figure 33: Core Asset integration .. 74
Figure 34: Core Asset Release .. 75
Figure 35: Core Asset reuse monitor .. 75
Figure 36: Core Asset change management .. 76

List of Figures

 xiv

Figure 37: Product asset characterization ... 77
Figure 38: Rebasing instances .. 78
Figure 39: Operations identified through state models......................... 80
Figure 40: Role of the asset model in the Customization Layer 81
Figure 41: Decision meta-model and relation to basic asset model 86
Figure 42: createCoreAssetChangeRequest scenario 91
Figure 43: createCoreAsset scenario .. 92
Figure 44: removeCoreAsset scenario .. 94
Figure 45: modifyCoreAsset scenario ... 94
Figure 46: integrateCoreAsset scenario .. 95
Figure 47: createProductAssetChangeRequest scenario 96
Figure 48: createProductAsset scenario .. 96
Figure 49: removeProductAsset scenario .. 98
Figure 50: modifyProductAsset scenario .. 99
Figure 51: rebaseProductAsset scenario ... 99
Figure 52: showChangeRequests scenario ... 100
Figure 53: showCoreAsset scenario ... 100
Figure 54: showCoreAssetInstances scenario 101
Figure 55: showCoreAssetChanges scenario 101
Figure 56: showProductAssets scenario ... 102
Figure 57: showInstanceCoreAssets scenario 102
Figure 58: showProductAssetChanges scenario 103
Figure 59: Reactive analysis of core asset changes 108
Figure 60: Proactive analysis of core asset changes 109
Figure 61: Reactive analysis of product asset changes 111
Figure 62: Proactive analysis of product asset changes 112
Figure 63: Interactions between Evolution Control and Variability

Management (core asset creation) 113
Figure 64: Interactions between Evolution Control and Variability

Management (instance creation) 114
Figure 65: Main CMS functionality blocks .. 131
Figure 66: Continuous integration paradigm adapted from [Duv07] .. 136
Figure 67: Customization Layer prototype screenshot 139
Figure 68: Framework structure ... 140
Figure 69: User interface classes and dependencies 142
Figure 70: Command parser classes and dependencies 143
Figure 71: Steps of the Quality Improvement Paradigm (QIP) 145
Figure 72: Product Line Type Decision Tree .. 147
Figure 73: Adopting a Customization Layer (steps 1 to 3) 151
Figure 74: Experimental V-Model of this thesis 155
Figure 75: Usability Evaluation / Actions per Task 166
Figure 76: Usability Evaluation / Cognitive Walkthrough Questions 168
Figure 77: Usability Evaluation: Efficiency results 169
Figure 78: Customization Layer of the experiment 171
Figure 79: SVNConnector implementation ... 174
Figure 80: Average time for task execution (Experiment 1)................. 179
Figure 81: Times per Group and Role ... 180

List of Figures

 xv

Figure 82: Times per Group and Task .. 181
Figure 83: Versions and Branches produced over time 182
Figure 84: Influence of experience to efficiency 184
Figure 85: Summary results of Experiment 2 185
Figure 86: Experiment 2 task times without outliers 186
Figure 87: Customization Layer of the case study 188

List of Tables

 xvii

List of Tables

Table 1: PLE survey: Participant classification 21
Table 2: PLE survey results .. 21
Table 3: Requirements to evolution control solutions 28
Table 4: Categorization of evolution control related work 48
Table 5: Related work characterization ... 49
Table 6: Types of core asset instantiation .. 73
Table 7: Variability management approaches.................................... 84
Table 8: Population of core asset attributes 93
Table 9: Population of core asset instance attributes 98
Table 10: createCoreAsset guideline ... 118
Table 11: createProductAsset guideline .. 120
Table 12: removeCoreAsset guideline ... 122
Table 13: removeProductAsset guideline .. 123
Table 14: modifyCoreAsset guideline ... 124
Table 15: modifyProductAsset guideline ... 125
Table 16: integrateCoreAsset guideline .. 126
Table 17: rebaseProductAsset guideline .. 126
Table 18: createCoreAssetChangeRequest guideline 127
Table 19: createProductAssetChangeRequest guideline 129
Table 20: Main evolution control goals and sample refinement 149
Table 21: Usability Evaluation / experience profiles 162
Table 22: Usability Evaluation / Group assignments 164
Table 23: Usability Evaluation / Unnecessary actions in CL group 167
Table 24: Experiment variables ... 176
Table 25: Arrangement of students .. 177
Table 26: Experiment tasks ... 177
Table 27: Distribution of student experience..................................... 183
Table 28: Evaluation based on UTAUT .. 187

 Introduction

 1

1 Introduction

A computer-based system is a collection of components – both hardware
and software – organized to accomplish a specific function or set of
functions [IEEE610.12]. From the time when the microchip has been
invented until today the role of software became more prominent in
computer-based systems. This is due to the increasing amount of
functionality that can be realized only with software in a cost-effective
way.

In the lifetime of a system the complexity of the constituent software
parts continuously grows. This phenomenon has been first observed in
the seventies by Manny Lehman who formulated the laws of software
evolution [Leh80]. In particular, the 2nd law on increasing system
complexity states that: “As an evolving program is continually changed,
its complexity, reflecting deteriorating structure, increases unless work is
done to maintain or reduce it.” As elucidated in [Leh78], the complexity
grows because changes in software primarily aim at economic gain
which is achieved by enhancing a system at the lowest cost possible.

As shown in further studies, continuous system enhancement primarily
involves expanding and customizing the system to new requirements
and secondly involves correcting errors [LST78][McK84]. Hence, in order
to maximize economic gain organizations must be able to continuously
address new requirements in an effective and efficient manner. Software
reuse is a promising solution into that direction. The software reuse
approach that was initially proposed in 1968 by McIlroy [Mc69] enables
the exploitation of existing and previously proven software assets during
the construction of new software.

In modern days agile development methods (e.g. Scrum [SB02] or
Extreme Programming [BA05]) also confirm that economic gain in terms
of customer satisfaction is the primary goal. In order to keep growing
complexity under control, agile methods propose the frequent
application of software refactoring. The latter aims at preserving the
function of a system while reducing its complexity. In this context
refactoring a system often leads to the introduction of software reuse.

Software reuse supports the efficient realization of new requirements
since effort can be saved through the usage of existing assets rather
than building assets from scratch. Usage in this context may entail
modification of existing assets to address new requirements but it might
also entail the as-is application of existing assets. Apart from efficiency,

Introduction

 2

reuse also supports effectiveness because the quality of reused assets has
been already assured. However it is necessary that efficiency and
effectiveness do not fade over time. This research problem, namely
assuring that the advantages of software reuse are maintained over
time, is addressed in the present thesis.

In the last decades, continuous system enhancement has been combined
with a shift away from mass production towards mass customization
[Pine93]. Mass production aims to reduce costs by improving the
production process so that many identical copies of the same product
can be produced in shorter time. Mass customization goes a step further
and enables to produce many customized products out of a product
portfolio.

To address mass customization production steps must entail a lower
amount of manual steps and a higher amount of pre-arranged or
automated steps. This in turn requires that a software engineering
capability is set-up accordingly. Product line engineering is a
development paradigm that enables setting-up this software engineering
capability for mass customization based on software reuse.

The present thesis focuses on product line engineering and aims at the
sustainability of the reuse-based software engineering capability, which
is created in a product line engineering context.

The following two subsections will introduce software reuse and product
line engineering in more detail.

1.1 Software Reuse

Definition 1. An asset is an item, such as design, specifications,
source code, documentation, test suites, manual procedures, etc., that
has been designed for use in multiple contexts [IEEE1517-2010]

Definition 2. Software reuse is the use of an asset in the solution of
different problems [IEEE1517-2010]

Software reuse can be generally divided into development for and to
development with reuse. The former provides the reusable assets while
the latter exploits them. Figure 1 shows a sequence of basic steps that
should be involved during software reuse. The dotted lines illustrate bi-
directional relations between development for and with reuse. These
relations can be bi-directional: Development for reuse delivers assets to
development with reuse. On the other hand development with reuse can
give feedback to development for reuse. The feedback can be helpful in
order to trace reuse cases and to evaluate the level of reusability.

 Introduction

 3

Definition 3. Reusability is the degree to which an asset can be used
in more than one software system, or in building other assets [IEEE1517-
2010])

Figure 1: Software reuse activities and interrelations

Development for reuse commences with a planning step that identifies
the domain in which the reusable assets will be employed as well as the
corresponding reuse requirements [Ra05]. Then in the specification step
the properties of the reusable assets are defined [La91]. This specification
is important since in enables identifying and selecting reusable assets
later. Subsequently the implementation including quality assurance of
reusable assets can start. Since those assets are to be employed in
various situations within a domain the implementation ought to be
generic enough to allow that. In other words the implementation should
be customizable for different situations. Typical example for a
customizable implementation is the provision of abstract software assets
that can be refined during the customization process.

In parallel to the implementation a modeling activity [Mut02] takes place
that describes which elements of a reusable asset can be customized and
how this can be done. This information may be contained in the
implementation as well. The modeling activity captures this information
explicitly. The resulting model describes customization options, effects as
well as possible interrelations and enables reusers to reason about them.
Put simply the modeling step creates a “configurator” for reusable
assets.

Development
for Reuse

Development
with Reuse

Configuration

Adaptation

Derivation

Planning Selection

Specification

Integration

Generic
Implementation

Modeling

Introduction

 4

Development with reuse starts with a selection of the reusable assets
based on their specification. The selection may involve identification as
well as evaluation of assets [Mut02]. After selection the configuration
step takes place [Be04]. This step is guided by the customization model
attached to every reusable asset. During configuration, reusers set-up
the reusable assets for the specific context in which they are to be
reused.

Identification, evaluation and configuration can be significantly
facilitated if a declarative approach is followed in the modeling step. The
declarative approach allows the representation of a reusable asset based
on its characteristics that can be selected (i.e. declared). In [CE00] a
declarative representation is compared to a procedural (or less direct
representation). For example, thread synchronization can be an optional
nonfunctional characteristic of an asset. With a declarative approach a
reuser can declare whether synchronization is necessary or not. The
declaration leads to the automated generation of the synchronization
algorithm. Without a declarative approach the reuse would have to
know internals of the asset and the synchronization algorithm in order
combine them.

Based on the configuration decisions the derivation step is performed
[Be04]. This step yields an instance of the respective reusable asset based
on the configuration decisions from the previous step. To this end
reusers follow instructions in the customization model that describe the
effects of customization decisions to the implementation of reusable
assets. Depending on the form of the customization model the
derivation step can be automated. After derivation the adaptation step
possibly takes place [Be04][Kr92]. Here implementations of reusable
assets are changed further – usually in a manual way – to reflect specific
needs that were not considered during development for reuse. At this
point it is crucial to carefully contrast local manual adaptation with a
global augmentation of the reusable asset. In the former case the
instance of the reusable asset is adapted locally, possible for one single
customer. In the latter case the original reusable asset is augmented and
the changes are available globally.

Finally the adapted asset is integrated with other assets in the respective
software system [Mut02]. The integration effort may depend on the
implementation technology employed during development for reuse
(e.g. usage of interfaces or other module interconnection mechanisms)
[Kr92].

Software reuse, however, does not succeed by default [Sch99]. There are
basic prerequisites in terms of technology, methods and processes and
there are also success factors like common understanding and
acceptance by people. Product line engineering is addressing the basic

 Introduction

 5

prerequisites by providing a well-defined and repeatable reuse-oriented
development process.

1.2 Product Line Engineering

Definition 4. Product Line Engineering (PLE) aims at the systematic
development of a set of similar software systems by understanding and
controlling their common and distinguishing characteristics [Mut02].

Product line engineering addresses the challenge of delivering software
solutions tailored to individual needs of customers or environments. In
such cases, organizations typically produce a series of related software
systems instead of one singular system. It is often the case that an
organization produces only one singular system. However, even in such
cases, the system is often customizable or available in various flavors.
Having only one static instance of a software system that addresses all
individual requirements is in many cases not sustainable from the
economic point of view.

Hence, product line engineering proposes to consider related software
systems or the different flavors of one singular system as a family of

systems, namely as a product line1. One of the well-known definitions of
the term product line is given in the following.

Definition 5. (A) A product line is a group of products that provide a
core benefit yet differ along attributes which affect the buying behavior
of different customer groups. (B) A product line is a group of products
that are closely related, either because they function in a similar manner,
are sold to the same customer groups, are marketed through the same
types of outlets or fall within given price ranges. [Wit96]

Product line engineering has proved to bring a series of benefits to
organizations [CN02]. However there are also serious challenges.
Definition 5B states that product line members share a common,
managed set of features. That means that a management process is
necessary that determines the common and varying features (or
characteristics in general) in a product line that have good potential to
satisfy the specific needs of a particular market segment or mission. This
activity is usually called scoping since it determines the scope of the
product line.

Product line engineering is based on strategic reuse as opposed to
opportunistic reuse which may be applied in single-system development.

1 In the context of this thesis the term product line will be often used as an

abbreviation for the term software product line

Introduction

 6

Strategic reuse requires that software is made reusable according to a
plan that, when followed, is expected to achieve clear improvements. In
a product line context the scoping activity delivers this plan. By following
this approach the challenge of continuous evolution can be better met
than with a traditional single system approach. There are various
scenarios where this can be illustrated. For example:

• A new requirement to a product line member can be realized
efficiently by reusing the realization of a similar requirement in
another member.

• Analyzing the impact of a change in a member of the family requires
less effort since each member has well defined boundaries within
the product line scope.

• Creating a new product line member as a customized product is
accelerated by the fact that the rules and processes of becoming a
product line member are clearly defined.

In order to implement the close relation between members of a product
line it is necessary to develop from a common set of core assets in a
prescribed way. The term core asset refers to assets that have been
made reusable in order to realize the common and varying characteristics
determined in the scoping phase.

Definition 6. Core asset is an asset or resource that is built to be used
in the production of more than one product in a software product line
[BC05]

Product line engineering involves the following parallel running
engineering processes:

• The development-for-reuse process that develops according to the
product line scope the core assets to be reused across the different
members of the product line in a prescribed way. In the context of
product line engineering this process is commonly named family
engineering.

• A set of product engineering processes (one process for each
member of the product line) that develop the assets which make up
the final products. Those assets are either core asset instances that
are created via the reuse of core assets (i.e. development for reuse)
or product-specific assets that are created in another way (i.e. from
scratch or third-party reuse). Core asset instances and product-
specific assets constitute product assets. In the context of product
line engineering this process is commonly named application
engineering.

 Introduction

 7

Definition 7. Core asset instance (or simply instance) is an asset or
resource that is created in the context of a product via software reuse of
one or more core assets

Definition 8. Product-specific asset is an asset that is created in the
context of a product without reusing core assets

Definition 9. Product asset is either a product-specific asset or a core
asset instance

Family and application engineering are not disconnected from each
other. On the contrary there is a series of interrelations (cf. Figure 1) that
must be continuously respected as a product line evolves. Hence, for a
product line engineering effort to be successful over time it is necessary
to coordinate and control the evolution within and between family and
application engineering.

Evolution control has been defined in [Mit06] as the situation in which
“change management from requirements onwards till feature
integration allows planning”. In the context of this thesis this definition
can be reformulated as follows:

Definition 10. Evolution control is the activity of monitoring and
evaluating changes that take place on assets of an ongoing engineering
process so that correcting actions can take place when necessary

This defines the overall focus of this thesis.

Focus of this thesis: Focus of the present thesis is the facilitation of
evolution control in a product line engineering process.

Restriction of this thesis: The focus is restricted on the engineering
processes in a product line, namely on family and application
engineering. Clearly the scoping process is also involved in product line
evolution. However this is not covered by the present thesis.

1.3 Problem Definition

Software configuration management is an indispensable discipline for
the coordination of activities in complex development processes and it is
mandatory component in several process improvement models like
CMMI [ACT01] or BOOTSTRAP [KSK+94]. Software configuration
management technology and experiences are available in most software
organizations. This know-how is indispensable and must be taken into
account when an organization is embarking on product line engineering.

Introduction

 8

As the term implies software configuration management is about
managing configurations. There are several official definitions of the
term configuration (including for example the definition in [IEEE610.12]).
However the time-dependent nature of a configuration as it applies to
software configuration management is often neglected. Therefore the
following definition is preferred.

Definition 11. A configuration is a set of software assets that have
been developed to coexist harmonically in the context of a system at a
specific point in time.

Based on the above definition software configuration management can
be defined as follows.

Definition 12. Software configuration management is the discipline of
identifying the configuration of a system at discrete points in time for
purposes of systematically controlling changes to this configuration and
maintaining the integrity and traceability of this configuration
throughout the system life cycle [BSH80]

Configuration management2 supports the evolution of software systems
by enabling and controlling parallelism and synchronization in joint
development efforts. In single-system development this usually entails
multiple engineers implementing multiple changes in a single software
system. Although configuration management provides mechanisms and
concepts, this kind of parallelism is generally considered difficult [Ba99].
If the means of the configuration management system are not used
properly, joint development efforts can easily get off hand. In a product
line context this situation becomes even more difficult since the
variability dimension has to be additionally considered. The latter
captures the various forms that core assets take within a product line as
they progress from the family to the application engineering phases.

Figure 2 illustrates the implications of the shift from single-system
engineering to product line engineering. While in the first case
synchronization between engineers is required only within a single
product, in the second case the synchronization links spread across the
variability dimension.

2 In the context of this thesis the term configuration management will be often used

as an abbreviation for the term software configuration management. This is not to
be confused with the traditional definition of configuration management that also
includes the management of hardware parts.

 Introduction

 9

Figure 2: Synchronization in single-system and product line engineering

Given this additional complexity, engineers can easily get overwhelmed
while trying to make proper use of the configuration management
mechanisms and concepts. For that reason a serious amount of effort is
often spent in practice for the synchronization of changes. In some cases
the synchronization is even neglected as the additional burden is not
bearable. This in turn leads to unnecessary duplication of work and other
serious problems regarding the maintainability of the system under
development und the team productivity.

1.3.1 Problem, Goals and Hypotheses

According to the above discussions the overall problem addressed by this
thesis and the corresponding research goal can be formulated as follows.

Overall problem addressed by this thesis is that software
configuration management requires significant effort, when used for the
coordination of product line engineering processes

Main Goal of this thesis is to reduce the software configuration
management effort for the coordination of product line engineering
processes.

The above goal can be refined according to the Goal-Question-Metric
method [BCD94] as shown in the following figure.

variability

changes

….….

engineers
….….

….….

changes

engineers

….….

synchronization

Single-System
Engineering

Product Line
Engineering

synchronization

synchronization

synchronization

Introduction

 10

Figure 3: Refining the goals of this thesis

The effort of configuration management can be expressed in terms of
efficiency and effectiveness. Efficiency can be characterized by means of
the work that is necessary to perform evolution control activities in a
product line. On the other hand, effectiveness is characterized in terms
of errors that are produced during evolution control. As shown in Figure
3 this thesis defines two main hypotheses:

H1: The solution proposed in this thesis enables to save a significant
amount of work units in product line evolution control compared to
conventional configuration management

H2: The solution proposed in this thesis enables to achieve significantly
less errors during product line evolution control compared to
conventional configuration management

1.3.2 Research Questions

In addition to the overall goal of this thesis (effort reduction) and the
two refined goals (i.e. increasing effectiveness and efficiency) described
above, a set of research questions are derived in this section. These
research questions characterize the context, to which the goals of this
thesis apply.

As described in [DB91] there is a series of significant software
configuration management questions that arise from the application of
software reuse.

• Traditional software configuration management mainly controls
changes at the subsystem level. This strategy may not be applicable
to a reuse repository which consists of reusable assets at various
granularity levels. Should software configuration management apply
change control procedures to all granularity levels in this case? If
not, to which ones and under what conditions?

• Successful software reuse requires assets to be reused numerous
times. Should software configuration management keep track of all

Reduce
software configuration

management effort
in a product line context

Overall Goal

Increase efficiency
of configuration

management

Refined Goal

Increase effectiveness
of configuration

management

Refined Goal

How much work
is necessary for

evolution control ?

Question

How many errors
are being made during

evolution control?

Question

30% less work
compared to conventional

configuration management

Hypothesis H1

30% less errors
compared to conventional

configuration management

Hypothesis H2

 Introduction

 11

reuse cases? This implies significant effort but on the other hand it is
necessary for the analysis and propagation of changes between
reusers and reuse repository.

• Reusable assets are characterized by the fact that they can be easily
specialized to various requirements. When a reusable asset is
changed it may be necessary to propagate the changes to all its
specializations. Equally when a specialization of a reusable asset
changes it may be necessary to propagate changes to its origin in
the reusable library. How can this change propagation take place
given the fact that reusable assets can significantly differ from
specializations?

• Software configuration management usually includes access and
ownership rules. They prescribe who has the right to perform
changes on what assets and what kind of changes. How should
these rules be defined in a reuse setting? Is a reusable asset owned
only by the developer who put it in the reuse repository? Or is it also
owned by the corresponding reusers? What kind of change
operations are allowed in every case?

The above discussion and the main goal of this thesis (section 1.3.1) lead
to the derivation of the following research questions for the present
thesis:

Research Question 1: How can configuration management deal with
core assets and core asset compositions at different granularity levels?
How does this relate to the instantiation of core assets?

Research Question 2: How can configuration management keep track
of numerous core asset instantiations and at the same time keep the
effort under control?

Research Question 3: How can software configuration management
avoid that the same changes are performed redundantly in product line
members.

As discussed in the beginning of section 1.3 configuration management
is an indispensable discipline for controlling the evolution of software
systems. Therefore, organizations embarking on product line engineering
typically have a configuration management system already in place. In
most cases considerable capital and effort have been invested for system
acquisition, set-up, customization and optimization. Ideally, such
investments should be preserved and utilized by a configuration
management solution for product lines. Moreover such a solution must
be able to operate with different configuration management systems in

Introduction

 12

order to be widely applicable. This leads to an additional research
question:

Research Question 4: How can we take advantage of existing
configuration management systems when addressing product line
evolution control?

1.3.3 Basic Configuration Management Concepts

In the upcoming sections 1.3.4 and 1.3.5 the theoretical and practical
reasons are explained, which justify the problem addressed in the
present thesis. To this end a series of additional configuration
management concepts are introduced in the following. The majority of
the definitions have been derived from the upcoming standard
[OSLC10].

Definition 13. A configuration item is a software asset under the
control of software configuration management.

Every configuration item undergoes various changes during its lifetime.
For the purpose of recording and reproducing changes configuration
management systems support the concept of versioning. Versions are
usually created to denote, to persistently store and to communicate
important steps in the lifetime of an asset.

Definition 14. A version is a resource representing the contents of a
configuration item a particular point in time.

When an asset is to be developed jointly within a group, the usage of
branches can be beneficial. Branches can be used to organize activities in
a joint development effort. Different tasks can be taken over by different
branches that run in parallel. Obviously, when this kind of parallelism is
enabled coordination between branches becomes necessary so that the
outcomes of the different parallel activities can be integrated.

Definition 15. A branch contains the consecutive versions of a
configuration item that haven been created in a specific context.

For example there may be branches containing the versions created by a
specific developer, the versions created during quality assurance or the
versions created during the adaptation of a reusable asset.

A branch is created off another branch. That means that the first version
of a configuration item in a branch is a copy of a previously existing
version in another branch of the same configuration item. An exception
constitutes the main branch (also called root branch or mainline) of an
item. In this case the first version represents the contents of the item,

 Introduction

 13

when it was first put under configuration management control.
Following picture illustrates the lifetime of a configuration item in terms
of branches and versions. The picture also shows relations between
branches in terms of branching off and integration activities. The picture
shows a directed acyclic graph, meaning that branches have always to
join the branches they have been created off. This is not always the case
in practice. There may be situations where branches do not join their
parent branches. This applies for example to permanent branches or to
throw-away prototype branches.

Figure 4: Lifetime of an asset in terms of branches and versions

1.3.4 Computer Theoretical Contribution

From the computer theoretical point of view there is a semantic gap
between product line engineering and software configuration
management. That means that concepts in the semantic domain of
product line engineering are fundamentally different than the
corresponding concepts in the semantic domain of software
configuration management. Therefore the usage of configuration
management for evolution control of a product line requires a mapping
between these two semantic domains. If configuration management is
seen as a programming language that helps to implement evolution
control, there may be patterns in this language that are particularly
useful in a product line context. Then, bridging the semantic gap
involves identifying these patterns and mapping them to higher level
product line operations.

As discussed in section 1.2 a product line operates on two types of
assets: core assets and product assets. The latter can be further broken
down to core asset instances – in short instances – namely assets created
by reusing core assets, and to product-specific assets created from

/ Branch

/ Branch

/ Branch X

X

branch
creation branch

creation

integration

integration
integration

Legend

Development Line

Version

Revision / Branch creation / Integration

X Branch end of life

integration

/ Branch

Introduction

 14

scratch or through third-party reuse. Moreover, in product line
engineering core assets must be associated with the instances that have
been derived from them. Ideally those associations should describe how
core assets are being reused.

Configuration management does not make a distinction between
different types of assets and operates on configuration items. That
means that configuration items must be used to manage core as well as
product-specific assets. On the other hand associations between core
and derived assets can be compared to the branch creation operation in
configuration management that relates a child branch to a parent
branch. However the semantics of branch creation is different than the
semantics of derivation [Mah95]. Branch creation means that temporal
parallelism is required while derivation implies software reuse.

Hence the theoretical contribution of this thesis can be defined as
follows:

Computer Theoretical Contribution of this Thesis: The computer
theoretical contribution of this thesis is to bridge the semantic gap
between product line engineering and software configuration
management.

1.3.5 Practical Contribution

In order to explain the practical problems that arise when standard
configuration management is used in a product line context an example
will be presented in the following.

The example is centered on the concept of a collection. In software
development collections are parts of libraries that provide mechanisms
for the storage and manipulation of objects. In other words collections
are containers for objects during the execution of a program. Typical
examples of collections are arrays, hash tables or vectors. Therefore a
product line of different collections is assumed in the following.

The product line contains three products as members. Family
engineering has produced a collection library (L) which contains two
collections, namely array (A) and vector (V). L is the container of (A) and
(V) and might add for example functionality common to A and V. The
library is reused during application engineering in each of the three
members. The following picture illustrates the setting.

 Introduction

 15

Figure 5: Example product line

During the reuse of the collection library L for the first product A must
be adapted. The adaptation changes A to A’ (for example the array must
support a sorting algorithm in product 1) while V is left untouched. In
the case of product 2 A and V are reused as-is. Finally for product 3, A is
left untouched and V must be adapted to V’ (for example to add
multithreading support to the collection). Figure 6 illustrates the
situation.

Figure 6: Example Instantiation

In order to manage the lifetime of the collection library L in a situation
such the above the usage of branches at the top-level (i.e. at the level of
L in this example) is typical. That means that a branch off the original L
branch is created for each product. Upon branch creation the contents
of L (i.e. A and V) are copied into the branch. Afterwards the changes to
A and V are performed.

L

Application
Engineering

Product 1

Product Line
Artifact Base

Family Engineering

Application
Engineering

Product 2

Application
Engineering

Product 3

A V

Legend

Collection Library

Array collection

Vector collection

L

A

V

L

A V

L

A’ V

L

A V

L

A V’

Product 1

Product 2

Product 3

Framework
Engineering

Introduction

 16

By following this approach configuration management usually enables
traceability. That means that when L is branched components A and V
are automatically branched as well. Moreover the resulting L, A and V
branches can be linked to each other. Figure 7 shows all versions and
branches of L, A and V for the three products. The dotted regions
highlight the branches for product 1 and the arrows the corresponding
traceability.

Figure 7: Traceability through branching

The problem with branches in a product line setting is that the user of
the configuration management system has to combine numerous
operations in order to coordinate activities in the product line
engineering process. Coordination involves two main steps: monitoring
and propagating changes. A basic coordination schema is given in Figure
8.

Figure 8 describes the maximum sequence of steps for the coordination
of family and application engineering. There may be situations where
only a part of this sequence applies. The sequence starts (step 1) with a
change that has been identified in a derived asset. In step 2 the change
is propagated to the core asset from which the changed asset has been
derived. Such propagation is necessary because a product-specific
change is possibly due to faults, weaknesses or missing characteristics of
core assets. In such cases the affected core assets should be revised (step
3). After the core asset revision the changes are propagated to the
corresponding derived assets (step 4) and finally the latter are possibly
changed as well (step 5).

Product 1 branch of L

Product 1 branch of A

Product 1 branch of V
L

L

L

L

A

A

A

A A’

A

A

A

A A’

B

B

B

B

B’

V

V

V

V

V’

L ’’

L ’’

L

L

L

L

A

A

A

A A’

A

A

A

A A’

B

B

B

B

B’

V

V

V

V

V’

L ’’

L ’’

L ’’

L ’’L ’’

 Introduction

 17

Figure 8: Basic product line engineering coordination

Steps 1 to 3 of Figure 8 represent a single evolution control scenario,
namely the detection of changes in the assets derived from a core asset.
In order to execute this scenario for the library example with the help of
conventional configuration management (i.e. using versions and
branches) a series of operations become necessary:

1. Open the version set of library L that contains all produced versions

2. Identify the product branches (there may be many other temporary
branches next to the product branches)

3. Identify when the product branches have been synchronized with
the family engineering branch that contains the original library L

4. For each product branch look for new L versions since the last
synchronization

5. For each new version of L query the configuration management
System for the changes made in that version

6. Filter out product-specific changes and identify changes that may
affect L

7. Consolidate the changes between L and the product-specific
instances

In many cases as a product line evolves the amount of branches
increases significantly. This can lead to significant effort for the execution
of configuration management operations as described in the above
seven steps. Open-source systems offer an interesting possibility for the
study of the branching phenomenon in development processes. Figure 9
provides the result obtained by analyzing a part of the history of the
GNU Compiler Collection (gcc). In fact, only the branches have been

Core Asset

Derived Asset Derived Asset Derived Asset

1: a derived asset
is changed

2: the change is
propagated
to the origin

3: the originating
core asset is revised

4: change
propagation
to the derived assets

…..

5: derived assets
are changed

Introduction

 18

considered, for which merging (i.e. synchronization with other branches)
information was explicitly available.

Figure 9 depicts the graph that has been obtained by mining the gcc
version history. The nodes and the edges represent branches and
relations (i.e. parent-to-child branch relations) respectively. In addition
the size and the color depth of nodes provide a measure of the
connected edges (i.e. increased size and dark color signify that many
edges are connected to the particular node). The circular layout of the
graph enables identifying a set of branch groups, in which the central
branch is the parent for the branches in the perimeter.

Figure 9: Branching in open-source development (graph obtained through mining of the GCC

version history)

Figure 9 illustrates how branches are created in gcc. In a similar way the
evolution of gcc can be analyzed with respect to the change
propagation, which is often called merging, between branches. In this
case a similar picture can be actually expected, in which the centers of
the cycles represent the propagation targets (i.e. the branches that
receive changes from branches on the perimeter). However the analysis
yields another picture, shown in Figure 10.

 Introduction

 19

Figure 10: Merging in open source development (graph obtained through mining of the GCC version

history)

Figure 10 shows the same branches as Figure 9, however the edges
represent aggregated merge operations in this case. In other words
multiple merges between the same two branches are depicted with one
single edge.

Figure 10 shows a problematic situation than can be often encountered
in a product line context. Numerous branches communicate directly with
each other. The reason for that lies often in the absence of
corresponding coordination mechanisms. And that usually results to
reduced awareness about the software development status, to
unnecessary redundancies and therefore to significant effort for the joint
evolution of a system.

In a product line context branches are often mapped to different
members of a product line or – more generally – to different instances of
core assets. In this case the significant effort of branch coordination can
lead to reduction of reusability. Changes cannot be easily propagated
among branches. Possibly, new core asset versions are not exploited,
core asset adaptations and bug fixes are duplicated and new core assets
candidates are not identified.

Based on the above observations the practical contribution of this thesis
is defined as follows.

Practical Contribution: The practical contribution of this thesis is to
reduce the effort product line engineers have to spend in order to
coordinate activities in a product line engineering process

Introduction

 20

1.4 Importance of the Problem

While the previous section has shown that the problem of coordinating
product line engineering processes entails difficulties, this section will
discuss the importance of the problem. In other words it will be shown
that this problem can affect a serious amount of software developing
organizations.

Coordination of product line engineering processes is particularly
necessary when family and application engineering are running in
parallel. There may be situations however where this parallelism does not
apply. For example in smaller organizations it is possible that there is no
explicit application engineering process. In such cases software reuse is
restricted to the derivation of product-specific assets. The latter are
considered transient products that belong to a product release. In other
words the development for reuse process does not include an adaptation
step. If an adaptation is necessary it is applied directly on the reusable
assets.

However a recent analysis of several industrial product lines has shown
that in most cases framework and application engineering are separate
processes which run in parallel [LSR07]. If the interactions between these
processes are not enforced and properly managed the risk of product
line “erosion” grows [YR06]. The latter can be defined as the
aggravating situation, in which core asset reuse diminishes while the
amount of product-specific assets created in other ways than product
line reuse grows. Such a situation can have several negative side-effects
including the exponential growth of maintenance effort over time and
finally the failure of a product line effort.

The existence of parallel running framework and application engineering
processes has been also confirmed through a survey performed in the
context of this work [SSF+09]. A total of 17 organizations from industry
and academia took part in the survey (see Table 1). Among other things
the survey participants were asked to characterize their product line
engineering processes by selecting one or more answers out of seven
choices. Technology providers and academic institutions typically do not
have their own product line engineering processes but rather contribute
to corresponding processes of customers. Therefore these participants
were asked to characterize the product line engineering processes they
contribute to.

 Introduction

 21

Type of
organization
participating
in the survey

Definition Example Number of
participations
in the survey

Industrial
Partner

Large organizations
delivering safety-
critical systems

Aircraft
manufacturer

10

Academic
Institution

Institution that
carries out
fundamental
research

University 3

Technology
Provider

Institution that
transfers research
results and
innovative
technologies to
industrial
application

Solution provider
for supply chain
management

4

Total 17

Table 1: PLE survey: Participant classification

The following table lists the choices as well as the results in terms of the
percentage of the participants that selected each choice.

Answers Percentage

There is a family engineering activity where reusable assets are
developed

65%

There is a series of application engineering activities where
individual products are developed

47%

Application engineering includes reuse of assets delivered by
family engineering

47%

Application engineering includes development of product-
specific assets

41%

Family and application engineering are activities which run in
parallel by different groups of stakeholders

35%

Family engineering propagates its changes to application
engineering

18%

Application engineering provides feedback to family
engineering

29%

Table 2: PLE survey results

Introduction

 22

As shown in the above table 35% of the participants agreed that family
and application engineering run in parallel. From those 5 are industrial
organizations and one is technology provider. One of the industrial
organizations stated that in some cases there is no explicit family
engineering activity but only a set of application engineering activities
which run in parallel and synchronize in order to obtain common
reusable assets.

Hence both the existing literature and the specialized survey have shown
that the parallelism of family and application engineering is a real
situation.

1.5 Solution Approach

This section describes the approach followed in this work to address the
problems defined in section 1.3.

The 7 steps discussed at the end of section 1.3.5 could be subsumed
under a single logical command that consolidates changes between a
core asset instance and the original core asset. This is the main idea
behind the solution, namely to define and realize a logical interface
against which engineers can coordinate product line processes. Two
approaches can be considered for the realization of such an interface:

• Defining a new configuration management system that has built-in
support for the coordination of product line engineering.

• Define a virtual layer that provides the logical interface needed for
product line engineering by encapsulating already existing
functionality of a configuration management system.

In response to research question 4 (section 1.3.2), this work opts for the
latter approach, namely for the realization of a virtual layer on top of an
existing configuration management system. In the following this layer
will be called Customization Layer. The approach aims at hiding away
the complexity of a configuration management system which arises in a
product line setting. Figure 11 illustrates the Customization Layer
concept.

 Introduction

 23

Figure 11: Customization Layer concept

By taking the Customization Layer approach organizations are given the
opportunity to incrementally set-up the product line engineering virtual
layer. Moreover even when the layer is set-up it can be bypassed at will
and the already existing configuration management system can still be
used directly.

The Customization Layer approach assumes that existing configuration
management functionality is sufficient to realize coordination scenarios
in a product line engineering context. As mentioned in section 1.3,
configuration management will typically provide the necessary technical
functionality. The problem is rather that users cannot cope with the
complexity of using the technical functionality in a proper way.

1.6 Methodological Approach

The main objective of this thesis, namely to reduce configuration
management effort in a product line, is addressed by a combination of
three research methods, the scientific method, the engineering method,
and the empirical method [WRH+00]. All of these provide different
contributions to achieving the main objective.

The scientific method consists of observing the world and building a
model based on the observations. The scientific aspects of the work
described in this thesis encompass the investigation of the basic
scenarios (section 2), concepts (section 4) and processes (section 5)
necessary for product line evolution control.

Configuration Management

Customization Layer

Product Line Engineer

PLE evolution
control scenarios

Storage and controlled evolution of
versioned artifacts

Introduction

 24

The engineering method consists of the study of current solutions, as
well as the proposal and following evaluation of changes to the current
solutions. To this end, current practice and functionality of configuration
management is investigated and guidelines are derived (section 6).
Furthermore an implementation framework is proposed (section 7) and
finally, the steps necessary for the introduction of the Customization
Layer approach to an organization are specified in terms of an adoption
process (section 8).

The empirical method evaluates a proposed model through empirical
studies (section 9). The Customization Layer approach has been
evaluated by means experiments, a simulation and a case study.

1.7 Output of this thesis

Main output of this thesis is a method that allows an organization to
specify the Customization Layer that it needs. The method consists of
four components:

• Conceptual Model of Evolution Control (section 3): The model
enables an organization to describe the type of product line at hand.
The applicable family and application engineering activities can be
defined and characterized with respect to evolution control.
Furthermore coordination flows can be defined between the
activities.

• Data Model of Evolution Control (section 4): The model captures
the data entities and relations that pertain to evolution control in a
product line context. In other words the model describes the
different of assets (core assets, instances etc.), their associations and
as well as the states that can be taken by these assets.

• Process Model of Evolution Control (section 5): The model allows
refining the high-level descriptions of the conceptual model. The
refinement leads to concrete evolution control operations that are
necessary for the given product line and the given coordination
needs. The operations use entities of the data model as inputs and
outputs.

• Guidelines for Interaction with Configuration Management
(section 6): Capabilities of the configuration management system at
hand are described and these are then mapped to evolution control
operations of the process model.

Figure 12 provides an overview of the components that are combined in
order to produce a Customization Layer for a given organization. These

 Introduction

 25

components are also brought together in terms of an adoption process
in section 8.

Figure 12: Components leading to a Customization Layer

1.8 Outline of this thesis

The rest of this document is structured as follows.

• Chapter 2 Related Work: The chapter presents existing work that
also addresses product line evolution control issues.

• Chapter 3 Conceptual Model of Evolution Control: The chapter
introduces the concept and basic scenarios of product line evolution
control based on ideas from control theory. Subsequently different
types of software product lines and the corresponding evolution
control needs are discussed and consolidated in terms of a common
conceptual model.

• Chapter 4 Data Model of Evolution Control: This chapter provides a
model of the assets pertaining to product line evolution control and
defines a semantic bridge to the domain of software configuration
management.

• Chapter 5 Process Model of Evolution Control: This chapter refines
the conceptual model of evolution control scenarios by allowing the
definition of evolution control operations.

Describe type
of product line

Conceptual
Model

Select
evolution
control

operationsProcess
Model

Map to
Configuration
Management

System

Guidelines Customization
Layer

Data
Model

Introduction

 26

• Chapter 6 Interaction with Configuration Management: This
chapter defines capabilities of configuration management that can
be used for evolution control of a product line. Subsequently the
capabilities are mapped to evolution control operations.

• Chapter 7 Implementation framework: This chapter proposes a
prototypical framework for the implementation of a Customization
Layer.

• Chapter 8 Adoption Process: This chapter brings the different
models together by showing how they are used during the
introduction of evolution control in a product line.

• Chapter 9 Validation: This chapter presents the two experiments
and a simulation study that have been performed.

• Chapter 10 Conclusion: This chapter closes the thesis by
summarizing the work, by drawing the necessary conclusions with
respect to the research questions and by outlining future work.

1.9 Research Context

This work has been carried out in the context of various research and
technology transfer projects at Fraunhofer IESE. Initial results of this work
were produced in the context of the BELAMI research project (Bilateral
German-Hungarian Research Collaboration on Ambient Intelligence
Systems) funded by German Federal Ministry of Education and Research
(BMBF), Fraunhofer-Gesellschaft and the Ministry for Science, Education,
Research and Culture (MWWFK) of Rhineland-Palatinate, in Germany.

The main part of the work has been performed in the context of the
Fraunhofer Innovation Cluster "Digital Commercial Vehicle Technology"
funded by the European Union and the state of Rhineland-Palatinate.
The majority of the partners participating in the innovation cluster are
large organizations facing the problems addressed by this work.

 Related Work

 27

2 Related Work

Goal of this thesis is to support evolution control for software product
lines. To this end it is necessary to understand the inherent
characteristics of product line evolution control in terms of relevant
concepts and scenarios. Subsequently methods, techniques and tools
can be developed that address the identified concepts and scenarios. In
other words it is necessary to look into product line evolution control
from two perspectives [MD08]:

• Analysis of the nature of product line evolution

• Support for the implementation of product line evolution

This chapter presents related work from these areas. In order to evaluate
the related work with respect to the research questions defined in
section 1.3.2 a set of requirements is derived in Table 3. For simplicity
the term solution refers to evolution control solutions for product line
engineering in the following.

Research
Question

Requirement
ID

Requirement description

RQ1
“Granularity”

R1 Solutions have to be aware of different
types of assets, in particular core assets,
product-specific assets and instances of core
assets

R2 Solutions have to support decomposition of
core assets and instances at different
granularity levels

RQ2
“Keeping
track of
reuse”

R3 Solutions have to keep track of core assets
reuse cases at different granularity levels

R4 Solutions have to enable complexity
management even with numerous core
asset reuse cases

RQ3
“Decay
avoidance”

R5 Solutions have to support change
propagation (feed-forward) from family to
application engineering

R6 Solutions have to support change
propagation (feedback) from application
engineering to family engineering

Related Work

 28

Research
Question

Requirement
ID

Requirement description

RQ4
“Take
advantage of
existing
configuration
management
systems”

R7 Solutions have to utilize capabilities of
existing configuration management
systems.

R8 Solutions have to be applicable for various
types of already existing configuration
management systems

Table 3: Requirements to evolution control solutions

2.1 Nature of product line evolution

Research in the area of the nature of software evolution seeks to
understand the phenomenon of software evolution in terms of analytic
and empirical analyses. The observations are used to specify
requirements for further research and also to improve current solutions.

This section reports related work on:

• Conceptual models for product line evolution

• Product line evolution scenarios

• Process dynamics in the context of product lines

Conceptual models discuss concepts and interrelations that pertain to
product line evolution. For the present thesis this is relevant since it can
be investigated whether current models contain the concepts of core
and product assets as well as the corresponding associations.

Product line evolution scenarios analyze stimuli that lead to changes in a
product line setting as well as necessary responses by the product line
organization. Again this is a relevant field of investigation for the present
thesis. It can be examined whether scenarios identified by the
community involve continuous coordination between family and
application engineering.

Finally, process dynamics use simulation in order to characterize the
effects of various types of changes (e.g. organizational, technological) on
development processes. For the purpose of the present thesis it can be
examined whether process dynamics cover family and application
engineering along with their interactions.

2.1.1 A model of system families

The seminal work of Belady and Merlin [BM77] “a model of system
families” delivered a model (Figure 13) for the characterization of
product lines and the corresponding evolution needs. The basic concept

 Related Work

 29

in this model is the unit, which can be seen as a component in the sense
of component-based development [Sz98]. A product line provides a set
of units and a product line member, called system in this model, is
obtained through configuration of units. In this context a special type of
unit is characterized as the basis of the product line and must be
included in every system.

Figure 13: Model of product lines according to Belady and Merlin

Every unit consists of modules, which in turn may be available in several
versions. Therefore unit configuration involves the selection of the
appropriate module versions. A challenge at this point is to select the
units and versions that yield a valid system. In other words it must be
possible to define the set of permitted configurations in a product line.
To this end the authors proposed a matrix (Figure 14) which enables the
description of units, modules and versions that yield valid systems.

