
Hierarchical Font Recognition

Letter Snippets — Visual Words in Font Recognition

Diploma Thesis

Thesis advisor Prof. Dr. Eyke Hüllermeier
Department of Knowledge Engineering & Bioinformatics

Philipps University of Marburg

Germany

written by
Jakub Tomasz Lidke

May 19, 2010

2

I hereby declare that I have created this work completely on my own and used no other

sources or tools than the ones listed, and that I have marked any citations accordingly.

Hiermit versichere ich, dass ich die vorliegende Arbeit selbständig verfasst und keine

anderen als die angegebenen Quellen und Hilfsmittel benutzt sowie Zitate kenntlich gemacht

habe.

Marburg,Mai2010

Jakub Tomasz Lidke

3

Contents

1 Introduction 5

1.1 A Thousand Fonts are not enough . 5

1.1.1 Anatomy of Fonts . 6

2 Related Work 9

3 Local Patch based Font Recognition 13

3.1 Overview . 13

3.1.1 Type of features . 13

3.1.2 Learning systems . 14

3.2 Bag-of-Words . 16

3.2.1 Creating a Visual Dictionary . 16

3.2.2 Important factors at Bag-of-Words . 17

3.3 Preprocessing . 19

3.3.1 Image binarization . 19

3.3.2 Character segmentation . 20

3.3.3 Image sampling . 20

3.4 Features . 33

3.4.1 Hierarchical Recognition Features . 35

3.4.2 Histograms from Distance Transforms 37

3.5 Classification . 38

3.5.1 Histograms and Metric . 38

3.5.2 k-Nearest Neighbor . 40

3.5.3 Patch Majority Voting . 40

3.6 Work flow . 41

4 Evaluation 43

4.1 Datasets . 43

4 Contents

4.2 Distance Transform Histograms . 44

4.2.1 Distance Transform Histograms for OFR 44

4.3 NMF and Majority Vote . 46

4.4 Letter Snippets – Visual Words in Font Recognition 47

4.4.1 Parameter . 48

4.4.2 Segmentation, Word Length & Language 50

4.4.3 Expanding the Dataset . 52

4.4.4 Adding shape thickness feature . 54

4.4.5 Serif or Sans-Serif Classification . 55

4.4.6 Illustrations of best-in-five results . 55

5 Conclusions 67

6 Future Work 69

7 Appendix 71

5

Chapter 1

Introduction

1.1 A Thousand Fonts are not enough

One of the most important reasons for font design can be found in theory of media. Font

plays an important but subtle role, while communication takes place between receiver

and sender. According to Uses and Gratifications Theory [7], the way information is un-

derstood, depends, among other things, on style of the message, receivers expectations

and certain surrounding circumstances. A thin fluent script will introduce other prospects

about a message than a square Gothic font. This will affect subconsciously the way a

message is understood. Knowing this, it is not surprising that today there exist over a

hundred thousand different fonts. While books and newspapers often use less than 10

different fonts, magazines and advertisements offer a wide range of different typefaces.

Movies, serials, games and companies make use of uniquely designed fonts, which will

be instantly associated with them. Because of the huge number of available fonts, today

optical font recognition (OFR) is more important than ever before.

In the following we will introduce several applications for OFR: First, a font designer

wants to create new fonts. Therefore, there is a need for being able to verify differences be-

tween prototypes and other fonts. A font search engine seams to be an essential tool, since

manual comparison is too time consuming. Second, detection of font license violations be-

comes applicable in large scale, if a font search is available. On the other hand, it would be

possible to learn whether there is a free font available, which is very similar to an expen-

sive commercial type. Furthermore we can think of applying font recognition as a module

in existing software. There are projects where printed media (newspapers & magazines)

are archived. The content must be fully searchable. Among other things correct text block

alignment and good optical character recognition (OCR) are needed. In both cases font

6 Chapter 1. Introduction

Figure 1.1: An overview of most important font features.

recognition is a great help. For example, we know that companies use unique fonts, there-

fore advertisement can be recognized by OFR. In magazines and books different fonts also

indicate different content. Again, OFR offers a convenient way to increase the performance

of text block alignment. OCR applications usually apply multi-font recognition software,

which is in most cases a favorable choice. Recognition errors occur if unknown or exotic

fonts are used or image quality is poor. If the font is known before OCR is applied, the

exact shape of each letter is known, therefore character recognition may achieve higher

precision.

The main contribution of this diploma thesis is the introduction of a new OFR method

and its evaluation on a huge database of 9809 fonts, which exceeds to the best of our

knowledge the size of the largest font database, mentioned in related works by more than

3.5 times. Further, we explore importance of input length and content with respect to

recognition rate.

Based on part of our results, we have also written and submitted a paper to the Inter-

national Conference on Pattern Recognition (ICPR) 2010 which has been accepted.

1.1.1 Anatomy of Fonts

This section will introduce the structure of fonts and how they can be distinguished. Tech-

nically there are over 37 different features, which conjuncted may identify most fonts. We

will briefly explain a small selection of features, which will enclose the problem of font

recognition.

Apart from the font size, the font style can be changed by a word processor. There

are 4 standard presets italic, bold, bold-italic and normal. We do not count variations of

these as new fonts because they are created by a word processor, which is a form of post

processing. Nevertheless a font can be designed e.g. italic or bold, the important thing is

which is the designated appearance.

1.1. A Thousand Fonts are not enough 7

Figure 1.1 shows some of the most important features, which are used to distinguish

fonts manually. The area in which a character is placed is separated by four lines. The

lower height (a), the baseline (b), the x-hight line (c) and the upper height (d). Obvious font

features are the x-height (10), the ascender (11) and the descender (9). The relation between

capital-height (12) and x-height is often a good attribute to create general groups of fonts.

One of the best known features are serifs (1). If they exist in a font, serifs can be oriented

to only one side or both. Further their shape can differ in many ways. The angle in which

horizontal strokes hit the baseline is important too (3). The thickness of the stem (4) is

also a good attribute for font recognition. The contrast (2) is a very important attribute of

a font. The contrast is defined as the relation between the thin stroke (hair line) and the

thickest line stroke in a font (more examples in Sub-Figure 1.2a). Usually the character H,

is a good example to measure the contrast of a font. But it is not always constant. There

are fonts which change the contrast dynamically. Garamond is such a font. Depending

on the applied weight, the contrast differs. Here weight expresses the mean thickness of a

font. If we would use a quill to paint a letter, all attributes of it will be needed to describe

the first part of a stroke. The angle, the pressure, the shape and the thickness of the used

quill will determine the shape of the starting stroke (6). Although it is a very small part

of the shape, it is a very discriminative feature. Of course the finish of a line is similar to

and also a powerful attribute (7). A very specific but deciding feature is the orientation of

the diagonal of the letter O (8). Very similar to the O-feature is the eye in the character e
(see Sub Figure 1.2b). The eye is the shape of enclosed area by the character e. Another

attribute is given by the shape and size of the bowl (5) in a letter. Bowls are closed areas in

letters. Another related feature is the angle and the shape of the stroke entry and stroke exit
of a bow. This is a feature, which is used to distinguish very similar fonts. As mentioned

before, there are many more features which can be used. But they are mostly very specific

and hard to recognize.

To summarize this section, we want to emphasize two observances. First, most of the

listed features are very difficult to extract with respect to the topic of pattern recognition.

The most difficult point is, that we need extensive knowledge about the data and its shape

before we can even extract a desired feature. This makes many possibly powerful features

useless for automatic font recognition or narrows their applications.

Second, there are two kinds of features. There are features which describe relative

differences in size, thickness and angle of letters. These features can be extracted from all

letters from a font in general. In contrast to those we can find many features, which cannot

be extracted from each character. In particular they can only be captured if we examine

certain regions of distinct letters.

8 Chapter 1. Introduction

(a) Contrast examples

(b) The eye of e

(c) start stroke 1, end stroke, start stroke 2, bowl, serif shape

Figure 1.2: Figures show examples of one global and five local features. Images from [4]

We can derive two possible approaches. At First, we can introduce methods, which

make use of general attributes – global methods. Second, we can distinguish fonts by com-

parison of detailed characteristics – local methods. In the following Chapter 2 we will in-

troduce works on the subject of font recognition which can be assigned to local or global

approaches.

9

Chapter 2

Related Work

This chapter will give an overview to several methods, which were applied to the chal-

lenging topic of font recognition.

It is important to note that the notation font can be misleading. Most approaches are

applied to very small numbers of fonts. Usually 5-20 different fonts are used, but often

much higher numbers are reported. The reason for that is the way font is defined. Often the

number of fonts is the product from font style (bold, italic,. . .) typeface (Arial, Comic,. . .)

and font size (10pts, 12pts, . . .).

First, shapes can be described from a distant or close point of view. By choosing the

view, we also choose the way we will describe a shape. Usually descriptive attributes of

distant objects will refer to global properties. While details and local parts of a shape will

be the subject from a close perspective. If we choose the most descriptive attributes to

specify objects, we should be able to distinguish several objects by referring only to these

attributes. The process of collecting these properties is called feature extraction.

Generally there are two different paradigms, we can do local or global feature extrac-

tion. In this case local refers to information gained from parts of single letters. Hence

global features refer to information, which are extracted from entire lines, pages and words.

The advantage of local features is their flexibility in real-world applications. A well work-

ing local feature extraction relies in most cases on a reliable character segmentation. Char-

acter segmentation is used to extract single letters from word images. Global approaches

are more forgiving with respect to noise and segmentation errors. Usually more data for

training and recognition is required than in local approaches. However feature classifica-

tion is usually done by well known classifiers like Neural Networks, SVMs, Bayes classi-

fiers or appropriate distance metrics.

By using topological and morphological features, which were extracted from text lines,

10 Chapter 2. Related Work

Figure 2.1: Typographical lines from a vertical projection profile.

Zramdini and Ingold [25] realized a statistical method, which allowed to identify type-

face, weight, slope and size from unknown fonts. Since entire text lines are processed,

it is a global feature approach. Applied features are vertical and horizontal pixel projec-

tions (see Figure 2.1 which shows an example from this paper), which were used to create

a font model base. Each model has been created from the average of over 100 text lines of

each font (font size, typeface and style), which resolved into 2800 text lines for training.

They have also done experiments with different line size for test data, but with about 1
4 of

the original dataset. However recognition rate drops to 64% at a text length of 25 words

and improved from 96% to 99% with 400 words per input line. The disadvantage of this

approach is dependency on content and length of input lines. Further application of this

method is severe narrowed because of its requirement for large data sets.

In method presented by Schreyer [1] fonts are described by texture elements called

Textons. Textons are based on the assumption that every texture can be reconstructed by a

combination of basic elements. For more detailed information we refer to [19]. Basic geo-

metric features and thresholds were used in order to detect font style (bold, italic, normal)

within four different fonts and three font sizes. However, the main contribution of this

publication is the Texton structure itself.

Lee and Jung [12] presents a Non Negative Matrix Factorization (NMF) for feature

extraction. Letter images are segmented and rescaled to a small fixed resolution. For

each font a profile representation is created, which is generated with an agglomerative

hierarchical clustering algorithm. Distances are assigned by the Earth Mover Distance,

while Tanimoto Distance is used as ground distance. Recognition is done on six fonts, four

styles and on lower as well as on upper case letters. Letter segmentation and parameter

settings are very important to this approach, and have to be manually adjusted for each

dataset. Reached recognition rates are favorable.

Sun [20] applies stroke templates which are generated from characters of a font and

stored in a database. Given input stroke data a Bayes classifier decides about the most

likely font. Classification is done with 5 English and 5 Chinese fonts, which can be found

11

Figure 2.2: First five eigenimages from character a. Intensity values are normalized.

in four different styles (normal,bold, italic, bold-italic). Classification rates are for certain

fonts very good. However, not every font can be processed by the proposed stroke tem-

plates which make the feature unpractical for real-world applications.

A different interesting method is introduced by Solli and Lenz [18], where recognized

text is used as an additional clue for font recognition. Grey value images of single letters

are processed by principal component analysis. The resulting covariance matrix, provide

eigenvectors and eigenvalues. These vectors describe a low-dimensional subspace. Origi-

nal images are projected on this space. Their coordinates in the subspace are used as new

descriptors. Referring to the idea of Eigenfaces [22], the descriptors are named Eigenfonts

(see Figure 2.2). Recognition is done on a database of 2763 different fonts with a best-in-

five selection. While this approach achieves convenient results at a large dataset, it has

also the strongest prerequisites – it cannot be used without working OCR and character

segmentation. Besides, this approach made us realize that there are no other approaches

which can compare with it, since they applied a much larger dataset then others. Which

was concurrently the priming to our work.

A Neural Network classifier is applied by Jung [10]. Input nodes are fed with vectors,

which a representing topological features. Which are very similar to features described by

Zramdini and Ingold [25]. However recognition rates are satisfying at seven fonts with

font sizes between 9-18pt.