In the model proposed by Belady and Merlin the process of deriving a
concrete product is reduced to the selection of already existing assets,
i.e. units and their modules. There is no need for a differentiation
between different types of assets (R1 is not applicable). On the other
hand decomposition of units and modules is not part of the model (R2 is
not addressed).

Reuse cases can be tracked by looking into the defined systems (cf.
Figure 13), which contain modules and versions that are used in a system
(R3 is therefore addressed).

The maintenance of the configuration matrix (Figure 14) can become a
complex undertaking in large systems due to the large number of units,
modules and versions. Different implementations of this matrix are
proposed including mechanisms that facilitate complexity reduction.
Requirement R4 is therefore addressed.

Basis of Product Line: UBUnit: U Basis of Product Line: UBUnit: U

Modules of a Unit: MOD(Ui) = <M i1 Mi2 …Min > where Mi1 denotes Module 1 of Unit i

Modules of a Configuration: MOD(U1U2…Un) = MOD(U 1) ∪ MOD(U2) ∪ … ∪ MOD(Un)

Family: f = <U BU1U2…Un> Configuration: c ⊆ f : U B ∈ cFamily: f = <U BU1U2…Un> Configuration: c ⊆ f : U B ∈ c

Versions of a Unit: VER(U1) = <<M i1 (1)M i1 (2)…Mi1 (j)>…<M in (1)M in (2)…Min (k)>>
where Mi1 (1) denotes Module 1 of Unit i in version 1.

Versions of a Configuration: VER(U1U2…Un) = <A1A2…An>
where Ai = union of all versions of the same module

System S of a Configuration = <B1B2…Bn> where Bi selects one version from A i

Related Work

 30

Coordination activities between family and application engineering are
partially necessary in this type of product line. Application engineering
uses core assets as-is and without any modifications. Therefore the main
coordination that is necessary is the propagation of new versions to the
already defined systems, provided that the consistency of the systems is
maintained. Feedback from systems to the development of units is
necessary when changes on modules are required. In this case a change
request is to be communicated along with the versions in use. The
authors provide general guidelines for these situations (R5 and R6 are
addressed).

Figure 14: Matrix of permitted product line members according to Belady and Merlin

With respect to requirements R7 and R8 the authors give guidelines for
the implementation of configuration management. On the other hand
there is no discussion about existing configuration management systems
and how they can be utilized. There were not much configuration
management systems available when this work was done, however
some systems existed (e.g. SCSS [Ro75]). For that reason, requirements
R7 and R8 will be considered as not addressed.

2.1.2 Variability Specification Language

The Variability Specification Language (VSL) [Be04] provides an XML
dialect that enables describing, managing and resolving the variability in
product line assets. The conceptual model underlying the language
addresses the differentiation between family and application engineering
(R1 is addressed). However asset composition is not part of the model
(R2 not addressed)

The VSL model introduces the concepts of generic and specific assets,
which are the equivalents of the core and product assets discussed in
section 1.2. Generic and specific assets are interrelated via derived-from
relationships (R3 is addressed). In addition, both types of assets have
associations to a hierarchical variability model, which manages the points

00211101

11020010

21221111

11221111

11121011

00111001
MMMMMUUU 54321321

1=Unit is selected
0=Unit is out

module
version
number

U1U2U3

is a permitted
configuration
and these are
permitted systems

U1U2U3

is a permitted
configuration
and these are
permitted systems

 Related Work

 31

of variation in the assets as well as the corresponding instantiations. The
hierarchical structure of the variability model enables to tackle
complexity when the amount of variations increases (R4 is addressed).
Since the focus of VSL lies on variability management the evolution
issues are not addressed in the conceptual model.

In the context of VSL the VAMP (Variability Management Platform)
reference architecture is also proposed that specifies the capabilities that
are necessary for variability management in a product line. The different
capabilities are specified in terms of architectural components, interfaces
and connections. The Evolver component assumes the responsibility of
managing the evolution in the product line and enables change impact
analysis, execution and propagation. However the details of the Evolver
component were not in the focus of VSL and therefore are not specified
in greater detail. As a conclusion, VSL can be considered as partially
addressing requirements R5 and R6. Requirements R7 and R8 are not
addressed since there is little discussion about the usage of existing
configuration management systems.

There are several variability management solutions like the VSL (e.g.
[CVL10], [SDN+04], [Mut02], [KCH+98], [PBL05]). In general such
solutions focus on managing the decisions that have to be taken upon
deriving a product and on facilitating the efficient and correct derivation
of product assets. Variability management solutions do not address the
issues of evolution and coordination explicitly.

2.1.3 Product Line Evolution Scenarios

Svahnberg and Bosch [SB99] studied the evolution of two industrial
product lines from the domains of data storage and mobile
communication. The authors observed a series of common scenarios that
arose during the evolution of these product lines. The scenarios have
been grouped in three interrelated categories, which will be discussed in
the following.

• Requirements: In both case studies evolution started with the
evolution of requirements. Creation of a new product, improvement
of functionality and revision of the execution platform were some of
the scenarios that have been encountered.

• Architecture: In order to realize the requirements the authors found
out that several architecture evolution scenarios were necessary. For
example a new product creation requirement can be fulfilled by
introducing a new component in the product line architecture (i.e.
generic architecture, common to all product line members). Further
architectural scenarios included changing, replacing and splitting

Related Work

 32

components as well as modifying the relations between
components.

• Components: Evolution requirements could be also fulfilled through
direct evolution of product line components (i.e. component core
assets). The latter were realized in terms of common implementation
frameworks. Therefore the evolution scenarios mainly included the
creation or modification of components based on the frameworks or
the modification of the framework functionality, which was
common to all components.

The above scenarios partially address requirement R1 since components
can be considered as core assets. There is however little discussion
neither about product-specific components nor about the way how
components are reused. Requirement R2 is partially addressed since the
authors deal with architectural decomposition of reusable assets.
Regarding the tracking of reuse cases this work does not make any
concrete statements (requirements R3 and R4 not addressed).

Based on the observations, Svahnberg and Bosch propose a set of
guidelines for the successful evolution of product lines. The guidelines
operate on the level of product line architectures and components. For
example it is recommended to avoid the modification of component
interfaces either by deferring it when possible or by generalizing the
interfaces so that they are more resistant to change. Further
recommendations address issues of separation of concerns (i.e. keep a
product line intact and introduce new product lines when new
application domains are to be addressed; separate common from
product-specific behavior) or issues of reusability (i.e. detect and exploit
common functionality; rewrite components from scratch when
necessary; make design decisions explicitly visible in the architecture). In
this regard the work can be considered as implicitly addressing
requirements R5 and R6: feedback between family and application
engineering is implied as being necessary. Requirements R7 and R8 are
not addressed though, since there is only a minor discussion on the role
of configuration management in the evolution scenarios.

John McGregor [McG07] derives a set of similar but more generic
scenarios for product line evolution. In this case the association between
family and application engineering is clearer: Different types of assets are
dealt with (requirement R1 is addressed), however asset composition is
not discussed (requirement R2 not addressed). The author discusses
following evolution scenarios.

• Core assets are extended so that more instances can be derived out
of them (i.e. the variation points, namely places in core assets where
an adaptation can take place, facilitate the derivation of more
instances).

 Related Work

 33

• The addition of product assets in various products may lead to the
identification of variations and hence to the creation or modification
of core assets.

• Requests for new products and corresponding assets lead to
changes in the product line scope.

• A variation (e.g. a decision in a decision model) is split into two
variations. This in turn leads to modifications to the corresponding
core assets.

• A product line is split into multiple product lines if sufficient new
variation is identified.

The above scenarios address tracking reuse cases as well as feed-forward
and feedback; hence requirements R3, R5 and R6 are addressed.
Furthermore the author proposes recommendations by Mohan and
Ramesh [MB06] in order to realize the above scenarios. The first
recommendation is to apply modularization on variation points to avoid
ripple effects after changes (requirement R4 addressed). The second is to
establish traceability between core and product assets and to
continuously track the changes on both sides (R3, R5 and R6 again
addressed). Finally the variability of core assets must be described in a
way that facilitates reuse. In other words, application engineers must be
aware of the available core assets, the provided variations as well as the
means and effects of resolving the variations.

Configuration management systems are not part of the discussion
therefore requirements R7 and R8 are not addressed.

2.1.4 Process dynamics

The field of software process dynamics aims at understanding the
phenomena that arise in software development processes. In this context
simulation is used to model and observe how development processes
operate under different circumstances and also to evaluate the effects of
changes – for example modification of contextual factors – on the
processes. Cost models are often included in the simulations in order to
estimate costs.

Software reuse is considered as one type of development lifecycle, which
can be also analyzed in this way. The following figure provides a process
dynamics representation of software reuse [Mad08].

Related Work

 34

Figure 15: Representation of software reuse with process dynamics

Figure 15 depicts reusable software as a so-called level. The latter can be
generally seen as an asset repository. Existing software is being modified,
at a particular modification rate, in order to obtain new software. In
Figure 15 this connection is modeled in terms of a so-called rate. This
can be thought off as a data flow connector between levels.

The rate at which reusable software leads to completed software
depends on the effort that is necessary to adapt existing software but
also on the productivity of the corresponding personnel. These factors
are depicted as so-called auxiliaries that link to the software modification
rate. Auxiliaries are typically variables that influence rates in a process
dynamics model.

New software is not only produced via reuse of existing software but
also through the implementation of new software functionality. This is
depicted as the new software development rate in Figure 15. A source
element represents the external environment (e.g. customer
requirements) that delivers the input for the development of the new
software. The rate of new software development depends again on
productivity as well as on the appointed personnel.

The above model can be combined with cost models such as COCOMO
[BAB+00] or COPLIMO [BBM+04], which explicitly addresses product line
engineering, in order to estimate the cost of software reuse in various
situations (e.g. using different programming languages or different
mechanisms for the implementation of generic components).

 Related Work

 35

The process dynamics model of software reuse, as depicted in Figure 15,
focuses on the creation of new software which can be supported
through adaptation of existing software. In other words the model deals
with different types of software assets (reusable and new software) (R1
is addressed). Decomposition of assets is not discussed however (R2 not
addressed).

In the basic model shown in Figure 15 there is no discussion about reuse
cases. However another study by [Lo99] refines this model and discusses
reuse in different development phases, namely in requirements,
architecture, code and also in quality assurance. In this study reuse decay
is modeled in terms of components that are not reused any more due to
changes of needs. Hence tracking reuse as well as feed-forward from
family to application engineering is addressed (R3 and R5 is supported);
on the other hand there is no feedback cycle modeled so that decay can
be kept under control (R6 not supported). Furthermore the issue of
handling numerous reuse cases is not discussed either (R4 not
supported).

Also this work does not address configuration management systems;
therefore requirements R7 and R8 are not addressed.

2.2 Implementation of product line evolution

Research in the area of the implementation of product line evolution
seeks to provide practical solutions in terms of methods, techniques and
tools. Among the different research results that have been investigated
in the context of the present thesis, the Product Line Asset Manager
(PLAM) [BCE+04] showed the biggest relevance and will be discussed in
the subsequent subsection.

Another interesting field of related work is naturally the field of
configuration management. Some sophisticated systems in this area
provide solutions for the management of variant-rich systems.

A series of solutions from the field of software frameworks aims at
ensuring the consistency between frameworks and their instantiations. In
this regard such solutions are similar to the problem addressed in this
work, namely the coordination between development for reuse and
development with reuse. Finally, detailed methodological support to
evolution control in product line is provided by the KobrA method
[ABB+01]. The next sections will hence detail the related work in the
aforementioned fields.

Related Work

 36

2.2.1 Molhado SPL

Molhado SPL [Th12] addresses configuration management for software
product lines. It introduces core assets as components that are shared
across the members of a product line. The underlying version
management system enables managing configuration items along with
relationships among them. These relationships are used to associate core
assets (i.e. shared components) and instances (i.e. copies of shared
components) and also to create composition or other types of relations
between assets. Based on that, requirements R2 and R3 are addressed.

Molhado SPL aims at a similar solution as the present thesis. However
the following significant differences can be identified:

• Underlying version management: Molhado SPL uses a special-
purpose version management system, which is part of the Fluid
framework [Boy13]. The authors mention the possibility of
implementing the solution on top of conventional systems. However
no concrete details are provided. Based on that requirements R7 and
R8 are not fulfilled. In this regard it is also unclear if requirement R4
is fulfilled as the employed version management system appears to
be a research prototype.

• Scenarios: It is unclear which evolution control scenarios are
supported. It seems that the whole issue is delegated to the
underlying version management system. There is a discussion on
different types of change propagation that are needed; hence
requirements R5 and R6 are addressed. However the authors do not
elaborate on the implementation with lower-level operations.

• Core assets and instances: Reusable assets are identified through
their container, a so-called core asset project. All assets contained in
this project are considered as core assets. Product assets are also
identified through their respective containers i.e. product line
members. Instances are not identified through their type but
through their relations to core assets. There is no concrete
information on attribute or property-based querying against
different types of assets in the product line. Therefore requirement
R1 is seen as partially addressed.

2.2.2 Product Line Asset Manager

PLAM aims at the coordination of evolution activities in a product line
context. To this end the PLAM tool architecture is proposed, which
consists of the following elements

• Roles: PLAM introduces the roles of family and application engineer
that develop core and product assets respectively (requirement R1 is

 Related Work

 37

addressed). In addition the roles of programmer and product line
engineer are introduced. Programmers are supervised by family or
application engineers and are responsible for the implementation of
assets. Product line engineers are responsible for the whole product
line and coordinate the activities of family and application engineers

• Architectural Model: The model contains the conceptual elements
supported by PLAM. The basic concept is the component, which is a
container of variants, namely in parallel existing versions of assets.
The latter can contain further components (requirement R2 is
addressed) as well as releases. In the context of PLAM a release is set
of configuration items, called objects, in a particular released
version. Finally all elements of the architectural model can be
associated to actions that are triggered upon execution of evolution
operations on the model elements.

• Architectural Views: Views enable PLAM users to filter out specific
information of the architectural model and to concentrate only the
model elements that are relevant in a specific situation. For example
an application engineer can use an application view that shows only
the assets of a particular product. The view concept of PLAM can
hence be used for dealing with complexity in case of numerous core
assets and instances (requirement R4 is addressed).

• Repositories: PLAM repositories are data storages for product line
assets. PLAM provides for different repositories (e.g. for core asset
and product development) that can be synchronized.

PLAM specifies a set of operations that can be performed on product
line assets and roles. Figure 16 depicts these operations. The
instantiation of core assets is addressed by the initiate operations (i.e. the
operation refers to the initiation of core asset instances). Change
propagation between family and application engineering is achieved
with the help of the reconfigure and promote operations (requirements
R3, R5 and R6 are addressed). In this context the broadcast and notify
operations facilitate the communication between family and application
engineers

Related Work

 38

Figure 16: PLAM operations

In general the PLAM approach appears to be in a preliminary stage since
most of the concepts are not elucidated in detail. Furthermore, although
the authors report that configuration management is used behind the
scenes the interface is not discussed any further (requirements R7 and R8
are not addressed).

2.2.3 Configuration Management

Configuration management systems address variability issues with the
help of build, version and change management. Build management aims
at managing and reproducing the process of compiling (i.e. building)
systems based on particular configurations. Version management on the
other hand enables keeping track of the evolution of configuration
items, performing traceable changes as well as propagating changes.
Finally, change management enables the enactment of a systematic
evolution control process that entails definition, evaluation, assignment
and tracking of change requests. The following sections will discuss
build, version and change management in more detail.

Build Management

For the reasons described in sections 1.3.4 and 1.3.5, configuration
management literature (e.g. [Mah95], [Whi00]) recommends tackling
product line variation through architectural design and build
management. Architecture should decompose the product line in a way
so that common and product-specific functionality can be clearly
separated. Subsequently build management should be setup in a way
that enables building (i.e. compiling) particular members of the product
line.

Product
Repository

change

check-out / update

commit

Product
Line

Repository

initiate / reconfigure

promote

release

Programmer
Application
Engineer

Family
Engineer

notify broadcast

notify

 Related Work

 39

Figure 17: Configuration with build management

Build management solutions can provide explicit support for the
configuration of systems. Figure 17 provides an example of a
configuration front-end, which has been created on the basis of the
configuration menu language [URL13] and the make build automation
utility [URL14]. In fact the language operates on top of the make utility
(requirement R7 is addressed, requirement R8 is not addressed since only
make is supported). The front end allows the user to take different
decisions for a concrete system configuration. Decisions as well as
constraints between decisions (e.g. incompatibility between decisions)
are specified with the help of the configuration menu language. When
the configuration is finished the make tool and the corresponding
compilation process are invoked. Variation points in source code files are
managed in terms of pre-processor directives [ISO/IEC 9899], which refer
to the decisions specified with the configuration menu language. In this
way the compiler generates a running system based on the user’s
choices.

In this regard build management relates to variability management. The
output of build management is usually an executable member of a
product line, which usually is not altered any further. Coordination of
evolution activities between family and application engineering are
therefore not an issue with build management (requirements R5 and R6
are not addressed therefore).

Related Work

 40

Build management solutions differentiate between source files that go
into the compilation process and derived files that result from it.
Requirement R1 is implicitly addressed; source and derived files can be
seen as core assets and instances respectively. Requirement R2 is also
addressed as most build management systems can manage the build
process at different granularity levels (e.g. hierarchical make files). Some
systems (e.g. the build management facility of the ClearCase system
[Whi00]) can also keep track of numerous derived files, therefore
requirements R3 and R4 can be considered addressed.

The Shape toolset [ML88] can be seen as an integrated build and version
management system. As with traditional build management (e.g. make)
it enables building systems. However Shape comes with its own version
management system, which is tightly integrated with the build process.
However, integration with version management can be also achieved
with make or other conventional build management systems like ant
[URL18] or maven [URL15].

The unique characteristic of Shape is the provision of a configuration rule
language. The latter enables to run queries against the version
management system and to select source objects based on their
attributes. For example, a rule can be defined that tells Shape to compile
only the latest versions of all objects that have passed all tests
successfully. Moreover Shape provides explicit support for variations.
Different configuration decisions (as in Figure 17) can be described along
with constrains (e.g. mutual exclusion). Then, during the build process
Shape users can resolve configuration decisions and run the build
process accordingly.

In summary, build management solutions can be considered as partially
addressing all requirements of Table 3 except R5 and R6.

Version Management

In contrast to build management, version management can coordinate
evolution activities. In simpler version management systems this can be
accomplished in terms of branching, which is available in different
sophistication levels in the various systems available. Branches can be
used for variability management in a product line, although this is
generally discouraged [Mah95]. As the number of branches increase it
becomes difficult to classify the branches and to map them to sensible
configurations. This in turn undermines the ability to efficiently and
effectively identify, select and jointly evolve configurations. This ability is
however indispensable in complex systems and some version
management systems provide explicit support in this regard. Four
representative examples will be discussed in the following.

 Related Work

 41

Figure 18: Voodoo version management approach

The Voodoo (Versions of Outdated Documents Organized Orthogonally)
versioning management system proposed by [Rei95] stores configuration
items in terms of a three dimensional space, called object pool (Figure
18). The first dimension captures the different configuration items, while
the second and third dimension capture the versions and branches of the
configuration items respectively. Furthermore Voodoo enables to project
the object pool to concrete configurations. The projection is
accomplished with the help of a logical specification on top of the
(physical) object pool. This specification enables mapping configuration
items to logical entities, which describe the system under development.
The logical entities are grouped together in a tree-based structure that
represents the system under development. In a sense this structure
resembles a feature tree [KCH+98] that hierarchically structures the
mandatory, optional and alternative features of a system. With Voodoo
the selection of features leads to the selection of specific versions in the
object pool.

The Adele configuration manager [EC95] is a similar solution that
facilitates the management of a large number of configurations with the
help of logical models. Adele enables the typing and attribution of
configuration items. Attributes can be of simple or complex types. In the
latter case the type of an attribute is another configuration item. This

versionsversionsversionsversions

variantsvariantsvariantsvariants

componentscomponentscomponentscomponents

SingleSingleSingleSingle
ComponentComponentComponentComponent

Object PoolObject PoolObject PoolObject Pool
with all componentswith all componentswith all componentswith all components

versionsversionsversionsversions

variantsvariantsvariantsvariants

SingleSingleSingleSingle
ComponentComponentComponentComponent

versionsversionsversionsversions

variantsvariantsvariantsvariants

SingleSingleSingleSingle
ComponentComponentComponentComponent

alternativesalternativesalternativesalternativesalternativesalternativesalternativesalternatives

System under developmentSystem under developmentSystem under developmentSystem under development

logical logical logical logical
system partssystem partssystem partssystem parts

links tolinks tolinks tolinks to
componentscomponentscomponentscomponents

Related Work

 42

provides for the association between configuration items. Configuration
items can be versioned and version selection rules enable the definition
of configurations. Furthermore, it is possible to assign a set of versions to
an attribute. This enables the configuration item containing that
attribute to vary.

The ICE system (Incremental Configuration Environment) [Ze97] uses
feature logic – a description logic based on feature/value attributions –
to manage versions and configurations. A central difference to Adele lies
in the way versions are characterized and selected. In Adele a
configuration item is characterized by conjunction of its attribute/value
pairs (in case of variations, the value of an attribute is whole set of
versions). Version selection is then done through Boolean terms over
attribute/value terms. ICE on the other hand uses feature logic both for
characterization and selection. Moreover, feature logic is the core
formalism for the full spectrum of the ICE functionality (e.g. version,
repository, workspace management).

While there is no evidence that Voodoo3, Adele and ICE are maintained
any further, ClearCase [Whi00] is a modern and popular version
management system that also provides similar mechanisms. The concept
of a view plays a major role in this context. A view can be compared to a
database query that is executed against the version management
repository. The query delivers a configuration that is relevant for a
particular evolution control scenario. Moreover a view can be related to
change management activities, which can be also modeled with the
system. In that way the traceability between versions and change
requests is facilitated.

Version management systems like Voodoo, Adele, ICE and ClearCase
provide powerful facilities for the management of different types of
configuration items, numerous variations at different granularity levels,
management of associations between configuration items as well as the
coordination of activities. In that sense this kind of systems addresses
requirement R2 and partially R1 and R3 to R6 of Table 3. Requirement
R7 can be also considered as addressed since these systems integrate
helpful functionality directly into version management. However
requirement R8 is not addressed as the proposed solutions are
compatible only with the corresponding version management systems.

Sophisticated version management systems like the above can
significantly facilitate evolution control in a product line. However this
does not mean that an organization that obtains one of these systems
can directly start managing its product line. The necessary evolution

3 A major contribution of Voodoo was also a differencing algorithm, which has been

implemented by ClearCase.

 Related Work

 43

control mechanisms have still to be implemented with the available
version management functionality. Although the implementation effort
is smaller than with simple version management systems, there is usually
no explicit guidance available.

For example with ClearCase a product line engineer can easily obtain all
assets that belong to a product or to a part of a product, change them
and commit them back to the repository. Yet this presupposes that
assets are stored accordingly. The process of creating and storing the
assets is not given by default and the engineer must ensure that core
and product assets are stored in a consistent way. Similarly, feedback
loops between family and application engineer have also to be set-up
and are not automatically available. On the other hand ClearCase
simplifies the creation of such loops through its stream concept: A
stream defines the changes that should be propagated to a view.
Therefore a stream can be defined for a core asset so that it
automatically delivers changes to the products that use the core asset
[Le03].

Sophisticated version management systems often provide workflow
management support on top of their version management functionality.
Adele and ClearCase are examples of such systems. With workflow
support it is possible to define evolution control processes in terms of
roles, activities, events, data and control flows. In a product line setting it
would be for example possible to automate the process of change
propagation between family and application engineering. To this end, a
process could be defined denoting that when a core asset changes all
instances of the core asset have to be updated automatically.

Change Management

Change management enables creating, processing and monitoring
change requests, bugs and problem reports in a software development
effort. Change requests (also called tickets or issues) can be categorized
and interrelated. For example, in a product line context, when a change
is necessary on a core asset a corresponding family engineering change
request can be created. Since the change to the core asset is likely to
influence instances of the core asset, a series of second-level application
engineering change requests can be defined as well. The latter are to be
processed after the core assets have been changed. Finally, the original
change is considered as closed, after all change requests (family and
application engineering) have been accomplished. The same mechanism
can be also used for managing changes in composed assets: For example
a first-level change request can be assigned to a subsystem and second-
level change requests can be assigned to subsystem parts.

Related Work

 44

This change management approach has been described as a ticket
hierarchy approach in [UKR09]. Modern change management
environments like JIRA [URL9] enable the realization of ticket hierarchies.

Based on the above discussion change management’s support for the
requirements of Table 3 are elucidated in the following:

• R1: Different types of assets can be addressed by different types of
change requests. However change management does not store
different types of assets. It can only store change requests associated
to assets.

• R2: Asset decomposition can be supported by change request
decomposition.

• R3: Reuse can be tracked through the association of family and
application engineering change requests. However change requests
are transient entities that are closed when a change is accomplished.
Therefore special support (e.g. a filtering mechanism) has to be
implemented that gives an overview of reuse cases.

• R4: Change management system can deal with numerous change
requests and their associations. Categorization, attribution and
queries over change requests provide support in this direction.

• R5 and R6: Change propagation is again supported through change
request associations. Creation of a change request can lead to the
creation of other change request and thus the targets of change
propagation can be easily identified.

• R7: Change management is often established on top of existing
version management systems so that the actual changes (i.e. new
versions) can be related to the corresponding change requests.

• R8: The ticket hierarchy approach can be implemented with
different change management systems. Furthermore, version
management systems often provide connectors to various change
management systems.

In summary, pure change management is considered as partially
addressing all requirements of Table 3 since it is possible to solve
evolution control problems only from the point of view of change
requests. The actual storage, management and evolution of assets are
not subject of change management.

 Related Work

 45

2.2.4 The KobrA method

The KobrA approach to component-based development in the context of
product lines, described in [ABB+01], proposes a change management
process for product line components and their instances. A key idea at
this point is to enable a component under configuration management to
be self-contained by including its dependencies to other components as
first-class entities. In that way the concept of a configuration becomes
obsolete since the information about compatibility of component
versions are stored within the components. By this means when a set of
components are checked-out from a configuration management system,
it is possible to perform a consistency check in an automated way. This
approach has been also developed by component-based technologies
like OSGi [URL16] and Eclipse [URL1] as well as by build automation tools
like Maven [URL15].

KobrA allows for the development of core assets, as a special type of
components that contain a so-called decision model. The latter contains
all configuration decisions that can be taken, when a reusable
component is reused. During reuse the decision model is resolved and
the result is a so-called resolution model. The latter captures the
configuration decisions taken during reuse. Components that are not
subject to reuse do not contain decision or resolution models. Therefore
KobrA tackles requirements R1, R2 (components can be nested), R3.
With respect to R4 KobrA does not provide any guidance. In particular
there is no discussion about the implementation of the connection
between decision and resolution models or about any scalability issues in
case of numerous decisions and resolutions. R4 is therefore considered
as not addressed.

KobrA proposes strategies for change management in a product line
context. The strategies address requirements R5 and R6.

• Core Asset Change Integration: When a core asset (i.e. a component
in the case of KobrA) is changed, the change is propagated to other
core assets.

• Application Change Integration: When a product asset (i.e. a
product component) is changed, the change is propagated to other
product assets.

• Feed-forward Change Reintegration: Core asset changes are
propagated to product assets

• Feedback Change Reintegration: Product asset changes are
propagated to the original core assets.

Related Work

 46

KobrA then describes several activities that pertain to the execution of
the above four scenarios. This includes concrete conflict resolution
guidelines when dealing with such change propagations. For example
when a core asset has changed and needs to be synchronized with an
instance that has also changed, KobrA proposes to first create a
temporary instance. The latter is obtained by applying the last (since the
last synchronization) instantiation decisions on the new core asset
version. Subsequently the temporary instance can be synchronized with
the current instance version at hand. At this point KobrA does not
provide guidance for cases, in which already taken instantiation decisions
cannot be applied to new versions of core assets.

A similar conflict resolution approach is proposed when instance
changes are to be propagated to core assets that have been changed in
parallel. In this case it is proposed to first create a temporary core asset
that integrates the changes of instances and then to synchronize that
temporary core asset with the latest one.

In summary, KobrA provides specific guidance when it comes to the
synchronization and conflict resolution between core assets and product
assets. Apart from that however, KobrA does not describe how an
existing configuration management system can be employed to realize
the evolution control activities (requirements R7 and R8 are not
addressed).

As a component-based approach KobrA applies mainly to the
architecture, design and implementation phases in the development
lifecycle. Nevertheless the proposed solutions for variability management
with decision models as well as the guidelines for conflict resolution can
be applied to virtually any type of asset.

2.2.5 Software Frameworks

Software frameworks can be considered as a special type of software
product line. Frameworks usually consist of interfaces, classes as well as
of tools and guidelines for the development of particular types of
applications. Frameworks contain so-called hotspots, which can be seen
as points of variation in the framework contents. Developers are able to
extend or customize frameworks at the predefined hotspots according to
provided guidelines.

In order to ensure that a framework fulfills its requirements, satisfies its
users and constantly evolves, several approaches enable to keep track of
the framework usage and to facilitate the application of new framework
versions (this tackles requirements R1, R2, R3 and R4). The CatchUp!
approach described in [HD05] records the refactoring operations that are
performed on a framework. Subsequently the recorded refactorings can

 Related Work

 47

be replayed in the context of an application that uses the framework
(requirement R5 is addressed). A special-purpose replay wizard shows
detail information of all changes that have been carried out on the
framework and allow the application programmer to reason about the
effects of the changes and to accept or reject them. However the other
way, namely integration of changes back to the framework is not
supported (R6 not supported).

The approach in [DMN+06] goes a step further and integrates recorded
refactorings with the underlying version management system
(requirement R7 and R8 are addressed). That means that refactoring
operations can be connected to versions of the framework and become
first-class entities of the framework history. Refactoring can be then used
in merge operations of the version management system in order to
synchronize new framework versions with applications.

It must however be noticed that frameworks operate only at the code
level. In a product line context however evolution control spans the
whole development lifecycle and hence applies to all kinds of assets
produced and consumed therein. Therefore the support of frameworks
for the requirements of Table 3 is considered partial.

2.3 Discussion

The analysis of related work in the area of evolution control in a product
line setting yields the following categorization which is orthogonal to the
categorization used at the beginning of this chapter.

• Conceptual work that does not provide a suitable implementation

• Technical solutions that do not explicitly address the particulars of
evolution control in product line engineering.

Table 4 categorizes the presented related work across the two
categorization schemes.

Related work presented on the nature of evolution falls into the first
category. The model of system families (section 2.1.1) defines the
aspects that suite a particular type (not all types) of product line but
provides only general guidance for the implementation. The evolution
scenarios of section 2.1.3 capture mainly software architecture-related
scenarios and again provide general guidance only. The KobrA approach
(section 2.2.4) on the other hand explicitly addresses evolution control
scenarios for product lines and focuses on change propagation and
conflict resolution. However there is no implementation provided on the
basis of configuration management. Similar to KobrA, the Product Line

Related Work

 48

Asset Manager (section 2.2.1) defines a type of workflow management
system that explicitly addresses product line scenarios too. However the
interface to configuration management is not discussed.

 Nature of
Evolution

Implementation of
Evolution

Conceptual
work

• A model of system
families [BM77]

• Product Line
Evolution Scenarios
(Svanhberg&Bosch)
[SB99]

• Product Line
Evolution Scenarios
(McGregor; Mohan
& Ramesh)
[McG07] [MB06]

• Product Line Asset Manager
[BCE+04]

• The KobrA method [ABB+01]

Technical
solution

• Variability
Specification
Language
[Be04]

• Process dynamics
[Mad08]
[Lo99]

• Molhado SPL [Th12]

• Build Management
[Whi00], [URL13], [URL14], [ML88]
[URL18] [URL15]

• Version Management
[Whi00], [Rei95], [EC95], [Ze97]

• Change Management [UKR09]

• Software Frameworks
[HD05], [DMN+06]

Table 4: Categorization of evolution control related work

The Variability Specification Language (section 2.1.2) lies between the
two categories introduced above. It provides a conceptual model that
explicitly addresses product line issues as well as an implementation of
the model. However the evolution aspect is neither sufficiently addressed
in the model nor in the provided implementation.

Process dynamics (section 2.1.4) provide technical means of analyzing
evolution control processes in terms of a special methodology that
entails modeling and simulation. However current models cover only
basic software reuse and do not include configuration management.

In the category of technical solutions, configuration management
(section 2.2.3) is of major importance. Build management addresses
most requirements but does not address change propagation. It is
therefore applicable only to situations, in which no coordination
between family and application engineering is necessary.

 Related Work

 49

Requirements:

R1: different types of assets; R2: decomposition; R3: keep track of reuse;
R4: handle complexity;
R5: feed-forward; R6: feedback; R7: utilize CM; R8: support different CMS

Related Work R1 R2 R3 R4 R5 R6 R7 R8

A model of system families
[BM77]

���� � ���� ���� ���� ���� � �

Variability Specification
Language [Be04]

���� � ���� ���� � � � �

Product Line Evolution Scenarios
(Svanhberg&Bosch) [SB99]

� � � � � � � �

Product Line Evolution Scenarios
 (McGregor; Mohan & Ramesh)
[McG07] [MB06]

���� � ���� ���� ���� ���� � �

Process dynamics
[Mad08][Lo99]

���� � � � ���� � � �

Molhado SPL [Th12] � ���� ���� � ���� ���� � �

Product Line Asset Manager
[BCE+04]

���� ���� ���� ���� ���� ���� � �

Build Management
[Whi00], [URL13], [URL14],
[ML88] [URL18] [URL15]

� ���� ���� ���� � � � �

Version Management
[Whi00], [Rei95], [EC95], [Ze97]

� ���� � � � � � �

Change Management [UKR09] � � � � � � � �

Software Frameworks
[HD05], [DMN+06]

� � � � � � � �

The KobrA method [ABB+01] ���� ���� ���� � ���� ���� � �
Legend

����: supported; �: not supported; �: implicitly/partially supported

Table 5: Related work characterization

Sophisticated version management addresses all requirements but the
solutions provided are applicable only to specific version management
systems. Change management solutions on the other hand address all
requirements including the flexibility requirement. Yet, change
management concentrates on change requests only and does not

Related Work

 50

address evolution of assets. Furthermore, the concepts used in version
and change management do not correspond to product line concepts
directly.

Table 5 summarizes related work and the corresponding fulfillment of
requirements derived in the beginning of this chapter.

2.4 Section summary

This chapter has presented related work in the field of evolution control
for product lines. Existing results have been analyzed with respect to the
type of evolution aspects they address as well as the research questions
pertaining to the present thesis.

The next chapter will present the first component of the solution
proposed in the present thesis, namely a model that explicitly captures
the concepts of product line evolution control.

 Conceptual Model of Evolution Control

 51

3 Conceptual Model of Evolution Control

Focus of this thesis is evolution control in the context of product line
engineering. This section refines the concept of product line evolution
control and elaborates on the basic scenarios that must be supported.
Furthermore this section describes different types of product line
engineering settings and the corresponding evolution control needs.

Controlling the evolution of assets produced in an engineering process
requires that changes are continuously monitored as well as evaluated
and that correcting actions take place when necessary. In other words
control generally requires three basic capabilities: (a) monitoring, (b)
evaluating and (c) correcting. An established area of applied
mathematics that deals with such issues is control theory [AM08]. Hence,
control theory will be used as foundation in the following in order to
systematically obtain the basic scenarios (or scenario categories) for
product line evolution control.

3.1 Introduction to control theory and feedback

Control theory provides all mathematical constructs necessary for the
creation of systems that can be continuously controlled. A central
concept in control theory is the concept of dynamical system. The latter
is defined as a system whose behavior changes over time in response to
stimulation. In that sense a product line can be seen as a dynamical
system. As discussed in section 1 a product line consists of several
related software products that are continually changed over time.
Changes can be stimulated externally by customers, users or the overall
environment in which the software runs or internally, that is within the
software developing organization. According to the discussions in
section 1.2 a product line can be actually seen as the aggregation of two
dynamical systems, namely family and application engineering.

A further central concept of control theory is the concept of feedback. It
is defined as the connection between dynamical systems in terms of
influence. In other words the output of a dynamical system can influence
another dynamical system which in turn can influence other systems
(including the first one). The concept of closed loop is often used in this
context to illustrate circular dependencies between dynamical systems as
shown in Figure 19.

Conceptual Model of Evolution Control

 52

Figure 19: Closed loop feedback

In the above example System A produces an input u which influences
System B. The latter then produces output y which in turn influences
back System A and possibly other systems not shown in the figure.

3.2 Feedback in product line engineering

Based on the above discussion a product line engineering process can be
seen as a dynamical system comprising two sub-systems, family and
application engineering as depicted in the following figure.

Figure 20: Closed loop in Product Line Engineering

Figure 20 illustrates Family and Application Engineering as two series
connected dynamical systems. For simplicity it is assumed that there is
only one single application engineering process. Family engineering
initially receives one input; that is the scope of the product line. The
latter defines the common and varying characteristics of product line
members and it also provides information about different technical
domains and the corresponding software reuse potential for the product
line at hand. The scope plays a major role in family engineering since it
helps deciding which core assets are made reusable and to what extent.
The outputs of family engineering are new or revised core assets that are
to be reused across the product line during application engineering.

Application engineering takes three inputs: (a) core assets delivered by
family engineering, (b) the scope of the product line and (c) product-
specific requirements. The latter are naturally the major driver of
application engineering. Since application engineering delivers products
(depicted as a set of product-specific assets in Figure 20) an interaction
must take place between the application engineering section (i.e. the
sales department) and the corresponding customers. During this
interaction product-specific requirements are obtained which are
possibly realized during application engineering. The decision about
which requirements to realize is facilitated by the product line scope.

System A System B
u y

Family
Engineering

new or revised
core assets

new or revised
product-specific

assets

scope scope requirements

CustomersApplication
Engineering

 Conceptual Model of Evolution Control

 53

Based on the scope definition the customer service representatives are in
position to offer different product features to customers. They are also in
position to judge whether a customer wish is supported by the product
line. After customer negotiations application engineers start producing
the specific product line member, partially by reusing the core assets
from family engineering. The result is a set of new or revised product-
specific assets which on the one hand are packaged as products and
delivered to customers and on the other hand are communicated to
family engineering in terms of feedback.

Feedback is necessary since it enables family engineering to analyze the
evolution of product line members and the extent to which software
reuse is applied. The feedback enables identifying and avoiding
redundant effort in different product line members. It facilitates keeping
the core asset base up-to-date so that the advantages of software reuse
are continuously exploited. This kind of feedback is also necessary in
order to modify the product line scope according to customer needs.

3.3 Introduction to control loops

In order to control a dynamical system it is necessary to provide the three
basic capabilities of monitoring, evaluating and correcting. In control
theory monitoring is taken over by sensors, evaluating by controllers and
corrections by the system under control. In other words a controlled
dynamical system requires a closed-loop feedback system with three
subsystems as shown in the following figure.

Figure 21: Control loop

Figure 21 depicts a dynamical system under control, a sensor that
monitors the system output and a controller that compares the system
output with the desired behavior before taking any correcting actions.
The inputs to the controller are called controlled variables [RP05]. These
are the data of interest captured by the sensor that monitors the system
output. The outputs of the controller are called manipulated variables

Controller

Sensor

manipulated
variables

system
output

controlled
variables

desired
behavior

external
factors

Controlled
System

Conceptual Model of Evolution Control

 54

[RP05] because they are given as input to the controlled system
attempting to change its behavior. The final system output is hence a
function of the manipulated variables and external factors that influence
the system.

A typical example of a system that works as illustrated in Figure 21 is a
home automation system. Such a system needs to be controlled so that
specific control variables like temperature do not exceed the desired
thresholds. External factors that influence a home automation system
can be user actions (e.g. operating the windows, heating) or
environmental factors (e.g. outside temperature). Manipulated variables
can be instructions from a controlling computer to turn off the heating
or to lower the shutters. Finally sensors (e.g. temperature or humidity
sensors) perform measurements and assign data to the controlled
variables

3.4 Control loops and configuration management

In order to study evolution control in a product line engineering process
the control loop concepts discussed in section 3.3 can be applied. In fact
using control loops for the study of software engineering dynamics in
general has already been proposed in the literature [Mad08].

Configuration management is the de-facto established discipline for
evolution control in software and system development. Therefore, before
looking into the particularities of product line engineering, it makes
sense to first map the concepts of controller, system and sensor to
corresponding concepts from the field of configuration management.

Figure 22: Mapping control loop concepts to configuration management

Sensor

Change
Management

Version
Management

Status
Accounting

Controller
Controlled
System

Change
Request

desired
quality

implementation
approach

Controlled
Changes

Changes

 Conceptual Model of Evolution Control

 55

The corresponding concepts in configuration management are change
management, version management and status accounting. The
following subsections will discuss these concepts in the context of the
evolution control loop.

3.4.1 Change management

In Figure 22 the controller is mapped to the activity of change
management. This activity is responsible for the evaluation of changes in
terms of impact to system functionality, interfaces, utility, cost, schedule
and contractual requirements [Le04]. All these factors are shown as the
desired quality input in Figure 22 since they influence the quality of the
system under development but also the quality of the development
process per se.

The output of change management is usually one or more change
requests which describe items affected by changes, the nature of
changes, proposals on how to approach the changes and further

information about cost or schedule4.

3.4.2 Version management

After change management has specified the necessary changes, version
management realizes them. This activity performs the actual changes
and in terms of control theory it corresponds to a dynamical system that
is to be controlled.

The implementation approach is a factor that influences the quality of
new versions. This factor is an uncontrolled variable and can depend on
the profile and experience of the engineer that performs a change or on
other organizational, political or societal factors. Output of version
management is a set of new versions, which contain the change
requested by change management.

3.4.3 Status accounting

Configuration status accounting (CSA) consists of the recording and
reporting of information needed to effectively manage a software
system and its characteristics [Le04]. In other words status accounting
enables to query the configuration management repository for all
different kinds of information, particularly changes. Therefore it
corresponds to the sensor concept in control theory.

4 All these parts of a change request are often captured in terms of templates, which

are then also given as an input to the change management activity.

Conceptual Model of Evolution Control

 56

Status accounting can be setup as a filter that evaluates and selects
information about new versions against predefined criteria. Examples of
such criteria are the type of changes (i.e. versions), the owners of
changes or the time when changes occurred.

3.5 Control loops in product line engineering

A product line engineering process consists of parallel running family
and application engineering activities (see also sections 3.2 and 1.2). In
the simplest case there are one family engineering activity that delivers
core assets and a set of application engineering activities that deliver
product line members by reusing core assets.

Each activity (family or application engineering) is subject to evolution
control. Therefore the control loop shown in Figure 22 applies to each of
the activities. This yields a set of parallel running control loops. Following
figure illustrates these loops in a product line engineering setting
containing one family and three application engineering processes.

Figure 23: Control loops in product line engineering

Figure 23 illustrates internal and external feedback connections between
activities. Internal feedback is applied within a family or application
engineering process, while external feedback represents data flow across
different processes. As shown in the figure, version management in

Family Engineering

Change
Management

Version
Management

Status
Accounting

Application Engineering

Status
Accounting

Change
Analysis

Version
Management

Customers

Application Engineering

Status
Accounting

Change
Analysis

Version
Management

Customers

Application Engineering

Status
Accounting

Change
Management

Version
Management

Customers

Changes performed
on reusable assets
(Core Assets)

Changes performed
on product-specific assets

 Conceptual Model of Evolution Control

 57

family engineering provides feedback to status accounting in application
engineering. This makes sense since new versions of core assets have to
be communicated to the users of core assets, namely the corresponding
application engineering activities. Status accounting can capture this
information. Similarly, new versions of product assets can be interest to
family engineering; therefore there are connections between version
management in application engineering and status account in family
engineering.

3.6 Types of product lines

Figure 23 has shown an example of a product line type, in which one
family engineering activity interacts with three application engineering
activities through feedback between the corresponding version
management and status accounting activities. However there are other
types of product lines, in which the situation looks differently.

It is for example conceivable that a change management activity in
family engineering directly interacts with a change management activity
in application engineering [UKR09]. Similarly, a version management
activity in family engineering may involve version management activities
in application engineering: A change in a core asset may automatically
lead to an update in the corresponding application engineering activities.

There is a series of different product line types and according product
line engineering processes identified thus far in the community
[Mut02][Bo02]. The following sections will elucidate these different types
as well as the corresponding evolution control needs.

3.6.1 Individual (or independent) Products

It is possible that an organization delivers custom created products only.
Each time a customer requires a product it is built from scratch or via ad-
hoc software reuse. In such a situation all individual products are
maintained independently of each other and feedback is performed in
an opportunistic manner.

In general development of an individual product can be characterized as
product-specific. There may be however cases in which the development
for reuse appears sensible for some assets. Therefore the development
process as well as the corresponding asset base can be seen as hybrid,
combining aspects from both family and application engineering. The
decision to make an individual product asset reusable is typically made in
an opportunistic way. The same applies to the application of reusable
assets as well as to feedback relationships between different individual
products.

Conceptual Model of Evolution Control

 58

3.6.2 Product Generations

A product generation is defined as a set of related versions of a singular
product that have been released by an organization in a specific time
period (e.g. releases 3.1 and 3.5 of the popular Firefox browser). In some
cases organizations opt for the continuous maintenance of the various
generations. A product line can hence be defined in which the product
generations can be seen as the product line members.

During the parallel development of different product generations
backward and possibly forward compatibility must be usually
guaranteed. Therefore feedback and control mechanisms must be
established. On the other hand software reuse is not necessarily part of
the development process and is applied in ad-hoc manner.

3.6.3 Standard Application

Standard applications often arise as a natural evolution of individual
product development. The ad-hoc application of software reuse may
gradually lead to a set of assets that make up a standard product or
standard application delivered by the organization. This application will
usually capture a unique selling point or a major competence field of an
organization (e.g. complex process simulations). Hence every time a
customer requires a product the standard application is individually
extended to address the needs of the customer.

In terms of evolution control the common core captured by the standard
application is maintained in parallel to the individual instances of the
applications that are delivered to customers. Feedback loops are
necessary to communicate possible problems with the customization or
execution of the standard application and also for the delivery of new
versions of the standard application. The feedback loops can be internal
or external depending on the size of the standard application and the
organization.

Software reuse is generally applied in an opportunistic way. The
common core of the standard application is generally developed
independently of any reuse potential. On the other hand experiences
from the instantiation of the common core may lead to development of
some reusable assets.

3.6.4 Professional or Customizable Application

This type is similar to the standard application. The difference lies in the
range of features and properties offered by the application. In this case
the professional application aims at comprising as much functionality as

 Conceptual Model of Evolution Control

 59

possible in an application domain while the standard application focuses
on the most important functionality.

To reduce the tailoring effort a professional application must be made
customizable. There are different possibilities and maturity levels to this
customizability. Typically a professional application will provide for its
customization during installation or at run-time. For example
configuration dialogs may come into play that will let the user select the
functionality to be executed. More advance customizability may involve
the adaptation of the application even in an earlier stage (for example
during compilation or linking).

In any case the customized instances of a professional application are
not maintained any longer after their delivery to customers. Therefore
feedback control, if applied, is usually internal.

3.6.5 Standardized Infrastructure

A standardized infrastructure has also many similarities to a standard
application. Actually a standardized infrastructure may comprise a
standard application along with necessary infrastructure for production
of product line members. Such an infrastructure typically consists of an
operating system, an integrated development environment and possibly
a set of external (commercial or open source) systems, tools, libraries and
frameworks. The evolution control needs are similar to the needs of the
standardized application.

3.6.6 Platform

The platform follows the same idea as the standardized infrastructure.
The difference here is that a platform (or a framework) is developed that
captures the commonality in the product line. Product line members are
hence built by reusing and extending the platform at well-defined
places, also known as hotspots [FSJ99]. In other words a platform also
addresses the variability (cf. Figure 2, section 1.3) in a product line but
does not provide a detailed variability specification. Both the platform
and the derived products need to be maintained in parallel. Feedback
from the products to the platform is possibly supported [DMN+06]
[HD05].

3.6.7 Product Population

This type is similar to the platform type introduced above. Here the
platform is realized as a collection of components in the sense of
component-based development [Sz98]. In other words components have
well defined incoming, outgoing and configuration interfaces.

Conceptual Model of Evolution Control

 60

Components may be also nested but usually there are no predefined
compositions of components. Product line members are therefore
created through the composition (possibly including configuration and
adaptation) of preexisting components. The different components are
maintained individually. The same applies to the different component
compositions. This approach has been introduced in [Om02].

3.6.8 Software Product Line

This is that traditional setting that corresponds to the discussions in
sections 1.2 and 3.2. A Family Engineering activity is established that
delivers reusable assets based on a strategic plan. The latter is the result
of the scoping activity. In addition a set of Application Engineering
activities are set-up for each of the members of the product line. Therein
assets that make up the final products are being developed by reusing
available core assets and by creating product-specific assets. Family and
Application Engineering activities are executed in parallel and must be
continuously synchronized in order to avoid erosion of the core asset
base.

3.6.9 Hierarchical Product Lines

Hierarchical product lines [TH03] extend the idea of the basic software
product line with additional framework and application engineering
activities. This can become necessary in bigger organizations that involve
different internal or external units (i.e. through subcontracting). In case
for example an organization delivers a set of large-scale systems that
consists of various subsystems, each subsystem may follow a product line
approach. In the family engineering phase the subsystem will provide for
the different variations the subsystem may be influenced from. Such a
family engineering phase can be then embedded in the family
engineering phase of the enclosing system. On the other hand a
subsystem-specific application engineering process will enable the
instantiation of a subsystem during the instantiation of the enclosing
system and therefore can be also embedded in the enclosing application
engineering phase. Hierarchical product lines can be also employed in
cases where the product portfolio of an organization is large so that
products are assigned to different product categories, possibly at
different granularity levels. In this case a product category can be seen as
the result of application engineering, which however needs to be further
refined in order to become a product. In other words product categories
are created in hybrid processes that have elements of both family and
application engineering.

 Conceptual Model of Evolution Control

 61

3.6.10 Production Lines

Production lines have been introduced in [Kr02] and are similar to the
typical software product lines regarding family engineering. Production
lines also contain a family engineering activity that creates flexible and
reusable assets. Furthermore family engineering is equipped with special
infrastructure for the explicit management of the variability. The
different options, alternatives and parameters that must be decided on
during the creation of a product as well as their interdependencies are
managed explicitly in this variability management infrastructure.

However production lines consider the result of the instantiation process,
which is the set of assets that make up a product line member, as a
transient work product. Therefore product assets are not part of the
product line and consequently there is also no feedback loops usually
planned from the products back to the product line.

In that sense production lines can be compared to professional or
customizable applications (cf. 3.6.4). The major difference is the
presence of the variability management infrastructure.

3.6.11 Adaptive Product

An adaptive product can be seen as specialization of a professional
application. Adaptive products are able to dynamically change according
to changing conditions in the execution environment. The changes in
this case can go further than with customizable products. In the case of
adaptive products new code can be integrated or existing code can be
reflectively adapted during execution. The concrete mode of adaptation
may vary but ideally an adaptive system is able to sense the environment
and trigger a self-adaptation accordingly. Given a set of adaptive systems
running in a field feedback cycles can come into play in order to inform
an organization about the status of the running systems. Thereby the
types of changes from the field and the triggered self-adaptation
operations can be communicated.

3.7 Conceptual model

In order to support evolution control in different types of product lines a
generalized conceptual model is necessary. A basic model is depicted in
Figure 24 in terms of UML notation [UML03]. At this time, connections
between processes (i.e. feedback loops) are not modeled; they will be
discussed as the model is refined in later sections.

Conceptual Model of Evolution Control

 62

Figure 24: Conceptual model of evolution control

Figure 25 below shows the same model as in Figure 24 in terms of a
textual representation, which will be used in the remainder of this work
for the description of structural models. This representation enables the
creation of a Domain-specific Language (DSL) for product line evolution
control and is based on the Xtext language development framework
[URL19].

Figure 25: Conceptual model (Xtext-based)

Xtext provides for the creation of textual DSLs as context-free grammars.
Hence, the different concepts (e.g. product line etc.) that appear as
classes in the UML model are specified as grammar rules (e.g.

ProductLine:
 name=ID
 (processElements+=ProductLineProcess)+;

ProductLineProcess:
 name=ID
 (evolutionActivity+=EvolutionActivity)+;

EvolutionActivity:
 ChangeManagement |
 VersionManagement |
 StatusAccounting;

 Conceptual Model of Evolution Control

 63

ProductLine followed by a colon) with Xtext. UML class attributes in turn
are mapped to assignments (e.g. name=ID) within rules. The left part of
an assignment represents an attribute or feature (e.g. a product line has
a name) and the right part of the assignment can be seen as a type (i.e.
ID is a type that classifies all uniquely identified attributes). Multiplicities
are handled in terms of Extended Backus-Naur expressions (i.e. a ‘+’
refers to the one-or-more multiplicity etc.)

Compared to the UML-based representation a DSL based on Xtext offers
a serious advantage: it enables to exactly address the concepts needed
for the specification of product line evolution control. Xtext takes a
grammar as an input and generates a specialized textual editor, an editor
for the description of product line evolution control. The editor focuses
only on the necessary concepts and facilitates significantly (e.g. through
auto-completion, syntax highlighting etc.) the description. On the
contrary a UML-based solution imposes the usage of the UML meta-
model, which is extensive and does not necessarily correspond to the
specification problem at hand. There are two further advantages of a
DSL-based solution, which will be explained in the following subsections.

3.7.1 Validation of instance models

The UML model in Figure 24 can be thought off as a meta-model that
captures various types of product lines. A concrete instance of that
model would describe a particular type of product line. In UML such a
model instance can be realized in terms of an object diagram or in terms
of another class diagram (for that it would be necessary to turn the
model of Figure 24 into a UML profile). Yet, in both cases and with
current UML tools it is difficult to control the creation of instance
models. As a result invalid instance models that do not adhere to the
meta-model can arise. The Object Constraint Language [OCL01] can
support the validation of such models; however the creation of OCL
scripts is an error-prone task that requires considerable effort. Moreover,
different tools implement the OCL specification differently. Finally, some
tools enable the creation of custom validation programs (e.g. through
development of specialized validation plug-ins), which have full access to
the UML model and can check against various constraints. The
development of such validator programs is again not an easy task and
requires deep knowledge of the UML tool at hand. Moreover, such
validators are tool-specific and depend on the particular tool version as
well as on the UML version at hand.

On the other hand Xtext facilitates significantly the creation of validators
as it automatically generates two types of validators out of a grammar
definition. These validators can be invoked continuously, that is while a
grammar instance is edited or separately, through selection of the
corresponding menu item for validation.

Conceptual Model of Evolution Control

 64

• Java-based validator: Xtext generates Java classes representing the
rules of the grammar as well as a template for a validator class. The
latter allows full programmatic access to the grammar elements.
Therefore, it is possible to implement a broad spectrum of validation
rules, which can be applied to instances of the grammar. Moreover,
Xtext runs as a plug-in for the Eclipse development environment
[URL1]. Hence, various features of Eclipse come into play and
facilitate the development activities significantly.

• Check-based validation: Xtext also generates templates for
validation scripts based on the Check language [oAw]. The latter is a
declarative constraint language that significantly facilitates the
validation of grammar instances.

For example, the initial model shown in Figure 25 has the constraint that
an evolution process cannot have two identical evolution activities (e.g. a
family engineering process cannot have two identical change
management processes). This constraint has been implemented in terms
of the Java-based validator.

3.7.2 Code Generation

Xtext provides facilities for the creation of code generators out of a
grammar definition. It actually generates a code generator project for
Eclipse that can be extended at will. The project uses the specialized
Xpand template language [oAw]. The latter enables the creation of code
templates that can be filled in with input from grammar instances. In so
doing, it is possible to generate parts of a Customization Layer based on
the specified evolution control needs.

3.8 Refined Conceptual Model

In order to refine the basic model shown in Figure 25 the following
refinement or aggregation levels will be considered:

• Processes: Enables to specify the contents of a product line in terms
of family engineering, application engineering or hybrid processes
(i.e. a combination of family and application engineering)

• Activities: Enables to specify the contents of a process in terms of
change management, version management and status accounting
activities

• Scenarios: Enables to specify the contents of an activity in terms of
scenarios to be supported.

 Conceptual Model of Evolution Control

 65

This chapter will address the first two refinement levels. The third
refinement level, i.e. the scenarios, will be covered in detail in chapter 5.

Figure 26 provides the first level of refinement. A product line process is
modeled as an abstract concept, which can be instantiated as family
engineering, application engineering or hybrid process. The latter can
arise in situations, in which an activity develops for reuse and with reuse
at the same time.

Figure 26: Refined conceptual model (Processes)

As discussed in section 3.7 each product line process (i.e. family
engineering, application engineering or hybrid) has one or more
evolution activities. The content of these activities, that is the scenarios
to be supported, can differ depending on the type of the activity. In
other words a family engineering process has other change
management, version management and status accounting activities than
an application engineering process.

Hence, in the next step family engineering, application engineering and
hybrid process are refined in order to enable the specification of the
corresponding evolution activities. Each activity (i.e. change
management, version management or status accounting) will be further
refined later (chapter 5) in terms of scenarios to be supported.

ProductLine:
 name=ID
 (processElements+=ProductLineProcess)+;

ProductLineProcess:
 FamilyEngineeringProcess |
 ApplicationEngineeringProcess |
 HybridProcess;

FamilyEngineeringProcess:
 'FamilyEngineering' name=ID
 (evolutionActivity+=EvolutionActivityFE)+;

ApplicationEngineeringProcess:
 'ApplicationEngineering' name=ID
 (evolutionActivity+=EvolutionActivityAE)+;

HybridProcess:
 'Hybrid' name=ID
 (evolutionActivity+=EvolutionActivityFE)+
 (evolutionActivity+=EvolutionActivityAE)+;

Conceptual Model of Evolution Control

 66

Figure 27: Refined conceptual model (Family Engineering)

Figure 28: Refined conceptual model (Application Engineering)

3.9 Role of the conceptual model

The conceptual model can be used to describe a particular type of
product line as well as the corresponding evolution control needs in a
semi-formal way in terms of a domain-specific language.

FamilyEngineeringProcess:
 'FamilyEngineering' name=ID
 (evolutionActivity+=EvolutionActivityFE)+;

EvolutionActivityFE:
 ChangeManagementFE |
 VersionManagementFE |
 StatusAccountingFE;

ChangeManagementFE:
 'ChangeManagementFE' name=ID
 (scenario+=ChangeManagementScenarioFE)+;

VersionManagementFE:
 'VersionManagementFE' name=ID
 (scenario+= VersionManagementScenarioFE)+;

StatusAccountingFE:
 'StatusAccountingFE' name=ID
 (scenario+= StatusAccountingScenarioFE)+;

ApplicationEngineeringProcess:
 ‘ApplicationEngineering’ name=ID
 (evolutionActivity+=EvolutionActivityAE)+;

EvolutionActivityAE:
 ChangeManagementAE |
 VersionManagementAE |
 StatusAccountingAE;

ChangeManagementAE:
 'ChangeManagementAE' name=ID
 (scenario+=ChangeManagementScenarioAE)+;

VersionManagementAE:
 'VersionManagementAE' name=ID
 (scenario+= VersionManagementScenarioAE)+;

StatusAccountingAE:
 'StatusAccountingAE' name=ID
 (scenario+= StatusAccountingScenarioAE)+;

 Conceptual Model of Evolution Control

 67

In the context of this thesis the description of a product line is the first
step towards setting-up an evolution control system, namely a
Customization Layer (cf. section 1.5). In that sense the conceptual model
can be first used to describe the set of processes (i.e. family and
application engineering) that have to be controlled as well as the
evolution control activities therein. This is the first step towards the
derivation of appropriate structure for the Customization Layer as well as
the access to the underlying configuration management system. The
next step, which will be elucidated in chapter 5, is to specify the
scenarios to support in each activity and then to map this to
configuration management (chapter 6).

Figure 29 illustrates an example usage of the conceptual model5. The
grammar instance corresponds to the library example introduced in
section 1.3.5. The example product line delivers a reusable library of
vectors. Two product line processes are modeled: VectorDevelopment as
instance of FamilyEngineering and vectorApplication as instance of
ApplicationEngineering.

Figure 29: Example application of the conceptual model

Since a Customization Layer will possibly be employed within a
distributed team persistence of the basic asset model have to be
considered carefully. A strategy to cope with that is to consider entities
of the data as transient. In this case the model instantiated in memory
from the underlying CMS every time it is needed. If however there is a
continuous integration facility available it is possible to continuously
update the model based on the feedback from the continuous

5 The example uses some syntactical extensions (e.g. commas, brackets), which can be

modeled with an Xtext grammar. For simplicity reasons these extensions will not be
shown in the text. The full grammar including the syntactical extensions is given in
the appendix.

ProductLine VectorProductLine{
 FamilyEngineering VectorDevelopment{
 ChangeManagementFE VectorDevelopmentCM,
 //{
 //scenarios to be added later
 //}
 VersionManagementFE VectorDevelopmentVM,
 StatusAccountingFE VectorDevelopmentSA
 }
 ApplicationEngineering VectorApplication{
 ChangeManagementAE VectorApplicationCM,
 VersionManagementAE ProductPopulationVM,
 StatusAccountingAE ProductPopulationSA
 }
}

Conceptual Model of Evolution Control

 68

integration server. In this case however a database management solution
should be considered in order to cope with the concurrent access by
multiple users.

3.10 Section summary

In this chapter concepts of control theory such as dynamical system,
control loop and feedback have been mapped to product line
engineering. In so doing, evolution control activities in a product line
context have been identified. Then a model has been elaborated that
enables to specify these activities. The model has been derived based on
the control theory concepts as well as on the observation of different
types of product lines. Instantiation of the model is the first step towards
the creation of a Customization Layer for a product line. In the next
section the basic data model that underlies the Customization Layer will
be discussed.

 Data Model of Evolution Control

 69

4 Data Model of Evolution Control

This chapter introduces a data model for the assets pertaining to product
line evolution control. Subsequently a mapping is presented between
product line evolution control and configuration management that
closes the semantic gap between the two areas.

Variability management is a crucial component of product line
engineering. It enables the description and management of the
variability that is inherent in every product line effort. Therefore this
section also discusses the relations between product line evolution
control and variability management.

4.1 Basic Asset Model

As discussed in sections 1.2 and 1.3.4 there are two basic types of assets
that appear in a product line engineering context:

• Core assets

• Product assets

Core assets represent the output of family engineering and are
considered as reusable assets. On the other hand product assets are the
output of application engineering and may be core asset instances (i.e.
the result of reusing core assets) or product-specific assets that were not
developed with planned reuse. Figure 30 formalizes the different types
of assets in terms of Xtext grammar.

Figure 30: Types of assets and change requests

Asset:
 CoreAsset | ProductAsset;

ProductAsset:
 CoreAssetInstance | SpecificAsset;

ChangeRequest:
 name=ID
 item=ID
 state="open"|"closed"|
 "inprogress"|"fixed"|"approved"|
 "reviewed"|"verified"
 assets+=[Asset]*;

Data Model of Evolution Control

 70

In this case Xtext is not meant to be used directly by product line
engineers in order to describe assets. Xtext is used to elucidate entities
and relations, on which a Customization Layer operates. It is the
responsibility of a Customization Layer to instantiate these entities and
relations based on the evolution control operations (or scenarios) that
will be invoked.

The usage of Xtext for the specification of the basic asset model enables
the generation of all necessary Java classes that correspond to the
entities of the model. This enables a Customization Layer to
programmatically access instances of the model during execution.

Change requests can be assigned both to core and product assets.
Therefore Figure 30 also introduces the concept of a change request.
Each request has a unique name and a unique item identifier. The latter
refers to the persistent location that physically contains the change
request. Such a location can be described in terms of a uniform resource
identifier (URI) of a change management system. Furthermore a change

request contains references6 to assets. Finally, a change request moves
across various states during its lifecycle. Figure 30 uses the states
proposed by the OSLC specification [OSLC10].

4.1.1 Core Assets

A core asset can be uniquely identified by its name as well as by its
configuration item, i.e. file or directory. A core asset refers to a family
engineering process from the conceptual model (see section 3.7). This
reference aims at specifying the process that produces the core asset at
hand.

Furthermore a core asset may refer to a reuse contract [Me99]. The latter
formally describes the way the core asset is to be reused. The reuse
contract may also establish a connection to the product line scope and
describe the products for which the core asset is planned for. Finally, a
core asset can refer to zero or more instantiation objects, which describe
how the asset is being reused. Figure 31 provides the grammar extract
for core assets.

6 References in Xtext grammars are expressed in terms of squared brackets, e.g.

[CoreAsset] represents a reference to a core asset object, which is described in a
grammar instance.

 Data Model of Evolution Control

 71

Figure 31: Core assets

4.1.2 Instances and product-specifics

A core asset instance as well as a product-specific asset is also identified
in terms of a name and a configuration item. And, similarly to core
assets there are references to application engineering processes from the
conceptual model. An instance also contains references to one or more
instantiation objects. The latter relate core assets with instances and arise
when a core asset is reused. As counterpart to reuse contracts an
instantiation object refers to signed contracts. The latter describe the
decisions that have been taken while reusing a core asset. Figure 32
provides the grammar extract for instances and product-specifics.

As shown in the grammar, an instantiation can relate many core assets
to many instances. There are three main cases to be considered, which
can be also combined with each other:

• Multiple core asset instantiation

• Core asset composition

• Core asset decomposition

The first case is conceivable if there are many possibilities for the
derivation of a specific instance out of a core asset. This can happen for
example if the instantiation is a configuration procedure. In this case an
instance is obtained by configuring a core asset and it is possible that
different configuration decisions result to the same instance. The sets of
the different final configurations can so be captured in terms of
instantiation objects.

CoreAsset:
 name=ID
 item=ID
 process=[ConceptualModel::

 FamilyEngineeringProcess]
 (reuseContract=[ReuseContract])?
 instantiations+=[Instantiation]*;

Data Model of Evolution Control

 72

Figure 32: Instance and product-specific assets

The second case may come into play if an instance is the result of
combining multiple core assets. There may be situations where core
assets can be used in products only in combination with other core
assets. For example a core asset may contain a placeholder that needs to
be filled by another core asset. Hence during instantiation the
application engineer has to decide with which core asset to fill the
placeholder. The result of the instantiation is a single entity, an instance
asset, that resulted from the instantiation of two core assets, namely of
the core asset that contained the placeholder and the core asset the
filled-up the placeholder.

In the third case one or more core assets are combined to produce many
instances. This can happen for example if a particular instance is required
many times. This can also happen if a core asset reuse requires
decomposition of the core asset. In this case the instantiation output is a
set of instances obtained from the decomposition of the core asset.
Table 6 provides a graphical overview over the three types of
instantiations.

CoreAssetInstance:
 name=ID
 item=ID

process=[ConceptualModel::
 ApplicationEngineeringProcess]
 instantiations+=[Instantiation]+;

SpecificAsset:
 name=ID
 item=ID

process=[ConceptualModel::
 ApplicationEngineeringProcess];

Instantiation:
 name=ID
 coreAsset+=[CoreAsset]+
 signedContract+=[SignedContract]
 instance+=[CoreAssetInstance]+;

SignedContract:
 name=ID
 item=ID
 reuseContract=[ReuseContract];

 Data Model of Evolution Control

 73

Multiple instantiation

The same instance can be
produced in different ways out of
the same core asset

Core Asset Composition

Many core assets are composed to
produce one instance

Core Asset Decomposition

One core asset is decomposed to
produce many instances

Table 6: Types of core asset instantiation

4.2 Asset State Model

This section will discuss the different states that apply to core assets and
instances. This discussion is useful as it allows understanding the
fundamental behavior or core assets and instances. Based on this
discussion and especially based on the identified triggers behind state
transitions evolution control scenarios can be derived (in chapter 5). UML
state charts will be used in the following as notation.

Core
Asset

Instance

Instance

Core
Asset

Core
Asset

Core
Asset

…

Core
Asset

Instance

Instance

Instance

…

Data Model of Evolution Control

 74

4.2.1 Core asset states

The state of a core asset can be broken down to four concurrent
regions:

• Integration

• Release

• Reuse

• Change Management

The following sections will discuss these regions in detail.

Core Asset Integration

The region Integration, shown in Figure 33, monitors the state of the
asset with respect to the synchronization with its instances. To avoid
product line erosion it is important to ensure that new versions of
instances are reflected in the corresponding core assets. Upon core asset
creation the NonIntegrated state is by default entered. When the
integrate operation executes it propagates changes from instances back
to their core asset. Therefore this moves the core asset to the Integrated
state. This indicates that the core asset has taken relevant modifications
from application engineering into account.

Figure 33: Core Asset integration

Core Asset Release

The second region Release (Figure 34) monitors the process of releasing
an asset. The idea is that a core asset must first be released before it can
be instantiated. Again, upon core asset creation the NotReleased state is
entered. A series of modification may return to this state until the release

 Data Model of Evolution Control

 75

operation is executed. In this case the Released state is entered. A
subsequent modification leads back to the NotReleased state. The asset
must be explicitly released so that modifications become available for
propagation to the instances.

Figure 34: Core Asset Release

Core Asset Reuse

The region Reuse (Figure 35) aims at monitoring the reuse of a core
asset. Upon core asset creation the state NotReused is entered. When a
core asset is instantiated the region moves to the Reused state.
Modification of the core asset either leads to the NotReused state, if the
modifications removed all instances, or back to the reused state. Figure
35 also shows instanceModified as a change event. This indicates that
the transition from the Reused state to the instancesLeft choice can also
be initiated by a change on instances from the side of application
engineering.

Figure 35: Core Asset reuse monitor

Core Asset Change Management

Finally the last region ChangeManagement aims at monitoring change
requests related to the core asset at hand. When a core asset is first

Data Model of Evolution Control

 76

initialized it enters the state NoChangesPending. Upon creation of a new
change request the ChangesPending state is entered. When a change
request is closed the core asset goes back to the ChangesPending state
except if there are no more change requests open, in which case the
NoChangesPending state is reentered.

Figure 36: Core Asset change management

Correctness Constraints

At this point there are two correctness constraints that can be
formulated, which ensure that undesirable effects will never be
obtained:

• always(
 coreAsset.release_state == CoreAssetStates.RELEA SED =>

 eventually(coreAsset.reuse_state == CoreAssetState s.REUSED)

)

• always(
 ((coreAsset.reuse_state == CoreAssetStates.NotReused) AND

 coreAsset.integration_state == CoreAssetStates.INT EGRATED))
 == FALSE
)

The first constraint indicates that if a core asset gets instantiated its reuse
state will be eventually be set to Reused. The second constraint states
that it is not possible to have core asset which is not reused but
integrated at the same time. A tool as the Customization Layer is
responsible for the satisfaction of these constraints.

 Data Model of Evolution Control

 77

4.2.2 Product asset states

As with core assets, states of product assets can be broken down to the
following regions:

• Instance

• Rebase

• Change Management

Instance and Rebase will be explained in the following. The Change
Management region is identical to the corresponding core asset region
presented in section 4.2.1 and therefore will not be discussed here
again.

Instance

As described previously, a product asset can be the result of core asset
reuse, in which case it is an instance of a core asset, or it can be a
product-specific development obtained through new development or
other kinds of reuse.

Figure 37: Product asset characterization

Therefore, the first region Instance contains two states isInstance and
isProductSpecific, which denote whether a product asset is an instance
or not. The condition connectsToCoreAssets is checked upon entering
the region and upon modification. The purpose of the condition is to
identify whether the given product asset relates to core assets.

Data Model of Evolution Control

 78

Rebase

The Rebase region aims at monitoring whether a product asset, in
particular an instance asset, is in sync with the core asset it originates
from. This state is the equivalent of the Integrated state in the core asset
state chart (section 4.2.1). When the core asset an instance originates
from changes (i.e. a new release is available) it is important to consider
updating the instance with the latest changes from the core asset. To
this end the operation rebase of the Customization Layer can be called.

In this region the first state to be entered depends whether the asset is
product-specific or not. In the former case the state Irrelevant is entered.
Otherwise it is checked if changes from core assets have to be
synchronized and the state is set accordingly. Changes on instances or
core assets are monitored afterwards in order to continuously update the
state of the Rebase region.

Figure 38: Rebasing instances

Correctness constraints

There are three correctness constraints that can be formulated for
instances at this point. A simplified version of the domain-specific
language proposed in [BH11] is used in the following. The language
enables the expression of temporal logic constraints in a functional way
in terms of the Scala programming language [Od10].

In the first constraint for example the set of core assets that relate to an
instance are obtained by accessing the instantiations attribute of the
instance. By accessing the coreAssets attribute of instantiations the
corresponding core assets are obtained. Finally each core asset in the set
is referred to by the variable c that can be used to check the integration
state.

 Data Model of Evolution Control

 79

• always(
(instance.instance_state == InstanceStates.REBASED)
 implies(
 eventually(instance.
 instantiations.
 coreAssets.filter
 (c => c.integration_state ==
 InstanceStates.INTEGRATED).
 isEmpty == false)
)
)
)

• always(
(coreAsset.integration_state ==
CoreAssetStates.INTEGRATED)
 implies(
 eventually(coreAsset.
 instantiations.
 instances.filter
 (i => i.instance_state ==
InstanceStates.REBASED).
 isEmpty == false)
)
)
)

• always(
 ((instance.instance_state ==
InstanceStates.ISPRODUCTSPECIFIC)
 AND
 (instance.rebase_state == InstanceStates.REBASED))
 == FALSE
)

Hence, the first constraint indicates that if an instance gets rebased its
corresponding core assets should eventually have the integrated state.
Similarly the second constraint ensures that if a core asset is integrated
its corresponding instances shall eventually be rebased.

Finally the last constraint ensures that a product-specific asset will never
enter the rebased state as it has no connection to core assets

4.2.3 Identified operations

Based on the state model discussed in sections 4.2.1 and 4.2.2 a set of
operations on core and product assets can be identified as shown in the
simplified class diagram of Figure 39.

Data Model of Evolution Control

 80

Figure 39: Operations identified through state models

Moreover two change events instancesModified, coreAssetsModified as
well as conditions the isProductSpecific, rebaseNecessary
integrationNecessary, connectsToCoreAssets and
allChangeRequestsClosed have been identified.

This functionality is to be provided by a Customization Layer
implementation along with its interaction with a configuration
management system as it will be shown in sections 5 and 6.

4.3 Role of the Basic Asset Model

Assets in the basic asset model are to be considered as logical entities
that may refer to physical entities. In the context of configuration
management, which is the major enabler towards product line evolution
control, physical entities are configuration items (cf. section 1.3.3). In
order to close the gap between logical assets and physical configuration
items a relationship has been defined between asset and configuration
items. This relation is expressed in terms of the items attribute that is
assigned to assets (see for example Figure 31).

The major idea of this thesis as initially discussed in section 1.5 is that an
infrastructure – the Customization Layer – is set on top of configuration
management that enables evolution control in terms of product line
concepts, that is to say core assets and product assets. On the other
hand the underlying configuration management deals with the physical
configuration items that embody the logical assets. Following picture
illustrates this setting.

 Data Model of Evolution Control

 81

Figure 40: Role of the asset model in the Customization Layer

The basic asset model defines therefore logical concepts the
Customization Layer operates on. Furthermore the state models provide
a specification of the externally visible states of assets managed by the
Customization Layer.

The implementation of the basic asset model entails an important
parameter, the model update mode. The update mode specifies how the
logical model is synchronized with the configuration management
repository. Two modes are possible:

• Dynamic update mode: Create the necessary logical entities
dynamically, every time a Customization Layer operation is called.
The entities are created based on information from the repository.
For example when the users invokes the operation to list all core
assets, the Customization Layers looks for core assets in the
corresponding repository location, collects all information necessary
and delivers the result in terms of logical entities.

• Offline update mode: Maintain the model as a separate item and
keep it up-to-date when needed, based on information from the
repository. The Customization Layer holds the model as a
configuration item or in terms of another technology (e.g. as a
database) and checks the synchronization status every time a model
operation is called.

4.4 Variability Management

Variability management is a central capability in every product line
engineering effort. As discussed initially in section 1.3 a product line
must be able to manage the variability dimension, which is not present
in single system development. Variability is produced during family
engineering. In fact it is an inherent characteristic of core assets that

Assets

Customization

Layer

Configuration

Items

Configuration

Management

Logical

Entities

Physical

Entities

Data Model of Evolution Control

 82

enables them to be used in various situations, namely in the context of
various products. In other words variability is a central component of
reusability.

In order to become reusable core assets contain different variation
points. According to [Be04] a variation point is defined as a place in a
core asset, at which an adaptation can be carried out. The set of
variation points in a core asset can so be subsumed as the variability of
the core asset. Variability management entails the description of the core
asset variability and also the description of the dependencies between
variation points. Such a description shows the decisions that can be
taken to adapt a core asset as well as the effects of these decisions. This
description is referred to as variability model in the following.

Reuse contracts discussed in section 4.1.1 correspond to variability
models. Yet reuse contracts, as a concept, are more abstract and can
take various forms. Variability models can thus be seen as a concrete
incarnation of reuse contracts. Variability models can be created for
single core assets but they can also be composed to create variability
models for whole product lines.

Variation points can have interdependencies. It can happen that an
adaptation performed on a variation point requires the adaptation of
another variation point. In the collection library example (section 1.3.5)
the array and the vector may vary with respect to the types of objects to
be held in the collection. In other words the array and the vector can be
developed as parameterized classes in which the type of objects to be
collected is a parameter. The parameter is the variation point in this case
which might be connected to other variation points in the collection. A
vector may provide for example a method that sums the elements in the
vector. The concrete sum algorithm depends on the type of objects in
the collection. When the vector is set to manage integers, the sum
algorithm will calculate the arithmetical sum of the integers. If the vector
is set to manage strings, the algorithm may perform the concatenation
of the contained strings. The sum algorithm is therefore another
variation point which relates to the class parameter variation point.

In the above example two variation points (i.e. class parameter and
algorithm) are related to two adaptation decisions, namely the possibility
to adapt the object type and the possibility to adapt the sum algorithm.
These two possibilities can be naturally merged to a single possibility,
namely the decision upon the type of objects to be used across the
collection. Resolving the higher decision on the type to be used across
the class automatically resolves the lower level decisions. Such a
composition of decisions is another major responsibility of variability
management. In other words variability management enables the
creation of adaptation decision classifications based on part-of relations

 Data Model of Evolution Control

 83

(i.e. partonomies). The highest-level decision that can be defined in that
way is the product line member to be delivered. On the other the
lowest-level decision will adapt a single entity within a core asset. In
addition to composing decisions towards higher-level decisions variability
management also manages implications between decisions. In the above
example composition automatically included implication (e.g. selecting
an integer in the high-level decision for the whole class implies selecting
an integer for the type of objects to be held in the collection and an
integer for the sum algorithm). However this must be not always the
case. In other words there may be implications between decisions that
do not belong to the same part according to the decision partonomy.

Variability management does not only describe the adaptation
possibilities and effects of all core assets; it also acts as a configuration
frontend to this adaptation. As such it enables application engineers to
select and to actuate an adaptation possibility. The goal of the actuation
is to carry out the adaptation on the respective core assets and to obtain
the corresponding core asset instances. To this end a variability
management infrastructure has to be connected with the environment
that is used for the development of core assets. In case of source code
core assets such an environment is the integrated development
environment (IDE), in case of architectural core assets it can be a
modeling tool and in case of requirements it can be a requirements
management system. In this regard variability management must also
keep track of variability configurations. A variability configuration is a set
of resolved decisions and corresponds to signed contracts as discussed in
section 4.1.2.

Finally variability management can provide functionality that assures the
quality of a variability model. For example a variability model with
erroneous implications between decisions can lead to a constraint
satisfaction problem and therefore to no valid core asset instance or to
no valid product. Variability management can enable the discovery of
such problems.

Following list summarizes the functionality that must be provided by a
variability management infrastructure:

• Description of possible adaptation decisions and effects

• Classification of adaptation decisions based on part-of relations

• Management of implications between decisions

• Actuating the adaptation

• Keeping record of already performed adaptations

• Quality assurance of variability models

Data Model of Evolution Control

 84

Different approaches to variability modeling and management have been
proposed in the literature each one addressing some of the above issues.
Following table provides a list of well-known approaches.

Approach Reference

Common Variability Model
(upcoming OMG standard)

[CVL10]

COVAMOF [SDN+04]

Decision Modeling [Mut02]

Feature Modeling [KCH+98]

Orthogonal Variability Model [PBL05]

Variability Specification Language [Be04]

Table 7: Variability management approaches

In addition to the above approaches there are also commercial and
open-source tools that support variability management. The underlying
conceptual models are however not published in the most cases. The
decision modeling approach for example has been implemented in terms
of the Decision Modeler tool [YFM+08]. Other well-known tools include
GEARS [URL12], pure::variants [URL7] or the free PLUM [URL11].

4.4.1 Connection to Basic Asset Model

The basic asset model can be connected to variability management
approaches and the respective underlying models. The advantage of the
connection is two-fold.

While the asset model focuses on the relation between core assets and
instances variability management technologies focus on the relation
between core assets and variability decisions. With variability
management a domain space is typically built-up that specifies the
decisions an application engineer has to make when deriving a product
or parts of a product. Decisions in the domain space are mapped to logic
that actuates and delivers the assets accordingly. Hence when a product
is to be derived a set of decisions are being made and then the
corresponding logic is executed that selects, generates, transforms,
deletes etc. assets. The result is the asset instances that make up a
product or parts of a product. The first possible interaction between the
asset model and variability management resides in the activity of creating
the domain space. A core asset defined with the basic asset model can
be connected to one or several decisions in the variability management
system. In so doing the description of the core asset variability can be
connected to the asset and then to the physical configuration items

 Data Model of Evolution Control

 85

(through the connection of the basic asset model to configuration
management)

The second possible interaction is the derivation step. When a derivation
of a core asset instance takes place in a variability management system
the Instantiation and the SignedContract concepts (see Figure 32) can be
used to capture the derivation steps and result respectively. This
enhances the traceability of a product derivation procedure which is
handled with a variability management infrastructure and the result of
the derivation which is handled by evolution control and the
Customization Layer.

4.4.2 Connecting the Basic Asset Model to Decision Models

In order to exemplify the connection between the basic asset model and
variability management the decision model approach will be used. Figure
41 shows the meta-model of a decision model [Mut02] and the
connection to the basic asset model.

In the decision model approach an asset qualifies to be a reusable
product line asset if it contains a decision model that manages the
variability of the asset. Hence a product line asset contains two parts: a
decision model and a product line asset. The latter represents the
contents of the product line asset and can be broken down to a set of
asset elements. Some of those elements will be varying and therefore are
called variant asset elements. A variation point generalizes the concept
of a variant asset element which is further generalized by the decision
concept. A decision is considered to be more abstract than a variation
point because a decision does not directly connect to a variant asset
element. In other words decisions enable structuring a variability model
in terms of partonomies and implications. The latter are represented in
terms of the class ResolutionConstraint which in turn is related to a
ConstraintDecision.

During instantiation of a decision model each decision must resolved. In
the simplest case resolution means deciding whether a decision is true or
false (that is why ConstraintDecision relates to at least two instances of
ResolutionConstraint). In more complex cases a resolution may involve
selecting among a range of possible values.

Data Model of Evolution Control

 86

Figure 41: Decision meta-model and relation to basic asset model

The concept of CoreAsset from the basic asset model (Figure 31) can be
seen as the equivalent of the ProductLineAsset from the decision meta-
model. On the other hand the classes Instance and Instantiation (Figure
32) cannot be directly connected since these concepts are not explicit
parts of the decision meta-model, although the concept of resolution
and resolution model are parts of the approach.

Therefore the decision meta-model is extended in Figure 41 in order to
enable the connection to the classes Instance and Instantiation of the
basic asset model. The classes ResolutionModel, ResolvedDecision and
ResolvedProductLineAsset are introduced to this end. A resolution model
is an instance of a decision model, in which all decisions have been
already resolved. Therefore a resolution model can be connected to one
or more instantiations. Finally an instance of the basic asset model can
be connected to a ResolvedProductLineAsset.

There may be various levels of abstractions between decision models and
basic asset model. Based on the above mapping a top-level decision can
be directly mapped to low level core assets such as single files. Ideally the

 Data Model of Evolution Control

 87

same level of abstraction should be enforced: a top-level decision should
be mapped to a top-level core asset, embodied for example by a top-
level directory in the configuration management repository. Such
enforcement can be achieved with the help of the Customization Layer:
When a new core asset is created in the Customization Layer the
connection to the decision model can become active and enable the user
to automatically initialize the corresponding decision model. Furthermore
when an instantiation is created in the Customization Layer the decision
model can be brought up in order to automate the derivation and to
complete the instantiation. A similar interaction can be initiated from the
decision modeler when a resolution model is to be created. Chapter 5
that discusses concrete evolution control scenarios, will provide more
details on these interactions.

4.5 Section summary

This section has presented the basic asset model, the data model of the
Customization Layer, the solution proposed in this thesis. Different
logical entities, on which the Customization Layer operates, have been
defined and their externally visible states have been modeled. The
section concluded with the connection between Customization Layer
and variability management, in particular decision modeling. The next
section will define the scenarios that operate on the basic asset model.

 Process Model of Evolution Control

 89

5 Process Model of Evolution Control

Controlling software evolution can be considered as a software
engineering process. This applies in particular to product lines since the
forces that drive evolution are significantly stronger than with single-
system development. As elucidated in the 8th law of software evolution
[Leh96] “evolution processes are multi-level, multi-loop and multi-agent
feedback systems”. In other words there may be many types of feedback
loops, many granularity levels at which feedback takes place and finally
many stakeholder (agents) that participate in the process.

In the context of product lines the 8th law of software evolution becomes
even more important. Due to the fact that a family of related products is
managed as a whole the number of involved stakeholders increases
significantly compared to single-system development. The separation
between family and application engineering or even to multiple
interconnected family and application engineering phases (cf.
hierarchical product line, section 3.6.9) also increases the different levels
of granularity.

Finally, the types of possible feedback loops also increase. In single-
system development two types of feedback have been observed: positive
or “reinforcing” feedback and negative or “balancing” feedback
[MKL00]. In the former case the feedback usually leads to increasing the
scope of a system through addition of new functional or non-functional
properties. In the latter case the feedback usually results from defects in
the running system and leads to system maintenance. In other words
reinforcing feedback means that changes are introduced into a system
while balancing feedback ensures that the introduced changes adhere
with the goals of the system. In a product line context these two types of
feedback can be extended along the lines of family and application
engineering. In product line engineering there can be feedback that
reinforces core assets, instances of core assets or other product-specific
assets. Accordingly a reinforcing feedback can be accompanied by a
balancing feedback for core assets, instances and product-specifics.
Moreover these types of feedback can be further specialized as internal
or external feedback loops (cf. section 3.5).

In order to cope with the above challenges it is necessary that activities
for the evolution control of a product line are clearly defined. This
chapter presents such activities in terms of evolution control scenarios
that refine the conceptual model presented in chapter 2. The scenarios
operate on the entities of the basic asset model discussed in chapter 3.

Process Model of Evolution Control

 90

Each scenario will be described from two points of view:

• Xtext: The Xtext-based description shows the scenarios that are
available and can be selected when establishing a Customization
Layer for a product line. This view refines the conceptual model
discussed in section 3.7

• Interface: Internally, a Customization Layer will realize each scenario
as a subroutine. Therefore, for each scenario a Java-based signature
will be shown that specifies the number, types and order of the
scenario input and return parameters. The interfaces are meant for
interaction between users and a Customization Layer. Therefore, the
input and output parameters reflect information that can be
provided by or to the user. Moreover, this chapter discusses mainly
the signatures (i.e. the publicly available interfaces) of the scenarios.
The interaction with configuration management will be discussed in
the next chapter.

Evolution control of a product line entails monitoring and controlling
changes of core assets and product assets. Based on the categorization
introduced in section 3.4 and the refined conceptual model shown in
Figure 27 and Figure 28 the scenarios can be grouped as follows:

• Change management: Entails management of change requests for
assets

• Version management: Entails performing changes on assets.