A global feature approach is introduced by Zhu [24]. This does not require character

segmentation. This method uses uniform text blocks for feature extraction, hence spaces

between words and text lines will be set to a small fixed value (see Figure 2.3). Font

recognition is transfered into a texture recognition problem. Texture features are extracted

by a multi-channel (4 orientations and 4 frequencies) Gabor filter from preprocessed text

blocks. Final font identification is done by a weighted Euclidean distance classifier. The

dataset consists of 6 typefaces and 4 font styles for Chinese fonts and 8 typefaces and 4

styles for English fonts. The average performance of this approach is very convenient.

However the need for a large datasets for training as well as for testing, narrows possible

applications to real applications.

12 Chapter 2. Related Work

Figure 2.3: A uniform text block for feature extraction.

Doermann [13] apply Gabor filter on dictionary pages to distinguish between two arbi-

trary script types as Hindi and Roman or Arabic and Roman and their style. Filter settings

are the same as in [24], but identification is done by a different distance measurement.

In contrast to the other Gabor filter based methods, text blocks were generated from sin-

gle word copies not from whole text lines. Real world applications of this approaches

are limited, since it is designed for dictionaries. However results were satisfying for this

application.

Avils-Cruz [6] proposes another global texture analysis method. Before feature extrac-

tion uniform text blocks are created. Afterwards high-order statistical moments (3rd and

4rd) are employed for feature extraction. 3th order moments describe the skewness of a dis-

tribution, while 4rd describe its abruptness (kurtosis). Then principal component analysis

is performed to the extracted features. Additionally, an expectation maximization algo-

rithm provides an unsupervised method to find the number of fonts and their parameters.

Finally, a Bayes classifier is used for classification. While this approach shows accurate

results on a small dataset of 8 fonts and 4 styles, it has very high computational cost. Thus,

for the desired application of Internet font recognition it is not applicable.

Ma [14] presents a biologically inspired method. Here, the Grating operator is used

for feature extraction. The Grating operator is similar to a Gabor filter, but with a strong

precedence to regular patterns. Further details can be read in [11]. Moreover it is com-

bined with a back-propagation Neural Network to classify between 5 fonts and 3 styles.

We have learned that there are many methods for OFR on small datasets. Since we are

not aware of a favorable method for font recognition with respect to large datasets, there

is still research to be done. Our method will introduce a new approach in this direction.

13

Chapter 3

Local Patch based Font Recognition

As we have seen in the previous chapter, there are several approaches to font recognition.

Therefore it is important to put our method into context. We want to introduce a new

method for Internet font recognition. As we have learned in the related work Section 2,

many methods have been applied to small datasets. In contrast not much is known about

font recognition on large datasets, hence this topic needs more exploration. Our work is a

contribution to these efforts.

The following pages of this chapter will first give an introduction about some general

concept ideas. Next we will discuss features, learning methods and an abstract view of

our approach. Subsequent sections will introduce our method in detail. In Section 3.3 we

describe the preprocessing phase. Applied features will be introduced in Section 3.4 and

classification of fonts will be explained in Section 3.5.

3.1 Overview

This section is organized as follows: First we will discuss possible features, which are

locally or globally oriented (Section 3.1.1). Second we will give a brief overview about

possible learning systems (Section 3.1.2).

3.1.1 Type of features

Next we describe feature types with respect to their practical applications and their real-

ization. As described in the related work section there are two paradigms from which we

can choose:

14 Chapter 3. Local Patch based Font Recognition

Global features

Here we assume that single letters do not carry enough information about any font for

sufficient recognition. Given that we choose enough normal distributed letters from an

arbitrary font, a unique but font specific pattern will emerge. That way font recognition is

transformed to a texture recognition problem. In order to create suitable input data, many

uniform text blocks (illustration 2.3) have to be created. Before text blocks can be created,

word and line segmentation has to be performed. While text lines have usually no skew,

this is a very fast and easy operation. Further preprocessing is usually not needed, which

is the biggest advantage of global feature approaches. These feature extraction methods

cannot be applied in most applications, because of their need for high numbers of test and

training data samples. Often there is only a small number of data samples available.

Local features

They can target parts of characters up to word parts. Usually global features move font

recognition towards texture recognition; local features can be designed to target typo-

graphical features, texture statistics, shape matching or combinations of these. Clearly

they are much more flexible than global methods, also there are more applications avail-

able for this kind of method. According to the “No-Free-Lunch-Theorem” there is a price

to pay for this flexibility. Local approaches usually require a reliable character segmenta-

tion, which in some cases is a challenging task.

We assume local features will perform better than global ones with respect to large

numbers of fonts. This is because many very similar fonts can be found in large datasets,

where global features may be too coarse to be able to distinguish them. Further local fea-

tures are not as restrictive as global features with respect to application spectrum. Further-

more local features have shown very good overall performance in the field of Computer

Vision which is an additional motive for applying local features.

3.1.2 Learning systems

There are three different learning systems available. The following paragraphs will give a

brief introduction on these. After that we will explain our choice.

Unsupervised learning methods can be understood as closed systems, which posses a

limited number of tools to process input data and put it into relation to each other. These

methods create an order or another perspective to the data. Most important is the fact

that the system is neither aware of any environment information nor does it receive any

3.1. Overview 15

information about the meaning or real relation between data itself or its relation to any en-

vironment. Based on the system tools, data will be processed and results will be returned.

A well known exponent of these systems is the PCA.

Reinforcement learning systems are interacting with their environment, which gener-

ates negative or positive feedback to the general performance. The system creates ad-

justing actions to the environment, which aim for maximization of the positive feedback.

Hence the environment is an abstract collection of one or several systems. This method is

generally a good choice in order to find optimal parameters in a working process. Espe-

cially if there are many parameters and the complexity of the environment is too high to

find a decision manually. A full evaluation of data can be very time-consuming, because

this kind of system usually has to run several cycles until a target performance is reached.

Since we want to develop a method which works with a large dataset, a reinforcement

learning system could be too slow to start with.

Supervised learning systems adapt models, which are modified by pairs of data — in-

put and its desired output. A good model is able to reproduce the corresponding output,

when a previously shown or similar input example is provided.

In many recognition tasks supervised learning approaches are applied. For two rea-

sons this seams to be the best system to work with. First we can make use of all information

we can extract. Second we get a direct feedback about chosen methods, which will make

further evaluation of each decision in the process easier. Since we have decided in favor

of a local feature approach, there is a difficult task to solve. How do we extract most of

the local features (Section 1.1.1)? Several specific feature extractors would be very slow

and therefore not applicable. We need a flexible extractor, which can capture most of the

mentioned features. Thus we cannot be sure, what feature will be captured exactly. Also

it will be difficult to assign consistent labels to data. The reason for that is the similarity of

some local shape parts. For instance horizontal or vertical line strokes are the same among

many fonts. Consistent examples are essential for a successful classification in a super-

vised environment. If we want to proceed with this idea, we need a different learning

system. We need a algorithm, which is able to organize extracted features with respect to

their content. This task can be accomplished by an unsupervised approach. Therefore we

have chosen the Bag of Visual Words method. The next section will introduce its concept.