• Status accounting: Entails the identification of asset changes and
facilitates impact analysis

The following subsections will elucidate the scenarios for family and
application engineering. Since the status accounting scenarios are
applicable to family and application engineering, they will be discussed
in a common section. The chapter will continue with a discussion of
change impact analysis as part of evolution control. Finally, possibilities
for interaction with variability management will be elucidated.

5.1 Evolution Control Scenarios for Family Engineering

This section discusses change and version management scenarios for
family engineering.

5.1.1 Creation of core asset change requests

Regarding change management of core asset the only scenario that has
to be automated by a Customization Layer is the creation of change
request. Modification and removal of change requests should be

 Process Model of Evolution Control

 91

performed through direct usage of the underlying change management
system. Following figure specifies the change request creation scenario.

createCoreAssetChangeRequest

XTEXT SPECIFICATION

createCoreAssetChangeRequest:
 'createCoreAssetChangeRequest' name=ID;

INTERFACE SPECIFICATION

String createCoreAssetChangeRequest(
 String[] caID,
 boolean synchronizeInstances
)
 throws CoreAssetCRCreationException;

Figure 42: createCoreAssetChangeRequest scenario

createCoreAssetChangeRequest enables the creation of a change
request for one or more core assets of a family engineering process. As
shown in the Xtext view it is again necessary to assign a unique identifier
to the scenario.

The signature of the scenario allows passing a set of core asset IDs.
However all core assets should pertain to the same product line
engineering process. Based on these IDs and the relation between core
assets and family engineering processes (see Figure 31) the
Customization Layer shall identify the location, on which to store the
change request in the underlying change management system. The
scenario returns a change request ID as a string that represents the
newly created change request. A CoreAssetCRCreationException is
thrown if the operation fails.

The signature also accepts a Boolean parameter synchronizeInstances.
This parameter specifies whether the family engineering process at hand
shall be associated with the corresponding application engineering
processes. If such an association is established the creation of a core
asset change request leads to the creation of change requests for each
of the core asset instances. The purpose of that is to perform changes on
core asset in synchronization with changes on instances. A ticket
hierarchy approach [UKR09] can come into play in this case.

The ticket hierarchy approach proposes to structure change requests,
referred to as tickets, hierarchically. Top-level (or main) tickets are
produced during family engineering and subtickets during application
engineering. Modern change management environments like JIRA
[URL9] enable this kind of hierarchy. The mechanism resembles the

Process Model of Evolution Control

 92

branching mechanism in version management. As with braches main
tickets and subtickets can be interrelated and corresponding rules can be
established. For example a rule can be defined, which imposes than a
main ticket can only be closed when all subtickets are first closed.

This approach enables a broad propagation of change requests across
the closure of all related core assets and instances. The implementation
of the scenario must therefore assure that no change request duplication
occurs (more on that in section 6).

5.1.2 Scenarios for version management of core assets

createCoreAsset

XTEXT SPECIFICATION

createCoreAsset:
 'createCoreAsset' name=ID;

INTERFACE SPECIFICATION

void createCoreAsset(
 String sourceLocation,
 String targetLocation,
 String templateLocation,
 String depth
)
 throws CoreAssetCreationException

Figure 43: createCoreAsset scenario

createCoreAsset creates a core asset based on a given source location of
the asset contents. This location can be in a file system or in a
configuration management repository. The Customization Layer shall
perform all necessary steps in order to put the asset contents at the
target location under configuration management control and to mark
them as core assets. If the source location is already a repository location
the target location can be omitted and the Customization Layer only
marks the source location as a core asset location. The exception
CoreAssetCreationException is thrown if the creation fails, for example
due to an invalid source or target location.

The scenario method also accepts a template as input parameter. The
purpose of this parameter is to tell the Customization Layer what kind of
directory structure to use when creating an empty core asset (in this case
sourceLocation is nil). This can be useful if an organization has a
predefined directory structure for reusable assets. The parameter
templateLocation refers thus to a location containing this directory

 Process Model of Evolution Control

 93

structure. In this case the Customization Layer extracts the structure and
applies it upon creating the asset.

An interesting situation arises when the asset to be added already
contains content, i.e. when the asset is a directory containing files and
other directories. In this situation the parameter depth enables
describing as a regular expression to which extend the contents of the
assets are to be marked as core assets. If depth is equal to nil the
Customization Layer shall only mark the asset (i.e. the directory) as a
core asset. However, if a regular expression is passed the Customization
Layer shall look up all directory entries matching this expression and
mark them as core assets.

The creation of a core asset involves the creation of a core asset object
according to the model discussed in section 4.1.1 The following table
shows how the Customization Layer can populate the model based on
the input parameters and possibly through additional interaction with
the user and a variability management system.

Core Asset Attribute Population approach

name Obtained through user interaction or set equal to
the item attribute (next row)

item Assigned automatically based on the input source or
target location

process Assigned automatically since every scenario is
related to a process (see section 3.8)

reuseContract Depends on the availability of a connector to a
variability management system (see section 5.5).

Instantiation Not populated during core asset creation

Table 8: Population of core asset attributes

Process Model of Evolution Control

 94

removeCoreAsset

XTEXT SPECIFICATION

removeCoreAsset:
 'removeCoreAsset' name=ID;

INTERFACE SPECIFICATION

void removeCoreAsset(String caID)
 throws CoreAssetDeletionException

Figure 44: removeCoreAsset scenario

removeCoreAsset removes the marks that indicate a particular
configuration management repository location as a core asset. It expects
a core asset ID as input and throws a CoreAssetDeletionException
exception if the operation fails (e.g. invalid core asset ID, open change
requests on the asset).

An interesting situation arises when the core asset to be removed has
been already instantiated. In this case the Customization Layer must
ensure that instances of the removed core asset maintain a consistent
state. One strategy is to associate the affected instances with a special-
purpose core asset that represents deleted assets. Another strategy is to
transform the affected instances to product-specific assets if there are no
other instantiation relations to core assets.

modifyCoreAsset

XTEXT SPECIFICATION

modifyCoreAsset:
 'modifyCoreAsset' name=ID;

INTERFACE SPECIFICATION

void modifyCoreAsset(String caID)
 throws CoreAssetModificationException

Figure 45: modifyCoreAsset scenario

modifyCoreAsset enables the user to modify information about a core
asset. Upon invocation the Customization Layer allows modification of
core asset attributes (see Figure 31) and subsequently stores the
information back to the configuration management system. A
CoreAssetModificationException is thrown if the operation fails.

 Process Model of Evolution Control

 95

integrateCoreAsset

XTEXT SPECIFICATION

integrateCoreAsset:
 'integrateCoreAsset' name=ID;

INTERFACE SPECIFICATION

void integrateCoreAsset(String caID)
 throws CoreAssetIntegrationException

Figure 46: integrateCoreAsset scenario

This scenario corresponds to the integration region in the core asset
state machine (see section 4.2.1) and aims at integrating a core asset
with its instances. Therefore, when the scenario is invoked the
Customization Layer must allow propagation of instance changes to the
corresponding core assets. There are two strategies that can be
followed:

• A-posteriori integration: In this case the Customization Layer
assumes that changes have been already propagated. That is, core
assets and instances have been changed in a way that served
propagation of changes. In this case the Customization Layer only
marks the performed changes as integration changes

• Session-based integration: In this case the Customization Layer shall
open a session, in which the user will perform the integration. The
Customization Layer has to guide the user across the different steps
necessary for the integration (identification of instances,
modification of instances etc.).

5.2 Evolution Control Scenarios for Application Engineering

This section discusses change and version management scenarios for
application engineering. Since the scenarios are almost identical to the
corresponding scenarios in family engineering only the major differences
will be discussed in the following.

Process Model of Evolution Control

 96

5.2.1 Creation of product asset change requests

createProductAssetChangeRequest

XTEXT SPECIFICATION

createProductAssetChangeRequest:
 'createProductAssetChangeRequest' name=ID;

INTERFACE SPECIFICATION

String createProductAssetChangeRequest(
 String[] paID,
 boolean synchronizeCoreAssets
)
 throws ProductAssetCRCreationExceptio n;

Figure 47: createProductAssetChangeRequest scenario

At this point it is worth discussing the synchronizeCoreAssets parameter
that can be passed to the createProductAssetChangeRequest scenario.
Similar to the createCoreAssetChangeRequest scenario the idea here is
to keep change requests for core assets and instances synchronized.
Therefore if the parameter is set to true when a change request for an
instance is opened, the implementation shall create a change request for
the corresponding core assets as well.

5.2.2 Scenarios for Version Management of product assets

createProductAsset

XTEXT SPECIFICATION

createProductAsset:
 'createProductAsset' name=ID;

INTERFACE SPECIFICATION

enum InstantiationStrategy { DEEP, SHALOW };

void createProductAsset(
 String sourceLocation,
 String targetLocation,
 String templateLocation,
 boolean isInstance,
 InstantiationStrategy iStrategy
)
 throws ProductAssetCreationException

Figure 48: createProductAsset scenario

 Process Model of Evolution Control

 97

The creation of a product asset may involve the creation of a product-
specific asset or the creation of an instance. In the former case the
scenario works in a similar way as the createCoreAsset scenario. In the
latter case however (isInstance parameter set to true) the realization of
the scenario must ensure that relations are established between the to-
be-created instance and the corresponding core assets. In other words,
when the scenario is invoked a session is to be started, in which the user
is asked to provide the attributes of the newly-to-be-created instance
(see section 4.1.2). Thereby the user will have to provide, among other
things, the ID of core assets for which an instantiation is to be created.

If the sourceLocation is left empty and isInstance is set to true, the
Customization Layer can copy the contents of the core assets to be
instantiated to the location designated by the targetLocation attribute.
On the other hand if isInstance is set to true and sourceLocation is not
empty the Customization Layer has to assume that in the given
sourceLocation there is already an instance of the corresponding core
assets. The contents of this location are then put under targetLocation or
they are left unchanged if targetLocation is empty and sourceLocation is
a repository location. In every case the Customization Layer has to mark
the contents as instances of the specified core assets. The
ProductAssetCreationException is thrown if the usage of the
sourceLocation, targetLocation and isInstance attributes is not
appropriate (e.g. both sourceLocation and targetLocation are nil) or it
there is a problem with the creation of the product asset (e.g. network
connection problem)

The createProductAsset scenario also accepts an instantiation strategy as
an input, which according to Figure 48 can be deep or shallow. The
choice of a strategy is necessary, since core assets may form a
composition hierarchy. In other words it can happen that the
configuration item associated with a core asset contains other
configuration items, which in turn are associated with other core assets.
For example a top-level directory that contains a library, is associated to a
library core asset and contains a series of other directories. The latter are
associated with other core assets, which thus can be seen as parts of the
library core asset. Both strategies make sense when sourceLocation is nil
and are explained in the following:

• Deep instantiation: When a composite core asset is instantiated, all
contained core assets are instantiated as well. That means, if the
core asset contains other core assets, they will be instantiated as
well. The containment relations can be identified in terms of the
corresponding configuration items.

• Shallow instantiation: When a composite core asset is instantiated,
only the root configuration item of the core asset is instantiated.

Process Model of Evolution Control

 98

As with the createCoreAsset scenario the createProductAsset has also to
populate the attributes of an instance object with values according to
the model discussed in section 4.1.2. The following table discusses how
these attributes can be populated.

Core Asset Instance
Attribute

Population approach

name Obtained through user interaction of set equal to
the item attribute (next row)

item Assigned automatically based on the input source
or target location

process Assigned automatically since every scenario is
related to a process (see section 3.8)

Instantiation Obtained through user interaction: The
Customization Layer is to query the user for the
core assets to be instantiated. If a connection to a
variability management system is available (see (see
section 5.5) the Customization Layer can also
assign a signed contract to the instantiation.

Table 9: Population of core asset instance attributes

removeProductAsset

XTEXT SPECIFICATION

removeProductAsset:
 'removeProductAsset' name=ID;

INTERFACE SPECIFICATION

void removeProductAsset(String paID, boolean
detachOnly)
 throws ProductAssetDeletionException

Figure 49: removeProductAsset scenario

As with the removeCoreAsset scenario, removeProductAsset aims at
removing all marks that identify a configuration item as a product asset.
In the case of a core asset instance the scenario allows to only detach
the instance from the corresponding core asset (parameter detachOnly
has to be set to true). In this case the scenario makes the asset a
product-specific asset.

 Process Model of Evolution Control

 99

modifyProductAsset

XTEXT SPECIFICATION

modifyProductAsset:
 'modifyProductAsset' name=ID;

INTERFACE SPECIFICATION

void modifyProductAsset(String paID)
 throws ProductAssetModificationException

Figure 50: modifyProductAsset scenario

modifyProductAsset enables the user to modify information about a
product asset. It is setup similarly to the modifyCoreAsset scenario.

rebaseProductAsset

XTEXT SPECIFICATION

rebaseProductAsset:
 'rebaseProductAsset' name=ID;

INTERFACE SPECIFICATION

void rebaseProductAsset(String paID)
 throws ProductAssetRebaseException

Figure 51: rebaseProductAsset scenario

rebaseProductAsset is the equivalent of the integrateCoreAsset scenario
(section 5.1.2) and maps to the rebase region of the product asset state
machine (section 4.2.2). It aims at propagating changes from core assets
back to the corresponding instances. Again, the two strategies discussed
in the integrateCoreAsset scenario are applicable.

5.3 Common Status Accounting Scenarios

Status accounting scenarios enable retrieval of information from the
configuration management repository. As it will be shown in the
following, all status accounting scenarios allow filtering the result set, in
order to obtain more precise information. To that end a searchCriteria
parameter will come into play in the following.

This parameter takes the form of a predicate over the attributes and
operations of the result type (for example change requests, core assets,
and product assets) and the corresponding values. Such attributes can
be:

Process Model of Evolution Control

 100

• Attributes of the result type, e.g. “name == ’VectorLibrary’ ”

• Operations on these attributes. e.g. “name.length() > 5 ”

• Attributes of corresponding configuration items (in this case
attributes will depend on the configuration management system at
hand), e.g. “lastChange == ’01.12.2010’ ”

• Asset states, e.g. “state == ’integrated’ ”

• A foreach statement as proposed by the Scala programming
language specification [Od10]. This statement applies a Boolean
function to each element of a collection. It can be useful for
collection attributes. For example in order to obtain all change
requests that correspond to core assets the following predicate
could be passed:

“getAssets().foreach((x:Asset) =>
CoreAsset.class.isInstance(x))”

showChangeRequests

XTEXT SPECIFICATION

showChangeRequests:
 'showChangeRequests' name=ID;

INTERFACE SPECIFICATION

String[] showChangeRequests(String searchCriteria)
 throws ChangeRequestRetrievalException;

Figure 52: showChangeRequests scenario

showChangeRequests lists change requests associated with assets (core
or product assets). It takes search criteria as input and delivers an array
of strings that describes the obtained change requests.

showCoreAssets

XTEXT SPECIFICATION

showCoreAssets:
 'showCoreAssets' name=ID;

INTERFACE SPECIFICATION

String[] showCoreAssets(String searchCriteria)
 throws CoreAssetRetrievalException;

Figure 53: showCoreAsset scenario

 Process Model of Evolution Control

 101

showCoreAssets delivers a list of product assets based on search criteria.
The typical search criterion will be the family engineering process of
interest; however further criteria are conceivable such as the current
state of a core asset (see section 4.2.1).

showCoreAssetInstances

XTEXT SPECIFICATION

showCoreAssetInstances:
 'showCoreAssetInstances' name=ID;

INTERFACE SPECIFICATION

String[] showCoreAssetInstances(
 String[] coreAssets,
 String searchCriteria
)
 throws InstanceRetrievalException;

Figure 54: showCoreAssetInstances scenario

showCoreAssetInstances takes a set of core assets as input and provides
a list of all corresponding instance assets. Again, search criteria can be
used in order to refine the result. For example it may be necessary to
deliver only the instances of a core asset within a given application
engineering process.

This scenario is a shortcut as the same information can be provided by
the showCoreAssets scenario. The latter delivers a list of core assets
including their instantiations, which refer to the corresponding instances.

showCoreAssetChanges

XTEXT SPECIFICATION

showCoreAssetChanges:
 'showCoreAssetChanges' name=ID;

INTERFACE SPECIFICATION

String[] showCoreAssetChanges(
 String[] coreAssets,
 String searchCriteria,
 boolean sinceLastSynchronization
)
 throws ModificationRetrievalException;

Figure 55: showCoreAssetChanges scenario

Process Model of Evolution Control

 102

showCoreAssetChanges shows changes performed on a set of core
assets based on the given search criteria. If the underlying configuration
management system supports version of change requests, the operation
will also deliver changes in the change requests that correspond to the
given core assets. The sinceLastSynchronization parameter addresses the
synchronization between core assets and instances. When the parameter
is set to true the scenario shall list only the core asset changes that have
been performed since the last time, when the core asset was in the
integrated state (see section 4.2.1).

showProductAssets

XTEXT SPECIFICATION

showProductAssets:
 'showProductAssets' name=ID;

INTERFACE SPECIFICATION

String[] showProductAssets(String searchCriteria)
 throws ProductAssetRetrievalException;

Figure 56: showProductAssets scenario

showProductAssets delivers a list of product assets based on a set of
search criteria (the searchCriteria parameter). For example, by providing
the type of product asset (e.g. SpecificAsset or CoreAssetInstance see
section 4.1.2) the scenario will retrieve the list of assets from
corresponding type.

showInstanceCoreAssets

XTEXT SPECIFICATION

showInstanceCoreAssets:
 'showInstanceCoreAssets' name=ID;

INTERFACE SPECIFICATION

String[] showInstanceCoreAssets(
 String[] instances,
 String searchCriteria
)
 throws CoreAssetRetrievalException;

Figure 57: showInstanceCoreAssets scenario

showInstanceCoreAssets delivers the list of core assets that correspond
to a set of instances as well as to the given search criteria. As with the
showCoreAssetInstances scenario this is again a shortcut scenario as the

 Process Model of Evolution Control

 103

same information can be obtained via the showProductAssets or the
showCoreAssets scenarios.

showProductAssetChanges

XTEXT SPECIFICATION

showProductAssetChanges:
 'showProductAssetChanges' name=ID;

INTERFACE SPECIFICATION

String[] showProductAssetChanges(
 String[] productAssets,
 String searchCriteria,
 boolean sinceLastSynchronization
)
 throws ModificationRetrievalException;

Figure 58: showProductAssetChanges scenario

showProductAssetChanges shows changes performed on a set of
product assets and change requests (depending on availability of change
request history) based on the given search criteria. The
sinceLastSynchronization parameter addresses again the synchronization
between core assets and instances. When the parameter is set to true
the scenario shall list only the product asset changes that have been
performed since the last time, when the product asset (it has to be an
instance actually) was in the rebased state (see section 4.2.2).

5.4 Change impact analysis

Change impact analysis is an important component of change
management. It aims at identifying the potential consequences of a
change, or estimating what needs to be modified to accomplish a
change [Bo96]. In a product line context, the status accounting and
change management scenarios, as discussed above, support the
identification, classification and analysis of a change impact. In this
regard the showCoreAssetChanges and showProductAssetChanges
scenarios address already performed changes while the
showChangeRequests scenario addresses planned changes. However,
change impact analysis requires additional capabilities, which will be
discussed in the following sections.

5.4.1 Comparing core assets with instances

The identification of the change impact often involves comparison of
different asset versions. The latter can become a complex undertaking in

Process Model of Evolution Control

 104

a product line setting. Core assets are usually modified during
instantiation. Therefore the comparison of a new core asset version with
an existing instance may not be directly possible. In order to enable this
comparison the implementation mechanisms used for the creation of
core assets must be taken into account. According to [Be04] there are
three main mechanisms:

• Selection: With selection variation points in core assets (see section
4.4) are realized as a set of options. A variation point is instantiated
by selecting one of the available options. Therefore the impact of
variation point changes can be analyzed by retrieving the selections
made in instances and by evaluating whether the variation point
change affects these selections.

• Generation: With generation a variation point is realized in terms of
a generator that can transform the variation point to an instance.
Typically a generator provides a mechanism for the specification of
the desired output. Such a mechanism usually allows mapping core
asset elements to elements of instances. To this end the generic
format of instances must be known in advance. Impact analysis can
be performed in this case by retrieving the generator specification
that was used in order to create a core asset instance. If the core
asset change involves a modification of the specification mechanism
the impact analysis checks whether the new mechanism is in conflict
with the instance specification. If the core asset change involves a
change of the core asset itself, impact analysis checks if parts of the
instance specification refer to core asset elements that have
changed.

• Substitution: With substitution variation points are realized as
placeholders that can be filled in a prescribed way with elements
relevant to a product. Impact analysis can be performed by retrieving
the placeholders that are used in instances as well as the contents
that were given as input to the placeholders. It can be subsequently
checked whether the modifications affect the placeholders used in
instances. It can for example happen that after a core asset
modification the contents of an instance become invalid because
they do not comply anymore with the core asset placeholders.

Selection sets actually the grounds for all three implementation
mechanisms:

• Given a core asset, selection can produce the final core asset
instance that consists of mandatory core asset elements, selected
core asset elements and product-specifics.

 Process Model of Evolution Control

 105

• Generation operates on a selection of core asset elements. A
generator transforms the selected core asset elements against the
target format of instances.

• Substitution also operates on a selection of core asset elements. In
this case placeholders can be seen as selected core asset elements.
Substitution changes these elements by filling them with content.

5.4.2 Formal model for impact analysis

In order to set the grounds for an automated change impact analysis
between core assets and their instances the following formal model has
been set-up. The initial observation is that a product line can be seen as
tuple consisting of processes and assets:

�� = ������		�	, �		��	

The set of assets in a product line consists of a set core assets and a set
of product assets. The latter is the union of product-specific assets with
core asset instances:

�		��	 = ��		��	���� , �		��	��������

�		��	������� = �		��	�������� ∪ �		��	������������

The set of all core assets can be defined as:

�		��	���� = ���� !����", ��� !����# , … , ��� !����%�

The set of instance assets can be defined as:

�		��	�������� =
���� !��������", ��� !��������# , … , ��� !��������%�

Each core asset can be seen as a set, which consists of mandatory and
optional elements.

��� !���� = ' () *!�+�������, ∪ () *!��������-.

Each instance asset can be defined as a set, which consists of
instantiated elements (i.e. elements obtained from core assets) and
product-specific elements.

��� !�������� = ' () *!������������� ∪ () *!���������.

Process Model of Evolution Control

 106

Based on the above, the union of all core asset elements can be defined
as follows:

�((��� !�() *!����� = 	/��� !���� 	∀��� !���� ∈ �		��	����

Similarly, the union of all instance asset elements can be defined as

�((��� !�() *!������������� =	/ ��� !�������� 	∀��� !��������∈ �		��	��������

Applying the selection mechanism on a core asset produces an asset that
contains the mandatory core asset elements and a subset of the optional
elements.

� (2!���� !���� =	{ () *!�+�������, ∪ � () *!���-����� ⊆ () *!��������-}
Selection can produce the final instance of a core asset; however it is
also conceivable that a function derive is applied on the selection result.
That function can be the identity function, a generation function, a
substitution function or any composition thereof. The composition 6 789 ∘ � (2! yields then the 8*�!�*!8�!8;* function. The latter delivers
the instantiated elements of an instance asset. The function is applied on
the union of all core asset elements according to the instantiation
strategies discussed in section 4.1.2.

 () *!������������� = 	8*�!�*!8�! ��((��� !�() *!����� =	6 789 �� (2!��((��� !�() *!������
Changing a core asset involves changing its elements. Therefore a
changed core asset consists of changed mandatory elements and
changed optional elements.

2ℎ�*= ���� !���� = >2ℎ�*= +�������, ⊆ () *!�+�������,∪2ℎ�*= �������- ⊆ () *!��������- ?

In order to characterize the impact of core asset changes on instances it
is necessary to know if instances were produced through instantiation of
elements, which have changed. A function can be defined that delivers
the set of instance elements affected by the core asset change.

8)@�2!AB→DB 	���� !���� , ��� !�������� =	
�8", 8E, … , 8F ∶ H 8I ∈ ��� !�������� 	⋀8I ∈ 8*�!�*!8�! �2ℎ�*= ���� !�����K	∀L ∈ �1, … , N

 Process Model of Evolution Control

 107

Similarly, changing an instance asset involves changing its elements.
Therefore a changed core asset instance consists of changed elements
that originate from core assets and changed product-specific elements.

2ℎ�*= ���� !�������� = O2ℎ�*= ������������ ⊆ () *!�������������∪2ℎ�*= �������� ⊆ () *!��������� P
Again a function can be defined that delivers the core asset elements
affected by the instance change.

8)@�2!DB→AB 	���� !�������� = �2", 2E, … , 2Q ∈ �((��� !�() *!� ∶		8*�!�*!8�! �2R	∀8 ∈ �1, … , * ⊆ 2ℎ�*= ���� !��������
The differencing approach proposed in [ALB+11] can be beneficial at this
point. The approach allows to associate conflict handlers with particular
asset elements. Therefore the approach can be used to associate special
handlers with variation points. Upon asset comparison handlers can
guide and partially automate the resolution of conflicts. However, such
handlers must still have access to the instantiation function mentioned
above.

5.4.3 Change impact analysis activities

Change impact analysis can be classified as proactive or as reactive
depending on the point in time when the analysis occurs. Reactive
analysis looks into already performed changes, while proactive analysis
operates on change requests.

Reactive analysis of core asset changes

Change impact analysis in a product line context must pay special
attention on the variability dependencies between core assets. As
discussed in section 4.4 core assets typically contain variation points,
which are possibly related to a variability model (e.g. a decision model).
The latter in turn is possibly related to the product line scope, which
specifies the spectrum of commonality and variability in the product line.
Therefore the first step in change impact analysis is to examine whether
a change affects variation points and the product line scope. Figure 59
summarizes the activities that have to be performed within family
engineering in order to evaluate impact of internal changes (i.e. changes
in the own core assets).

Variation points can have interdependencies. Taking a decision in one
core asset may require taking a particular decision in another core asset.
When core assets change it is possible that the enclosed variation points
change as well. In such a case variation point dependencies are

Process Model of Evolution Control

 108

influenced. For example if core asset modification removes a variation
point which is being referenced by another core asset, the instantiation
of the latter may not produce valid instances any more. Hence, variation
point consistency must be ensured after such a modification.

Consistency means that the set of derivable instances in a core asset
base remains unaffected after a core asset modification. Violation of the
variation point consistency is an indicator that a change can have
unwanted side effects. However there may be cases when such a
violation is normal because the variability model has to change.

Figure 59: Reactive analysis of core asset changes

Proactive analysis of core asset changes

In the proactive case change requests on core assets are analyzed and a
decision is taken, whether to accept, reject or defer the change. Change
requests usually classify the requested change, characterize the priority
and identify the items that have to be changed. Figure 60 illustrates the
process.

Variation
points have
been
modified

Check modifications in
core assets

Initiate further actions

Changes adhere
to product line
scope

Check impact to other
variation points

Check variation point
consistency

Consistency
violated Impact

exists

Check adherence with
product line scope

Perform conventional
change impact

analysis

Perform preliminary
analysis of change
impact to product

assets

[no]

[yes]

[no]

[yes]

[yes]

[no]

[no]

[yes]

 Process Model of Evolution Control

 109

Figure 60: Proactive analysis of core asset changes

As in the reactive case, complexity of change analysis rises if variation
points are to be modified or if application engineering is affected by the
planned changes. In the former case the impact to the variation point
consistency must be examined. When variation points are changed,
impact analysis may decide to accept a change if adherence to the
product line scope is given and the variation point consistency is
guaranteed. If these constraints are not fulfilled the change request can
be rejected and the creation of new change request may be necessary. If
finally the change request is justifiable but requires a modification of the
product line scope it can be deferred until the scope is modified. The
final decision of whether to accept or to reject the change request also
depends on the analysis of the impact on application engineering
(preliminary analysis of impact on application engineering; the full
impact analysis will be performed in the application engineering context)
or on other core assets (conventional impact analysis)

Reactive analysis of product asset changes

When product asset changes affect core assets, change impact analysis
has to examine the reasons, for which product assets have been
modified. If the reasons lead back to the core assets at hand, measures
may have to be undertaken.

Requested
changes are
classified as
variation point
changes

Check change
request

classification

Check product line
scope

Perform
conventional

change impact
analysis

Change adheres
to the product
line scope

Check impact to
other variation

points

Reject or Defer
Change

impact exists

Check variation
point consistency

Accept change

consistency
violated

Perform preliminary
analysis of change
impact to product

assets

Accept
Change

[no]

[yes]

[no]

[yes]

[no]

[yes]

[yes]

[no]

[yes]

[no]

Process Model of Evolution Control

 110

An instance may have changed for example because of removing a
defect that was present in the core asset and that was passed to the
instance during instantiation. Quality assurance of instances is likely to
reveal defects of core assets since instances are executed in the context
of real products, while core assets are often not directly executable.

Instances may also change because of reusability problems. It is possible
that a core asset does not exhibit an adequate level of reusability. For
that reason instances obtained from such a core asset must be often
adapted in the context of products. This can be another indication that
core assets must be improved. Such a problem can also arise because of
poor documentation of the reusability or because of poor automation
support. Application engineers may prefer to adapt core assets from
scratch than to follow an inefficient software reuse process.

Another scenario arises when instance assets are changed without any
assumptions about core assets. This scenario usually arises when a
product asset or instance is modified because of product-specific change
requirement. In this situation feedback to the core assets can be
beneficial to check the degree to which this change is really product-
specific. It can happen that similar product-specific changes appear in
other products as well. As the family engineering keeps an overview over
products and instances such a check should be performed in a regular
basis. If it is indeed the case that similar changes are performed in
various products, this is an indication that these changes should be taken
over to the corresponding family engineering process.

Finally there may exist also situations in which changes on product-
specific assets are of interest to family engineering and may lead back to
changes on the core asset base. For example, if family engineering finds
out that a set of application engineering activities are producing similar
product-specific assets, measures can be planned to join the efforts and
to create appropriate core assets. The latter can then be reused across
the identified application engineering processes. Figure 61 summarizes
the activities that have to be performed within family engineering in
order to evaluate impact of changes in product assets (i.e. instances and
product-specifics).

 Process Model of Evolution Control

 111

Figure 61: Reactive analysis of product asset changes

Proactive analysis of product asset changes

When product assets are changed proactively impact analysis looks into
changes that are planned on instances and on product-specific assets.
The goal is again to analyze the reasons for which assets are to be
changed. At this point the proactive control has the advantage of the
upfront decision, whether the changes are allowed or not. If for example
an instance is to be changed for a reason that lies in family engineering,
impact analysis may reject the change. Subsequently a procedure can be
opened in order to perform that change directly in the corresponding
core asset. This can be beneficial in case the planned instance change is
of interest for other instances as well. When this happens it is reasonable
to do the change centrally in family engineering and then to update the
instances.

Requested changes can lead back to a core asset while there is no
immediate need to change them. In this case it can be decided to
perform the changes locally in the instances. This however depends on
the specific change procedures that are in place in an organization.
Figure 62 illustrates again the impact analysis process.

Reasons
lead back to
core assets

Check reasons for
product asset

changes

Plan necessary core
asset changes

Perform changes
centrally

Check whether
changes should be
performed centrally

[no][yes]

[no]

[yes]

Process Model of Evolution Control

 112

Figure 62: Proactive analysis of product asset changes

5.5 Interaction with Variability Management

Evolution control scenarios as described in section 5 can be combined
with variability management. This section will hence discuss possible
interactions between an evolution control system (i.e. a Customization
Layer) and a variability management system (e.g. a decision modeling
tool).

5.5.1 Core asset creation

The creation of a core asset may involve interaction with variability
management as shown in the following figure. A decision model is used
as an example of a reuse contract (see Figure 31) in this case.

Reasons
lead back to
core assets

Check reasons for
product asset changes

Plan necessary core
asset changes

Perform changes
centrally

Check whether
changes should be
performed centrally

Accept changeReject or defer change

[no]

[yes]

[no]

[yes]

 Process Model of Evolution Control

 113

Figure 63: Interactions between Evolution Control and Variability Management (core asset creation)

The interaction starts when a family engineer initiates the creation of a
core asset. Subsequently evolution control invokes variability
management in order to setup the decision model of the core asset
under creation. This starts a process in variability management which
also involves an asset processor. This can be any tool in the development
process (e.g. integrated development environment, architecture
modeling tool, requirements specification tool) that can process assets.
When a decision model is to be created the family engineer has to use
the asset processor to specify variation points within the assets, which in
turn map to decisions in the decision model. Decisions can be
subsequently aggregated towards more complex decisions. The core
asset creation process ends with the delivery and storage of the decision
model for the core asset. In terms of a Customization Layer storage can
mean the creation of configuration item that holds or refers to the
contents of the decision model. That decision model may be part of a
bigger decision model that involves other core assets as well. Variability
management is responsible for the management of the corresponding
cross references.

5.5.2 Instance creation

Figure 64 illustrates interaction between evolution control and variability
management in the context of an instance creation.

Process Model of Evolution Control

 114

Figure 64: Interactions between Evolution Control and Variability Management (instance creation)

The interaction starts when an application engineer invokes the creation
of a product asset (i.e. an instance) out of a core asset. First, this makes
evolution control to internally create the product asset. Then, if a
decision model is attached to the core asset it will be loaded and passed
to variability management. However, it can be the case that no decision
model is stored for the specific core asset. This can happen if the
variability decisions for the core asset under instantiations are part of a
bigger decision model that involves other core assets as well. In this case
evolution control will pass a null decision model and variability
management will try to locate the core asset in the overall decision
model for the product line.

In the next step variability management checks whether there is already
a resolution model for the product under development. If there is a
resolution model it checks for the existence of decisions relating to the
core asset under development which are already resolved. Subsequently
it starts the resolution process (i.e. usually with the help of configuration
wizards) for the remaining decisions. Given the final resolution model
variability management invokes, if applicable, the corresponding asset
processor (i.e. tool that can process the core asset under instantiation) in
order to resolve the variation points and to obtain the core asset
instance.

 Process Model of Evolution Control

 115

5.5.3 Further interactions

While evolution control focuses on the evolution of assets variability
management focuses on the management of variations on derivation of
products. With variability management a domain space is typically built
up that specifies the decisions an application engineer has to make when
deriving a product or parts of a product. Decisions in the domain space
are mapped to logic that delivers the assets accordingly. Hence when a
product is to be derived a set of decisions are being made and then the
corresponding logic is executed that selects, generates, transforms,
deletes etc. assets. The result comprises the assets that make up a
product or parts of a product.

Another possible interaction is hence possible from the variability
management towards the Customization Layer. Whenever a core asset is
defined within the variability management system the createCoreAsset
scenario can be invoked in order to store the core asset accordingly in
the configuration management repository.

A further interaction from variability management towards
Customization Layer can occur as part of the derivation step. For each
core asset being processed by the derivation logic the
createProductAsset scenario can be called. The interface of the scenario
would have to be changed though in order to be able to directly pass
assets. The scenario interfaces, as presented thus far, are meant for
interaction with users and therefore they do not allow direct passing of
core assets or instances. Yet with an alternative interface that would also
allow programmatic access variability management could
programmatically pass core asset and instance objects to a
Customization Layer. The result of such an interaction is that after
product derivation a Customization Layer has stored instances in a
controlled way and evolution control can start.

5.6 Section summary

This section has described activities necessary in order to perform
evolution control in a product line context. The next section will discuss
how these activities can be realized internally by a Customization Layer.
In particular in will be elucidated how common capabilities of
configuration management systems can be used.

 Interaction with Configuration Management

 117

6 Interaction with Configuration Management

After a set of evolution control scenarios have been selected the next
step is to realize a Customization Layer, which automates these scenarios
with the help of configuration management. The effort required for this
step depends on the desired degree of automation and also on the
facilities of the underlying configuration management system. In general
the goal should be to introduce a Customization Layer with the lowest
impact possible for the organization. In that way existing investments in
configuration management can be preserved.

Configuration management systems (CMS) offer a broad spectrum of
functionality that can be taken into account when implementing a
Customization Layer. In the one extreme case a Customization Layer can
be considered as a database and process management system that on
the one hand fully manages core and product assets and the other hand
fully controls the evolution control processes. This extreme situation can
become necessary if the underlying configuration management system
offers limited or no functionality (for example if a regular file system is
used as configuration management system). On the other extreme a
Customization Layer may become obsolete if a special-purpose
configuration management system is developed from scratch for the
purposes of product line evolution control.

In the optimal case a Customization Layer will exploit and encapsulate
existing CMS functionality. A Customization Layer should take over
functionality for those evolution control scenarios, for which the CMS
does not provide adequate support. The adoption of a Customization
Layer has low impact if the functionality of existing CMS is reused. This is
likely to happen if the CMS is equipped with a rich spectrum of
functionality. On the other hand the impact is high if the Customization
Layer takes over functionality although it could be achieved by exploiting
existing CMS functionality.

In the following paragraphs a top-down approach will be followed in
order to map Customization Layer scenarios to CMS functionality. The
latter will be detailed in a subsequent section. For each scenario
implementation guidelines will be provided addressing the following
questions:

• What is the necessary CMS functionality to implement the scenario?

• What alternative CMS functionality can be used?

Interaction with Configuration Management

 118

• What workarounds are applicable?

A table will be used for each scenario in order to break down the
scenario implementation steps and to map them to CMS functionality
and workarounds. Some steps will be mapped as optional in case their
execution depends on the scenario input parameters or on other
conditions. Furthermore for each step the corresponding interactions
between Customization Layer (CL), CMS and variability management
(VM) will be indicated.

As discussed in sections 3.8 and 3.9 evolution control scenarios are
directly related with evolution control activities and processes. This can
be supported by providing implementation guidelines in terms of Xtext.
For space reasons guidelines are provided exemplarily in this format in
Appendix A.

Apart from that scenarios in the following will be presented in a
different order than in section 5 in order to avoid forward references.

6.1 Implementation Guidelines

6.1.1 Guidelines for version management scenarios

createCoreAsset (���� section 5.1.2)

void createCoreAsset(String sourceLocation,
 String targetLocation,
 String templateLocation,
 String depth)
 throws CoreAssetCreationException

Step Interactions Necessary
CMS
functionality

Alternative CMS
functionality

Workaround

«optional»

1. Populate target
location

CL � CMS Basic version
management

- -

«optional»

2. Apply template

CL � CMS Basic version
management

- -

3. Mark core
assets

CL � CL Basic version
management

Properties,
Naming
conventions

Special-
purpose file

4. Set state CL � CMS State
management

Properties Special-
purpose file

«optional»

5. Set reuse
contract

CL�VM
CL�CMS

Intentional
Versioning

Properties Special-
purpose file

Table 10: createCoreAsset guideline

 Interaction with Configuration Management

 119

Steps 1 and 2: The first two steps consist in the creation and the
population of the target repository location with the core asset contents.
If the core asset to be created is not empty its contents are to be stored
in the target location according to the input depth. On the other hand if
the core asset is empty and a template is provided the target location is
populated according to the template. Furthermore the target location
should be relative to the process that is assigned to this scenario (see
section 3.8). Result of this step is a set of configuration items that
pertain to the input core asset. For this step standard version
management functionality is sufficient.

Step 3: In the next step the newly created configuration items have to be
marked as items that belong to a core asset. The way of marking items
may vary according to the capabilities of the underlying CMS. A
generally applicable approach is to put a mark (e.g. “[CL]” or another
mark that cannot be used by accident by direct users of the CMS) in the
message that is used during the commit operation. In most CMS systems
obtaining the list of commit messages, which pertain to a repository or
repository location, is an efficient operation. Therefore, to locate core
assets with this approach, a list of commit messages can be obtained
and then parsed in order to find the marks. Other possibilities to
consider are properties or naming conventions. The latter refer to using
specific configuration item names in order to mark core assets. As a
workaround there is also the possibility to store a special file in the target
location (e.g. an XML file) that can be parsed by the Customization
Layer. That file can inform the Customization Layer about the types of
assets stored. Disadvantage of this solution is that a common CMS user
cannot obtain the information. With the other solutions, Customization
Layer information is stored by means of common CMS facilities. This
enables common CMS users to access the information as well.

Step 4: In the fourth step the Customization Layer sets the state of the
newly created core asset to “not released” as described in section 4.2.1.
State management functionality is used to this end. If state management
is available the CMS has simply to assign the new state to the related
configuration item. As an alternative a state property can be assigned to
the configuration item. Finally a workaround would be to maintain a
special-purpose file in the same location as the core asset that describes
the states of all assets in that location.

Step 5: In the last step the Customization Layer interacts with a
variability management system, if the latter is available, in order to
obtain the reuse contract for the core asset. As described in section 5.5.1
this involves the creation of a decision model (or other equivalent reuse
contract). Subsequently the decision model is to be stored in the CMS. If
the latter provides intentional versioning or similar approach (see also
section 6.2.4) it might be possible to associate open variability decisions

Interaction with Configuration Management

 120

directly with the core asset. However most modern CMS do not provide
such support therefore properties can be used as an alternative.
Different properties can map to different open decisions of the core
asset. Each property value can be set to a representation of the variability
type provided in the variability management system. For example a
property “region” can be set to a value “{Europe, Asia}” denoting that
the given core asset can be customized for Europe or Asia. Finally, the
decision model for the given core asset or for all core asset in the target
location can be extracted from variability management and stored as a
special-purpose file.

createProductAsset (���� section 5.2.2)

void createProductAsset(String sourceLocation,
 String targetLocation,
 String templateLocation,
 boolean isInstance,
 InstantiationStrategy iStra tegy)
 throws ProductAssetCreationExcept ion

Step Interactions Necessary
CMS
functionality

Alternative
CMS
functionality

Workaround

1. Select core
assets to
instantiate

CL - - -

«optional»

2. Instantiate
core assets

CL�VM - - -

3. Create
instances

CL � CMS Branching /
Copying

Build
management

Links

«optional»

4. Store signed
contract

CL�VM
CL�CMS

Intentional
Versioning

Properties Special-
purpose file

5. Set state CL � CMS State
management

Properties Special-
purpose file

Table 11: createProductAsset guideline

In case the product asset is not an instance but a product-specific asset
(i.e. isInstance = false) the implementation guideline is similar to steps 1
to 3 of the core asset creation guideline. The following steps address the
case where the product asset is an instance (i.e. isInstance = true)

Step 1: The first step consists in the selection of the core assets to
instantiate. To this end the Customization Layer has to query the user.

 Interaction with Configuration Management

 121

Step 2: In case variability management is available this steps invokes it in
order to resolve variability decisions on the input core assets (see also
section 5.5.2). The step results in the instance to be stored subsequently
under CMS.

Step 3: The third step caries out the product asset creation. At this point
a new development line has to be created and associated with the
development lines of the input core assets. To this end branching
functionality of the underlying CMS is necessary. This can range from
sophisticated streaming and sharing and streaming functionality to
simple branches (see also appendix A.4). It must however be noted that
branching might be applicable only if the instance is derived from a
single core asset. If core asset composition is applied (see also section
4.1.2) it can be sensible to use the copy functionality available in most
CMS in order to copy all core assets to the target location. In every case
it makes sense to store the original core assets to the target location and
then to replace them with their derived instances. Thereby the
traceability between core asset and instances is maintained as CMS
typically keep track of branching and copying operations.

Special attention has also to be paid with the input instantiation
strategy. Branching functionality suites better the deep strategy since it
creates a branch of the core asset along with all its contained core
assets. On the other hand copying functionality enables to better control
which items to store in the instance location.

If instances are considered as derived artifacts that are not be changed
any further build management can come into play. In this case the
instances are typically binary files obtained through compilation of the
core assets. If neither branching nor build management are applicable
instance can be stored in the target location and related via links to the
core assets.

Step 4: The fourth step is performed if variability management is
available. In this case the set of resolved decisions are attached to the
instance using the same mechanisms as described in step 5 of the core
asset creation guideline.