16 Chapter 3. Local Patch based Font Recognition

3.2 Bag-of-Words

This section will introduce the concept of visual vocabulary, which enables us to search for

content using indexed local features. The idea is taken from text retrieval, where it has

been successfully applied. First we describe how the visual vocabulary is created, second

we describe how visual words are used and finally we will define several characteristics of

this approach.

3.2.1 Creating a Visual Dictionary

In the topic of text retrieval documents can be identified by collecting a number of words,

which are used as a summary from a given text. Words statistics of documents can be used

to create unique fingerprints. A selection of words from these fingerprints, is also a very

good summary of the original document. By selecting a few key words from a summary,

documents can be found very quickly.

First there seams to be a problem to unify the world of words with the 2-D world of

images. How do we translate high dimensional images into single words? Words are very

limited in their appearance. In contrast images can contain thousands of different shapes

and colors. A common way to discretize real-values is to create value windows, which

will contain values between discrete borders. This is also applicable in the case of images.

In terms of 2-D images we need a local feature extraction. A collection of image feature

descriptors constitutes a feasible discretization of the image space. But we also need a

discretization of the feature space, therefore we need a fixed number of prototypes, where

features can be assigned to. Data prototypes can be created by application of a clustering

algorithm. The entire set of constructed prototypes is the visual vocabulary/dictionary or

also called codebook, which gives is a quantized feature space. From now on it will be

used to translate feature vectors into visual words.

In practice we will create a representative dataset. We will apply feature extraction to it

and afterwards we will quantize the features. The resulting codebook will be the basis of

further steps. Hence first dataset may be discarded.

The next step is to translate each entry of the real dataset. Therefore each feature value

is translated using the dictionary into a visual word. Each word is represented by its unique

index. Usually we will extract a collection of features from one entity, hence we will also

receive a collection of word indexes.

The list of visual words per data example is analyzed. Frequencies of each word are

counted and assembled to a bag-of-words histogram. These histograms summarize the

3.2. Bag-of-Words 17

data, while the dimensionality of it is much smaller than the original data dimensionality,

several examples of our visual words are illustrated in Figure 3.1.

Again if we assume an image to be a document, then we can clearly see the analogy

to the previous text retrieval idea. We summarize text documents with a collection of key

words. So it can be recognized using only these words.

The document recognition is performed very similar to the former creating step of

the vocabulary. New examples are translated using the previously generated vocabulary.

Once more we create a bag-of-words histogram for the new data. Finally we have to com-

pare the frequencies of each word with the occurrences in the former phase. The first prac-

tical approach of this idea was implemented by Zisserman and Sivic [17], who indexed

video frames in order to search for particular objects.

3.2.2 Important factors at Bag-of-Words

Since we have decided to apply a bag-of-words approach, we should be aware of influen-

tial factors to this method. There are several factors, which are important to this approach

and all have a strong impact on the outcome.

Interest points define positions for feature extraction. It is an important and difficult task

to find these points. Often optimal coordinates are unknown. Salient regions in images

are not necessarily good extraction regions. Also regions, which appear to be important

from the semantic point of view, are not always appropriate. Hence, if regions are chosen

badly from the beginning, the approach will not yield convenient results.

Point density raises two problems: First, should there be overlapping between regions?

This is important because overlapping can be a double-edged sword. On the one hand

we get a very detailed scanning of the data. On the other hand overlapping information

can interfere with each other, which may result in noise and false data. Second, how

many regions need to be extracted? The more features are extracted the more precise a

recognition can be done, concurrently this will raise the time complexity of the approach.

The Feature itself is the most important factor as in any other approach. Features have

to describe the data well enough to allow a differentiation to some extend, especially if

we compare smaller regions. Regions assigned to the same visual word, should also be

related to each other. Besides, best possible parameter settings, it is always a good choice

if the applied feature is scale and rotation invariant.

18 Chapter 3. Local Patch based Font Recognition

Figure 3.1: Examples of visual words.

Loss of geometric relations is a fact which is bonded to the bag-of-words idea. While

we disassemble an image into small regions, overlapping or not, we do not use any in-

formation about their positions. Furthermore data is arranged in a unsupervised manner,

which also ignores any order, which may have been given by the order of the data sam-

ples. Depending on the importance of geometric relation, this may be compensated by a

post processing step.

The visual vocabulary is the second most important factor to a bag-of-words method.

Hence, the dataset used to create the vocabulary is very important too. First of all it has

to be representative for the entire feature space. Second, number of visual words must

be high enough to translate features in a appropriate way. At the same time it must not

contain too many words. Since the Curse of Dimensionality lies in the number of visual

words. If number of visual words is too high, single examples will be represented by

sparsely assigned visual words. This will lead to comparison difficulties, where bags-of-

words cannot be distinguished, since they are all equally different. A good vocabulary can

be used for different datasets, with convenient results. However best results are achieved,

if test and training data samples are used to create the vocabulary.

To summarize the previous sections, we will emphasize the most important facts. We

want to expand knowledge in the topic of font recognition on large datasets. For the sake

of flexibility we have decided to use a local feature extraction on single letters. Because of

problems with inconsistent data samples, standard approaches using supervised learning

seam to be difficult to apply. In this case an unsupervised learning system appears to be

the best choice. We have decided to apply a Bag-of-Visual-Words approach.

3.3. Preprocessing 19

(a) Newspaper color scan (b) Newspaper binarized

Figure 3.2: Here we can see an example for document binarization. The method applied

was proposed by S. Lu and C.L. Tan of the Institute for Infocomm Research in Singapore.

They won the Binarization Contest arranged by ICDAR 2009.

3.3 Preprocessing

Preprocessing is needed to prepare data before feature extraction can be successfully ap-

plied. This section will explain adopted preprocessing methods in detail.

Preprocessing is built up as follows:

1. Image Binarization

2. Character segmentation

3. Image sampling

3.3.1 Image binarization

Binarization maps pixel values from an arbitrary color space to 0 and 1. Usually it is ap-

plied as the first step to each image. On the one hand image contrast will be maximized

this way, which is most important for following operations. On the other hand computa-

tional time and memory usage are lower that way. Although there are plenty of methods

for image binarization available, for the sake of simplicity we apply simple threshold bi-

narization.