Step 5: The final step consists in setting the state of the involved core
assets to “reused” and the resulting instance to “isInstance” (see
sections 4.2.1 and 4.2.2)

Interaction with Configuration Management

 122

removeCoreAsset (���� section 5.1.2)

void removeCoreAsset(String caID)
 throws CoreAssetDeletionException

Step Interactions Necessary
CMS
functionality

Alternative
CMS
functionality

Workaround

1. Retrieve core
asset based
on ID

CL (� CMS) - - -

«optional»

2. Remove
markers

CL � CMS Basic version
management

Properties,
Naming
conventions

Special-
purpose file

3. Remove
instance
associations

CL � CMS Properties Basic version
management

Special-
purpose file

4. Set state CL � CMS State
management

Properties Special-
purpose file

5. Remove asset CL � CMS Basic version
management

- -

Table 12: removeCoreAsset guideline

Step 1: The first step consists in the retrieval of the core asset details
including any associated instances. To this end underlying CMS
functionality comes into play as described in step 3 of the core asset
creation scenario.

Step 2: In the next step any markers assigned to the core asset have to
be removed so that the asset is not identified as core asset any more.
However depending on the mechanism chosen for the creation of the
core asset removal of such markers might not be directly possible. For
example if commit messages have been used, it might not be possible to
change them or to remove the corresponding version. In this case
additional markers might be necessary denoting the given core asset is
not active anymore.

Step 3: In the third step any association between the core asset and
instances have to be also removed. In the case of sharing or streaming it
is usually possible to unshare items or to relocate streams. This step
might become more cumbersome if conventional branching or copying
functionality has been used as the history of operations cannot be easily
changed. In this case it might be necessary to use again markers
indicating that instances and core assets are not related any more. Such
markers can be stored in terms of properties. As an alternative a new

 Interaction with Configuration Management

 123

branch version can be created that holds the marker in its commit
message. Finally a workaround is again to use a special-purpose file
denoting the removed associations. Furthermore, if no more core assets
are related to the affected instances markers can be used to indicate that
the given instance is turned into a product-specific asset.

Step 4: The rebase state of instances might have to be updated if
associations with core asset were removed.

Step 5: In the last step the CMS is invoked in order to remove the
configuration items of the core asset from the repository. This usually
leads to a new version of the corresponding repository location that does
not contain the configuration items anymore.

removeProductAsset (���� section 5.2.2)

void removeProductAsset(String paID, boolean detach Only)
 throws ProductAssetDeletionException

Step Interactions Necessary
CMS
functionality

Alternative
CMS
functionality

Workaround

1. Retrieve
product asset
based on ID

CL (� CMS) - - -

«optional»

2. Remove
markers

CL � CMS Basic version
management

Properties,
Naming
conventions

Special-
purpose file

3. Remove
instance
associations

CL � CMS Properties Basic version
management

Special-
purpose file

4. Set state CL � CMS State
management

Properties Special-
purpose file

5. Remove asset CL � CMS Basic version
management

- -

Table 13: removeProductAsset guideline

Removal of a product asset follows a similar approach as the removal of
core assets and hence will not be detailed any further. A difference arises
from the detachOnly parameter. The latter makes the second step in the
guideline optional.

Interaction with Configuration Management

 124

modifyCoreAsset (���� section 5.1.2)

void modifyCoreAsset(String caID)
 throws CoreAssetModificationException

Step Interactions Necessary
CMS
functionality

Alternative
CMS
functionality

Workaround

1. Retrieve core
asset based
on ID

CL (� CMS) - - -

2. Modify core
asset

CL - - -

3. Commit
changes to
core asset
and affected
product
assets

CL � CMS Basic version
management,
Copying
functionality

Properties,
Naming
conventions

Special-
purpose file

4. Set state CL � CMS State
management

Properties Special-
purpose file

«optional»

5. Set new
reuse
contract

CL�VM
CL�CMS

Intentional
Versioning

Properties Special-
purpose file

Table 14: modifyCoreAsset guideline

Step 1: The first step consists as with previous guidelines in the retrieval
of the core asset details including any associated instances.

Step 2: In the next step the Customization Layer enables the user to
change core asset attributes (name, configuration items, instances and
process).

Step 3: In the third step changes are to be committed in the CMS.
Different scenarios are possible: (a) The simplest scenario arises when the
user changes the name of the core asset; in which case the CMS will be
ask to commit the new name (if the core asset has the same name as its
configuration item; in the other case only the Customization Layer model
will be updated). (b) If the user changed the associated configuration
item the latter has to be marked accordingly (see core asset creation
guideline) (c) If the user changed the process the asset is to be copied to
the repository location pertaining to the input process. To this end the
CMS can be invoked to create a new core asset with the contents of the
modified asset or to copy the modified asset to the new location. (d) If
the user changes the associated instances the latter have also to be

 Interaction with Configuration Management

 125

marked accordingly (see create, remove product asset guidelines). It
might be necessary to mark previously associated instances as product-
specifics if there are no more core asset associations.

Step 4 and 5: After modification the states (rebase, reuse, integration) of
the affected core and instance assets might have to be updated. The
same applies to the reuse contract of the core asset. Corresponding
steps of the create core asset guideline provide more details.

The modification operation can be also useful for relocation (i.e. move)
of configuration items. In this case the relocation of configuration item
can be realized by modifying the associated core asset.

modifyProductAsset (���� section 5.2.2)

void modifyCoreAsset(String caID)
 throws CoreAssetModificationException

Step Interactions Necessary
CMS
functionality

Alternative
CMS
functionality

Workaround

1. Retrieve
product
asset based
on ID

CL (� CMS) - - -

2. Modify
product
asset

CL - - -

3. Commit
changes to
product
asset and
affected
core assets

CL � CMS Basic version
management,
Copying
functionality

Properties,
Naming
conventions

Special-
purpose file

4. Set state CL � CMS State
management

Properties Special-
purpose file

Table 15: modifyProductAsset guideline

The modification of a product asset operates in a similar way as the
modification of a core asset. Among the other product asset attributes
the user has the possibility to change the associations of the given
product asset to core assets. The marking functionality described
previously has to be applied. Thereby a product-specific asset might turn
into an instance. Finally the corresponding rebase and reuse states might
have to be updated.

Interaction with Configuration Management

 126

integrateCoreAsset (���� section 5.1.2)

void integrateCoreAsset(String caID)
 throws CoreAssetIntegrationException

Step Interactions Necessary
CMS
functionality

Alternative
CMS
functionality

Workaround

1. Retrieve core
asset based
on ID

CL (� CMS) - - -

«optional»

2. Merge from
instances
and mark
integration

CL � CMS Basic version
management

- -

Table 16: integrateCoreAsset guideline

Step 1: The first step consists in the retrieval of the core asset details
including any associated instances. To this end underlying CMS
functionality comes into play as described in step 3 of the core asset
creation scenario.

Step 2: The implementation of the core asset integration involves two
strategies as described in section 5.1.2. In the a posteriori case the CMS
connector assumes the last changes as integration changes and puts a
mark in the last core asset version accordingly (see previous guidelines).In
the session-based case the implementation has to locate all instances of
the core asset and initiate a merging. The result of the merging can be
then marked as integration merge.

rebaseProductAsset (���� section 5.2.2)

void rebaseProductAsset(String paID)
 throws ProductAssetRebaseException

Step Interactio
ns

Necessary
CMS
functionality

Alternative
CMS
functionality

Workaround

1. Retrieve product
asset based on
ID

CL (�
CMS)

- - -

«optional»

2. Merge from core
assets and mark
rebase

CL � CMS Basic version
management

- -

Table 17: rebaseProductAsset guideline

 Interaction with Configuration Management

 127

The implementation of the rebase product asset scenario follows the
same schema as the integrateCoreAsset. In this case when a rebase
session is executing the direction of the merge is the opposite, i.e. from
the core assets towards the instances.

6.1.2 Guidelines for change management scenarios

createCoreAssetChangeRequest (���� section 5.1.1)

String createCoreAssetChangeRequest(String[] caID,
 boolean synchronizeInstances)
 throws CoreAssetCRCreationException

Step Interactions Necessary
CMS
functionality

Alternative
CMS
functionality

Workaround

1. Retrieve
core assets
based on ID

CL (� CMS) - - -

2. Create
change
request

CL � CMS Basic change
management

- -

3. Set state of
core assets

CL � CMS State
management

Properties Special-
purpose file

«optional»

4. Find
instances of
core assets

CL � CL Basic version
management

Properties
Naming
conventions

Special-
purpose file

«optional»

5. Create
change
requests for
instances

CL � CMS Basic change
management

- -

«optional»

6. Relate
instance
change
requests to
core asset
change
requests

CL�CMS Ticket hierarchy Links Properties

Table 18: createCoreAssetChangeRequest guideline

Step 1: The first step in this scenario involves the retrieval of the core
asset details based on the input ID. This is necessary in order to obtain
the product line engineering process the asset belongs to. The latter is

Interaction with Configuration Management

 128

required in order to store the new change request in the corresponding
location in the change management system. At this point it might be
necessary to interact with the CMS in this step in order to generate the
core asset detail data from the CMS. The CMS mechanisms used for core
and product asset creation have to come into play in this case (see also
section 6.1.1).

Step 2: Given the core asset details CMS is invoked to create the change
request in the underlying change management system. At this point it is
important to identify the right storage location. In so doing it can be
ensured that Customization Layer change requests are well organized.
One way of achieving that is to map product line engineering processes
to corresponding entities like projects, queues or groups within the
change management system. It must however be ensured that such
entities can be interrelated.

The result of this creation is a configuration item that corresponds to the
change request object. The latter shall then be associated with the
configuration items that correspond to the input core assets. In order for
users of the CMS to recognize that the new change request has been
created by a Customization Layer it is recommended that the CMS
connector adds a marker to the change request. There are different ways
of accomplishing that depending on the CMS capabilities. Such a marker
can be added for example in terms of a label or in terms of a comment.

Step 3: Upon creation of a change request the related core assets
change into the state “changes pending” (see Core Asset Change
Management in section 4.2).

Step 4 and 5: In the next two steps the Customization Layer is retrieving
the instances of the core assets and subsequently change requests are
created. Instances are identified based on the mechanism used for the
creation of core and product assets (for more details on that see section
6.1.1). This is an optional step and has to be undertaken only if change
requests are to be created for the instances as well (synchronizeInstances
= true). This can be useful if the resolution of the core asset change
request requires approval from the corresponding application
engineering processes. In this case instance change requests have to be
created and resolved before the core asset change request can be
resolved.

Step 6: In the last step the instance change requests are to be connected
to the core asset change request. If a ticket hierarchy approach [UKR09]
is available this operation is straightforward. Alternatively the tickets can
be associated using linking functionality available in most change
management systems. If linking is also not possible a workaround would

 Interaction with Configuration Management

 129

be store associations in terms of custom or standard change request
properties.

An interesting point in this scenario is that the creation of a core asset
change request may lead to creation of instance change requests. The
latter however may subsequently lead to change requests for further
core assets that also relate to the instances. With such an approach the
creation of core asset change request leads to a ripple effect that
spreads across instances and core assets. Therefore the implementation
has to query the user about the desired extent of change propagation. In
every case the CMS connector shall maintain a history of all visited core
assets and instances so that duplicate change requests can be avoided.

createProductAssetChangeRequest (���� section 5.2.1)

String createProductAssetChangeRequest(String[] paI D,
 boolean
synchronizeCoreAssets)
 throws ProductAssetCRCreationExceptio n

Step Interactions Necessary
CMS
functionality

Alternative
CMS
functionality

Workaround

1. Retrieve
product
assets based
on ID

CL (� CMS) - - -

2. Create
change
request

CL � CMS Basic change
management

- -

«optional»

3. Find related
core assets

CL � CL Basic version
management

Properties
Naming
conventions

Special-
purpose file

«optional»

4. Create
change
requests for
core assets

CL � CMS Basic change
management

- -

«optional»

5. Relate
change
requests

CL�CMS Ticket
hierarchy

Links Properties

Table 19: createProductAssetChangeRequest guideline

As shown in Table 19 the creation of change requests for product assets
follows a similar scheme as for core assets. Therefore the associated
steps will not be detailed any further. The only differentiation arises

Interaction with Configuration Management

 130

when the product asset to create the change request for is not an
instance but a product-specific asset. In this case steps 3 and 4 are not
considered.

6.1.3 Guidelines for status accounting scenarios

All status accounting scenarios operate on information that has been
stored via the change and version management scenarios. Therefore, the
implementation of the status accounting scenarios can be based on the
strategies discussed above. Hence, the implementation of the status
accounting scenarios is discussed in in a condensed way in the following:

• showChangeRequests

Retrieval of the list of change requests can be achieved by querying
the underlying change management systems.

• showCoreAssets

In order to show the available core assets a Customization Layer has
to make use of the selected marking strategy. For example if commit
messages have been, the Customization Layer has to query the
history of the repository in order to identify this marks.

• showCoreAssetInstances

The implementation of this scenario also depends on the version
functionality that has been used for creating instances. In every case
it can be retrieved which development lines has been created off the
core assets and based on the marks it can be identified whether
these development lines relate to instances.

• showCoreAssetChanges

For this scenario it is necessary to access the history of the
corresponding configuration item and possibly to identify the last
synchronization point based on the used marks. Subsequently the
list of changes can be delivered.

• showProductAssets

This scenario is also to be implemented based on the marking
strategy at hand

• showInstanceCoreAssets

 Interaction with Configuration Management

 131

This scenario also depends on the versioning functionality. Given an
instance the implementation must first retrieve for development
lines the instance originates from and must then check for marks
that designate core assets.

• showProductAssetChanges

This scenario requires a similar strategy as the
showCoreAssetChanges scenario

6.2 CMS functionality and the Customization Layer

This section details CMS functionality referred to in the previous and
elucidates the possible interactions with a Customization Layer.

6.2.1 Main Functionality Blocks

Figure 65 illustrates the main functionality blocks of configuration
management systems adapted from a renowned survey [Da90].
Although this survey has been written in 1990 it still covers the range of
functionality of contemporary configuration management systems. The
process and team blocks are considered of major importance in the
following picture and therefore they are connected to all other
functionality blocks.

Figure 65: Main CMS functionality blocks

6.2.2 Structuring

Structuring functionality supports modeling configuration items and
attributed interrelations at different levels of abstraction. Various types

Process Team

Auditing

Construction

Structure

Versioning

Controlling

Accounting

Interaction with Configuration Management

 132

of relations can be supported, such as hierarchy, aggregation and
dependency relations or links as known from other disciplines (e.g.
software architecture modeling or computer-aided manufacturing).
Specialized relationships such as the consistency and compatibility
relationships introduced by the Configuration Management Assistant
(CMA) [PF89] are also conceivable. Two versions of different
configuration items are considered consistent if they can be included in a
configuration without violating its validity. On the other hand two
versions of a configuration item are compatible if they can be equally
used in a configuration. CMA also introduces the concept of inheritable
dependencies between configuration items. When a version of
configuration item is included in a configuration and the item is related
via inheritable dependencies to other items, versions of the other items
must be included as well. In CMA configuration items and versions are
called objects and instances respectively.

With most modern configuration management systems structuring
functionality is however generally weak. A solution that is proposed is to
combine product management systems, which do provide powerful
structuring facilities, with configuration management [CAD03].

Given the basic asset model (section 4.1) a Customization Layer
establishes relationships between core assets and their instances.
Structuring functionality can be used in this case in order to model these
relationships in the CMS. A drawback however with many CMS can be
that such relationships do not facilitate synchronization. In other words
the CMS will not automatically propagate changes or notifications
between related items. In this case, the usage of version management
should be preferred at this point. Version management allows creation
of relationships (e.g. through branches), which strongly facilitate change
propagation.

The retrieval of relationship information is crucial for a Customization
Layer. With versioning this retrieval requires additional effort, which can
be avoided by structuring facilities. However synchronization is also
crucial for evolution control. With version management synchronization
is given; with structuring it might be necessary that a Customization
Layer implements the synchronization. Therefore, there is tradeoff to be
carefully analyzed with a given CMS regarding the structuring and
synchronization facilities. In the subsequent discussion a Customization
Layer opts for a solution based on version management, as this is the
most common in CMS.

6.2.3 Controlling

Controlling functionality is always available in configuration
management and according to [Da90] mainly addresses issues of change

 Interaction with Configuration Management

 133

management (cf. section 3.4.1). In other words controlling enables
creating, processing and monitoring change requests, bugs and problem
reports.

A Customization Layer can exploit controlling functionality in order to
realize change management scenarios. The implementation of these
scenarios requires basic change management functionality, which is
available with every CMS. The ticket hierarchy approach as discussed in
the createCoreAssetChangeRequest scenario may not be available with
some (older) systems. In this case the implementation will have to
operate on the basic mechanisms. For example, custom change request
fields can be used in order to define associations between change
requests.

6.2.4 Versioning

Versioning (cf. section 3.4.2) is a major functionality in every
configuration management system. It enables creating and managing
versions, branches, and configurations (section 1.3.3).

Branching can be generally employed in order to manage the
synchronization between family and application engineering. Core assets
can be placed in branches and instances in other branches created off
the core asset branches. With the encapsulation provided by the
Customization Layer, the complexity that appears when multiple
branches arise (see also section 1.3) can be hidden.

Versioning and branching will be also used for conventional evolution
control activities that do not directly relate to synchronization between
family and application engineering. For that reason tagging and
documentation functionality inherent to versioning should come into
play. Tagging (or labeling) can be used to mark branches. Likewise
documentation can be used to describe versions (e.g. in terms of commit
messages). These features can also be used by a Customization Layer to
automatically mark the results of operations performed. When for
example a user initiates the creation of a core asset with the
Customization Layer a version can be created with a particular commit
message that can be later recognized by the layer but also by users, who
directly access the CMS.

The advantage of using branches at this point is the synchronization
support, which is commonly available. Configuration management
systems enable propagating changes between branches and this can be
used for the synchronization of family and application engineering
efforts. In some cases synchronization can be even tracked. That means
that the versioning subsystem knows when branches have exchanged
changes without requiring the users to explicitly describe synchronization

Interaction with Configuration Management

 134

activities in terms of commit messages. This feature can simplify the
automated coordination between core assets and instances significantly.

An interesting scenario arises however when core assets and instances
are to be removed (removeCoreAsset and removeProductAsset scenarios
respectively). In this case it is actually necessary to change existing
relationships between branches. With some configuration management
systems (e.g. AccuRev [ACC10]) this is possible by replacing branches in
a branch hierarchy. In other systems this can be accomplished by
changing the versioning history (i.e. changing the commit message used
when creating a branch can detach an instance from a core asset or
indicate that a configuration item stops being a core asset). Alternatively
a special attribute can be attached to a configuration item in order to
indicate this kind of information.

Some configuration management systems provide specialized support
for branching, which can be beneficial for branch management with the
help of the Customization Layer. The following list discusses two
examples from well-known modern configuration management systems.

• sharing: This functionality is offered by some systems like the Team
Foundation Server [URL8] or StarTeam [URL20]. Sharing enables
managing reusable configuration items, which can be “shared”
across different users and projects. Sharing enables reusers to be
automatically notified when new versions of reusable items are
available and to obtain the changes at will. In many systems the
sharing functionality comes into play when the reuse of assets is
initiated. In other words it is often not necessary to mark shared
assets as such during their creation.

• streams: Streams are provided by AccuRev [ACC10] and constitute a
sophisticated implementation of the branching concept. Streams can
be considered as branches; however change propagation is
facilitated to a great extent. Hierarchies of streams can be built and
modified at will. Moreover propagating changes from parent to
children streams and vice versa can be configured individually.

Versioning support in configuration management can be distinguished
between extensional and intentional versioning [CW98]. Extensional
versioning, which is common in most implementations, enumerates the
versions of a configuration item in an ascending order. Each version can
be therefore identified by a unique alphanumeric representation. On the
other hand intentional versioning uses logical terms for version
identification. In other words a particular version of an item can be
described as logical predicates (e.g. operating system = windows AND
market = Europe).

 Interaction with Configuration Management

 135

When implementing a Customization Layer the usage of intentional
versioning should be considered, if possible. In this case the usage of
predicates provides for better traceability between variability
management and the configuration management system than with
extensional versioning. As discussed in section 4.4 instances of core
assets are derived by resolving variability decisions and variation points
inherent to core assets. Therefore an instance of a core asset can be
identified by the decisions that have been made during derivation. With
intentional versioning when a core is instantiated a new version of it can
be created that is marked with the corresponding resolved decisions.

Although intentional versioning is not available in modern CMS, in most
of the cases it is possible to implement it in combination with extensional
versioning. In this case the metadata functionality, which is common in
most systems, can be employed. The predicates that characterize a
particular version can be attached to a version in terms of special-
purpose attributes. Since however these attributes cannot be processed
automatically, if intentional versioning is not available, the Customization
Layer has to take over this task.

Versioning also includes managing states of configuration items. States
characterize versions with respect to the stage in the development
process that yielded the versions (for example under development,
tested, etc.). In this regard, state management functionality should be
used in order to deal with the different states of core assets and
instances . If explicit state management is not available, metadata can
again be used to store the states of configuration items. Some CMS also
provide support for tags, i.e. special markers that can be assigned to
configuration item versions. Tags can also be useful for state
management. Finally, some CMS do not provide any state management
at all. In this case states can be managed by special-purpose files or they
be mapped to repository locations, which hold configuration item
versions in specific states.

6.2.5 Construction

Construction functionality is responsible for the compilation of
configuration items in order to obtain executable systems. In this regard
it usually involves managing, automating and monitoring the
compilation process. Executable or binary items can be seen in some
cases as instances of core assets. Although binary items are usually not
subject to evolution control a Customization Layer might need to invoke
construction functionality to instantiate core assets. This might be
necessary in production lines (section 3.6.10), namely in product lines
that consider instance assets as transient.

Interaction with Configuration Management

 136

However, construction functionality can be particularly interesting for the
monitoring tasks of product line evolution control. Modern build
management systems often implement the concept of continuous
integration [Duv07] illustrated in Figure 66,

A continuous integration server runs in parallel to a configuration
management system (or server), monitors operations performed therein,
notifies affected users and initiates further measures if configured so.
Usually the goal is to facilitate quality assurance by invoking compilations
and test runs when execution of particular operations or when transition
to particular states are identified in the repository. A typical scenario is to
invoke test runs when a user loads a new version of a subsystem from a
local working copy to the repository and then to notify the users about
test results. In that way it is ensured that changes from different users
are continuously “integrated” into a consistent system.

Figure 66: Continuous integration paradigm adapted from [Duv07]

In the context of a Customization Layer core and product asset
monitoring tasks (i.e. status accounting scenarios in section 5.3) can be
facilitated if continuous integration is in place. To this end special
monitoring routines can be setup when assets are created or changed.
These routines can check for instantiations, changes and continuously
store the retrieved data, so that the status accounting scenarios can
access them. In this case it can be made possible that a concrete
incarnation of the basic asset model (section 4.1) is continuously kept
under persistent storage.

Monitoring routines can also perform further analyses. For example a
continuous integration server can be programmed to continuously

ConfigurationConfigurationConfigurationConfiguration
ManagementManagementManagementManagement

RepositoryRepositoryRepositoryRepository

UserUserUserUser
working copyworking copyworking copyworking copy

UserUserUserUser
working copyworking copyworking copyworking copy

UserUserUserUser
working copyworking copyworking copyworking copy

ContinuousContinuousContinuousContinuous
IntegrationIntegrationIntegrationIntegration

ServerServerServerServer

monitormonitormonitormonitor

…………

interactinteractinteractinteract

interactinteractinteractinteract

interactinteractinteractinteract

notifynotifynotifynotify

notifynotifynotifynotify

notifynotifynotifynotify

 Interaction with Configuration Management

 137

compare code bases of product line members to identify similarities that
may indicate new candidates for core assets. Based on this information
the corresponding changes can be requested. As a continuous
integration server is usually a dedicated machine that does not interfere
with normal development such heavy-weight analyses can be performed
without any efficiency overhead.

An alternative mechanism to a continuous integration server is provided
in some configuration management systems in terms of special scripts
(e.g. hook scripts in Subversion [URL6]). The latter are executed in the
context of configuration management operations, for example after
creation of a new configuration item and enable to perform actions
based on input parameters, user rights, state of items etc.

6.2.6 Accounting and Auditing

Accounting functionality (cf. section 3.4.3) accesses a configuration
management repository and provides statistics, information about the
system status and generates reports [Da90]. In this regard the
functionality overlaps the continuous integration functionality discussed
in the previous section. In every case the status accounting scenarios
discussed in section 5.3 can be realized either by using continuous
integration functionality or by retrieving basic evolution data from the
repository. The latter can be retrieved through the auditing functionality,
which is described in the next paragraph.

According to [Da90], auditing allows accessing the history of all changes
and establishing traceability links between configuration items. In terms
of Customization Layer traceability functionality is similar to structuring:
It allows establishing explicit relationships between items. Also here it
should be evaluated whether the synchronization of related items is
facilitated. On the other hand, history functionality is important and can
be used in an automated way by a Customization Layer. That means that
a Customization Layer can navigate through the history of core assets
and instances in order to draw certain conclusions. Instances of core
assets can be obtained, for example, by navigating through the versions
of a core asset and by finding branches that are marked accordingly. Or,
given an instance asset the Customization Layer can navigate through its
history in order to identify from which core asset it has been created (i.e.
branched off).

6.2.7 Team

Team functionality facilitates the cooperation of engineers in a joint
development effort. According to [Da90] team functionality mainly
involves different sophistication levels of workspace management.

Interaction with Configuration Management

 138

Workspaces contain private working copies of configuration items or of
particular versions thereof, which can be processed in isolation.
Workspace functionality possibly enables engineers to create private
versions and branches and to synchronize with other workspaces or with
a central repository.

For a Customization Layer the synchronization functionality is crucial but
it overlaps with the versioning functionality. A Customization Layer
implementation can benefit however from workspace functionality, if it
is possible to define family and application engineering workspaces. In
that case the workspace functionality would allow workspace owners to
invoke only the particular evolution control scenarios applicable to their
role. Apart from that, and for the scenarios described in section 5, no
additional workspace functionality is necessary.

6.2.8 Process

Some configuration management systems enable modeling and enacting
development processes similar to workflow systems. In that sense users
are assigned roles as well as activities and the lower level configuration
management operations such as versioning or construction can be
traced back to the relevant activities.

The scenarios described in section 5 are isolated evolution control
activities and their realization does not require workflow support.
However scenarios could be also orchestrated in order to define
evolution control workflows. For example, a workflow can be defined
that starts with the creation of a change request, proceeds with the
modification of a core asset and ends with the integration of a core asset
with its instances. Process functionality can be used in order to realize
such workflows. To that end it is however necessary that Customization
Layer scenarios are implemented in a way (e.g. as services according to
the principles of service-orientation) that is compatible with the process
functionality. The latter must be able to recognize the scenarios as
activities that can be orchestrated.

6.3 Section summary

This section has discussed configuration management functionality that
can be used for the creation of a Customization Layer and
implementation guidelines have been provided for each of the evolution
control scenarios. Next section will discuss a framework for the
implementation of Customization Layer.

 A Customization Layer framework

 139

7 A Customization Layer framework

This chapter presents a framework that facilitates the implementation of
Customization Layer consoles based on Java technology. The framework
supports the creation of console applications that resemble a command
prompt. In the lower part of the application window users are able to
issue evolution control commands. In the upper part a text field lists the
output of commands and enables scrolling over the execution history.
Figure 67 provides a screenshot for a Customization Layer prototype that
has been implemented with the help of the framework and for a
selection of evolution control scenarios. As shown in Figure 67, for
simplicity the scenario names are slightly different that the scenario
names used in section 5.

Figure 67: Customization Layer prototype screenshot

The basic structure of the framework is depicted as a UML class diagram
in Figure 67. The class CustomizationLayer is responsible for the
implementation of the required evolution control activities. To this end
the class uses configuration management operations contained in the
ConfigurationManagement package (abbreviated as cm). The framework
also provides a user interface (UserInterface package, abbreviated as gui)
that among other things enables managing the evolution control

A Customization Layer framework

 140

commands issued by the product line engineers. To this end the user
interface interacts with a CommandParser that defines a grammar for
the accepted evolution control commands and parses the user input
accordingly. This grammar is meant for the lexical and syntactical analysis
of the console commands and is not to be confused with the Xtend
grammars used thus far.

Figure 68: Framework structure

The framework has been implemented in Java and with the help of the
Standard Widget Toolkit [URL4] and the JavaCC parser generator
[URL10].

7.1 Customization Layer

The class CustomizationLayer implements the selected evolution control
scenarios. In terms of the Model-View-Controller (MVC) pattern [Re79] it
assumes the role of the model. To this end the class has two
associations:

• CMAbstractionLayer: This is the interface that defines the
configuration management operations used by the
CustomizationLayer. The interface is realized by connectors, which
take over the interaction with concrete configuration management
systems. This interface along with implementation guidelines can be
generated out of the selected evolution control scenarios and with
the help of the Xtend tool chain (see section 6).

CustomizationLayer «interface»
cm::CMAbstractionLayer

Thread

gui::ConsoleGUI

parser::
CommandInterpreter

ShellListener
KeyListener

TraverseListener

gui::Controller

-console

-cmConnector

-gui

-cl

-controller

-interpreter

 A Customization Layer framework

 141

• ConsoleGUI: This is the main class of the graphical user interface and
plays the role of the view in the MVC pattern. CustomizationLayer
references this class in order to send output of evolution control
tasks to the user interface as well as to interact with the user.

• Controller: This class plays the role of the controller according to the
MVC pattern. In other words, it manages the classification and
execution of the commands issued by the user.

7.2 User Interface

The user interface package (gui) contains classes (see Figure 69) that
enable users to input and manage the execution of evolution control
commands. The class ConsoleGUI is implementing the user interface
elements shown in Figure 67. The user interface consists of two main
widgets, the input and the output widget. The former is an editable text
field, in which the evolution control commands are entered. The latter is
a non-editable text field that shows the output of the commands and
enables the user to scroll over the execution history and also to perform
copy and paste text operations.

The abstract class Command follows some (e.g. undo or redo is not
supported as this is unusual in the context of configuration
management) of the ideas of the command design pattern proposed in
[GHJ+95] and provides a framework for the definition, execution and
management of evolution control commands. Therefore all operations
described in section 7.1 are implemented as subclasses of Command.
Furthermore some additional helper commands are available such as the
help command that describes the function and syntax or the set-
properties command that tells the Customization Layer to show the
configuration management property dialog.

The Command class inherits from the Java class Thread. This enables
commands to be executed asynchronously and also to be interrupted if
necessary. This can be useful with long-running commands or in case
wrong commands arguments have been passed.

A Customization Layer framework

 142

Figure 69: User interface classes and dependencies

The class CommandBlackboard is a simple extension of the Java class
Observable. When a command is being executed it usually adds an
observer to CommandBlackboard. In the current implementation the
observer is contained in the configuration management connector.
When the user requests a command to stop execution, the controller
tells the command to stop. Subsequently the command invokes the
CommandBlackboard, which in turn notifies the configuration
management connector. The latter can then respond to the interruption
requested by the user and gracefully stop any running configuration
management operations.

In the case of the Subversion version management system for example,
the corresponding programming interface SVNKit [URL5] provides special
handler classes that can deal with such interruptions. These handlers,
when registered, are invoked every time a particular Subversion event
takes place. For example when a commit is about to take place the
handler is being notified. Upon notification the handler has the
possibility to check whether the current configuration management
operation is to be cancelled. To this end a special method
checkCancelled is provided. The method checks whether the current
configuration management event should be stopped and if so it raises a
special exception SVNCancelException. This is subsequently captured by
SVNKit, which cancels the operation. In case a user requests the
interruption of a command the class CommandBlackboard invokes the
handler thereby setting an interruption flag to true. The flag is

Thread

ConsoleGUI

ShellListener
KeyListener

TraverseListener

Controller

Thread

command::Command

Observable

command::
CommandBlackboard

command::
AddCoreAssetCommandcommand::

HelpCommandcommand::
InstantiateCoreAssetCommandcommand::

IntegrateCommandcommand::
RebaseCommandcommand::

SetPropertiesCommand

command::
SetupCommandcommand::

ShowCoreAssetsCommandcommand::
ShowCoreDiffCommandcommand::

ShowInstanceDiffCommandcommand::
ShowInstancesCommand

-gui -controller

-activeCommand

#gui

#blackboard

 A Customization Layer framework

 143

subsequently checked by the checkCancelled method which initiates the
command interruption.

7.3 Command Parser

The command parser package enables parsing the command strings
passed to the graphical user interface. To this end the JavaCC parser
generator comes into play, which generates a fully functional LL parser.
To this end it is necessary to provide a JavaCC grammar for the desired
commands and then to use the generated parser classes (see Figure 70)
from the Controller class of the user interface package.

Figure 70: Command parser classes and dependencies

The class CommandLine holds the commands issued by the user along
with all the command arguments. Hence, instances of this class are
passed to the Controller class of the graphical user interface in order to
initiate the command execution.

CommandIntepreter is delivering the instances of CommandLine by
parsing the strings input by the user in the corresponding field of the
user interface. To this end CommandIntepreter is given a java.io.Reader
and in particular a java.io.StringReader of the command string input by
the user. It then uses the CommandInterpreterTokenManager class to
break down the input string to different tokens (class Token) and to
build up instances of CommandLine. The class

CommandInterpreter

«interface»
CommandInterpreterConstants

CommandInterpreterTokenManager

CommandLine

Exception

ParseException

SimpleCharStream

Token

A Customization Layer framework

 144

CommandInterpreterConstants contains constants that are used during
parsing. These constants include the strings of the allowed
Customization Layer commands. The latter are passed to ParseException,
which is thrown by the interpreter if the input command or arguments
are invalid. The exception uses the constants to generate an error
message that is then displayed in the output field of the user interface.

7.4 Section summary

This section has presented a framework facilitating the implementation
of Customization Layer frontends as console applications based on Java
technology. Next section will present a process for the adoption of a
Customization Layer within an organization.

 Adoption process

 145

8 Adoption process

In order to ensure that a Customization Layer is transferred successfully
into an organization, it is necessary to carefully examine the
organizational context at hand and to adapt the approach when
necessary. Hence this chapter describes a series of steps that can be
followed by an organization for the adoption of a Customization layer.
The Quality Improvement Paradigm (QIP) [BCR94] is used to this end. QIP
is an iterative process improvement approach that describes a sequence
of recommended steps for the introduction of a new process (e.g.
method, technology, and tool) into an organization. Figure 71 gives an
overview of the cyclic QIP.

Figure 71: Steps of the Quality Improvement Paradigm (QIP)

The first step in the QIP aims at understanding the organizational context
as well as the processes and setting the baseline to compare to
afterwards. Subsequently issues are identified and improvement goals
are set. In the next step solutions including methods, techniques or tools
are selected that can contribute to the goal fulfillment. Then, in the
fourth step, the selected solutions are applied. As shown Figure 71 the
latter step can be seen as a subordinate cyclic process. This sub-process
is broken down to a step that actually applies the selected solutions, a
step that controls the extent, to which goals are addressed and finally a
step that takes corrective measures.

set goal(s)

characterize
and understand

select
methods,
techniques,
tools

analyze
experiences

prepare
experiences
for reuse

11
22

3344
55

66

perform
 co

rr
ec

t

control

Adoption process

 146

After having applied a set of solutions QIP continues with an analysis of
the experiences. That includes the identification of problems that arose
during the application, the analysis of measurements that possibly took
place and finally the derivation of recommendations for the next
iteration. In the final iteration step QIP explicitly documents and
packages the experiences so they can be easily retrieved for reuse in
future iterations. The next subsections will elucidate the steps
recommended by the QIP.

8.1 Characterization

The Customization Layer approach supports organizations that have a
product line in place and want to improve the way evolution is
controlled. The first step in this direction is to clearly understand the type
of product line that is to be controlled. This will normally performed only
once when the QIP cycle starts. As described in section 3.6 there are
various types of product lines. In order to identify which type is relevant
for an organization Figure 72 provides a decision tree. By using this tree
the organization performs a first reasoning and raises the awareness
regarding the product line situation at hand. This is a useful starting
point for the later QIP steps.

 Adoption process

 147

Figure 72: Product Line Type Decision Tree

Each decision in the tree contains the probabilities of having a particular
type of product line given a set of criteria. The criteria that have to be
considered are:

• Number of family and application engineering processes: This is the
most crucial factor for the later activities. At this point the
organization has to start thinking about the different product line
engineering processes that are possibly established as well as about
the interactions between them.

Binding time and adaptation mode: Binding time refers to the point
in time in the development process when variation points in core
asset are resolved [Kru03]. The adaptation mode on the other hand

Adaptive Product = 9,09%

Hierarchical Product Line = 9,09%

Individual Products = 9,09%

Platform = 9,09%

Product Generations = 9,09%

Product Population = 9,09%

Production Line = 9,09%

Professional Application = 9,09%

Software Product Line = 9,09%

Standard Application = 9,09%

Standardized Infrastructure = 9,09%

Adaptive Product = 100% Hierarchical Product Line = 10%

Individual Products = 10%

Platform = 10%

Product Generations = 10%

Product Population = 10%

Production Line = 10%

Professional Application = 10%

Software Product Line = 10%

Standard Application = 10%

Standardized Infrastructure = 10%

self-adaptation

at run-time

adaptation during development time

Hierarchical Product Line = 100% Production Line = 50%

Professional Application = 50%

Individual Products = 50%

Product Generations = 50%

Platform = 20%

Product Population = 20%

Software Product Line = 20%

Standard Application = 20%

Standardized Infrastructure = 20%

Platform = 25%

Software Product Line = 25%

Standard Application = 25%

Standardized Infrastructure = 25%

Product Population = 100%

Platform = 50%

Software Product Line = 50%

Standard Application = 50%

Standardized Infrastructure = 50%

Software Product Line = 100%

Multiple family /

application

engineering

processes

One family

engineering process only

One family

engineering process /

Multiple application

engineering processes

Multiple application

engineering processes only

Product derivation through composition
Different approaches to

product derivation

Explicit variation points Implicit variation points

Reuse of different types of assets (not only code)

Adoption process

 148

refers to the way variation points are resolved. There are two main
modes of adaptation: Product line members resolve variation points
automatically (i.e. self-adaptation is performed based on contextual
information that is acquired automatically) or the variation points are
resolved by application engineers.

• Product derivation mechanisms: There are various mechanisms for
the derivation of instances from core assets. The most prominent
examples of such mechanisms are applied on source code assets. For
example a core asset can employ conditional compilation (i.e. if-defs)
to implement variation points. In this case instances are derived by
declaring identifiers in macros.

• Types of reusable assets: Core assets can be produced at various
stages in the development process. Hence the types of reusable
assets refer to the stages in the development process in which reuse
takes place.

At the top level of the decision tree all possible types have the same
probability. The links between the decisions in the tree represent
questions that have to be answered. When a particular question is
answered positively the associated decision is selected. In that way the
decision tree gradually reduces the number of possible types. For
example if product line members are subject to self-adaptation during
execution, decision d3 is selected and evolution control has to deal with
adaptive products.

After identifying the product line type the organization has to
characterize the way evolution is controlled. To this end the conceptual
model presented in section 3.8 can be used. In doing so the organization
describes family and application engineering processes at hand.
Subsequently the corresponding scenarios can be selected as presented
in section 5.

The next step is to reason about the performance of the evolution
control processes at hand. This analysis can be facilitated by taking
central goals of product line evolution control into account and by
reasoning whether these goals are met. Generally evolution control aims
at increasing the productivity in the development process by taking
optimal advantage of software reuse, by reducing maintenance effort
and by ensuring the sustainability of the product line. In this regard a
series of finer goals can be defined. Table 20 provides a sample
refinement of these goals.

 Adoption process

 149

Top-level Goal Sub Goals

Software reuse • Core assets are reused across products

• Core asset development is synchronized with
product development

• Requirements for new core assets can be easily
identified

Maintenance Effort • The majority of the development effort is spent
for the creation of new features and not for
quality assurance

• Efficient change impact analysis

• Only allowed changes are actually carried out

• Changes can be traced back to product line
requirements

• Redundancies can be efficiently identified

Sustainability • The complexity of the configuration management
repository increases at an acceptable rate

• The degree of core asset reuse remains stable or
increases over time

• Maintenance effort increases at an acceptable
rate

Table 20: Main evolution control goals and sample refinement

Evolution control problems can be made even more tangible by looking
into concrete measures. In the area of evolution control it can be
beneficial to take existing configuration management measures into
account and to map them to the previously defined goals. Following list
provides example measures in this regard [Le04]:

• Average time taken for the resolution of change requests

• Number of change requests (in particular problem reports)

• Percentage of approved change requests

• Number of defects found after every release

• Number of unfixed bugs in each release

• Time difference between defect reporting and removal

Furthermore it can be beneficial to make use of software reuse metrics
as proposed for example in [OH92], [Pou97], [WYF03] or in [Pa10]:

• Maintainability index: A measure of the maintainability of a reusable
component in terms of its complexity

Adoption process

 150

• Reuse efficiency: Percentage of reused software relative to the total
amount of software

• Rate of Component Observability: A measure of the
understandability of a reusable component in terms of its externally
visible behavior.

• Cost-benefit analysis metric: A measure of the return on investment
on software reuse. Such a measure will usually take into account
effort for the development of reusable components, effort for their
retrieval and modification as well as effort for development of new
components (i.e. without reuse)

• Temporal code churn [HM00]: A measure of modifications on lines
of code over a time period.

• Number of variation points: Amount of well-defined positions within
reusable assets that can be adapted in a prescribed way

Such measures enable setting a clearly comparable baseline. That means
that if such measurements are performed (i.e. calculated or estimated) in
the characterization step they can be easily compared with
corresponding measurements of subsequent characterizations (i.e. in
subsequent QIP iterations). In so doing the value of the improvement
effort can be clearly assessed.

8.2 Goal definition

The characterization step sets the baseline of QIP iterations. The next
step analyzes the results of the characterization and sets improvement
goals. In this regard the first analysis to be undertaken is an evaluation of
the organization-specific specialization of the conceptual model and the
scenario selection. At this point the organization has to reason whether
the structure of the evolution control processes is satisfactory and
whether the selected scenarios cover the needs of the involved
stakeholders. The analysis should look into the granularity of the defined
product line processes (i.e. family and application engineering) and
reason whether process decomposition is sensible. An indicator towards
such decomposition might be the presence of many hybrid processes in
the model.

Through the analysis of the conceptual model instance the organization
can identify possible weaknesses in the baseline process structure. The
next step is then to correct the process structure accordingly. Therefore
the new structure represents the goal for the active iteration.

 Adoption process

 151

The goal definition can be further refined by analyzing the measurement
results from the characterization phase as well. If the results are not
acceptable further goals can be defined in terms of measurement values
that have to be reached until the next characterization and with the new
process structure that has been possibly modeled.

8.3 Process selection

The third step in the QIP cycle selects the engineering processes in terms
of models, methods, techniques and tools that are expected to address
the goals set in the previous step. In the context of this thesis this
involves the examination of the configuration management functionality
at hand and the creation or modification of a Customization Layer
according to the scenario specifications and guidelines discussed in
chapters 5 and 6. Furthermore the implementation framework presented
in section 7 can be used, possibly as an initial proof of concept. Figure
73 provides an overview of the QIP steps thus far.

Figure 73: Adopting a Customization Layer (steps 1 to 3)

8.4 Execution

During the execution step the implemented Customization Layer comes
into operation. The first step is to identify already existing assets items
that can be put under the control of the Customization Layer.
Subsequently evolution activities can start in terms of the selected
evolution control scenarios.

The execution step is to be considered as an iterative process within the
bigger QIP cycle. Therefore after having executed a set of scenarios an
analysis step takes place. The goal is to get feedback from the use of the
Customization Layer and possibly to provide usage instructions as
corrective action. In particular the analysis step should look after possible

Process selection
Goal Definition

Characterization

Select
Scenarios

Identify
product line
type

Baseline
metrics

Model
product line

Generate
scenario
implementation
guidelines

Select
configuration
management
functionality

Implement
Customization
Layer

Set
improvement
goals

Adoption process

 152

misuses of the Customization Layer. Since the Customization Layer
commands automate a series of configuration management operations,
which otherwise would require more effort, there is the risk that users
issue more commands than necessary. This should be identified during
the analysis and corrective action should be taken. For example particular
commands can be blocked until more strict rules are implemented in the
next QIP iteration. For the blocked commands the execution can
continue with the conventional way; that is through direct usage of
configuration management.