As we work on synthetic images, we do not have to deal with light conditions, shad-

ows or bad image quality (see Figure 3.2). Experiments showed that simple threshold

based binarization performs well in our case, therefore we did not apply complex meth-

ods. Pixels which have gray values above 124 are considered full black, while the others

are considered white. Finally images are inverted, which is needed for further processing.

20 Chapter 3. Local Patch based Font Recognition

(a) Horizontal projection (b) Vertical projection

Figure 3.3: Here are two examples of horizontal (a) and vertical (b) pixel projection, which

can be used for word and line segmentation.

3.3.2 Character segmentation

Character segmentation is usually the second step in most font recognition approaches.

Usually text is arranged in blocks. Blocks can be separated into text lines, which again

can be separated into words and finally they can be split into single letters. This split

operation is done by character segmentation. It is to a certain extent necessary. If we would

apply a global feature method, we would probably need a line and word segmentation.

Usually local approaches need character segmentation. Spacing between single letters are

often very small. Hence local feature extraction could consider values from other letters

in direct proximity to a target letter position. This additional context would pollute the

feature extraction, which would complicate the recognition process unnecessarily.

Most fonts have a distinct space between letters, strict vertical fonts are not a challenge

because we can create vertical and horizontal pixel projections, which will indicate letter or

line spacing with zero values (see Figure 3.3). However italic fonts are more challenging.

They can be left or right slanted with different angles. Thus vertical projections will only

work for word segmentation, while characters cannot be separated that easily.

Here we will introduce briefly a method to character segmentation: Connected Compo-
nent Labeling scans input images and investigates the neighborhood of each pixel. Pixels

which are directly connected, become grouped to a certain label. The simplest version

of this algorithm will return groups, assuming each group is a single letter. In addition,

heuristics and thresholds can be used to enhance the algorithm. Although there are many

fonts which may be difficult to segment (see Figure 3.4). If appropriate settings have been

chosen, even challenging fonts can be segmented. However image segmentation is a well

researched field, and a subject for its own.

3.3.3 Image sampling

Image sampling is the third step and most crucial part of the preprocessing phase. This

step computes positions for feature extraction. As mentioned in the beginning we apply

3.3. Preprocessing 21

Figure 3.4: An example of a difficult font for segmentation, where connected component

labeling has been applied.

a local feature approach, which in this case demands knowledge/decision making about

regions to choose from. The optimal positions for feature extraction depend strongly on

the feature itself and the dataset. There are two strategies to solve this problem. First, we

choose a regular sampling of a shape. This way we will cover the entire shape and most

important regions will be covered this way. Although we could receive an unnecessarily

large number of extraction points. Second, another feasible method is given by an extrac-

tion of the shape skeleton, which again results in a regular sampling of the shape, with an

additional local constraint, which demands that a given point is located in the middle of a

shape. We have applied four different methods for image sampling:

Random pixel selection The most simple and probably worst way to get extraction

points is random selection. Random points tend to create small groups or lines within

the letter. This often leads to missing representation of image regions. While some shape

parts get many representatives other get none.

Information Theoretic Vector Quantization (ITVQ) We have also applied an implemen-

tation of ITVQ for binary images. Since this method tries to estimate a statistical model

for the shape of an input image, it may result in better results than the k-Means algorithm.

The idea is as follows: A number of sampling points can be calculated, by minimizing the

distance between a statistical model of the original image and a simplified one, based on

the returned points.

We are interested in a good representation of the image by a finite number of points

M = x1, . . . , xm, where their number is much smaller (M � N) than in the number of

pixels in the input image. The image function I : X → {0, 255}, where X is the set of

pixel vectors, can be described by a probability density function (pdf) p1(x). In order

22 Chapter 3. Local Patch based Font Recognition

Figure 3.5: An example of the ITVQ sampling method.

to estimate pdf p1(x), the Parzen estimate is calculated based on the image vectors. A

Gaussian is chosen to be the Parzen window. In order to estimate the pdf we create a

sum of Gaussians over the data point vectors. Further, we initialize a number of random

points, which will shape the quantization we are searching for. Now we can estimate

another pdf p2(x), which describes vectors from M . These two pdfs need to be put into

relation, in other words we need a comparison measure. One convenient way to do that,

is the Cauchy-Schwarz (CS) pdf divergence (Equation 3.1).

DCS(p1, p2) = − log
∫
p1(x)p2(x)dx√∫
p2
1(x)dx

∫
p2
2(x)dx

(3.1)

Where p1 dedicate the pdf of the original image, the p2 is the pdf of the quantization.

The minimum is obtained if the pdfs are equal. Further we replace p1 and p2 with their

Parzen estimates. After solving the integrals from DCS and rearranging the terms, we

can find an expression for fixed points, which will be used as a update rule for points in

M . Hence the integration constant contains a cross entropy term in the nominator, which

works as a counterbalance in the process. It prevents the number of points from collapsing

to very small numbers. After several update iterations (we run 150) a convenient result is

reached (illustration in Figure 3.5). Though this approach delivers more stable and repre-

sentative results than random selection or k-Means clustering, we have little control over

the number of points, which will be returned. This method is in the same complexity class

as k-Means clustering.

k-Means clustering A more reliable method is the well known k-Means clustering [15].

The general idea is to group similar objects and to find one representative for each group.

The process of grouping is called clustering. While we do not need to add additional in-

3.3. Preprocessing 23

(a) Random (b) K-Means

Figure 3.6: Comparing random selection to k-means clustering of foreground pixel coor-

dinates, while k was set to 50. k-Means shows in general a more regular distribution than

random selection.

formation besides the data itself, k-Means belongs to the unsupervised learning methods.

K-Means clustering creates a k partitioning of an arbitrary number of input vectors.

The goal is to minimize the objective function 3.2.

J =
k∑

i=1

∑
xj∈Si

||x(i)
j − ui||2 (3.2)

Where ‖ x(i)
j −ui ‖2 is a chosen distance metric between xj ∈ Si and ui a centroid position.

Thus the variance of vectors represented by an arbitrary partition Si ∈ S tends to be low,

where S is the set of all portions generated by the algorithm.

Partitions are generated as follows (an illustration can be found in Figure 3.7): First

k random samples are generated. These are the first cluster centers. Second, each vector

is assigned to the nearest cluster. Third, a new centroid for each group is calculated and

saved as group representative. Fourth, the algorithm starts a new iteration from the sec-

ond step. The algorithm proceeds unless no changes occur or a preset maximum number

of iterations is reached. k-Means will converge after some time, but it depends on the

amount and complexity of the data. There is no guarantee to find an optimal solution.

Mary Inaba [9] has shown, that for a fixed number of clusters and dimensions k-Means

Clustering reduces to polynomial time complexity, while in general it is NP-hard.

Each centroid can be understood as a prototype of all vectors, which are assigned to it.

24 Chapter 3. Local Patch based Font Recognition

If we had new vectors, we could identify their membership to a centroid by computing the

distance to all centroids, the center with the smallest distance represents the corresponding

partition. This step is also referred to as Vector quantization (VQ).

Hence we obtain sampling points by feeding k-Means algorithm with coordinates of

all foreground pixels, which are building up our letters. The resulting codebook contains

the coordinates of the centroids, which are later used as extraction points. In our approach

k was scaled dynamically with the image size. Nevertheless k-Means clustering is compu-

tationally expensive so we limit the iteration number to 5. Most of our experiments have

been done with k-Means clustering of image pixels. Point distribution is more regular

than random selection, because selected points combine local values of the letter (compare

Figures in 3.6).

k-Means clustering can be also understood as a discrete version of the Expectation

Maximization algorithm (EM). The basis idea for EM is adopted from k-Means. EM es-

timates parameters of a statistical model, which describes a data distribution, given a set

of examples. While k-Means calculates a discrete model of a dataset, an EM algorithm

computes parameter of the maximum likelihood estimate for a statistical model. First,

observed data samples are used to calculate data dependent parameters of a probabil-

ity function, which corresponds to the second step in the k-Means algorithm. The next

step finds parameters, which maximize the probability function. This corresponds to the

movement of the centroids in the third k-Means step. Alike k-Means, EM algorithm cannot

guarantee to find an optimal solution.

Laplacian-Distance-Transform In contrast to the other sampling methods this one tries

to extract points on the skeleton or also called medial axis [3]. First we create the distance

transform [16] of an input image. The distance transform is a map of the input image,

thus it has the same size as the original image. As figure 3.8 indicates, each entry in a

distance transform holds the minimal distance to the next white pixel. Note that it can

be only computed correctly, if the input image is binary, which is not a drawback in our

case, because we need binary images anyway for other steps. Geometrically speaking

it builds a height map from a binary image, where peaks mark positions with the largest

distance to planes (illustration in Figure 3.10a). Any Distance Transform has very powerful

predicates, it is rotation invariant. Horizontal and vertical pixel neighbors differ at most

by one at any scale. Of course values will change, if the image is resized, but relative value

differences will be conserved, which gives us a kind of scale invariance as well. Hence the

relative positions of each maximum from a distance transform are scale invariant, which

could be used for skeleton generation. We tried to extract pixel positions at maximal values

3.3. Preprocessing 25

from the Distance Transform. But there are either not enough or there are too many of

them. Figure 3.9 illustrates this problem while using letter images as input. Examples

show that letter shapes vary in stroke thickness too much. The extraction of pixels with

highest Distance Transform value does not lead to aspired results. A possible method

could be the application of a shape sub-devision method.

This leads to a local consideration of the shape. There is a faster and more purposeful

method, than dividing the image into sub regions. We realize that the search for the highest

values of the DT is also an edge detection problem. The first derivative from the Distance

Transform will reveal extreme values. We calculate it in x-axis and y-axis direction and

calculate the sum of both, which is the Gradient of the DT. (Equation 3.3).

G [f(x, y)]) =
(
Gx

Gy

)
=
(∂f

∂x
∂f
∂y

)
(3.3)

In digital image processing derivatives can be approximated by differences.

f
′
(xi, yi) ≈ f(xi+1, yi)− f(xi−1, yi) (3.4)

The Gradient indicates changes of a vector field and can be used as an edge detector.

Hence zero values will reveal positions on the shape skeleton, which is an edge on the

DT. Additionally we get points on the border of our shape, which can be ignored. We

observed that zero values on diagonal lines from the skeleton, are often overwritten in the

summation. Reason for that is the DT itself. Its property of slow value changes between

neighboring pixels makes it difficult to localize edges with the first derivative.

Instead it is more precise to apply the second derivative. Figure 3.11 shows this with

a 1-D example. The second derivative is more sensitive to noise than the first derivative.

This also is a reason, why it is not applied very often in other applications. If an image

contains noise, it is important to smooth the image first. One possible way to do that is

the application of a Gaussian filter. In our case however there is no need for that, because

we work on synthetic images. The 2-D equivalent to the second derivative is the Laplace

Operator. We apply the approximation h1 of the Laplace Operator (see Equation 3.5),

which is not rotation invariant. A rotation invariant approximation is shown in Equation

3.6.

h1 =


0 1 0

1 −4 1

0 1 0

 h2 =


1 1 1

1 −8 1

1 1 1

 (3.5)

h3 =


2 −1 2

−1 −4 −1

2 −1 2

 (3.6)

26 Chapter 3. Local Patch based Font Recognition

We have compared the experimental results form h1, h2, h3, and the Sobel operator h4 (see

Equation 3.7), which is also applied for edge detection.

h4x =


1 0 −1

2 0 −2

1 0 −1

 h4y =


1 2 1

0 0 0

−1 −2 −1

 (3.7)

Preliminary experiments showed that the 4-neighborhoods Laplace Operator (3.5 h1) has

a convenient response, while the other approximations h2 and h3 are responding too

strongly to edges; we received too many points. h4 responded too weak to edges, which

means we received not enough points in general.

Too many extraction positions will result in later processing in too high computational

costs. Therefore we are not interested in using every point of the median axis. It is suffi-

cient to extract a small fraction of possible points. Hence we decide to apply h1. There are

some rare cases in which the 4 neighborhoods Laplace Operator does not produce enough

points, but we can catch that, with an additional rule in the algorithm. If there are not

enough skeleton points found, we switch to the 8 neighborhood expression. Another op-

tion is to lower the acceptance threshold, in these rare cases. In general we are interested

in points, which got at least a response of x <= −2. The reason for that is that the second

derivative will give greater response in cases where the shape border is very near. Since

we want skeleton points, which are not near the border, response above−2 can be ignored.

Figure 3.11 illustrates this in a 1-D example. This way we discard nearly all responds to

character edges, accepting only those which are truly within the shape. As we can see in

Figure 3.12c negative values (blue color) appear where we expect them to be. In very rare

cases this threshold discards too many points, where a dynamic increased threshold is ac-

tivated until an adequate number of points is reached. Another solution for that problem

would be a switch to the 8-neighborhoods operator. There is also a third possibility. We

could apply Laplacian of Gaussian (LoG), which would need a different threshold. Since

it smooths the image first, response will be broader and less accurate. On the other hand

thresholding can be applied much finer than in previous methods.

To summarize this chapter: We took a look at the time complexity of our four quantiza-

tion methods and some visual examples, which can be seen in Figure 3.13. While random

points are determined nearly instant, ITVQ and k-means have both polynomial time com-

plexity. LDT has linear time complexity, which is a great advantage in our case, because

we need to apply it very often. Further information about performance of these methods

will be given in Chapter 4.