8.5 Analyze experiences

This step retrospectively looks into the execution phase and aims at
understanding strengths and weaknesses of the available Customization
Layer implementation. The effectiveness of the corrective measures
taken during the execution is assessed with respect to the success of the
measures but also with respect to the information that was available.

The main issue during this step is to analyze whether the goals of the
iteration (section 8.2) were met. Following list provides a set of possible
reasons, for a failure of the Customization Layer in the iteration. Based
on these possibilities the next iterations can be planned.

• Usability issues: Since a Customization Layer is built from scratch and
on top of an existing configuration management system there may a
usability gap that has led to misuses during the execution.

• Wrong input to the execution process: If the input to the execution
process were core and product assets that do not need particular
synchronization the Customization Layer might not show any
benefit.

• Too much automation: Users do not have a clear picture of the
effects of a Customization Layer. This can happen if the layer
encapsulates a series of underlying configuration management
operations without the users knowing about it.

• Wrong distribution of functionality: As discussed in section 6
evolution control functionality can be distributed across the existing
configuration management system and a newly introduced
Customization Layer. If this distribution is not adequate the
acceptance of the solution loses ground.

 Adoption process

 153

8.6 Prepare experiences for reuse

In the final step the findings of the analysis phase are explicitly
documented and provided as input to the next iteration. At this point it
is important to capture all implementation decisions and the
corresponding rationales that pertain to the Customization Layer of the
iteration at hand.

In this context it can be beneficial to use a template such as the one
suggested in [DP00] in order to capture the rationale behind software
engineering decisions. As discussed in section 6 the implementation of a
Customization Layer involves reasoning on multiple alternatives. This is
due to the broad range of functionality provided by configuration
management that can be used to realize the evolution control processes.
Decisions and experiences that are made in this regard can be therefore
particularly beneficial for future QIP iterations. Rational management
enables describing the reasons behind the implementation by judging
different alternatives (e.g. branches, properties, special-purpose files)
that were evaluated upfront and by explaining the final decision. The
judgment of the alternatives is accomplished with the help of different
factors (impact, effect etc. in the example) that should relate to the
respective QIP goals (QIP step 1 and 2).

8.7 Section Summary

This chapter has presented an adoption process based on the Quality
Improvement Paradigm that guides the introduction of a Customization
Layer into an organization. Next chapter presents validations carried out
in the context of this thesis.

 Validation

 155

9 Validation

As described in section 1.3 the practical contribution of the work
described in this thesis is to reduce the effort, which product line
engineers have to spend, in order to coordinate activities on the basis of
configuration management and in a product line engineering process.
This contribution supports the avoidance of further higher-level problems
that can be encountered by a product line organization. Figure 74
depicts the main problem addressed by this thesis along with higher-
level problems that are related to it. The left-hand side of the figure
shows the different problems, and the right-hand side shows hypotheses
that can be used in order to validate possible solutions. Hypotheses H1
and H2 have been investigated in the context of this thesis.

Figure 74: Experimental V-Model of this thesis

Figure 74 illustrates that the problem of costly coordination, which is
addressed by this thesis, influences two higher-level problems:

• Lost investment in software reuse: When the coordination of family
and application engineering is too costly, reusable assets cannot be
evolved adequately. Changes on instances of reusable assets cannot
be easily coordinated. Consequently reusable assets do not fulfill the
needs of the product line and become obsolete over time. For a
software organization this is a severe problem, since investments in
software reuse may get lost.

• Product derivation inefficiency: When the applicability of software
reuse gradually disappears, the effort for the delivery of products to
customers increases. Instead of saving effort by applying previously

Lost investments
The investment in product line
reuse is not exploited optimally

Increased Software Reuse
The amount of reusable assets
increases while the amount of
product-specific (i.e. without reuse)
assets decreases

Product derivation
inefficiency
The delivery of product line members
is characterized by delays and quality
problems

Shorter time-to-market
Qualitative Products can be delivered
in a timely manner

Costly coordination
The coordination of family and
application engineering activities
involves significant effort

H1: Efficiency
The effort for coordinating changes
decreases

H2: Effectiveness
The correctness of coordination
activities increasesCore contributionCore contributionCore contributionCore contribution

of this thesisof this thesisof this thesisof this thesis

Validation

 156

proven assets, application engineers create assets from scratch,
possibly in a redundant way and spent a significant part (if not the
majority) of their effort in quality assurance

The core contribution of this thesis, namely the reduction of
coordination effort, has been validated by means of a usability
evaluation, two controlled experiments, a simulation study and a case
study with a software developing organization. The validation activities
aimed at comparing the effort for evolution control with a
Customization Layer against the corresponding effort with direct usage
of configuration management.

Furthermore a structural evaluation that will presented in the
subsequent section, clarifies the decisions underlying the Customization
Layer solution as well as the sensitivity points, trade-offs and risks that
can be expected.

9.1 Structural evaluation

This section will clarify the benefits of the Customization Layer solution
in terms of a structural evaluation, as partially proposed by the
architecture tradeoff analysis method (ATAM see [KKC00]). The
argumentation will produce following output.

• Design Decisions: Core decisions that were taken during the
conception and development of the Customization Layer

• Rationale: The reasons and assumptions that led to the application
of a particular decision

• Sensitivity Points: Parameters of a design decision that might
influence a particular performance indicator of the solution

• Tradeoffs: Parameters of a design decision that affect differently
more than one performance indicator. Thus, a sensitivity point can
also be a tradeoff.

• Risks: Decisions, which have been left open or decisions whose
consequences to the performance of the solution, are not specified.

9.1.1 Core Decision: Layering

The solution proposed in this thesis, the Customization Layer, is a layer
on top of a conventional configuration management system (CMS).
Therefore the core decision that underlies the solution is the deployment
of a layer on top of configuration management. The layering approach is

 Validation

 157

strict, meaning that all Customization Layer operations are encapsulating
lower-level configuration management operations.

The reason for the layering decision is the assumption that configuration
management is common practice that cannot be neglected in the vast
majority of systems and software developing organizations. On the other
hand the bare usage of configuration management in a product line
context entails complexity that can easily overwhelm users (see sections
1.3 and 1.4). Therefore the Customization Layer solution addresses the
needs of product line evolution control while preserving existing
investments of an organization.

The adoption of a Customization Layer can be judged in terms of the
effort needed for the development of the layer and in terms of the
benefits to be expected afterwards. The underlying configuration
management system influences greatly these parameters. Following
sensitivity points have to be considered:

• Availability of an Application Programming Interface (API) in the
underlying CMS: An API can significantly simplify the
implementation of the evolution control scenarios described in
section 5. The lack of an API increases the complexity for the
automated interaction between Customization Layer and the CMS.
It might be for example necessary to invoke the command line
interface and to parse the console output of the underlying system.

• Availability of particular CMS features: As discussed in section 6 the
functionality provided by the chosen CMS has an important impact
to the effort for the creation of a Customization Layer. In particular
the availability of ticket hierarchy approaches, of marking
functionality and finally of versioning functionality has to be
considered. These capabilities are also tradeoffs as they influence
both the effort for the establishment of a Customization Layer and
the expected benefits. The latter refer in this case to the efficiency of
the layer operations (i.e. response time, usage of computing
resources), the resulting complexity of the CMS repository and the
maintainability of the Customization Layer. Efficiency can decrease
for example if the Customization Layer has to iterate over multiple
versions in the history of an artifact in order to find instances created
off this artifact. Repository complexity can be estimated in terms of
the amount of configuration items, versions, branches, properties
and custom commit messages. This complexity is increased by a
Customization Layer that for example uses branches to create
instances.

• Extensibility of the underlying CMS: Every CMS comes with a
graphical or command line interface. For a Customization Layer to

Validation

 158

be easily adopted by an organization it should be seamlessly
integrated in the existing CMS user interface. To this end some CMS
provide extensibility points. For example the free version
management system Mercurial [URL21] enables implementation of
extensions for its command line interface.

The present thesis aims at providing a solution that can be used with
different CMS. Therefore the selection of a concrete CMS is left open.
This can be clearly seen as a risk of the current approach, as there is
plethora of CMS available in the market and the Customization Layer
approach might not be applicable to all of them. However this risk has
been mitigated by studying the CMS spectrum of functionality, by
identifying varying CMS features and by providing corresponding
implementation guidelines.

Another risk of the layering approach arises when switching the
underlying CMS is a realistic scenario. If a Customization Layer is been
established on top of a given CMS, changing the CMS bears the risk that
the product line information is lost. This risk can be mitigated by
choosing the offline basic asset update mode (section 4.3), which holds
a backup of the product line information in parallel to the CMS
repository.

Concluding, the Customization Layer opts for a layering approach on top
of a CMS. The selection of a concrete CMS, which is also the central
influencing factor of the solution, is left open. Yet, typical variations in
CMS functionality and their impact to the Customization Layer are
captured. Alternative approaches would either opt for a concrete CMS
or create a Customization Layer independently of a CMS (i.e. the
Customization Layer would come with its own repository of product line
artifacts). These approaches however would limit the easiness of
adoption of the Customization Layer approach and this would contradict
one of the research questions in this thesis (Research question 4, section
1.3.2). Given this argumentation the layering decision is considered as
viable in the context of this thesis.

9.1.2 Data Model

The second decision in the present thesis is the structure of the data
model discussed in section 4. This model captures the entities of product
line evolution control (section 4.1), namely core assets (that contain
variability), instances (that resolve variability) and product-specific assets
(developed without reuse in a product). Core assets and instances play
the central role because they have to be synchronized over time. A state
model (section 4.2) is also defined to this end, which explicitly specifies
the different synchronization states of core assets and instances.

 Validation

 159

A tradeoff that can be identified at this point is the decision to separate
the management of assets from the management of configuration items
(section 4.3). Assets are logical entities managed by the Customization
Layer whereas configuration items are physical entities (i.e. change
requests, files or directories) in the configuration management
repository. Furthermore, logical entities can be related to their
corresponding physical entities (see for example section 4.1.1). The
choice of the update mode influences the performance of the
Customization Layer:

• The dynamic update mode reduces the efficiency of operations, as
the Customization Layer has to instantiate the model dynamically.
However, in so doing the obtained model is up-to-date at the time
of its creation.

• The offline mode increases efficiency in particular when multiple
logical entities are to be processed. In this case the model contents
are available and do not have to be created dynamically through
interaction with the repository. On the other hand the
implementation complexity increases since the Customization Layer
must enable synchronization with the repository. Furthermore some
information will be kept redundantly. In particular, associations
between core assets and instances will be kept in the logical model
as well as in the repository. Although this makes the usage of
additional computing resources necessary it enables replacing the
underlying configuration management system, if necessary, as the
basic asset model is available offline.

The data model capture entities and relations pertaining to product line
evolution control. A risk that can be seen at this point is that some of
these model elements may not apply to all types of product lines. For
example product populations (section 3.6.7) do not require controlling
the evolution of asset instances. This risk has been mitigated by enabling
the optionality of model elements by considering different types of
product lines that can arise (section 3.6). Associations between core
assets and instances are for example optional.

The data model discussed has been derived from common product line
engineering definitions and is applicable to various types of product
lines. Through the (optional) association between core assets and
instances it explicitly addresses the issue of product line erosion (section
1.4). Given also the fact that the model does not bear any uncontrolled
risks, it can be seen as a solid foundation for the Customization Layer
solution.

Validation

 160

9.1.3 Process Model

Another decision taken in the present thesis is the selection of the
evolution control operations (section 5) to be offered by a Customization
Layer. These operations enable engineers to plan, perform and monitor
changes in a product line context. The focus thereby resides on the
relation between core assets (that contain variability) and their instances
(that resolve the variability).

The evolution control operations have been specified in term of a
domain-specific language. The goal is to enable users to select
operations to name them at will and thus to tailor a Customization Layer
according to their needs. This is a tradeoff to the implementation of a
Customization Layer. The more operations are selected the more
complex is the implementation. On the other hand a rich set of
operations increases the usefulness of the layer.

A risk that can be identified arises from the question whether the set of
proposed evolution control operations is complete. There are indeed
operations (for example moving configuration items associated to core
assets) that are not explicit part of the current set. The currently selected
operations are based on common control theory scenarios and capture
the main evolution primitives, namely creation, modification and removal
of assets. This is the strategy used to mitigate the completeness risk. The
assumption is that additional operations will be achievable through
combination of the existing ones (moving for example is realizable
through modification of core assets).

Another risk at this point arises from the fact that a Customization Layer
identifies changes but does not explicitly enable to reason about these
changes. In other words the Customization Layer will indicate when
changes have to be propagated from core assets to instances and vice
versa, but it will not support the actual merging activity. The latter has to
compare in detail the affected assets, to identify the differences of
interest and to finally change the assets accordingly. There is currently no
approach the explicitly supports differencing core assets and instances.
Next to the traditional approaches that compare files textually, there are
some approaches for semantic [Me02] or structural merging [ALB+11].
But also these approaches do not consider the fact that instances are
obtained from core assets through resolution of variability. In order to
mitigate the risk of lacking tool support at this point this thesis
introduced a formal model (section 5.4.2) that can serve as a foundation
of a “variability-aware” differencing mechanism.

 Validation

 161

9.2 Usability evaluation

Goal of the usability evaluation was to estimate the effort of using the
Customization Layer solution as opposed to the effort for the direct
usage of Version Management. As discussed in the introduction of this
chapter, effort is considered as the combination of efficiency with
effectiveness.

The first step was to decide upon the usability evaluation method to
apply. Out of the various methods available in the literature, the study
was restricted to heuristic evaluation, cognitive walkthrough and
usability test as proposed in [BEM+12]. The final decision was to select
the cognitive walkthrough method [WRL+93] for two reasons:

• Conceptual: Cognitive walkthroughs are task-based. Tasks are
defined in advance and the usability inspectors judge the system by
estimating the effort for the execution of the tasks. In so doing, the
inspectors put themselves in the position of employing the running
system. The estimation is then done by answering pre-defined
questions on each task. The cognitive walkthrough method was
seen as most appropriate since different evolution control scenarios
could be directly mapped to tasks. Due to the task-based character
cognitive walkthroughs are more concrete than heuristic evaluation.
The latter judge a system based on common heuristics. Thus they
require more experience and more effort from the evaluators. In the
context of this thesis the participants were students and software
engineering professionals with no experience in usability evaluations.

• Organizational: Cognitive walkthroughs do not require a running
software application to be inspected. The evaluation is based on
interface documentation of the system. This simplified the
organizational setup. A usability test on the other hand would
require a running Customization Layer to be installed. Given the
number of participants (17) this posed organizational difficulties.
Apart from that, a direct evaluation of the running software took
part in the experimental studies presented later in this chapter.

9.2.1 Planning

The usability evaluation involved 17 participants. 6 of them were
software engineering professionals with good experiences in the field of
product line engineering (PLE) and average to strong experience in
version management (VM). The remaining 11 participants were students
in the product line engineering class at the University of Kaiserslautern.
For the students the evaluation was associated to the version
management exercise, which every year is part of the class.

Validation

 162

As expected no student had experience with product lines, while some
of the students had a good version management background. Following
table shows the experience profiles of the participants. The profiles were
used to achieve an even distribution of tasks to the participants.

Participant
Version Management
Experience

Product Line Engineering
Experience

Participant 1 low low

Participant 2 strong low

Participant 3 low low

Participant 4 low low

Participant 5 strong strong

Participant 6 strong low

Participant 7 strong low

Participant 8 average strong

Participant 9 strong low

Participant 10 average strong

Participant 11 low low

Participant 12 low low

Participant 13 low low

Participant 14 strong average

Participant 15 low average

Participant 16 low strong

Participant 17 strong low

VM experience summary:

Total low: 8

Total average: 2

Total strong: 7

PLE experience summary:

Total low: 10

Total average: 2

Total strong: 4

Table 21: Usability Evaluation / experience profiles

 Validation

 163

The experience profiles were collected before the evaluation in terms of
a pre-briefing. The latter was also used to prepare the participants to the
context and goals of the evaluation and also to introduce the
participants to the cognitive walkthrough method. To this end
corresponding information sheets (see appendix) have been distributed
one week before the actual evaluation took place.

The usability evaluation workshop consisted of two sessions:

• Introduction and refreshing session (~10 minutes): Discussion of the
evaluation goals and the overall context of product line evolution
control

• Main session (~90 minutes): Task processing and documentation of
results in corresponding usability evaluation forms (see appendix).

9.2.2 Tasks

Goal of the cognitive walkthrough was to investigate the Customization
Layer solution as opposed to regular version management with respect
to specific tasks. These tasks are listed in the following:

1. Find items marked as Core Assets

2. For a given Core Asset (e.g. MyLibrary.java) find where it is being
reused in products. In other words, find items marked as instances
of the Core Asset.

3. For a given Instance (e.g. MyLibrarySpecialized.java) find from which
Core Asset it comes from.

4. Imagine a core asset has been changed. Propagate the changes to
its instances

5. Imagine an instance has been changed. Propagate the changes to
the core assets, from which the instance comes from

6. Find assets of a product line member, which are not instances of
core assets
(in other words, find product-specific assets)

7. Find items marked as Instances

The above tasks were distributed across three groups as shown in Table
22.

Validation

 164

• Customization Layer (CL): This group investigated the usability of the
Customization Layer

• Version Management / Family Engineering (SVN_FE): This group
investigated the usability of conventional version management
regarding family engineering

• Version Management / Application Engineering (SVN_AE) : This
group investigated the usability of conventional version
management regarding application engineering

 Participant

CL 1, 3, 5, 10, 12, 16

SVN_FE 4, 6, 7, 11, 14, 15

SVN_AE 2, 8, 9, 13, 17

Table 22: Usability Evaluation / Group assignments

The CL group participants processed tasks 1 to 6. The two other groups
processed tasks 1, 2, 4 and 7, 3, 5 respectively. It would have been
however possible to create only one version management group that
also processes the full amount of tasks. The reason for not doing so was
that the version management participants had to deal with a more
complex interface and had to combine several operations in order to
fulfill a task. Therefore, in order to allow all participants to finish in the
same time frame it has been decided to split version management in two
groups and to reduce the number of tasks accordingly. The version
management groups were then assigned the most typical task sequences
for the respective product line engineering process. This sequence
includes finding entities (core assets or instances), finding related entities
(instances or core assets) and finally propagating changes.

9.2.3 Interface descriptions

The cognitive walkthrough method does not require a running software
system to be investigated. Thus interface descriptions (see appendix) in
terms of a simplified application programming interface have been
distributed to the participants at the beginning of the evaluation. For the
CL group the description reflected the XText specifications described in
section 5. For the version management groups the descriptions were
based on the SVNKit programming interface [URL5].

 Validation

 165

9.2.4 Analysis

According to the cognitive walkthrough method participants were asked
to decompose each task to necessary actions and then to judge the
resulting complexity. For example a participant of the SVN_FE group
decomposed task 2 (i.e. finding instances of core assets) to two actions.
These were to first call the directory listing operation (dir) and then to
call the log operation.

Hence, in the context of this usability evaluation efficiency is a function
of the necessary actions per task, the effort of identifying these actions
and finally the effort of the actions themselves. On the other hand
effectiveness is seen as the correctness of decomposition of tasks to
actions. That means, a task is defined as correct if the selected actions
indeed lead to the fulfillment of the task. The assumption is that a
system with low usability might give the user the impression that a task
was fulfilled through a series of actions, while this is actually not the
case.

In order to judge the effort per action the cognitive walkthrough method
proposes to answer following questions:

• Was it easy to understand, that you had to do this action?

• Was it easy to associate the correct action with the effect you are
trying to achieve?

• Will you see that progress is being made toward solution of your
task?

In order to judge the correctness it is necessary to analyze task
decompositions and to examine whether the corresponding tasks are
indeed fulfilled.

In total there were 100 actions identified by the participants and
captured in usability evaluation forms. After the workshop the majority
of the results have been digitalized. To this end, a web-based data entry
application has been developed (see appendix B.6). The latter enabled to
store all results in a relational data base management system, which in
turn allowed querying the result set in various ways.

Efficiency evaluation

In average the Customization Layer participants required 1.3 actions per
task. This was mostly expected, since the Customization Layer aims at
encapsulating underlying version management operations and therefore
at reducing the number of actions. On the other hand, the version

Validation

 166

management participants required 1,588 actions per task in average.
This difference of only 18% was surprising. It was expected that the
version management groups would need significantly more actions per
task. Figure 75 shows in detail how many actions were required per task.

The analysis first looked in the Customization Layer results, in order to
understand why some participants required more than one action for
some tasks. It was actually expected that the operations offered by the
CL interface could be mapped one-to-one to tasks. The analysis showed
that 4 (out of 6) CL participants required more than one action for 4 (out
of 6) tasks. By looking in detail into the corresponding usability forms it
was identified that in most cases the additional actions were not
necessary (see Table 23). The participants selected the additional actions
possibly because they misunderstood the task specification. Another
possible explanation is that in some cases additional actions were
selected in order to confirm the results of a preceding action.

Figure 75: Usability Evaluation / Actions per Task

In one case the participant included actions, which were not defined in
the CL interface description. The participant possibly assumed that the
rebasing operation of the Customization Layer would not first update
the working copy of the instance. Furthermore he possibly assumed that
after the rebasing operation the Customization Layer would not commit
the changes on the core assets. Therefore he identified updating and
committing as necessary actions. It is indeed the case that the CL
interface description did not detail what happens during the rebase
operation in terms of updating and committing. Therefore the
participant’s assumption has to be considered as reasonable. On the
other hand, the rebase operation’s purpose was in fact to encapsulate
these actions as well.

 Validation

 167

Task Actions identified by
participants

Analysis

Find instances
of a given core
asset

• showCoreAssets
• showCoreAssetInstances

showCoreAssets was not necessary:
showCoreAssetInstances expects
the name of the core asset, whose
instances are to be found

For a given
instance find
the core assets
it originates
from

• showCoreAssets
• showCoreAssetInstances

showCoreAssets was not necessary:
showCoreAssetInstances returns
Instance objects with all information
necessary

Propagate
changes of a
core asset to its
instances

• showCoreAssets
• integrateCoreAsset

showCoreAssets was not necessary:
integrateCoreAsset fulfills the task

Propagate
changes of an
instance to the
core assets it
originates from

• showCoreAssetInstances
• update instance
• rebaseInstance
• showProductAssets
• commit merge results

showCoreAssetInstances and
showProductAssets were not
necessary: : rebaseInstance fulfills
the task

update and commit were not part
of the CL interface description;
rebaseInstance did not detail what
happens in terms of updating and
committing

Table 23: Usability Evaluation / Unnecessary actions in CL group

The next step in the analysis was to look into the version management
groups. It was discovered that the version management participants did
not process a series of tasks correctly. In these error cases, the identified
actions would not achieve the corresponding task goal. Correctness will
be discussed in detail in the next subsection. For the purpose of the
efficiency evaluation it was reasonable to analyze the results without
error cases as well. Hence, by factoring out the error cases the average
amount of necessary actions drops without significance to 1,571. The
difference to the Customization Layer is further reduced to 17%. There
were no unnecessary actions in the set of correctly processed tasks.

Concluding, the minor improvement of 17% to 18% of the
Customization Layer as opposed to version management can be
explained only by the fact, that the Customization Layer participants
selected a series of unnecessary tasks. Assuming that these participants
would need - as intended - 1 action per task the improvement would be
36%.

Validation

 168

Apart from the amount of actions per task the efficiency was also
evaluated in terms of the answers given to the cognitive walkthrough
questions (mentioned in the beginning of section 9.2.4). Figure 76
summarizes the results. The Customization Layer received 89% positive
answers compared to 68% of the other groups. This is an indicator for a
better usability of the Customization Layer: The participants had fewer
problems in understanding the user interface, could better relate actions
to effects and perceived more clearly progress towards achievement of
their goals.

Figure 76: Usability Evaluation / Cognitive Walkthrough Questions

Effectiveness evaluation

For the purpose of this evaluation effectiveness was defined as the
number of tasks that were correctly decomposed to actions. If for a task
the selected actions would not achieve the task goal the task was
considered as wrong. The examination of the tasks was carried out after
the usability workshop by the author of this thesis.

Figure 77 summarizes the effectiveness of the Customization Layer as
opposed to conventional version management. As shown in the figure
the Customization Layer group achieved significantly more correct tasks.
The correctness ratio for the CL group was 94% as opposed to 70% of
the other groups.

For the Customization Layer the expected correctness was 100% as the
layer fully automates underlying operations. Nevertheless 2 tasks were
not processed correctly. Again, this is possibly related to confusion due
to the task specifications or due to the interface description.

41

5

18

8

19

9

0

5

10

15

20

25

30

35

40

45

All answers postive At least one negative answer

CL

SVN_FE

SVN_AE

 Validation

 169

Figure 77: Usability Evaluation: Efficiency results

For version management wrong tasks were mainly due to the complexity
of the user interface. Participants had to combine a series of operations,
sometimes even recursively, in order to achieve results. The version
management experience did not play any role in this context. Even
experienced participants gave wrong answers.

Improvement suggestions

The cognitive walkthrough method also enables capturing improvement
suggestions in cases where usability is perceived as low. Hence, during
the main session participants were asked to provide suggestions every
time they gave a negative answer to the three questions mentioned in
the beginning of section 9.2.4.

In general, participants did not provide many suggestions. The most
interesting suggestion came from the version management groups.
Participants proposed 9 times to eliminate the requirement of
performing the corresponding actions. This was interesting for the
analysis provided that the Customization Layer aims exactly at
eliminating such version management actions. There was also one
Customization Layer member who proposed to eliminate the operations
for showing core assets and instances. Given the fact that these
operations map one-to-one to tasks the rationale behind this suggestion
was not clearly understood.

34

2

23

10
9

6

0

5

10

15

20

25

30

35

40

Correct Tasks Wrong Tasks

Cl

SVN_FE

SVN_AE

Validation

 170

9.3 Experimental validation

This section presents experimental validation activities including two
controlled experiments and a simulation study. Before presenting the
experiment results this section describes the Customization Layer that
has been implemented beforehand and used in the experiments.

9.3.1 Customization Layer

Figure 78 specifies the Customization Layer that has been used for the
experimental validation. This layer has been implemented upfront by the
author of this thesis. Given the good knowledge of the underlying CMS
and the availability of a well-documented programmatic interface this
implementation has required approximately 4 person days. The reason
was the relatively high complexity for the automated branch
management, which will be explained in the following.

The specification is based on the models of Figure 27, Figure 28 and
Figure 29. It contains the product line engineering processes to be
controlled as well as the desired evolution control scenarios. Finally it
specifies that branching functionality is available with the CMS at hand.
As shown in the figure the product line under development follows the
collection example discussed in section 1.3.5 and uses Subversion [URL6]
as the underlying CMS.

The selected scenarios constitute a subset of the evolution control
scenarios of section 5. The selection has been undertaken based on the
following criteria:

• Selection of common scenarios: Creation of core assets and
instances is a scenario that can be considered common in a product
line context

• Selection of complex scenarios: In order to exemplify the benefits of
a Customization Layer scenarios have been selected that require
significant effort with conventional configuration management.
These scenarios are getInstanceDiff and getCoreDiff and involve
change propagation between family and application engineering.

 Validation

 171

Figure 78: Customization Layer of the experiment

9.3.2 Configuration Management

For the experimental validation the well-known CMS Subversion has
been used and a corresponding connector has been realized. The latter
provided following method implementations:

• addDir: The method creates a new directory as a configuration item
in the configuration management system. It is used by the
Customization Layer when an asset (core or product asset) is created
out of directory in the file system of the Customization Layer client.
The method arguments are a string with the target repository
location and a string with a commit message to be passed to the
configuration management system.

• commitItem: The method commits changes to a configuration item.
It is used by the corresponding method of the Customization Layer.
The method arguments is a file or directory (instance of the Java
class File) containing the latest changes, a Boolean value that when
true locks the item after commit and a string with the commit
message.

• copyItemWithTag: This method creates a copy of a configuration
item and marks the copy with a specific mark. In other words the
method creates a named branch of a configuration item. This
operation is used when creating instances of core assets. Therefore

ProductLine CollectionProductLine{
 FamilyEngineering LibraryDevelopment{
 VersionManagementFE LibraryDevelopmentVM{
 createCoreAsset addCoreAsset,

integrateCoreAsset integrate
 },
 StatusAccountingFE LibrayDevelopmentSA{
 showCoreAssetInstances getInstances,
 showProductAssetChangesSinceLastSynchronization

getInstanceDiff
}

 }
 ApplicationEngineering LibraryApplication{
 VersionManagementAE LibraryAppVM{
 createProductAsset instantiateCoreAsset

rebaseProductAsset rebase
 }
 StatusAccountingAE LibraryAppSA{
 showCoreAssets getCoreAssets,

showCoreAssetChangesSinceLastSynchronization
getCoreDiff

 }
 }
}

Validation

 172

the instances are stored in branches of core assets. The method
arguments are a string identifying the source configuration item, a
number identifying the version number to branch off, a string with
the copy destination, a commit message, a name for the branch and
a Boolean denoting whether the copy operation is to be considered
as a move. In some configuration management systems copy
operation differ from move operations with respect the versioning
history. Copy operations maintain the history from branched items
back to the main configuration items. On the other hand move
operations create a new versioning history that starts from the first
branch version.

• getBranchedItemsWithTag: This method is used to retrieve
configuration items that reside in branches that are market with a
particular tag. The method is used when retrieving core assets and
instances. The method expects a repository location to start the
search from, optionally a version number in order to obtain a
branched item off a particular version number and finally a branch
tag for the name of the branch.

• getLatestItemRevisionSinceTag: The method obtains the first version
number in a configuration item branch. The information is used to
check the synchronization status of core assets and instances: When
instances are created through a branching operation the first version
in this branch also describes the branch origin. In our case this is the
core asset version the branch has been created from. This version
can be compared with the latest core asset version to identify of the
instance needs to be rebased. The method expects a repository
location to base the query on and a tag in order to perform the
query of specifically named branches.

• getLatestRepositoryRevision: This method delivers the latest
repository revision, when global repository versioning is applied. This
revision is used by other operations in order to define the version to
start from in queries.

• importItem: This method imports a file or directory from the local file
system to the configuration management repository. Therefore it
accepts an instance of the Java class File, a string with the target
repository location, a tag representing the commit message and a
Boolean parameter that specified

• itemHasChanged: The method counts the versions that succeeded a
specific version of a configuration item. To this end it expects a
repository location identifying the configuration item of interest as
well as a version number to base the search on.

 Validation

 173

• prepareRepoPath: The method formats a string that represents a
repository location according to the format used by the
configuration management system at hand. This method simplifies
the input of evolution control commands as simple strings can be
used (e.g. relative paths for repository locations) that are
automatically adapted to fully-qualified paths.

• traverseHistoryUntilFirstTag: The method traverses the version history
of a given configuration item until it finds a specific commit
message. It the corresponding version has been branched off
another version the method returns the repository location of the
branching source. Given an instance this method enables finding the
core asset the instance originates from. The method expects a string
with the name of the item to traverse and a string containing the
commit message of interest.

The connector also provides a series of helper methods such as setup,
setRepository and dispose. These methods are responsible for the
initialization of the layer upon system start or to gracefully close network
connections and to release resources upon system shut down.

The class SVNConnector is the implementation of the
CMAbstractionLayer interface for Subversion. Figure 79 depicts the
structure of the subversion connector (no public methods of
SVNConnector are shown in the picture since they are inherited from
CMAbstractionLayer). The class CommitEventHandler implements a series
of handler interfaces, which are defined in SVNKit (i.e. the API for
Subversion [URL5]). These handlers enable the SVNConnector to monitor
various versioning operations and to interfere if necessary. For example
the method handleEvent is invoked when a commit takes place while the
handleLogEntry method is invoked when the version history is queries.
Handlers can be useful for the interruption of operations as discussed in
section 7.2.

Validation

 174

Figure 79: SVNConnector implementation

The class CLAuthenticationManager is a helper class supporting the
authentication of the Customization Layer user with the subversion
repository. The class is being instantiated during start-up with the user
credentials and network connection properties (i.e. http proxy) at hand.
It is then passed to SVNKit and provides the stored credentials upon
connection with the repository.

The current implementation of SVNConnector relies fully on commit
messages and the branching support of Subversion to keep track of core
assets and instances. When a core asset is instantiated a branch off the
core asset is created and a special marker is used in order to distinguish
such a branch from other branches that may be created. Accordingly
when a core asset is put under version control a special commit message
is used to mark the commit operation accordingly. Hence when the user
issues the getCoreAssets command SVNConnector queries Subversion
for all branches or commits that are labeled with the specific marker. The
current prototypical implementation obtains all log entries from the
version history and then searches for the log entries that indicate the
creation of instance branches. Such an operation may require significant
time to return if called at top level (i.e. for all versioned items) in a long-
lived repository (i.e. containing many versions). For example in a
Subversion repository with 34.000 versions the getCoreAssets command
requires 208 seconds when called at the root level. The same operation
requires 23 seconds when invoked on a part (i.e. subdirectory) of the
repository.

An alternative implementation at this point could combine the
subversion functionality with a set of special-purpose files that store
indexing information. For example a file can be used that saves the

BasicAuthenticationManager

CLAuthenticationManager

+ CLAuthenticationManager(SVNAuthentication[])
+ CLAuthenticationManager(String, String, String, String)
+ CLAuthenticationManager(String, File, String, int)
+ getProxyHost() : String
+ getProxyPort() : int

ISVNLogEntryHandler
ISVNEventHandler

Observer

CommitEventHandler

+ checkCancelled() : void
+ CommitEventHandler(CustomizationLayer)
+ handleEvent(SVNEvent, double) : void
+ handleLogEntry(SVNLogEntry) : void
+ update(Observable, Object) : void

SVNConnector

-myCommitEventHandler

 Validation

 175

repository version when a core asset or an instance is created. This
would accelerate the execution of commands like getCoreAssets
significantly. Since the current prototype was applied in experimental
repositories these performance issues were not relevant and therefore
the indexing functionality was not necessary.

9.3.3 Experiment 1

The goal of the first experimental study was to show in a controlled
environment that the Customization Layer approach is significantly
better than the state of the practice, which is the direct usage of
configuration management for evolution control of a product line. The
experiment was defined as follows [WRH+00]:

• Object of the study: The investigated objects are (a) the
Customization Layer approach proposed in this work and (b) the
direct usage of configuration management for product line
evolution

• Purpose: The purpose was to evaluate each approach, in particular
with respect to different user profiles

• Quality Focus: The quality focus is the efficiency (i.e. required effort)
and the effectiveness (i.e. correctness) of the approaches

• Perspective: The perspective is from the researcher’s point of view

• Context: The experiment was run with the help of students who
were randomly asked to perform a set of tasks on a given lab
setting. Each task contained a question the students had to answer
by performing evolution control operations.

Experiment planning

The experiment took place as a practical exercise complementing a
lecture on software product lines. 14 undergraduate students
participated in the experiment. There are two main hypotheses
underlying the experiment

H1: The proposed method significantly reduces the effort in terms of the
time necessary to perform evolution control operations

H2: The proposed method significantly increases the effectiveness of
evolution control in a product line

These hypotheses can be refined as follows:

Validation

 176

H1.1: The proposed method significantly reduces the time needed to
perform evolution control operations during Family Engineering

H1.2: The proposed method significantly reduces the time needed to
perform evolution control operations during Application Engineering

H2.1: The complexity of the underlying configuration management
repository increases at a lower rate with the proposed method than with
the state of the practice approach. Complexity can be estimated in terms
of files, folder, versions and branches being created.

H2.2: The proposed method significantly reduces the errors made while
performing evolution control operations

The following table describes the experiment variables.

Variable Type

The approach in use Independent

Students experience Independent

Necessary time Dependent

Complexity increase Dependent

Correctness Dependent

Table 24: Experiment variables

Experiment design

The experiment consisted of two groups, the group CL that used the
Customization Layer and the group SVN that directly used the
Subversion version management system with the help of the
TortoiseSVN client [URL17], which is available as a Microsoft Windows
explorer extension.

Moreover there were two roles, family (FE) and Application Engineers
(AE). The following table shows the arrangement of students in terms of
student ids.

 Validation

 177

 Family Engineer (FE) Application Engineering (AE)

CL 2, 7, 9, 10 1, 6, 8, 13

SVN 3, 5, 11 4, 12, 14

Table 25: Arrangement of students

Each student was asked to perform 4 evolution control tasks. The goal
was to analyze the effect to the task performance of manipulating the
“approach in use” variable. The tasks are summarized in the following
table.

 Family Engineer (FE) Application Engineering (AE)

Task 1 Create core assets Create instances

Task 2 Change core assets Change instances

Task 3 Find instances of core assets Find the origins of instances (i.e. core
assets they have been derived from)

Task 4 Find changes in the instances Find changes in the origins

Table 26: Experiment tasks

Validity evaluation

The complexity increase variable has a confounding factor, the existing
repository complexity. In other words the rate, at which complexity
increases, is expected to depend on the already existing complexity. In
order to analyze this dependency a further experimental study is
necessary. In the current study this potential internal validity threat has
been addressed by using the same repository for all students and tasks.
Hence both groups had to face the same repository complexity during
the experiment.

Another internal validity threat was due to the different student profiles
that participated in the experiment. There were students with different
product line and configuration management experiences. This threat was
addressed by randomization. That resulted to a reasonable distribution
of student profiles across control and experimental group.

The most important (conclusion validity) threat though was the statistical
significance of the observed effects. The small number of students and
the restricted duration gave not enough data points to achieve general

Validation

 178

significance (a t-test was not applicable and the Wilcoxon test did not
show a significance). To address that the experiment must be ran again
with more subjects (e.g. students or engineers) and higher duration.

There was also a social threat in the experiment arising from the split in
two groups. The SVN group – as control group – had to work according
to the state of the practice and did not have the chance to try out the
Customization Layer. To reduce this effect the students have not been
informed in advance about the different group settings. The latter have
been presented only after the experiment finished.

Finally the experiment has an external validity threat arising from the
maturity of the Customization Layer prototype. The current
implementation is in a prototypical phase and entails some user-
friendliness issues.

Operation

The experiment ran in the context of a software product lines class.
Therefore the first step was to refresh the concepts and challenges of
product line infrastructures. Afterwards the tasks and the roles have
been presented and the experiment started.

The repository had been already populated with core assets right from
the beginning. So the AE role did not have to wait for the FE role to
produce any core assets Moreover, in order to simplify Task 1 for FE a
core asset was already available on each student’s machine. So the
Family Engineers did not have to create any core assets from scratch;
they only had to put the core assets, which were located on their
machine, under configuration management control.

The data was primarily collected through feedback forms that were filled
out after experiment execution. The students were asked to count the
time needed for the execution of the tasks and then to fill-in that
information in the feedback forms. In addition the forms allowed
collecting data about the student profile (i.e. existing PLE and
configuration management experiences) as well as general feedback
data (the complete feedback forms are available in the appendix)

Furthermore, the students were asked to create text documents, in
which they could enter the detail answers to their tasks (e.g. list of
instances). Finally, further data has been captured by means of log files
that are created automatically by the Customization Layer prototype but
also by the underlying configuration management system. The detail
answers that were put in the text files were used during the experiment
interpretation in order to evaluate their correctness. To this end the

 Validation

 179

answers given by the students have been compared to the data provided
by the log files.

The duration of the experiment was one hour. Most students managed
to perform the tasks within that period. Since some students finished
earlier they used the remaining time for further experimentation with the
respective tool. The data produced from this experimentation has been
factored out though.

Analysis

Figure 80 shows a box-and-whisker diagram with the dispersion of the
time that each student took in average in order to perform a task. As it
can be seen the CL students needed less time in average: CL students
needed 7.1 minutes and SVN students 9.9 minutes. In other words CL
brought an efficiency improvement of 28% in average. This was an
indicator that hypothesis H1 is supported.

Figure 80: Average time for task execution (Experiment 1)

The efficiency improvement was also confirmed for each of the roles as
shown in Figure 81. CL was 33% and 20% respectively more efficient
than SVN. Family Engineering took for both groups more time than
Application Engineering. In the experiment framework engineering was
only about finding the core assets existing on each student’s machine
and putting them under evolution control. However the involved
commands both for the CL and the SVN group were slightly more
complicated than the respective commands for Application Engineering
and this caused the additional effort.

Validation

 180

Figure 81: Times per Group and Role

The better performance of the CL group against the SVN group was
mainly due to Tasks 3 and 4 only as it can be shown in Figure 82. These
tasks entail by nature more complexity than the other tasks and the
automation brought by the Customization Layer paid-off in these cases.

As depicted in Figure 82 the CL group was generally slower with Tasks 1
and 2. These tasks were relatively easy to accomplish. Therefore the SVN
group had an advantage in this case because it used TortoiseSVN which
has a much higher usability than the prototypical Customization Layer.
The answers in the feedback forms showed indeed that some students
had difficulties at the beginning of the experiment with the command
line interface of the prototypical Customization Layer. The difficulties
were concentrated on the correct input of the evolution control
commands as well as on the interpretation of the command output.

 Validation

 181

Figure 82: Times per Group and Task

In order to evaluate hypothesis H2 the number of versions and branches
produced by each group has been first collected from the log files. The
results are shown in Figure 83. CL generated significantly more versions
and revisions than SVN. Therefore hypothesis H2.1 is not supported.

One minor reason for the increased complexity was that the CL group
was bigger than the SVN group. However the main reason was the
automation brought by the Customization Layer, which simplifies the
creation of versions and revisions. Given this simplification the students
experimented with the tool and created more versions and branches
than necessary. On the other hand the SVN students created only the
versions and branches as required by the tasks. For the Customization
Layer approach this is an indication that a Customization Layer
implementation must realize a set of versioning or change management
rules so that the creation of unnecessary versions and branches can be
avoided. The current prototypical implementation does not implement
such rules and evolution control commands can be issued at will.

Validation

 182

Figure 83: Versions and Branches produced over time

For the evaluation of sub-hypothesis H2.2 the detail answers have been
analyzed, which the students gave for Tasks 3 and 4, the more difficult
tasks of the experiment. 80% of the SVN answers were wrong. In other
words SVN students gave wrong answers with respect to the number of
changes in core assets and instances. This was an indication that H2.2 is
supported. As the complexity of the repository grew during the
experiment, the students had increasing difficulties in tracking the
changes. On the other hand this did not apply to the CL group since the
Customization Layer performs change tracking automatically and
enables filtering the results when necessary.

At this point it was also important to observe the influence of student’s
product line engineering (PLE) and configuration management (CM)
experiences to the dependent variables. Following table shows the
distribution of experience across students and groups.

Student ID CM Experience PLE Experience Group

1 Substantial Little CL

2 Little No data CL

3 Average Little SVN

4 Professional Little SVN

5 Little Little SVN

 Validation

 183

Student ID CM Experience PLE Experience Group

6 Average Average CL

7 None Little CL

8 Professional Substantial CL

9 Substantial Little CL

10 None None CL

11 Average Little SVN

12 Substantial Substantial SVN

13 Substantial Substantial CL

14 Average Little SVN

Table 27: Distribution of student experience

The PLE experience did not have any influence on the dependent
variables, since a basic understanding of product line engineering
concepts were sufficient for the execution of the experiment. On the
other hand CM experience could play an important role. It was
reasonable to assume that SVN students with professional CM
experience would perform as good as CL students or even better than
them. Regarding hypothesis H1 and as shown in Figure 84 experienced
SVN students had in total a slightly better performance than experienced
and inexperienced CL students. However in Tasks 3 and 4 the CL group
performed again better. Regarding hypothesis H2 no deviations could be
observed. Even the SVN students who claimed professional configuration
management experience did not provide fully correct answers.

Validation

 184

Figure 84: Influence of experience to efficiency

9.3.4 Experiment 2

The second experiment that was performed in the context of this thesis
aimed at obtaining further data about the hypothesis H1 and was set-up
identically to the first experiment. There were however less subjects in
this case (9 students have participated in the experiment). The result was
less positive in this case. The coordination effort required by users of the
Customization Layer was 22% less in average than the corresponding
effort of the direct version management usage.

However the second experiment showed a different picture with respect
to the distribution of the effort across the tasks. In this experiment most
savings, obtained through the usage of the Customization Layer, were
achieved in the first task (creation of assets). For the rest of the tasks the
Customization Layer achieved similar or worse results compared to the
direct usage of subversion. Figure 85 provides the corresponding box-
and-whisker diagrams.

 Validation

 185

Figure 85: Summary results of Experiment 2

The analysis of the feedback forms revealed that the usability issues of
the Customization Layer prototype had a much bigger impact on this
experiment than on the first one. In particular, two students had several
difficulties in issuing the commands correctly and in interpreting the
results. In this regard the outputs of the two students can be considered
as outliers. By filtering out these outliers the situation changes positively,
as shown Figure 86.

Nevertheless the usability issue of the current prototype remains
important and has to be improved in further versions of the tool. At this
point it must be also noticed that in both experiments the subversion
users (i.e. members of the SVN group) were not using a command line
interface to subversion, although this would have been possible. The
reason was educational. One of the goals of the experiment was also to
show to the students the possibilities of the graphical TortoiseSVN client.
Given this fact, it is expected that a comparison of the Customization
Layer prototype against a command line interface to subversion would
cause more positive results.

Validation

 186

Figure 86: Experiment 2 task times without outliers

Another difference of the second experiment compared to the first one
lied in the feedback forms that were used. The second experiment
enhanced the feedback forms with additional questions from the UTAUT
(Unified Theory of Acceptance and Use of Technology) [VMD+03].
UTAUT provides a set of questions that can be used for the evaluation of
a technological solution. Based on these questions the students were
asked to evaluate the Customization Layer as well as TortoiseSVN. The
questions were grouped in five categories (the technology can be
replaced by Customization Layer or TortoiseSVN in the following):

• Performance expectancy is defined as the degree, to which users
believe that using the technology will help him or her to attain gains
in job performance.

• Effort expectancy is defined as the degree of ease associated with
the use of the technology

• Attitude toward using the technology is defined as the overall
affective reaction to using the technology

• Social influence is defined as the degree to which a user perceives
that important others believe he or she should use the technology

 Validation

 187

• Facilitating conditions are defined as the degree to which a user
believes that an organizational and technical infrastructure exists to
support the use of the technology

The students were requested to answer to a total of 20 questions from
the above categories (all details of the UTAUT form are provided in the
appendix). Each question could be answered with a numerical value
ranging from 1 to 7. A low value corresponded to high acceptance of
the technology (i.e. 1 = “fully agree”) and a high value corresponded to
low acceptance (i.e. 7 = “fully disagree”). Table 28 provides the
summary of the UTAUT evaluation.

Category Customization Layer TortoiseSVN

Performance expectancy 1,91 2,08

Effort expectancy 1,66 3,33

Attitude 2 2,75

Social influence 3,25 3,33

Facilitating conditions 1,8 2,58

Table 28: Evaluation based on UTAUT

The Customization Layer generally received a better evaluation than
TortoiseSVN in spite of the usability problems during the operation. This
is an indicator of the good potential of the Customization Layer that was
perceived by the users. Most importantly with respect to hypothesis H1 is
the effort category, which in the case of the Customization Layer
received a significantly better evaluation. Although users had difficulties
in the interaction with some of the Customization Layer commands, they
generally perceived the interaction with the tool as clear and
understandable. An influencing factor at this point was the explanation
that the students received during the experiment and when the
problems with the Customization Layer commands arose.

9.4 Case Study

A further validation of the Customization Layer approach has been
undertaken in terms of a case study with an international manufacturer
of agricultural machinery. In this context the organization also provides
software-intensive agricultural management solutions that are subject to
significant variation due to the diversity of the underlying embedded

Validation

 188

systems. Therefore the adoption of a product line engineering approach
is being considered at the time of writing.

9.4.1 Setting

Figure 87 provides the Customization Layer specification for the case
study in terms of evolution control processes and scenarios. The
scenarios haven been obtained through interaction with the
corresponding stakeholders and involve a pair of family and application
engineering processes. The LibraryDevelopment process maps to the
development of a reusable software library while the
LibraryApplicationToGS2630 corresponds to the process that applies the
library to a particular product. In this context four stakeholders have
been initially asked to fill a questionnaire (see Appendix C.2) with the
goal to capture current problems and expectations. The answered
questionnaires confirmed partially the problems addressed by this thesis
and indicated the lack of adequate tooling that addresses them.

Mercurial [URL21] is used in this case as the underlying CMS. As a
distributed version management system Mercurial allows each developer
to have an own repository of configuration items. Each repository can
manage a series of branches and furthermore changes in branches can
be propagated between repositories.

Figure 87: Customization Layer of the case study

ProductLine DisplayProductLine{
FamilyEngineering LibraryDevelopment{
 VersionManagementFE LibrayDevelopmentVM{
 createCoreAsset makeFileShared,
 removeCoreAsset removeLibraryAsset
 },
 StatusAccountingFE LibrayDevelopmentSA{
 showCoreAssetInstances findSharesOfFiles,
 showProductAssetChangesSinceLastSynchronization

allChangesSinceLastMergeReturn
}

 }
 ApplicationEngineering LibraryApplicationToGS2630{
 VersionManagementAE LibraryVMIn2630,
 StatusAccountingAE LibrarySAIn2630 {
 showCoreAssets findSharedFiles,

showCoreAssetChangesSinceLastSynchronization
allChangesSinceLastMergeOneWay

 }
 }

}

 Validation

 189

9.4.2 Implementation and experiences

A Mercurial connector implementation has been performed by the
author of this thesis (a class diagram of the implemented connector can
be found in appendix C.1. In this case 2 person weeks were
approximately required. Good support for marking facilitated the
implementation significantly. On the other hand, at the time of writing it
is officially recommended to use the command line interface even for the
programmatic access to Mercurial. To this end the connector had to
provide a set of operations (depicted as private operations in the
following) to issue commands to the command line interface and also to
interpret the corresponding results. This slowed down the
implementation process significantly.

For the purpose of this case study it was not necessary to provide an
executable Customization Layer in terms, for example, of a console
application. In a first step it was sufficient to show how product line
scenarios can be realized in an automated way with Mercurial. To this
end a test suite has been provided that performs various unit tests on
the evolution control scenarios. Appendix C.1 provides an overview of
the Mercurial connector implementation and the test suite.

For the implementation two main features of Mercurial connector have
been used:

• Distributed repositories: Each product line engineering process (i.e.
family and application engineering) has been mapped to a
corresponding Mercurial repository. Therefore there has been a
repository holding core assets and various other repositories that
held instances and product-specifics. Change propagation between
repositories can be done mainly in two ways: through pulling or
through pushing. In the pull mode the repository interested in
changes has to actively retrieve them from another repository. In the
push mode on the other hand, a repository that performs changes
can notify others by submitting

• Tagging: Mercurial provides good support for tagging and particular
configuration item versions. Therefore tagging was used to mark
and to retrieve Customization Layer information. The creation of a
core asset for example leads to a configuration item, whose first
version carries a tag that can be recognized by users and also by the
Customization Layer. Since however tags have to be unique each
tag was enriched with a time stamp.

Validation

 190

9.4.3 Results and recommendations

The significance of this case study is undoubtedly questionable. Only 4
software developers of the manufacturer participated in the case study
survey. Although the corresponding findings were positive they cannot
be generalized due to the small number of participants. The next
weakness of this case study lies clearly in the implementation part. The
implementation was undertaken by the author of this thesis. The plan
was to deliver the resulting Customization Layer connector to the
manufacturer in order to obtain usage data. Yet, upon finalization of the
layer the contact persons at the manufacturer’s side were unavailable
due to other activities. Finally, the delivery of the layer was suspended
due to a shift of priorities in the manufacturer. Hence the experiences
that can be extracted of this case study are restricted to the initial
interactions with the software developers and to the implementation of
the Mercurial connector.

In order to avoid such situations it is recommended to keep the contact
with the organization participating in a case study constantly active.
Surveys should be performed in terms of live interviews and distribution
of questionnaires should be avoided. Early versions of prototype tools
have to be delivered as soon as possible in order to obtain feedback and
to avoid unnecessary effort. The most important factor is however the
presence of a contact person in the participating organization that is
interested in the case study and also has enough influence to deal with
internal developments that might have a negative impact to the study.
That contact person can be surely assisted in this role if the added value
expected by the case study is constantly illustrated in terms of clear
examples that are gaining importance as the prototypical tools evolve.
These recommendations could not be satisfied in the context of this case
study and this is the reason for the reduced significance of the results.

9.5 Section summary

This section presented activities that have been performed in order to
validate the Customization Layer approach. A structural evaluation first
assessed the Customization Layer approach with respect to its design
decisions and the related tradeoffs and risks. Subsequently a usability
evaluation, two controlled experiments and a case study have been
described. The usability evaluation showed clear advantages of the
Customization Layer approach as opposed to conventional version
management. These advantages were supported by the two experiments
and a case study with an industrial partner although the significance of
these studies can be put under question. Next section summarizes this
thesis.

 Conclusion

 191

10 Conclusion

In this thesis the Customization Layer approach has been described,
which enables evolution control in a product line context on the basis of
configuration management. The approach consists of six components:

• Conceptual Model (section 3): The model encapsulates the
evolution control concepts that pertain to product line engineering
and enables description of evolution control processes within an
organization.

• Data Model (section 4): The model describes the entities and
relations that are produced and controlled during the evolution of a
product line.

• Process Model (section 5): The model specifies the scenarios
necessary for evolution control of a product line.

• Interaction with Configuration Management (section 6): A set
of guidelines facilitate the implementation of evolution control on
the basis of configuration management

• Implementation framework (section 7): An implementation
framework facilitates the implementation of a console application
for evolution control.

• Adoption Process (section 8): The process specifies steps based on
the Quality Improvement Paradigm that are necessary to introduce
evolution control to an organization

10.1 Research Questions

Section 1.3.2 introduced a series of research questions. The following
paragraphs discuss how these questions were answered in the context of
this thesis.

Research Question 1 “Granularity”: In the context of this thesis the
term core assets was used to refer to reusable assets. The Basic Asset
Model introduced in section 4 specified the internal structure of core
assets. According to the model a core asset can contain a reuse contract
that guides development with reuse for the respective asset. Such a
reuse contract can be realized in term of variability management

Conclusion

 192

approaches as discussed in section 4.4. Moreover sections 4.1.2, 5.1.2
and 5.2.2 discussed strategies to deal with granularity of core assets and
its meaning to core asset instantiation.

Research Question 2 “Tracking software reuse”: In order to track
software reuse this thesis proposes to relate core assets to core asset
instances. While core assets are developed for reuse across a complete
product line, instances are derived out of core assets by development
with reuse. Instances and product-specific assets constitute the elements
of a product, member of a product line. The basic asset model (section
4) specifies the association between core assets and instances. In this
way the rationale behind the derivation of an instance, i.e. the decisions
that lead to an instance, is also captured.

Research Question 3 “Avoiding product line decay”: In order to ensure
that reusable assets (i.e. core assets) are continuously reused in a product
line context, this thesis proposes activities for the identification and
propagation of changes between core assets and their instances. Section
5 introduces the scenarios necessary in order to avoid this kind of decay.

Research Question 4 “Take advantage of existing configuration
management systems”: The Customization Layer approach proposed in
this thesis does not neglect an existing configuration management
system. On the contrary it sets-up an automation layer on top of existing
systems. Section 6 discusses interaction with different types of
configuration management functionality and section 9 discusses
concrete implementations in terms of two well-known version
management systems.

10.2 Validation

The work described in the present thesis has been validated by means of
a structural evaluation, a usability evaluation, two experiments and a
case study. The validations indicated that the overall effort for the
management of product line evolution, with the help of configuration
management, can be reduced up to about 30% by means of a
Customization Layer. Efficiency of evolution control operations can be
reduced and the other hand effectiveness of the operations can be
increased. However the validations also indicated that the user interface
friendliness of such an automation layer is an important factor that
influences effort savings.

10.3 Limitations

The evolution control method introduced in this thesis addresses the
coordination of family and application engineering processes. However a

 Conclusion

 193

product line engineering process also included the process of scoping.
The latter defines the product portfolio to be supported by a product line
and defines commonality and variability accordingly. Moreover scoping
analyzes the potential of investing in software reuse within the product
line. A product line scope can be defined as the set of assets that
comprises the output of this kind of activities.

Scoping plays a central role in the early stages of a product line
development, as it sets the ground for the further activities. However
during the evolution of a product line, the scope must be also evolved.
This applies in particular when the members of a product line encounter
new requirements. The latter might be implemented in a product-
specific manner within application engineering or in reusable manner
within family engineering. The product line scoping process has to be
involved in this case in order to judge the potential for software reuse.

Therefore scoping also involves a set of evolution control activities. The
current work however does not address them explicitly. The basic asset
model (section 4.1) proposes the application of reuse contracts in order
to establish an explicit connection between core asset and the product
line scope. Furthermore section 5.4 provides guidelines for change
impact analysis of core assets and describes how the product line scope
can be taken into account when change requests emerge. However a
detailed description of the scoping activities and the relation to the
family and application engineering activities is not provided in the
current work.

In a product line context it is possible that product-specific assets need to
be made reusable. This can happen when properties of such assets
become beneficial for the whole product line. The Customization Layer
approach enables creating a core asset out of a product-specific asset by
selecting the repository location of the asset as source location of the
creation operation. However the current work does not provide support
towards identification of product-specific assets that are good
candidates for becoming core assets. To this end a Customization Layer
needs to be coupled with reverse engineering techniques that are able to
detect such assets.

Another limitation of the current work relates to the issue of asset
comparison (i.e. differencing). The coordination between core asset and
instances requires comparing these two different types of assets.
However since instances are derived from core assets traditional
comparison mechanisms (e.g. the traditional diff utility) can be applied
but do not provide useful results. Section 5.4.2 introduced a formal
model in this regard, however a detailed specification or implementation
of the necessary algorithms is not provided in the current thesis.

Conclusion

 194

Finally, this thesis defines a set of evolution control scenarios for product
lines. However, this work does not define processes or workflows
entailing these scenarios. If product line evolution control can be
thought off as a software component, scenarios are the services that it
offers. The latter should be combined in higher-order workflows that
invoke the scenarios in order to achieve a concrete value to the
organization.

10.4 Future Work

The work described in the present thesis can be continued in two main
directions: tool support and industrial validations. The latter involves
carrying out additional long-term experiments and usability evaluations
with complete user interfaces. The goal of these activities would be to
observe the effects of a Customization Layer over several iterations in the
QIP process.

Tool support on the other hand can address the following activities:

• Implementation of evolution control scenarios for additional or new
configuration management systems. Future work should consider
further tools in this area such as git [URL22], which comes with a
broad set of commands and simplifies branching and merging
activities significantly.

• Extensions of the Xtend/Xpand infrastructure so that the
implementation activities are further facilitated. This also should take
the upcoming SCM Specification in [OSLC10] into consideration as it
will possibly serve as a standard for future configuration
management systems.

• Improvement of the current implementation framework including its
connection to the Xtend/Xpand infrastructure

• Implementation of a full-fledge Customization Layer application
including visualizations of product line evolution

• Implementation of the differencing model described in section 5.4.2.

Product line engineering involves among other things management of
core assets. To this end various variability implementation mechanisms
can be applied [AG01]. Preprocessor directives, aspect-oriented
programming or template meta-programming are examples of such
mechanisms. Configuration management is also a mechanism in that
direction.

 Conclusion

 195

Figure 9 in section 1.3.5 depicts groups of branches or development
lines. When configuration management is used as a variability
implementation mechanism such a group can be seen as a core asset.
That means that the derivation of an instance involves the identification
and selection of a core asset configuration. This yields an editable
instance and is not to be confused with build management that creates
executable (i.e. compiled) instances out of core assets. The selected core
asset configuration can be subsequently used and evolved in the context
of a product, for example in a different configuration management
repository than the original core asset. In other words a core asset
implementation may offer a portfolio of already defined instances,
stored in a set of branches. Some of these instances may in fact be
employed in products. The Customization Layer approach can be
extended in this case in order to be used as a variant authoring
environment [Mah95]. That means that a product line engineer may
issue queries to the Customization Layer to evolve a particular
configuration of a core asset. Similar queries can be issues by application
engineers to obtain configurations of core assets to be used in products.

References

 197

References

[ABB+01] Atkinson, C.; Bayer, J.; Bunse, C.; Kamsties, E.; Laitenberger, O.; Laqua,
R.; Muthig, D.; Paech, B.; Wüst, J. & Zettel, J. (2001), Component-based
Product Line Engineering with UML, Addison-Wesley, London.

[ACC10] Damon Poole, Stream-Based Architecture for SCM, AccuRev, Inc.,
whitepaper retrieved in April 2010 from
http://www.accurev.com/whitepaper/stream_based_architecture.htm

[ACT01] Ahern, D. M.; Clouse, A. & Turner, R. (2001), CMMI Distilled. A Practical
Introduction to Integrated Process Improvement, Addison-Wesley, Boston.

[AG01] Anastasopoulos, M. & Gacek, C. (2001), 'Implementing Product Line
Variabilities', ACM SIGSOFT Software Engineering Notes 26(3), 109-117.

[AKH00] Colin Atkinson, T. K. & Henderson-Sellers, B. (2000), 'To Meta or Not to
Meta — That Is the Question', Journal of Object-Oriented Programming,
SIGS Publications Vol. 13, No. 8, pp. 32–35.

[AKS+10] Anastasopoulos, M.; Keuler, T.; Silva, A.; Wanisch, S. & Höh, M. (2010),
Architecture-centric configuration management; Controlling the evolution
of large software systems, Commercial Vehicle Technology 2010;
Proceedings of the 1st Commercial Vehicle Technology Symposium (CVT
2010), Shaker Verlag

[ALB+11] Apel, S.; Liebig, J.; Brandl, B.; Lengauer, C. & Kästner, C. (2011),
Semistructured merge: rethinking merge in revision control systems, in
'Proceedings of the 19th ACM SIGSOFT symposium and the 13th
European conference on Foundations of software engineering', ACM,
New York, NY, USA, pp. 190--200.

[AM08] Åström, K. J. & Murray, R. M. (2008), Feedback Systems: An Introduction
for Scientists and Engineers, Princeton University Press.

[BA03] Berczuk, S. P. & Appleton, B. (2003), software configuration management
Patterns. Effective Teamwork, Practical Integration, Addison-Wesley,
Boston.

[BA05] Beck, K. & Andres, C. (2005), Extreme Programming Explained. Embrace
Change, Addison-Wesley, Boston.

References

 198

[Ba99] Bays, M. E. (1999), Software Release Methodology, Prentice Hall PTR,
Upper Saddle River.

[BAB+00] Boehm, B. W.; Abts, C.; Brown, W. A.; Chulani, S.; Clark, B. K.; Horowitz,
E.; Madachy, R.; Reifer, D. J. & Steece, B. (2000), Software Cost Estimation
with COCOMO II, Prentice Hall PTR, Upper Saddle River.

[BBM+04] Boehm, B.; Brown, A. W.; Madachy, R.; & Yang, Y. (2004) ‘A Software
Product Line Life Cycle Cost Estimation Model’, Proceedings of the
International Symposium on Empirical Software Engineering (ISESE 2004).
Redondo Beach, CA, August 19-20, 2004. Los Alamitos, CA: IEEE
Computer Society

[BC05] F. Bachmann & P. C. Clements: Variability in Software Product Lines.
Technical Report CMU/SEI-2005-TR-12, Software Engineering Institute,
2005

[BCD94] Basili, V., Caldiera & G., Rombach D. 1994. Goal/question/metric
paradigm. In Encyclopedia of Software Engineering. Vol. 1, J. C.
Marciniak, Ed. John Wiley and Sons, New York, 528-532.

[BCE+04] Bellon, S.; Czeranski, J.; Eisenbarth, T. & Simon, D. (2004), A Product Line
Asset Management Tool, in 'Workshop on Software Variability
Management: Software Product Families and Populations'.

[BCR94] Basili, V.R, C. Caldiera, H.D. Rombach, ‘Experience Factory’, Encyclopaedia
of Software Engineering (Marciniak, J.J., editor), Volume 1, John Wiley &
Sons, 1994, pp. 469 – 476

[BD09] Thomas Buchmann and Alexander Dotor: Towards a Model-Driven
Product Line for SCM systems, in: Proceedings of the 13th International
Software Product Line Conference (SPLC), Vol. 2, San Francisco, USA,
August 24-28, 2009.

[Be04] Becker, M. (2004), Anpassungsunterstützung in Software-Produktfamilien,
Technische Universität Kaiserslautern, Kaiserslautern.

[BEM+12] Bordag, S., Eisenecker, U., Müller, R., Schorp, K. (2012) Evaluierung
alternativer Bedienkonzepte für Tablets und Co, In: iX 1/2012, S. 66-71.

[BH11] Barringer, H. & Havelund, K. (2011), TraceContract: A Scala DSL for Trace
Analysis, in Michael Butler & Wolfram Schulte, ed., 'FM 2011: Formal
Methods', Springer Berlin Heidelberg, , pp. 57-72.

[BM77] Belady L., Merlin P.M. (1977), Evolving Parts and Relations – A model of
system families, IBM Research Report RC6677

References

 199

[Bo02] Bosch, J. (2002), Maturity and Evolution in Software Product Lines:
Approaches, Artefacts and Organization, in 'SPLC 2: Proceedings of the
Second International Conference on Software Product Lines', Springer-
Verlag, London, UK, pp. 257--271.

[Bo96] Bohner, S.A. and R.S. Arnold, Eds. (1996). Software Change Impact
Analysis. Los Alamitos, California, USA, IEEE Computer Society Press.

[BSH80] Bersoff, E. H.; Siegel, S. & Henderson, V. (1980), Software Configuration
Management: An Investment in Product Integrity, Prentice Hall
Professional Technical Reference.

[CAD03] Crnkovic, I.; Asklund, U. & Dahlqvist, A. P. (2003), Implementing and
Integrating Product Data Management and Software Configuration
Management, Artech House, Boston.

[CE00] Czarnecki, K. & Eisenecker, U. (2000), Generative Programming: Methods,
Tools, and Applications, Addison-Wesley Professional.

[Chr99] Christensen, H. B. (1999), 'Ragnarok: An Architecture Based Software
Development Environment,’ PhD thesis, Department of Computer Science,
University of Aarhus, Aarhus.

[CN02] Clements, P. & Northrop, L. (2002), software product lines. Practices and
Patterns, Addison-Wesley, Boston.

[CVL10] (2009), 'Common Variability Language (CVL), Request For
Proposal'(Document: ad/2009-12-03), Object Management Group.

[CW98] Conradi, R. & Westfechtel, B. (1998), 'Version Models for Software
Configuration Management', ACM Computing Surveys 30(2), 232--282.

[Da90] Dart, S. (1990), 'Spectrum of Functionality in Configuration Management

Systems'(CMU/SEI-90-TR-11), Technical report, Software Engineering

Institute; Carnegie Mellon University, Pittsburgh, Pennsylvania 15213.

[DB91] Davis, A. M. & Bersoff, E. H. (1991), 'Impacts of life cycle models on
software configuration management', Commun. ACM 34(8), 104--118.

[DES] National Institute of Standards and Technology, Federal Information
Processing Standard 46-3: The official document describing the DES
standard, retrieved in May 2011 from http://csrc.nist.gov/

[DMN+06] Dig, D.; Manzoor, K.; Nguyen, T. N. & Johnson, R. (2006), 'Refactoring-
aware software merging and configuration management', SIGSOFT Softw.

References

 200

Eng. Notes 31(6), 1--2.

[DP00] Dutoit, A.; Paech, B. & München, T. U. (2000), 'Rationale Management in
Software Engineering'.

[Duv07] Duvall, Paul M. (2007). Continuous Integration. Improving Software
Quality and Reducing Risk. Addison-Wesley. ISBN 0-321-33638-0.

[EC95] Estublier, J. & Casallas R. (1995), The Adele configuration manager, John
Wiley & Sons, Inc., New York

[FSJ99] Fayad, M. E.; Schmidt, D. C. & Johnson, R. (1999), Implementing
Application Frameworks. Object-Oriented Frameworks at Work, John
Wiley & Sons, New York.

[GCC+03] Garg, A.; Critchlow, M.; Chen, P.; Westhuizen, C. V. d. & Hoek, A. v. d.

(2003), An Environment for Managing Evolving Product Line

Architectures, in 'ICSM '03: Proceedings of the International Conference

on Software Maintenance', IEEE Computer Society, Washington, DC,

USA, pp. 358.

[GHJ+95] Gamma, E.; Helm, R.; Johnson, R. & Vlissides, J. (1995), Design Patterns.
Elements of Reusable Object-Oriented Software, Addison-Wesley,
Reading.

[HB01] Herrejon, R. E. L. & Batory, D. (2001), A Standard Problem for Evaluating
Product-Line Methodologies, in 'Proc. 2001 Conf. Generative and
Component-Based Software Eng', Springer, , pp. 10--24.

[HD05] Henkel, J. & Diwan, A. (2005), CatchUp!: capturing and replaying
refactorings to support API evolution, in 'ICSE '05: Proceedings of the
27th international conference on Software engineering', ACM, New York,
NY, USA, pp. 274--283.

[HH07] Hendrickson, S. A. & van der Hoek, A. (2007), Modeling Product Line
Architectures through Change Sets and Relationships, in 'ICSE '07:
Proceedings of the 29th international conference on Software
Engineering', IEEE Computer Society, Washington, DC, USA, pp. 189--
198.

[HM00] G.A. Hall, J.C. Munson: Software Evolution: Code Delta and Code Churn.
JSS 54(2): 111-118, October 2000

[IEEE1517-
2010]

(2010), 'IEEE Standard for Information Technology--System and Software
Life Cycle Processes--Reuse Processes', IEEE Std 1517-2010 (Revision of
IEEE Std 1517-1999), 1 -51.

References

 201

[IEEE610.12] (1990), 'IEEE standard glossary of software engineering terminology', IEEE
Std 610.12-1990

[ISO/IEC
9899]

(2005), 'Programming languages - C'(ISO/IEC 9899), International
Standards for Business, Government and Society.

[KCH+98] Kang, K. C.; Cohen, S. G.; Hess, J. A.; Novak, W. E. & Peterson, A. S.
(1998), 'Feature-Oriented Domain Analysis (FODA) Feasibility Study.'

[KKC00] Rick Kazman, Mark Klein, Paul Clements, ATAM: Method for Architecture
Evaluation, Technical Report CMU/SEI-2000-TR-004, August 2000,
Software Engineering Institute Carnegie Mellon University

[Kr02] Krueger, C. W. (2002), Variation Management for Software Production
Lines, in 'SPLC 2: Proceedings of the Second International Conference on
Software Product Lines', Springer-Verlag, London, UK, pp. 37--48.

[Kr92] Krueger, C. W. (1992), 'Software reuse', ACM Comput. Surv. 24(2), 131--
183.

[Kru03] C.W. Krueger: Towards a Taxonomy for Software Product Lines. PFE-5:
323-331 (LNCS3014), Springer-Verlag, 2003

[KSK+94] Kuvaja, P.; Similä, J.; Krzanik, L.; Bicego, A.; Saukkonen, S. & Koch, G.
(1994), Software Process Assessment and Improvement. The BOOTSTRAP
Approach, Blackwell, Cambridge.

[La91] Latour, L. (1991), A methodology for the design of reuse engineered Ada
components, in 'SETA1: Proceedings of the first international symposium
on Environments and tools for Ada', ACM, New York, NY, USA, pp. 103--
113.

[Le03] Jason Leonard (2003), Simplifying Product Line Development using UCM
Streams, retrieved November 2011 from
http://www.ibm.com/developerworks/rational/library/1748.html

[Le04] Leon, A. (2004), Software Configuration Management Handbook, Second
Edition, Artech House, Inc., Norwood, MA, USA.

[Leh78] Lehman, M. (1978), 'Laws of Program Evolution - Rules and Tools for
Programming Management,’ Proceedings Infotech State of the Art
Conference, Why Software Projects Fail?, 11/1-11/25

[Leh80] Lehman, M. (1980), 'Programs, life cycles, and laws of software
evolution', Proceedings of the IEEE 68(9), 1060-1076.

References

 202

[Leh96] Lehman, M. M. (1996), Laws of Software Evolution Revisited, in 'EWSPT
'96: Proceedings of the 5th European Workshop on Software Process
Technology', Springer-Verlag, London, UK, pp. 108--124.

[Lo99] Kam Wing Lo (1999), Simulation Report Reuse and High Level Languages,
University of South Carolina, report CS599, retrieved November 2010
from http://sunset.usc.edu/classes/cs599_99/projects/reuse.pdf

[LSR07] Linden, F. v. d.; Schmid, K. & Rommes, E. (2007), Software Product Lines
in Action : The Best Industrial Practice in Product Line Engineering,
Springer-Verlag, Berlin.

[LST78] Lientz, B. P.; Swanson, E. B. & Tompkins, G. E. (1978), 'Characteristics of
application software maintenance', Commun. ACM 21(6), 466--471.

[Mad08] Madachy, R. J. (2008), Software Process Dynamics, John Wiley & Sons,
Hoboken.

[Mah95] Mahler, A. (1995), Variants: keeping things together and telling them
apart 'Configuration management', John Wiley &Sons, Inc., pp. 73--97.

[MB06] Mohan K. & Ramesh B. (2006), ‘Change Management Patterns in
Software Product Lines’, Communications of the ACM, v. 49, n. 12.

[Mc69] McIlroy, D. (1969), Mass-produced Software Components, in J. M.
Buxton; P. Naur & B. Randell, ed.,'Proceedings of Software Engineering
Concepts and Techniques', pp. 138--155.

[McG07] John D. McGregor (2007), ‘CM - Configuration Change Management’,
Journal of Object Technology, vol. 6, no. 1, January-February 2007, pp. 7-
15

[McK84] McKee, J. R. (1984), 'Maintenance as a function of design', American
Federation of Information Processing Societies:1984 National Computer
Conference, 9-12 July 1984, Las Vegas, Nevada, USA, 187-193.

[MD08] Mens, T. & Demeyer, S., ed. (2008), Software Evolution, Springer-Verlag,
Berlin Heidelberg.

[Me02] T. Mens. 2002. A State-of-the-Art Survey on Software Merging. IEEE
Trans. Softw. Eng. 28, 5 (May 2002)

[Me99] Mens, T. (1999), 'A formal foundation for object-oriented software
evolution', PhD Thesis, Vrije Universiteit Brussel

[Mit06] Mittermeir, R. T. Facets of Software Evolution Software Evolution and

References

 203

Feedback, John Wiley & Sons, Ltd, 2006, 71-93

[MKL00] Mm, G. K.; Kahen, G. & Lehman, M. M. (2000), A Brief Review of
Feedback Dimensions in the Global Software Process, in '2000 Workshop:
Feedback and Evolution in Software and Business Processes', pp. 44--49.

[ML88] Mahler, A. & Lampen, A. (1988), 'An integrated toolset for engineering
software configurations', SIGSOFT Softw. Eng. Notes 13, 191--200.

[Mut02] Muthig, D. (2002), A Light-weight Approach Facilitating an Evolutionary
Transition Towards software product lines, Fraunhofer IRB Verlag,
Stuttgart.

[oAw] openArchitectureWare User Guide, Version 4.3.1, retrieved in February
2011 from http://www.openarchitectureware.org

[OCL01] (2001), 'Object Constraint Language'(06-05-01), Technical report, Object
Management Group.

[Od10] Martin Odersky, The Scala language specification, Version 2.8, November
2010, retrieved April 2011 from http://www.scala-lang.org/

[OH92] P. Oman & J. Hagemeister (1992) "Metrics for Assessing a Software
System's Maintainability," 337-344. Conference on Software
Maintenance 1992. Orlando, FL, November 9-12, 1992. Los Alamitos, CA:
IEEE Computer Society Press.

[Om02] van Ommering, R. (2002), Building product populations with software
components, in 'ICSE '02: Proceedings of the 24th International
Conference on Software Engineering', ACM, New York, NY, USA, pp.
255--265.

[OSLC10] (2010) Open Services for Lifecycle Collaboration, SCM Specification,
retrieved in October 2010 from http://open-services.net/

[Pa10] Patzke, T. (2010), The Impact of Variability Mechanisms on Sustainable
Product Line Code Evolution, in 'Software Engineering 2010 -
Proceedings', GI - Gesellschaft für Informatik, Bonn, , pp. 189-200.

[Pa62] Parzen, E. (1962), 'On Estimation of a Probability Density Function and
Mode', The Annals of Mathematical Statistics 33(3), 1065--1076.

[PBL05] Pohl, K.; Böckle, G. & Linden, F. v. d. (2005), Software Product Line

Engineering : Foundations, Principles, and Techniques, Springer-Verlag,

Berlin.

References

 204

[Pe98] Perry, D. E. (1998), Generic Architecture Descriptions for Product Lines, in
'Proceedings of the Second International ESPRIT ARES Workshop on
Development and Evolution of Software Architectures for Product
Families', Springer-Verlag, London, UK, pp. 51--56.

[PF89] Ploedereder, E. & Fergany, A. (1989), 'The data model of the
configuration management assistant (CMA)', SIGSOFT Softw. Eng. Notes
14(7), 5--14.

[PK05] Page, B. & Kreutzer, W. (2005), The Java Simulation Handbook:
Simulating Discrete Event Systems with UML and Java, Shaker Verlag.

[Pou97] Poulin, J. S. (1997), Measuring Software Reuse: Principles, Practices, and
Economic Models, Addison-Wesley, Reading.

[Ra05] Ramachandran, M. (2005), 'Software reuse guidelines', SIGSOFT Softw.
Eng. Notes 30(3), 1--8.

[Re79] Trygve Reenskaug (1979), Models - Views – Controllers, Xerox PARC
technical note, retrieved May 2011 from
http://heim.ifi.uio.no/~trygver/themes/mvc/mvc-index.html

[Rei95] Reichenberger, C. (1995), 'VooDoo a tool for orthogonal version
management', Software Configuration Management, 61—79, Springer
Berlin / Heidelberg.

[Ro75] M. J. Rochkind, (1975), The Source Code Control System, IEEE
Transactions on Software Engineering SE-1:4 pages 364–370.

[RP05] Romagnoli, J. A. & Palazog ̆lu, A. (2005), Introduction to process control /
José A. Romagnoli, Ahmet Palazog ̆lu, Marcel Dekker/CRC, New York

[SB02] Schwaber, K. & Beedle, M. (2002), Agile Software Development with
Scrum, Prentice Hall PTR, Upper Saddle River.

[SB99] Svahnberg, M. & Bosch, J. (1999), 'Evolution in software product lines:
Two cases', Journal of Software Maintenance 11(6), 391--422.

[Sch99] Schmidt, D. C. (1999), 'Why Software Reuse has Failed and How to Make
It Work for You', C++ Report.

[SDN+04] Sinnema, M.; Deelstra, S.; Nijhuis, J. & Bosch, J. (2004), COVAMOF: A
Framework for Modeling Variability in Software Product Families, in 'In
Proceedings of the Third International Software Product Line Conference
(SPLC).

References

 205

[SPEM] (2008), ‘Software & Systems Process Engineering Meta-Model
Specification’, (Document formal/2008-04-01), Object Management
Group.

[SSF+09] Anastasopoulos, M.; Avrasoglou, A.; Graubmann, P.; Gross, T.; Ibanez, V.;
Jaeger, M.; Mansell, J.; Patzke, T.; Priggouris, N.; Schmid, R. & Schyr, C.
(2009), State-of-the-art survey for Product Line, Deliverable
D_SP1_R6.1_M, Artemis Joint Undertaking Call 2008, Seventh Framework
Programme of the European Commission

[Sz98] Szyperski, C. (1998), Component Software. Beyond Object-Oriented
Programming, Addison-Wesley, Harlow.

[TH03] Thompson, J. M. & Heimdahl, M. P. E. (2003), 'Structuring product family
requirements for n-dimensional and hierarchical product lines',
Requirements Engineering 8(1), 42--54.

[Th12] Cheng Thao, A Configuration Management System for Software Product
Lines, Theses and Dissertations. Paper 14, University of Wisconsin-
Milwaukee, 2012

[Boy13] J. Boyland, A. Greenhouse, and W. L. Scherlis, ``The Fluid IR: An internal
representation for a software engineering environment.'', retrieved in
November 2013 from http://www.fluid.cs.cmu.edu

[UKR09] Uelschen, D. M.; Kniep, T. & Rodenbach, T. (2009),
'Konfigurationsmanagement, Fehlerverfolgung und Test',
OBJEKTspektrum 02/2009, 24-32.

[UML] (2009), 'Unified Modeling Language (UML), Version 2.2'(Document:
formal/2009-02-02), Object Management Group.

[UML03] (2003), ‘UML 2.0 Infrastructure Specification’ (ptc/03-09-15), OMG
Adopted Specification, Object Management Group.

[URL1] Homepage of the Eclipse IDE, retrieved in April 2010 from
http://www.eclipse.org/

[URL10] Homepage of the Java Compiler Compiler, retrieved April 2010 from
https://javacc.dev.java.net/

[URL11] Homepage of PLUM, retrieved April 2010 from http://www.esi.es/plum/

[URL12] Homepage of Biglever, retrieved April 2010 from
http://www.biglever.com/

References

 206

[URL13] Homepage of CM2 (configuration menu language), retrieved in April
2010 from http://catb.org/~esr/cml2/

[URL14] Homepage of GNU make build automation utility, retrieved in April 2010
from http://www.gnu.org/software/make/

[URL15] Homepage of Maven, retrieved in May 2010 from
http://maven.apache.org/

[URL16] Homepage of OSGi, retrieved in May 2010 from http://www.osgi.org/

[URL17] Homepage of TortoiseSVN, retrieved in May 2010 from
http://tortoisesvn.tigris.org/

[URL18] Homepage of Ant, retrieved in November 2011 from
http://ant.apache.org/

[URL19] Homepage of the Xtext language development framework, retrieved in
February 2011 from http://www.eclipse.org/Xtext/

[URL2] Homepage of the Eclipse Modelling Framework, retrieved in April 2010
from http://www.eclipse.org/emf/

[URL20] Homepage of StarTeam, retrieved April 2011 from
http://www.borland.com/us/products/starteam/index.aspx

[URL21] Homepage of Mercurial, retrieved in May 2011 from
http://mercurial.selenic.com/

[URL22] Homepage of Mercurial, retrieved in January 2013 from http://git-
scm.com/

[URL3] Homepage of the EMFText generator of textual EMF-based syntaxes,
retrieved in April 2010 from http://www.emftext.org

[URL4] Homepage of the Standard Widget Toolkit, retrieved April 2010 from
http://www.eclipse.org/swt/

[URL5] Homepage of SVNKit, retrieved April 2010 from http://svnkit.com/

[URL6] Homepage of Subversion, retrieved April 2010 from
http://subversion.apache.org/

[URL7] Homepage of pure-systems, retrieved April 2010 from http://www.pure-
systems.com/

References

 207

[URL8] Homepage of Microsoft team system, retrieved in April 2010 from
http://www.microsoft.com/Visualstudio/products/teamsystem

[URL9] Homepage of JIRA, retrieved in April 2010 from
http://atlassian.com/software/jira

[VMD+03] Venkatesh, V.; Morris, M. G.; Davis, G. B. & Davis, F. D. (2003), 'User
Acceptance of Information Technology: Toward a Unified View', MIS
Quarterly 27(3), 425--478.

[Whi00] White, B. A. (2000), Software Configuration Management Strategies and
Rational ClearCase. A Practical Introduction, Addison-Wesley, Boston.

[Wit96] Withey, J. (1996), 'Investment Analysis of Software Assets for Product
Lines'(CMU/SEI-96-TR-010), Technical report, Software Engineering
Institute, Carnegie Mellon University.

[WRH+00] Wohlin, C.; Runeson, P.; Höst, M.; Ohlsson, M. C.; Regnell, B. & Wesslen,
A. (2000), Experimentation in Software Engineering. An Introduction,
Kluwer Academic Publishers, Boston.

[WRL+93] Cathleen Wharton, John Rieman, Clayton Lewis, and Peter Polson, The
cognitive walkthrough method: A practitioner’s guide. Technical report
#93-07, Institute of Cognitive Science, University of Colorado, Boulder

[WYF03] Washizaki, H.; Yamamoto, H. & Fukazawa, Y. (2003), A Metrics Suite for
Measuring Reusability of Software Components, in 'In Metrics', pp. 211--
223.

[YFM+08] Yoshimura, K.; Forster, T.; Muthig, D. & Pech, D. (2008), 'Model-based
Design of Product Line Components in the Automotive Domain', 12th
International Software Product Line Conference, SPLC 2008 –
Proceedings.

[YR06] Yu, L. & Ramaswamy, S. (2006), 'A Configuration Management Model for
Software Product Line.’ INFOCOMP Journal of Computer Science 5(4), 1--
8.

[Ze97] A. Zeller, (1997) “Configuration management with version sets - a unified
software versioning model and its applications,”Ph.D. dissertation,
Technische Universitaet Braunschweig

Appendix

 209

Appendix

Appendix

 211

Appendix A Implementation with XText/Xpand

This section provides examples of implementation guidelines in the Xtext
format. These examples show how the guidelines can be specified in a
more technical manner so that they can be directly related to evolution
activities and scenarios as described in sections 3.8 and 3.9.

Obtaining a fully functioning implementation is not possible at this point,
since this requires detailed information (at the level of an application
programming interface) about the CMS at hand. With the rise of the
OSLC standard [OSLC10] this may however change in the future.

In order for the guidelines to be more informative, pseudo code with the
CL prefix is to be realized in terms of a Customization Layer; that is by
operating on the conceptual model and on the basic asset model
(section 3.7 and 4.1). Pseudo code with the CMS prefix is to be realized
in terms of a connector to the underlying CMS. The VM prefix means
that pseudo code is to be realized through a connector to a variability
management tool. Finally, no prefix requires standard programming
language statements.

Code marked with angle quotes (« ») marks statements of the Xpand
language [oAw]. In the context of this work Xpand enables creating
pseudo-code templates, which are specialized according to the selected
CMS functionality. After specialization the Xpand statements are
removed. Angle quotes will be used in the following only in the cases, in
which the selection of an implementation strategy is clear. There will be
however cases (i.e. putting markers) in which the decision depends on
the concrete CMS at hand and is therefore left open.