3.3. Preprocessing 27

(a) Random centroids (b) Assign nearest points 1

(c) Shift centroids (d) Assign nearest points 2

Figure 3.7: k-Means Steps – (a) Initialization with random centroids, (b) assign vectors

to the nearest centroid, (c) moving centroids to new mean of points position, (d) reassign

vectors to new centroids

H1 1 1

1 1 1
1
1

1 1
1
1
1
1
1
1

1

2 2

2 2

2 2

2
2
2

3
3
3

3
4
3

2
3
2

2
3
3 2

2 3 2
3

2

Figure 3.8: The distance transform is

a map of the size of the input im-

age, where at each pixel position mini-

mal distance to the next white pixel is

stored. This example uses the L1 dis-

tance. Other distances can be applied as

well.

28 Chapter 3. Local Patch based Font Recognition

(a) One (b) Three

(c) Some (d) Too many

Figure 3.9: Here are some examples for extracting thresholded maximum values from a

distance transform. Picture (a) shows only one maximum, where acceptance threshold

is set to 0. In picture (b) and (c) a threshold was used to accept additional pixels with

10% smaller values than the maximum value. Picture (d) shows what will happen if the

threshold will be set to a lower value.

3.3. Preprocessing 29

0 20 40 60 80 100 120 140

0

20

40

60

80

100

120

140

(a) Distance Transform

0 20 40 60 80 100 120 140

0

20

40

60

80

100

120

140

(b) ∂DT
∂x

0 20 40 60 80 100 120 140

0

20

40

60

80

100

120

140

(c) ∂DT
∂y

0 20 40 60 80 100 120 140

0

20

40

60

80

100

120

140

(d) ∂DT
∂x

+ ∂DT
∂x

Figure 3.10: Representations of a distance transform and their derivatives. (a) is its dis-

tance transform and their first derivative in x-axis (b) and y-axis (c). Image (d) is the sum

of (b) and (c). We are interested in zero values within the letter, which denotes maximal

values of the distance transform and the center of line stroke.

30 Chapter 3. Local Patch based Font Recognition

(a) 1-D edge (b) 1-D edge

(c) First derivative (d) First derivative

(e) Second derivative (f) Second derivative

Figure 3.11: Two 1-D example of edge detection via first and second derivative. a), c), e)

Edges which are near to the border get −1. b), d), f) while edges which are deeper in the

shape get at least −2 responds in the second derivative.

3.3. Preprocessing 31

0 20 40 60 80 100 120 140

0

20

40

60

80

100

120

140

(a) ∂2DT
∂x2

0 20 40 60 80 100 120 140

0

20

40

60

80

100

120

140

(b) ∂2DT
∂y2

0 20 40 60 80 100 120 140

0

20

40

60

80

100

120

140

(c) ∂2DT
∂x2 + ∂2DT

∂y2

Figure 3.12: Sub figure (a) shows the second derivative of the x-axis of the distance trans-

form and (b) the corresponding y-axis. (c) is the Laplacian of the distance transform, which

is the sum of (a) and (b). Now we can extract skeleton points (see blue line in the middle

of the line stroke).

32 Chapter 3. Local Patch based Font Recognition

(a) Random (b) K-Means

(c) ITVQ (d) LDT

Figure 3.13: Comparison of sampling methods. Images were sampled with 134 points ran-

dom, k-means and Laplacian Distance Transform (LDT), while ITVQ example was gener-

ated with 150 iterations.

3.4. Features 33

Figure 3.14: 6 fonts which will be a problem for stroke template feature extraction. Most

of them would be discarded.

3.4 Features

As has been mentioned before, local features were chosen for this approach. Therefore,

three local features will be discussed which could be found in other approaches. Subse-

quently this section will introduce features applied in the main approach and one addi-

tional feature which has been tested.

Stroke Templates An interesting approach introduces stroke templates for font recogni-

tion [20]. The authors believe that the stroke shape is the most essential attribute of a font.

While they did recognition on several English fonts against Chinese fonts, this assumption

becomes true. The idea is also true for many English fonts.

The template extraction is created in several steps. First, the letter image is thinned,

which results in a close representation of the letter skeleton. Second, the image is scanned

from left to right and from top to bottom. This step is needed to find start positions for fur-

ther tracking of the strokes. Third the thinned line is followed until a junction is reached.

If the processed length is large enough (Lmin = 0.27H , H= letter height), the original letter

part is saved as a template. Letters with loops in their shape are discarded. A template is

saved only, if there is no other template similar to it, where similar templates have 5% and

less mismatching pixels while overlapped.

This feature should be a good idea in most standard font applications. But there are

hundreds of fonts which cannot be handled by this approach. For example Gothic print

fonts often contain loops in their letters. Most decorative fonts have loops. Since loops

are discarded, fonts containing these (see examples in Figure 3.14) cannot be recognized.

34 Chapter 3. Local Patch based Font Recognition

Since we want to use a method, which is not restricted to any font, this feature is not an

option.

Nevertheless the thinning procedure from this approach was the thought provoking

impulse to our LDT image sampling method, which was described in Section 3.3.3.

NMF Letters Another local feature extraction method was introduced by Lee & Jung [12].

Entire letter images are transformed into feature vectors. Those vectors are calculated by

Non Negative Matrix Factorization (NMF). NMF creates two matrices W and H, whose

product will approximate the original input matrix V (Equation 3.8). Where column vec-

tors of W denote basis vectors and column vectors of H denote the factorized encodings

of the basis. Hence NMF can be understood as a projection from n-dimensional into r-

dimensional vector space. Notice that the number of basis vectors r is manually chosen.

In the training phase the matrix W is adjusted until the approximation of the input is

sufficient good. In the event of testing new vectors vi are projected into the r-dimensional

space using the basis W, resulting in new coefficient vector hi. More detailed informations

about NMF can be obtained from the paper written by Weixiang et al. [23].

V =


a11 · · · a1m

a21 · · · a2m

...
...

an1 · · · anm

 ≈
r︷ ︸︸ ︷

w11 · · · w1r

w21 · · · w2r

...
. . .

...

wm1 · · · wmr

×
n︷ ︸︸ ︷

h11 · · · h1n

h21 · · · h2n

...
. . .

...

hr1 · · · hrn

 (3.8)

NMF seams to be a good choice in order to reduce dimensionality of data. Since we

want to apply a finer feature extraction, we will explore the performance of this method

further by extracting letter parts. Experiments and results are described in Section 4.3.