Appendix

 212

«DEFINE createCoreAssetChangeRequest(String givenNameOfSce nario) FOR ProductLine-»
 String «givenNameOfScenario» (String caID, boolean synchronizeInstances)
 throws CoreAssetCRCreationException;
/*{
 CMS/retrieve core asset object based on caID
 CL/assign core asset to the change request
 CMS/create the core asset change request with the CMS
 « EXPAND StateManagement("changes pending")-»
 if (synchronizeInstances) {
 CMS/find instances of core asset
 for each instance {
 CL/ask user whether to propagate to_
 CL/_further core assets
 CL/invoke createProductAsset__ChangeRequest
 CL/_scenario accordingly
 « IF hasTicketHierarchy(this)-»
 CMS/assign core asset_
 CMS/_change request as parent
 « ELSE-»
 CMS/create custom field 'parent CR'
 CMS/set value of field to the just_
 CMS/_created core asset change request
 « ENDIF-»

}
 }
 return change request creation result from CMS
}*/
«EXPAND File("CoreAssetCRCreationException")-»
«ENDDEFINE»

«DEFINE StateManagement(String s) FOR ProductLine-»
 «IF hasExplicitStateManagement(this)-»
 CMS/change state to «s-»
 «ELSE-»
 CMS/use other strategy to set state
 «ENDIF-»
«ENDDEFINE»

«DEFINE createProductAssetChangeRequests(String givenNameO fScenario) FOR ProductLine-»
 String «givenNameOfScenario» (String paID, boolean synchronizeInstances)
 throws ProductAssetCRCreationException;
/*{
 CMS/find product asset with the given ID
 CMS/create the product asset change request with the CMS
 if (synchronizeCoreAssets) && the product asset is an instance) {
 CMS/find core assets that correspond to instance
 for each core asset {
 CL/ask user whether to synchronize_
 CL/_with all its other instances
 CL/invoke createCoreAssetChangeRequest_
 CL_scenario accordingly
 « IF hasTicketHierarchy(this)-»
 CMS/assign instance_
 CMS/_change request as parent
 « ELSE-»
 CMS/create custom field 'parent CR'
 CMS/set value of field to the just_
 CMS/_created instance change request
 « ENDIF-»
 }
 }
 return change request creation result from CMS
}*/
«EXPAND File("ProductAssetCRCreationException")-»
«ENDDEFINE»

Appendix

 213

«DEFINE createCoreAsset(String givenNameOfScenario) FOR ProductLine-»
 void «givenNameOfScenario» (String sourceLocation,
 String targetLocation,
 String templateLocation,
 String depth
) throws CoreAssetCreationException;
/*{
 if (source location has contents) {
 CMS/load core asset contents from _
 CMS/_source to target location
 }
 else
 if (templateLocation != null) {
 CMS/create core asset in target_
 CMS_location according to template
 }
 CMS/mark resulting configuration_
 CMS/_item as core asset
 CMS/mark all other configuration_
 CMS/_items according to depth as core assets
 CMS/set item states to “not released”
 if (connector to Variability Management available) {
 CL/obtain reuse contract from Variability Management
 « IF hasIntentionalVersioning(this)-»
 CMS/set reuse contract as predicate
 « ELSE-»
 CMS/set reuse contract as user-defined property
 « ENDIF-»
 }
}*/
«EXPAND File("CoreAssetCreationException")-»
«ENDDEFINE»

«DEFINE removeCoreAsset(String givenNameOfScenario) FOR ProductLine-»
 void «givenNameOfScenario» (String caID) throws CoreAssetDeletionException;
/*
 CMS/find core asset based on ID
 CMS/find instances of core asset
 for each instance
 CMS/remove instance markers
 CMS/delete core asset
*/
«EXPAND File("CoreAssetDeletionException")-»
«ENDDEFINE»

«DEFINE modifyCoreAsset(String givenNameOfScenario) FOR ProductLine-»
 void «givenNameOfScenario» (String caID) throws CoreAssetModificationException;
/*
 CMS/retrieve core asset object based on caID
 CL/ask user for new name
 CL/ask user for new configuration item
 CL/ask user for new instances
 if (connector to Variability Management available) {
 VM/check for new reuse contract in variability management
 CL/update core asset upon user confirmation
 }
 CMS/submit changes to change management system
*/
«EXPAND File("CoreAssetModificationException")-»
«ENDDEFINE»

Appendix

 214

«DEFINE integrateCoreAsset(String givenNameOfScenario) FOR ProductLine-»
 void «givenNameOfScenario» (String caID) throws CoreAssetIntegrationException;
/*
 CMS/locate core asset based on caID
 /*** a posteriori integration
 CL/obtain user confirmation
 CMS/mark last change on asset as integration
 /*** session-based integration
 CMS/locate instances of core asset
 for each instance{
 CMS/merge last change into core asset
 CMS/mark merge as integration merge
 }
 « EXPAND StateManagement("integrated")-»
*/
«EXPAND File("CoreAssetIntegrationException")-»
«ENDDEFINE»

«DEFINE setReleaseStateOfCoreAsset(String givenNameOfScena rio) FOR ProductLine-»
void «givenNameOfScenario» (String caID, String state)
throws CoreAssetReleaseException
/*
«EXPAND StateManagement("state")-»
*/
«EXPAND File("CoreAssetReleaseException")-»
«ENDDEFINE»

Appendix

 215

«DEFINE createProductAsset(String givenNameOfScenario) FOR ProductLine-»
 enum InstantiationStrategy { DEEP, SHALOW };
 void «givenNameOfScenario» (String sourceLocation,
 String targetLocation,
 String templateLocation,
 boolean isInstance,
 InstantiationStrategy iStrategy)
 throws ProductAssetCreationException;
/*
if (not isInstance)
 CMS/create product-specific asset
else{
 CL/ask user for core assets as origins_
 CL/_of the instance
 if not all core assets released
 exit
 if (only compilation) {
 if (connector to variability management available)
 VM/perform core asset instantiation
 CMS/compile core assets
 CMS/store binaries in targetLocation
 CMS/mark binaries as instances
 else{
 « IF hasSharing(this)-»
 CMS/share core assets in targetLocation
 CMS/mark share as instantiation share
 « ELSE-»
 « IF hasBranches(this) || hasStreams(this)-»
 CMS/create branches/streams off the core assets_
 CMS_in targetLocation
 CMS/copy core asset contents in targetLocation_
 CMS/_according to instantiationStrategy
 CMS/mark branches or streams accordingly
 « ENDIF-»
 « ENDIF-»
 if (connector to variability management available){
 VM/perform core asset instantiation
 VM/obtain resulting instance and signed contract
 « IF hasIntentionalVersioning(this)-»
 CMS/store signed contract as predicate
 « ELSE-»
 CMS/store signed contract as attribute
 « ENDIF-»
 CMS/store resulting instance in targetLocation
 CMS/mark change
 }
 « EXPAND StateManagement(“reused”)-»
 }
*/
«EXPAND File("ProductAssetCreationException")-»
«ENDDEFINE»

Appendix

 216

«DEFINE removeProductAsset(String givenNameOfScenario) FOR ProductLine-»
 void «givenNameOfScenario» (String caID) throws ProductAssetDeletionException
/*
 CMS/create product asset object based on ID
 if (not detachOnly) {
 CMS/remove product asset marks
 if (product asset is an instance)
 CMS/remove instantiation marks
 }

 if (detachOnly && product asset is an instance)
 CMS/remove instantiation marks

 if (product asset is an instance)
 for each core asset of instance {
 check if core asset has other instances
 if not
 « EXPAND StateManagement(“not reused”)-»
 }
*/
«EXPAND File("ProductAssetDeletionException")-»
«ENDDEFINE»

«DEFINE modifyProductAsset(String givenNameOfScenario) FOR ProductLine-»
void «givenNameOfScenario» (String caID) throws ProductAssetModificationException
/*
 CMS/retrieve product asset object based on paID
 CL/ask user for new name
 if (product asset is instance) {
 CL/ask user for new core assets
 if (connector to Variability Management available) {
 CL/ask user whether to re-instantiate
 VM/re-instantiate upon confirmation
 CL/update product asset
 }
 }
 CL/ask user for new configuration item if necessary
 CMS/submit changes to change management system
*/
«EXPAND File("ProductAssetModificationException")-»
«ENDDEFINE»

«DEFINE rebaseProductAsset(String givenNameOfScenario) FOR ProductLine-»
void «givenNameOfScenario» (String caID) throws ProductAssetRebaseException
/*
 CMS/create product asset object based on paID
 if (product asset is not an instance)
 exit
 /*** a posteriori integration
 CL/obtain user confirmation
 CMS/mark last change on instance as integration
 /*** session-based integration
 CMS/locate core assets of instance
 for each core asset{
 CMS/merge last change into instance
 CMS/mark merge as rebase merge
 }
 « EXPAND StateManagement(“rebased”)-»
*/
«EXPAND File("ProductAssetRebaseException")-»
«ENDDEFINE»

Appendix

 217

Appendix B Usability Evaluation

B.1 Pre-briefing document

Product Line Exercise February 17
th

 2012

“Version Management”

Pre-Briefing document

Thank you for participating in the Product Line exercise on “Version Management”.

This document introduces you to the method of the “Cognitive Walkthrough” that we will use during

the exercise.

The Cognitive Walkthrough method

The Cognitive Walkthrough (often abbreviated as CW) is a Usability Evaluation method.

We use this method in order to understand how easy it will be to use a software product.

The CW method does not require running software. It can be also applied to interface specifications,

mock-ups, screenshots or other descriptions of the software that we want to analyze

When you use a piece of software you expect it to support a set of tasks. For example, an e-mail

program should help you send e-mails. Hence, when you apply the CW method you concentrate on

typical tasks that you want to do with the software. For each task you look into the software

description and try to understand necessary actions that you have to do. For example, in order to

send an e-mail you first have to open the e-mail editor, then you have to type the message, then you

have to select a recipient and so forth. Goal of the CW method is to analyze, how easy it will be to

identify and execute all the actions necessary to accomplish a task.

In other words, when you use the CW method you imagine that you are the user of the software that

you analyze. During the analysis you walk through typical tasks that you would do as user. For each

task you ask yourself the question “will it be easy for me to do this task”. You answer this question by

breaking down the task into smaller actions that you have to do with the software.

The following picture depicts inputs and outputs of the Cognitive Walkthrough method. In the next

page you will find additional clarifications on these inputs and outputs.

Cognitive

Walkthrough

Software

Description

Tasks you

want to do

with the software

Actions necessary

in order to do a task

Analysis of the

necessary actions

Improvement

suggestions

Appendix

 218

Input / Output Clarification

Software

Description

(Input)

This is usually a document that describes what the software does. It can be an

interface specification of actions available in the software.

The software description will be given to you at the beginning of the

exercise.

Tasks that you

want to do with

the software

(Input)

This is a list of tasks that you require from the software. Some of these tasks

may directly match actions in the Software Description. For some others tasks

there may be no direct match. In this case you will have to identify the

sequence of actions that is necessary to accomplish the tasks.

The list of tasks will be given to you at the beginning of the exercise.

Actions

necessary in

order to do a task

(Output)

Based on the Software Description and the Tasks you identify and write down

the sequence of actions necessary.

Analysis of the

necessary actions

(Output)

For each action that you identify you answer a set of questions, which aim at

evaluating the action. One question for example will be “When you apply this

action do you see any progress in the accomplishment of your task?”

The questions to answer will be given to you at the beginning of the exercise.

Improvement

suggestions

(Output)

If you answer a question with NO you are able to provide improvement

suggestions.

A template that will be given to you at the beginning of the exercise will

facilitate providing suggestions

Additional Reading including examples

Cathleen Wharton, John Rieman, Clayton Lewis, and Peter Polson

The cognitive walkthrough method: A practitioner’s guide.

Technical report, Institute of Cognitive Science, University of Colorado, Boulder

Downloadable under http://ics.colorado.edu/techpubs/pdf/93-07.pdf

Appendix

 219

B.2 Usability Evaluation Form

Usability Evaluation Form
Your name: …………………………………………………………………………………………
Your group: …………………………………………………………………………………………

Task Number : ……..

Action Number: ……..

Description/Rationale:
…..………
.…..……..
.…..……..
Multiple Execution of this action

Was it easy to understand, that you had to do this action?

YES

NO

If NO please provide improvement suggestions to the tool developers:

• Eliminate the requirement to do this action manually, the system should it

• Provide a message that tells me that I have to do this action

• Change the task, so that I can better understand what actions to do

Please provide any additional suggestions here:

………………………………………………………………………………………………

Was it easy to associate the correct action with th e effect you are trying to achieve?

YES

NO

If NO please provide improvement suggestions to the tool developers:

• Improve the interface description

• Use a different name for the action

Please provide any additional suggestions here:

………………………………………………………………………………………………

Will you see that progress is being made toward sol ution of your task?

YES

NO

If NO please provide improvement suggestions to the tool developers:

Provide better feedback

Please provide any additional suggestions here:

………………………………………………………………………………………………

Appendix

 220

B.3 Experience questionnaire

Product Line Exercise February 17
th

 2012

“Version Management”

Experience Questionnaire

Thank you for participating in the Product Line exercise on “Version Management”.

Please take a moment to fill out this questionnaire in advance.

It will help us organize the exercise better.

Your name:

EXPERIENCE WITH PRODUCT LINE ENGINEERING

1. How would you describe your experience with product lines?

None Little Average Substantial Professional

Please provide clarifications (e.g. where do you have this experience from):

2. How well have you understood the challenges of version management in a

product line context? Multiple answers are possible.

I understood nothing

I know it is difficult to do version management in product lines,

but don’t ask me why

I understood the challenges and I can explain the reasons

I have already experienced these challenges in my work

I understood the challenges and also the possible solutions

I understood there are solutions, but I do not know how to apply

I understood there are solutions and I can apply them

Any comments?

Appendix

 221

EXPERIENCE WITH VERSION MANAGEMENT

1. How would you describe your experience version management?

None Little Average Substantial Professional

Please provide clarifications (e.g. where do you have this experience from):

2. Which Version Management tools have you already used?

Subversion CVS Mercurial Git Other

Any comments (e.g. list other tools you have used):

3. To which extend have you already used branching and merging functionality?

Never Almost never Occasionally Often Every day

Please provide clarifications (e.g. describe how you used branching and merging):

Appendix

 222

B.4 Task specifications

Product Line Engineering Class Group CL

Version Management Exercise

Goal of the exercise: Evaluate the usability of ver sion management tools for Product Lines

Welcome to the Product Line Engineering exercise. Subject of today’s exercise is Version
Management. As you learned in the lecture, Version Management with Product Lines is
much more complex than with Single Systems.

There are different tools to Version Management in Product Lines. Goal of this exercise is to
evaluate the usability of such tools.

Imagine that you are developing a product line and that you have to do version management.
In particular you are interested in performing the following tasks on items available in your
Version Management repository:

Version Management Tasks

1. Find items mark ed as Core Assets

2. For a given Core Asset (e.g. MyLibrary.java) fin d where it is being reused in
products. In other words, find items marked as inst ances of the Core Asset.

3. For a given Instance (e.g. MyLibrarySpecialized. java) find from which Core Asset
it comes from.

4. Imagine a core asset has been changed. Propagate the changes to its instances

5. Imagine an instance has been changed. Propagate the changes to the core
assets, from which the instance comes from

6. Find assets of a product line member, which are not instances of core assets
(in other words, find product-specific assets)

Now, for each of the above tasks, imagine that you have a tool that can help you: CL.
You will find subsequently a description of the tool interface. The interface describes actions
that you can do with the tool and the corresponding effects that you achieve.

For each of the above tasks please do the usability evaluation described on the next page

Appendix

 223

Usability Evaluation Group CL

− Study the CL tool interface and list the actions necessary in order to perform the tasks

� Please describe how you want to use the actions and what you expect to
achieve

− For each action that you have listed, please answer following questions using the
attached form:

a. You selected this action because you wanted to achieve an effect. How easy was it for you
to identify and select this action?
(In other words: was it easy to understand, that you had to do this action?)

b. Was it easy to associate the correct action with the effect you are trying to achieve?
(In other words: is the interface description clear to you?)

c. After performing the action in the real tool, will you see that progress is being made toward
solution of your task?

− If you answer a question with NO, please provide improvement suggestions as shown
in the attached form.

Appendix

 224

Product Line Engineering Class Group SVN_FE

Version Management Exercise

Goal of the exercise: Evaluate the usability of ver sion management tools for Product Lines

Welcome to the Product Line Engineering exercise. Subject of today’s exercise is Version
Management. As you learned in the lecture, Version Management with Product Lines is
much more complex than with Single Systems.

There are different tools to Version Management in Product Lines. Goal of this exercise is to
evaluate the usability of such tools.

Imagine that you are developing a product line and that you have to do version management.
In particular you are interested in performing the following tasks on items available in your
Version Management repository:

Version Management Tasks

1. Find items m arked as Core Assets

2. For a given Core Asset (e.g. MyLibrary.java) fin d where it is being reused in
products. In other words, find items marked as inst ances of the Core Asset.

3. Imagine a core asset has been changed. Propagate the changes to its instances.

Now, for each of the above tasks, imagine that you have a tool that can help you: SVN.
You will find subsequently a description of the tool interface. The interface describes actions
that you can do with the tool and the corresponding effects that you achieve.

For each of the above tasks please do the usability evaluation described on the next page

Appendix

 225

Usability Evaluation Group SVN _FE

− Study the SVN tool interface and list the actions necessary in order to perform the tasks
with SVN.
Please describe how you want to use each action and what you expect to achieve.
Consider the following hints

� An item is marked as Core Asset by placing it in a designated location named “CoreAssets”
in the repository

� You create an instance of a core asset by creating a branch (copy) of the core asset. You
then place the copy in a designated location in the repository. Each product line member
has such a designated location. For example if you have 3 products in your product line then
there are three locations that are designated for instances “Product A Instances”,
“Product B Instances” and “Product C Instances”

− You might need to perform the same action several times. If this is the case please
check the multiple execution box.

− For each action that you have listed, please answer following questions using the
attached form:

a. You selected this action because you wanted to achieve an effect. How easy was it for you
to identify and select this action?
(In other words: was it easy to understand, that you had to do this action?)

b. Was it easy to associate the correct action with the effect you are trying to achieve?
(In other words: is the interface description clear to you?)

c. After performing the action, will you see that progress is being made toward solution of your
task?

− If you answer a question with NO, please provide improvement suggestions as shown
in the attached form.

Appendix

 226

Product Line Engineering Class Group SVN_AE

Version Management Exercise

Goal of the exercise: Evaluate the usability of ver sion management tools for Product Lines

Welcome to the Product Line Engineering exercise. Subject of today’s exercise is Version
Management. As you learned in the lecture, Version Management with Product Lines is
much more complex than with Single Systems.

There are different tools to Version Management in Product Lines. Goal of this exercise is to
evaluate the usability of such tools.

Imagine that you are developing a product line and that you have to do version management.
In particular you are interested in performing the following tasks on items available in your
Version Management repository:

Version Management Tasks

1. Find items m arked as Instances

2. For a given Instance (e.g. MyLibrarySpecialized. java) find from which Core Asset
it comes from.

3. Imagine an instance has been changed. Propagate the changes to the Core
Assets, from which the instance comes from

Now, for each of the above tasks, imagine that you have a tool that can help you: SVN.
You will find subsequently a description of the tool interface. The interface describes actions
that you can do with the tool and the corresponding effects that you achieve.

For each of the above tasks please do the usability evaluation described on the next page

Appendix

 227

Usability Evaluation Group SVN_FE

− Study the SVN tool interface and list the actions necessary in order to perform the tasks
with SVN.
Please describe how you want to use each action and what you expect to achieve.
Consider the following hints

� An item is marked as Core Asset by placing it in a designated location named “CoreAssets”
in the repository

� You create an instance of a core asset by creating a branch (copy) of the core asset. You
then place the copy in a designated location in the repository. Each product line member
has such a designated location. For example if you have 3 products in your product line then
there are three locations that are designated for instances “Product A Instances”,
“Product B Instances” and “Product C Instances”

− You might need to perform the same action several times. If this is the case please
check the multiple execution box.

− For each action that you have listed, please answer following questions using the
attached form:

a. You selected this action because you wanted to achieve an effect. How easy was it for you
to identify and select this action?
(In other words: was it easy to understand, that you had to do this action?)

b. Was it easy to associate the correct action with the effect you are trying to achieve?
(In other words: is the interface description clear to you?)

c. After performing the action, will you see that progress is being made toward solution of your
task?

− If you answer a question with NO, please provide improvement suggestions as shown
in the attached form.

Appendix

 228

B.5 Interface descriptions

CL - Interface Description

showCoreAssets

public CoreAsset[] showCoreAssets(String nameFilter)
 throws CoreAssetRetrievalException;

Effect:
This operation lists items, which are marked as core assets in the repository

Parameters:
nameFilter – This is a filter. It enables listing only the core assets whose names start with
the contents of nameFilter . Leave empty to retrieve all core assets.

Returns:
An array of .CoreAsset objects Each object contains the name of a core asset that matches
the nameFilter . Each object also contains additional attributes, such as the available
instances of the core asset.

Throws:
CoreAssetRetrievalException - if the operation could not be performed

showCoreAssetInstances

Instance[] showCoreAssetInstances(
 CoreAsset[] coreAssets,
 String nameFilter
)
 throws InstanceRetrievalException;

Effect:
This operation lists items, which are marked as instances of core assets

Parameters:
coreAssets – the set of core assets, for which we want to find the instances
nameFilter – This is a filter. It enables listing only the instances whose names start with
the contents of nameFilter . Leave empty to retrieve all instances.

Returns:
An array of Instance objects. Each object contains the name of an instance item that
matches the nameFilter . Each object also contains additional fields such as the core
assets, from which the instance comes from.

Throws:
InstanceRetrievalException - if the operation could not be performed

Appendix

 229

showProductAssets

ProductAsset[] showProductAssets(
 String productName,
 Boolean showOnlyProductSpecifics
)
 throws InstanceRetrievalException;

Effect:
This operation lists items, which are marked as parts of product line member (i.e. a product)

Parameters:
productName – the name of the product to query for assets
showOnlyProductSpecifics – a Boolean value which determines whether to list product-
specific items (i.e. not instances of core assets) only .

Returns:
An array of ProductAsset objects.

Throws:
InstanceRetrievalException - if the operation could not be performed

integrateCoreAsset

State integrateCoreAsset(String coreAssetName)
 throws CoreAssetIntegrationException

Effect:
This operation propagates pending changes of a core asset to its instances,

Parameters:
coreAssetName – the name of the core asset, of which the changes should be propagated

Returns:
the operation returns the state of the core asset, possible states
are Integrated or Not_Integrated

Throws:
CoreAssetIntegrationException - if the operation co uld not be
performed

rebaseInstance

State rebaseInstance(String instanceName)
 throws RebaseException

Effect:
This operation propagates pending changes of an instance to the core assets the instance
comes from,

Parameters:
instanceName – the name of the instance, of which the changes should be propagated

Returns:
the operation returns the state of the instance, po ssible states are
Rebased or Not_Rebased

Throws:
CoreAssetIntegrationException - if the operation co uld not be
performed

Appendix

 230

SVN - Interface Description

checkout

public long checkout(URL url,
 File destinationPath,
 Revision revision,
 Depth depth)
 throws SVNException

Effect:
This operation checks-out a directory from the Version Management Repository to a local
directory path.

Parameters:
url – the repository location of the directory to be checked-out
destinationPath – the local path where the directory will be stored
revision – the revision of the item to be checked-out. Leave empty to retrieve the last
revision

 depth – determines how many items to check-out from the directory in the input url :
EMPTY
 Just the named directory, no entries in that directory.
FILES
 Named directory and its file children, but not subdirectories.
INFINITY
 Named directory and all descendants (full recursion).

Returns:
the revision number of the Working Copy

Throws:
Exception - url refers to a file, not a directory; destinationPath already exists but it
is a file, not a directory; destinationPath already exists and is a versioned directory but
has a different URL (repository location against which the directory is controlled)

update

public long update(File path,
 Revision revision,
 Depth depth)
 throws SVNException

Effect:
This operation updates a local copy of an item with changes from the repository.

Parameters:
path – the file system path of the local copy
revision – the revision to update to. Leave empty to update to the last revision
depth - tree depth to update (depth semantics as above)

Returns:
the revision number to which the item was updated to

Throws:
Exception – if the update operation could not be performed

Appendix

 231

commit

public CommitInfo commit(File[] paths,,
 String commitMessage,
 Properties revisionPropert ies,
 Depth depth)
 throws Exception

Effect:
This operation commits (i.e. loads) changes from local files to the repository.

Parameters:
paths – the paths of the local files to commit the changes from
commitMessage – a log message to use for the commit operation
revisionProperties – the properties to set on the committed files. Each property is a
key-value pair

Returns:
Commit information containing the revision number a fter commit, the
revision author and a time stamp.

Throws:
Exception – if the commit operation could not be pe rformed

dir

public String dir(URL url)
 throws Exception

Effect:
This operation lists the items available at a given repository location

Parameters:
url – the repository location to list the items from

Returns:
A textual list of items (similar to the dir or ls c ommands in Windows

and Linux)

Throws:
Exception – if the directory information could not be obtained

Appendix

 232

log

public LogEntry[] log(File path,
 Revision startRevision,
 Revision endRevision)
 throws Exception

OR

public LogEntry[] log(URL path,
 Revision startRevision,
 Revision stopRevision)
 throws Exception

Effect:
This operation obtains the list of operations (e.g. commits, branches) that have been
performed on an item

Parameters:
path – the path in which the item resides. This can be local or a remote repository path, in
the latter case a URL is used.
startRevision – revision number to start from. Leave empty if you want to get a list of
operations starting from the first revision.
endRevision – revision number to stop at, leave empty to you want to stop at the last
revision

Returns:
A set of log entries. Each entry represents operati ons performed on
an item. Each entry contains following information:

− Author
− Date
− Log Message
− Files affected

Throws:
Exception – if the log information could not be obt ained

merge

public void merge(URL url1,
 Revision r1,
 URL url2,
 Revision r2,
 File destination,
 Depth depth)
 throws Exception

Effect:
This operation merges differences between two items in the repositories into a local copy
item

Parameters:
url1 – the URL of the first item
r1 – the revision of the first item to consider during comparison
url2 – the URL of the second item
r2 – the revision of the second item to consider during comparison
depth – the depth to use during comparison
destination – the path to the local file that will receive the changes

Appendix

 233

Returns:
no return value

Throws:
Exception – if the operation did not succeed

Appendix

 234

B.6 Data entry application

Appendix

 235

Appendix C Case Study Material

C.1 Implementation of a Mercurial connector

«interface»
CMAbstractionLayer

+ allChangesSinceLastMergeOneWay(String[], String) : String[]
+ allChangesSinceLastMergeReturn(String[], String) : String[]
+ findSharedFilesANDnull(String) : String[]
+ findSharesOfFiles(String[], String) : String[]
+ makeFileShared(String, String, String, String) : void
+ removeLibraryAsset(String) : void
+ shareFiles(String, String, String, boolean, InstantiationStrategy) : void

DisplayProductLineTests

+ setUp() : void
+ tearDown() : void
+ testAllChangesSinceLastMergeOneWayANDnull() : void
+ testFindSharedFilesANDnull() : void
+ testMakeFileShared() : void
+ testNullANDallChangesSinceLastMergeReturn() : void
+ testNullANDfindSharesOfFiles() : void
+ testRemoveLibraryAsset() : void
+ testShareFiles() : void

MercurialConnector

+ allChangesSinceLastMergeOneWay(String[], String) : String[]
+ allChangesSinceLastMergeReturn(String[], String) : String[]
- executeCommand(String) : String[]
- findRepository(String) : File
- findRevision(String, String) : String
+ findSharedFilesANDnull(String) : String[]
+ findSharesOfFiles(String[], String) : String[]
- findTags(String) : ArrayList<String>
- hasTag(String, String) : boolean
- isCoreAsset(String) : boolean
- listToStringArray(ArrayList<String>) : String[]
+ makeFileShared(String, String, String, String) : void
+ removeLibraryAsset(String) : void
+ shareFiles(String, String, String, boolean, InstantiationStrategy) : void

~layer

Appendix

 236

C.2 Pre-briefing document

Appendix

 237

Appendix

 238

Appendix

 239

Appendix

 240

Appendix

 241

Appendix

 242

Appendix

 243

Appendix D Experiment Material

D.1 Task specifications

Task Specifications Group: CL

Role: AE
Introduction

As you can see above you are in the CL group. CL stands for Customization Layer, a tool that
facilitates the management of a Product Line Infrastructure. You can see a screenshot of the
tool in the following picture.

The Customization Layer provides a series of commands like add-core-asset or
show-instances that will help you complete your tasks.

You can use the help command for getting information about the other commands. By typing
for example help add-core-asset you will get information about the function and the
arguments of the add-core-asset command. Arguments enclosed in brackets are meant to
be optional.

The Customization Layer is to be used in combination with Subversion. In fact the
Customization Layer uses Subversion behind the scenes. However for some operations we
have to use Subversion directly. The Subversion server for your group is available at
http://ksi/PLEvolution/CL/

For committing and checking-out assets from the repository please use the Tortoise Subversion
Client which is integrated into the Windows explorer. For all other operations please use the CL.

Appendix

 244

Appendix

 245

Task 1: Find Core Assets
In this task we want to find existing core assets (directories and files) in the Subversion
repository. Please use the CL (Customization Layer) command show-core-assets to get a
list of all available core assets.

Please answer the following questions:

1. How many core assets are available?

2. How many Java classes are available as core assets?

3. How many directories are available as core assets?

� Please write down how much time you needed for this task

Task 2: Create Instances of Core Assets
In this task we want to create an instance of a core asset for the purpose of a product.

Please select one of the directory core assets you found in the previous task. It does not matter
which one.

Imagine that you are the Application Engineer of ProductA.

Use the CL command
instantiate-core-asset [the the directory from above] ProductA
for creating an instance of this core asset in the repository. The command will place a copy of
the selected core asset in the directory http://ksi/PLEvolution/CL/branches/ProductA

� Please write down how much time you needed for this task

Appendix

 246

Task 3: Adapt instances to the needs of a product

During Task 2 we created an instance of a core asset, which up to now is simply a copy of that
core asset.

Now we want to adapt this instance for the needs of our ProductA.

Please use the Tortoise Subversion client, which is integrated into the Windows Explorer, to
check-out (load) the instance from the repository to a local directory in your hard disk (for
example c:\temp).

To that end point the Tortoise Subversion Client to the directory
http://ksi/PLEvolution/CL/branches where you added the instance in Task 2 and
perform the SVN Checkout operation.

Perform a simple change in the instance you just checked-out. You can for example enhance a
little bit the methods of the Java class contained therein. Perform the
SVN Commit operation with Tortoise when you are finished.

� Please write down how much time you needed for this task

Task 4: Find Changes in the Core Assets

In this task we want to find out whether the core assets, we have seen during Task 1, have
changed in the meanwhile.

Please use the CL command show-core-diff for finding out about changes.

Are there any changes in the core assets? How many?

� Please write down how much time you needed for this task

Appendix

 247

Task Specifications Group: CL

Role: FE

Introduction

As you can see above you are in the CL group. CL stands for Customization Layer, a tool that
facilitates the management of a Product Line Infrastructure. You can see a screenshot of the
tool in the following picture.

The Customization Layer provides a series of commands like add-core-asset or
show-instances that will help you complete your tasks.

You can use the help command for getting information about the other commands. By typing
for example help add-core-asset you will get information about the function and the
arguments of the add-core-asset command. Arguments enclosed in brackets are meant to
be optional.

The Customization Layer is to be used in combination with Subversion. In fact the
Customization Layer uses Subversion behind the scenes. However for some operations we
have to use Subversion directly. The Subversion server for your group is available at
http://ksi/PLEvolution/CL/

For committing and checking-out assets from the repository please use the Tortoise Subversion
Client which is integrated into the Windows explorer. For all other operations please use the CL.

Appendix

 248

Appendix

 249

Task 1: Add New Core Assets
In this task we want to add a new core asset into the Subversion repository.

You will find in your local desktop a folder named “hashtable”. This folder contains a Java class,
which is supposed to be used as core asset (i.e. it is reusable across the product line).

Please use the CL (Customization Layer) command add-core-asset to add the hashtable
folder in the repository.

The CL will automatically select the directory http://ksi/PLEvolution/CL/trunk for storing the core
asset.

� Please write down how much time you needed for this task

Task 2: Change Core Assets
In this task we want to change a core asset that is already in the Subversion repository.

Please use the Tortoise Subversion client, which is integrated into the Windows Explorer, to
check-out (load) the hashtable (of Task 1) from the repository to a local directory in your hard
disk (for example c:\temp).

To that end point the Tortoise Subversion Client to the directory
http://ksi/PLEvolution/CL/trunk/hashtable where you added the hashtable in Task 1
and perform the SVN Checkout operation.

Now, we want to change the core asset that we just checked-out from the repository. To that
end we must consider the following change request:

Application Name: hashtable
Brief Change Summary: Provide debugging information

Change type Add Change X Delete
Priority Low Medium High X

Detailed Change Info:

Change the methods of MyHashtable.java so that
debugging information is printed out every time the
methods are being called. The information should be
printed to the standard output by using the
System.out.println(String x) method

Please perform the above change and use the Tortoise Subversion Client for committing your
changes in the repository (use the SVN Commit menu with Tortoise)

� Please write down how much time you needed for this task

Appendix

 250

Task 3: Find Instances

Now we want to find out how many instances have been already created during Application
Engineering. To this end please use the show-instances command of the Customization
Layer.

Please answer the following questions:

1. Which instances have been created?

2. From which core assets have these instances been created?

3. Are there any instances of your core asset?

� Please write down how much time you needed for this task

Task 4: Find Changes in the Instances

Now we also want to find out if the Application Engineers changed the instances after they
created them.

To this end please use the show-instance-diff command of the Customization Layer.

Are there any changes in the instances?

� Please write down how much time you needed for this task

Appendix

 251

Task Specifications Group: SVN

Role: AE
Introduction
As you can see above you are in the SVN group. SVN stands for Subversion, the configuration
management tool we will use for managing the Product Line Infrastructure.

The Subversion server for your group is available at http://ksi/PLEvolution/SVN/

For working with Subversion we will use Tortoise Subversion Client which is integrated into the
Windows explorer. Here comes a screenshot of Tortoise:

Appendix

 252

Appendix

 253

Appendix

 254

Task 3: Adapt instances to the needs of a product

During Task 2 we created an instance of a core asset, which up to now is simply a copy of that
core asset.

Now we want to adapt this instance for the needs of our ProductA.

Please use Tortoise check-out (load) the instance from the repository to a local directory in your
hard disk (for example c:\temp).

To that end point the Tortoise Subversion Client to the directory
http://ksi/PLEvolution/SVN/branches\ProductA where you added the instance in Task
2 and perform the SVN Checkout operation.

Perform a simple change in the instance you just checked-out. You can for example enhance a
little bit the methods of the Java class contained therein. Perform the
SVN Commit operation with Tortoise when you are finished. Remember to use an appropriate
commit message.

� Please write down how much time you needed for this task

Task 4: Find Changes in the Core Assets

In this task we want to find out whether the core assets, we have seen during Task 1, have
changed in the meanwhile.

Please use Tortoise for finding out about changes. Combine the Repository Browser,
Revision Graph and Show Log features of Tortoise.

Are there any changes in the core assets? How many?

� Please write down how much time you needed for this task

Appendix

 255

Task Specifications Group: SVN

Role: FE

Introduction
As you can see above you are in the SVN group. SVN stands for Subversion, the configuration
management tool we will use for managing the Product Line Infrastructure.

The Subversion server for your group is available at http://ksi/PLEvolution/SVN/

For working with Subversion we will use Tortoise Subversion Client which is integrated into the
Windows explorer. Here comes a screenshot of Tortoise:

Appendix

 256

Task 1: Add New Core Assets
In this task we want to add a new core asset into the Subversion repository. The path
http://ksi/PLEvolution/SVN/trunk is supposed to hold the core assets in the
repository.

You will find in your local desktop a folder named “set”. This folder contains a Java class, which
is supposed to be used as core asset (i.e. it is reusable across the product line).

Please use the Tortoise Subversion client (use the Import command), which is integrated into
the Windows Explorer to add the set directory to the Subversion repository under
http://ksi/PLEvolution/SVN/trunk/set

� Please write down how much time you needed for this task

Task 2: Change Core Assets
In this task we want to change a core asset that is already in the Subversion repository.

Please use the Tortoise Subversion to check-out (load) the set (of Task 1) from the repository to
a local directory in your hard disk (for example c:\temp).

To that end point the Tortoise Subversion Client to the directory
http://ksi/PLEvolution/CL/trunk/set where you added the set in Task 1 and perform
the SVN Checkout operation.

Now, we want to change the core asset that we just checked-out from the repository. To that
end we must consider the following change request:

Application Name: set
Brief Change Summary: Provide debugging information

Change type Add Change X Delete
Priority Low Medium High X

Detailed Change Info:

Change the methods of MySet so that debugging
information is printed out every time the methods are
being called. The information should be printed to the
standard output by using the System.out.println(String
x) method

Please perform the above change and use the Tortoise Subversion Client for committing your
changes in the repository (use the SVN Commit menu with Tortoise)

� Please write down how much time you needed for this task

Appendix

 257

Task 3: Find Instances

Now we want to find out how many instances have been already created during Application
Engineering.

To this end please use the Tortoise Subversion (e.g. the repository browser and the revision
graphs) for finding out about instances. Instances will be normally stored as branches in the
repository path http://ksi/PLEvolution/SVN/branches

Please answer the following questions:

1. Which instances have been created?

2. From which core assets have these instances been created?

3. Are there any instances of your core asset?

� Please write down how much time you needed for this task

Task 4: Find Changes in the Instances

Now we also want to find out if the Application Engineers changed the instances after they
created them.

To this end please use again the Tortoise Subversion.

Are there any changes in the instances?

� Please write down how much time you needed for this task

Appendix

 258

D.2 Feedback form

Appendix

 259

Appendix

 260

D.3 UTAUT forms

Appendix

 261

Lebenslauf

263

Lebenslauf

Name Michail Anastasopoulos

Wohnort Hamburg

Geburtsdatum 19.10.1974

Geburtsort Athen, Griechenland

Familienstand Verheiratet

Staatsangehörigkeit Griechisch

Schulbildung 1980-1987 Grundschule
1987-1992 Gymnasium

Abschluss: Abitur

Wehrdienst 2002-2003 Grundwehrdienst griechisches Militär

Studium 1992-1997 Universität Patras, Griechenland
1997-1999 Technische Universität Dresden

Berufstätigkeit 1999-2011 Wissenschaftlicher Mitarbeiter am
Fraunhofer-Institut für
Experimentelles Software Engineering

2011-heute System Engineer bei Kuehne+Nagel
(AG & Co.) KG

Hamburg, den 15. April 2014

PhD Theses in Experimental Software Engineering

Volume 1 Oliver Laitenberger (2000), Cost-Effective Detection of Software Defects
Through Perspective-based Inspections

Volume 2 Christian Bunse (2000), Pattern-Based Refinement and Translation of
Object-Oriented Models to Code

Volume 3 Andreas Birk (2000), A Knowledge Management Infrastructure for
Systematic Improvement in Software Engineering

Volume 4 Carsten Tautz (2000), Customizing Software Engineering Experience
Management Systems to Organizational Needs

Volume 5 Erik Kamsties (2001), Surfacing Ambiguity in Natural Language
Requirements

Volume 6 Christiane Differding (2001), Adaptive Measurement Plans for Software
Development

Volume 7 Isabella Wieczorek (2001), Improved Software Cost Estimation
A Robust and Interpretable Modeling Method and a Comprehensive
Empirical Investigation

Volume 8 Dietmar Pfahl (2001), An Integrated Approach to Simulation-Based
Learning in Support of Strategic and Project Management in Software
Organisations

Volume 9 Antje von Knethen (2001), Change-Oriented Requirements Traceability
Support for Evolution of Embedded Systems

Volume 10 Jürgen Münch (2001), Muster-basierte Erstellung von Software-
Projektplänen

Volume 11 Dirk Muthig (2002), A Light-weight Approach Facilitating an Evolutionary
Transition Towards Software Product Lines

Volume 12 Klaus Schmid (2003), Planning Software Reuse – A Disciplined Scoping
Approach for Software Product Lines

Volume 13 Jörg Zettel (2003), Anpassbare Methodenassistenz in CASE-Werkzeugen

Volume 14 Ulrike Becker-Kornstaedt (2004), Prospect: a Method for Systematic
Elicitation of Software Processes

Volume 15 Joachim Bayer (2004), View-Based Software Documentation

Volume 16 Markus Nick (2005), Experience Maintenance through Closed-Loop
Feedback

Volume 17 Jean-François Girard (2005), ADORE-AR: Software Architecture
Reconstruction with Partitioning and Clustering

Volume 18 Ramin Tavakoli Kolagari (2006), Requirements Engineering für Software-
Produktlinien eingebetteter, technischer Systeme

Volume 19 Dirk Hamann (2006), Towards an Integrated Approach for Software
Process Improvement: Combining Software Process Assessment and
Software Process Modeling

Volume 20 Bernd Freimut (2006), MAGIC: A Hybrid Modeling Approach for
Optimizing Inspection Cost-Effectiveness

Volume 21 Mark Müller (2006), Analyzing Software Quality Assurance Strategies
through Simulation. Development and Empirical Validation of a Simulation
Model in an Industrial Software Product Line Organization

Volume 22 Holger Diekmann (2008), Software Resource Consumption Engineering for
Mass Produced Embedded System Families

Volume 23 Adam Trendowicz (2008), Software Effort Estimation with Well-Founded
Causal Models

Volume 24 Jens Heidrich (2008), Goal-oriented Quantitative Software Project Control

Volume 25 Alexis Ocampo (2008), The REMIS Approach to Rationale-based Support
for Process Model Evolution

Volume 26 Marcus Trapp (2008), Generating User Interfaces for Ambient Intelligence
Systems; Introducing Client Types as Adaptation Factor

Volume 27 Christian Denger (2009), SafeSpection – A Framework for Systematization
and Customization of Software Hazard Identification by Applying Inspection
Concepts

Volume 28 Andreas Jedlitschka (2009), An Empirical Model of Software Managers’
Information Needs for Software Engineering Technology Selection
A Framework to Support Experimentally-based Software Engineering
Technology Selection

Volume 29 Eric Ras (2009), Learning Spaces: Automatic Context-Aware Enrichment of
Software Engineering Experience

Volume 30 Isabel John (2009), Pattern-based Documentation Analysis for Software
Product Lines

Volume 31 Martín Soto (2009), The DeltaProcess Approach to Systematic Software
Process Change Management

Volume 32 Ove Armbrust (2010), The SCOPE Approach for Scoping Software
Processes

Volume 33 Thorsten Keuler (2010), An Aspect-Oriented Approach for Improving
Architecture Design Efficiency

Volume 34 Jörg Dörr (2010), Elicitation of a Complete Set of Non-Functional
Requirements

Volume 35 Jens Knodel (2010), Sustainable Structures in Software Implementations by
Live Compliance Checking

Volume 36 Thomas Patzke (2011), Sustainable Evolution of Product Line Infrastructure
Code

Volume 37 Ansgar Lamersdorf (2011), Model-based Decision Support of Task
Allocation in Global Software Development

Volume 38 Ralf Carbon (2011), Architecture-Centric Software Producibility Analysis

Volume 39 Florian Schmidt (2012), Funktionale Absicherung kamerabasierter Aktiver
Fahrerassistenzsysteme durch Hardware-in the-Loop-Tests

Volume 40 Frank Elberzhager (2012), A Systematic Integration of Inspection and
Testing Processes for Focusing Testing Activities

Volume 41 Matthias Naab (2012), Enhancing Architecture Design Methods for
Improved Flexibility in Long-Living Information Systems

Volume 42 Marcus Ciolkowski (2012), An Approach for Quantitative Aggregation of
Evidence from Controlled Experiments in Software Engineering

Volume 43 Igor Menzel (2012), Optimizing the Completeness of Textual Requirements
Documents in Practice

Volume 44 Sebastian Adam (2012), Incorporating Software Product Line Knowledge
into Requirements Processes

Volume 45 Kai Höfig (2012), Failure-Dependent Timing Analysis – A New Methodology
for Probabilistic Worst-Case Execution Time Analysis

Volume 46 Kai Breiner (2013), AssistU – A framework for user interaction forensics

Volume 47 Rasmus Adler (2013), A model-based approach for exploring the space of
adaptation behaviors of safety-related embedded systems

Volume 48 Daniel Schneider (2014), Conditional Safety Certification for Open
Adaptive Systems

Volume 49 Michail Anastasopoulos (2013), Evolution Control for Software Product
Lines: An Automation Layer over Configuration Management

P

es
es

 in
 E

er
im

en
ta

l S
o

ft
w

ar
e

En
in

ee
ri

n

Software Engineering has become one of the major foci of Computer
Science research in Kaiserslautern, Germany. Both the University of
Kaiserslautern‘s Computer Science Department and the Fraunhofer
Institute for Experimental Software Engineering (IESE) conduct re-
search that subscribes to the development of complex software ap-
plications based on engineering principles. This requires system and
process models for managing complexity, methods and techniques
for ensuring product and process quality, and scalable formal meth-
ods for modeling and simulating system behavior. To understand the
potential and limitations of these technologies, experiments need to
be conducted for quantitative and qualitative evaluation and improve-
ment. This line of software engineering research, which is based on
the experimental scienti c paradigm, is referred to as ‘Experimental
Software Engineering‘.
In this series, we publish PhD theses from the Fraunhofer Institute for
Experimental Software Engineering (IESE) and from the Software En-
gineering Research Groups of the Computer Science Department at
the University of Kaiserslautern. PhD theses that originate elsewhere
can be included, if accepted by the Editorial Board.

Editor-in-Chief: Prof. Dr. Dieter Rombach
Executive Director of Fraunhofer IESE and Head of the AGSE Group
of the Computer Science Department, University of Kaiserslautern

Editorial Board Member: Prof. Dr. Peter Liggesmeyer
Scienti c Director of Fraunhofer IESE and Head of the AGDE Group
of the Computer Science Department, University of Kaiserslautern

Editorial Board Member: Prof. Dr. Frank Bomarius
Deputy Director of Fraunhofer IESE and Professor for Computer Sci-
ence at the Department of Engineering, University of Applied Sci-
ences, Kaiserslautern

AG Software Engineering

9 783839 607022

ISBN 978-3-8396-0702-2