Eigenfonts The method for feature extraction presented by Solli and Lenz is very straight

forward. Feature extraction is done by applying PCA to letter images. Resulting eigenvec-

tors are used as descriptors. Before three Sobel filters are applied to the images (horizontal,

2× diagonal). To the best of our knowledge it is the only method applied to a large dataset

[18]. In addition to the mandatory character segmentation, this method has also a very

strong prerequisite. Each character must be recognized before processing. In our opinion

this is a too restrictive pre-condition. Therefore we will not apply this method.

3.4. Features 35

3.4.1 Hierarchical Recognition Features

The following two paragraphs will introduce features we have chosen for our method.

The first feature described, is a filter which limits the numbers of candidates, while the

second extracts image patches for final recognition.

Typological pixel coverage

Inspired by the work of Zramdini and Ingold[25] we have implemented an feature to our

approach, which calculates the pixel coverage of a font. For each letter’s bounding box

we calculate the relation between the number of covered and empty pixels. From these

we can compute the mean, the highest and lowest value for each font. Which define the

weight (see Section 1.1.1) of a font. This feature is used to create a weight hierarchy of the

fonts.

Since the other applied feature is scale invariant, fonts with same line strokes but dif-

ferent weight cannot be distinguished. Therefore the removal of differently weighted fonts

will restrain the number of false candidates, which is the main objective of this feature.

Letter snippets

In the preprocessing phase we have computed coordinates C = c1, . . . , cj for feature ex-

traction. Centered around each position ci we extract a rectangular image patch pi. The

sizes S = s1, . . . , sn, si ∈ R of the extracted binary patches are automatically determined.

We measure the si using the distance between ci and the nearest white pixel and set

si = σmink ‖ wk − ci ‖2, wk, ci ∈ R2 , where the wk are the white pixels of the shape

image and σ denotes a constant scaling factor, see Figure 3.15 for an illustration. All ex-

tracted binary patches are finally scaled to a uniform size, e.g. of 5 × 5 or 10 × 10 pixels,

using a simple image resizing procedure.

The patch size defines the number of details this feature can capture given a certain

scale. While the scaling factor σ is a trade-off parameter. If it is chosen to high, the feature

captures most context around extraction position, but concurrently it looses all details.

Hence, if it is chosen too small, only details are captured, but details become with no

context information worthless.

After the parameters σ and size are set to fixed values. This feature has two important

attributes. First, the amount of extracted context depends only on the thickness of the

shape. Therefore, patches extracted from border regions will capture details and patches

from regions deeper in the shape will describe a more general shape appearance. This

leads to the second attribute, which is scale invariance. Given the same shape in different

36 Chapter 3. Local Patch based Font Recognition

(a) Extraction region (b) Patch close up

Figure 3.15: Centered on black pixels, binary image patches are extracted. Patch sizes are

determined automatically and lead to variations in the amount of context a patch encodes.

sizes, same patches will be supplied if extraction centers are at same relative positions. At

this point we have to notice that this is also an unfavorable attribute with respect to font

recognition, thus we loose information about the thickness of a shape, which refers to the

font weight and contrast (see Section 1.1.1 & Figure 1.2a). Further, this feature captures

general shape appearance. It may capture font features or other shape features, it is not

dedicated to font recognition only.

The number of extracted patches depends on the size of provided images. Since several

patches are extracted from each letter, their overall number is very high. For example, if

we extract about 50 patches per letter, the number of patches is above 12 × 106 on our

largest dataset. Comparison of vectors of this quantity is not possible in a short time.

Further they would require about 18 GB RAM, if loaded at once (assuming 10 × 10 patch

size). Therefore it is essential to create a common alphabet of patch prototypes. This way

the number of patches will be lowered to a tractable amount.

As described before in Section 3.2 we create a vocabulary of visual words. First we

need a representative dataset as basis. Therefore 10− 20 randomly extracted patches from

each letter will be stored. Patch positions obey the applied sampling method. In order to

compute the needed vocabulary, patches are clustered. Prototypes are computed with the

well-known k-Means algorithm, which is explained in detail in Section 3.3.3. The k value

is empirically determined. The number of prototypes is much lower than the number of

individual patches, k � #Patches. Especially in the case of overlapped patches, many of

them are very similar, which results in drastic reduction. Obtained k-Means clusters are

3.4. Features 37

saved as the new vocabulary. By applying Vector Quantization to patches, corresponding

vocabulary indexes are calculated.

3.4.2 Histograms from Distance Transforms

In separated experiments we evaluated histograms from Distance Transforms as feature

for font recognition. The Distance Transform (see preprocessing Section 3.3.3 and Figure

3.8) has been applied for shape recognition, before. One method to recognize shapes with

a Distance Transform is the Chamfer Matching [5]. Basically this method recognizes an

abstract edge template. This method is not appropriate for font recognition. It is too sim-

plistic to capture small details in the shape as is needed in font recognition.

However, in this case patch extraction cannot be done. Resize operations are not defined

on DT. Therefore we consider the entire bounding box of characters for histogram calcula-

tion.

We create histograms of the value distribution in a Distance Transform. Depending on

the highest value we partition the value range into a fixed number of bins bi.

bi+1 =
[
ci

maxDj

B
, ci+1

maxDj

B

]
, ci = 0, . . . , B − 1 (3.9)

WhereB is the number of bins andDj is the set of DT values of the image j. Therefore each

bin of the histogram represents the number of pixels in the given range. In order to be able

to compare histograms we extract values from fixed size images and fonts. Experiments

and their results are described in Section 4.2.1.

38 Chapter 3. Local Patch based Font Recognition

3.5 Classification

This section will describe classification methods we have applied in our experiments. His-

tograms and distance metrics, voting decisions and k-Nearest Neighbor have been chosen

for classification.

3.5.1 Histograms and Metric

In order to get a single descriptor for a complete font or a single text-snippet, we compute

histograms of certain prototypical shape patches. As we describe in Section 3.4.1, the

shape prototypes (or vocabulary vectors) are computed during training by applying k-

Means clustering.

Given a number of patches, a histogram H(~p) for all vocabulary vectors [~c1, . . . ,~cn] that

were clustered during the training phase is defined as a mapping

H(~p) : ~p→ N+ ∪ 0,H(~p)~ci
:= occ(~ci, ~p) , (3.10)

where i = 1, . . . , n, and n denotes the total number of words in the vocabulary, and

occ(~ci, ~p) denotes the number of occurrences of ~ci in ~p. Finally, we normalize the his-

tograms. Illustrations of two fonts and their normalized histograms are shown in Fig-

ure 3.16. The represented font is described as a distribution over a set of visual words.

We do this for two reasons. First, histograms are independent of the number of patches

or letters or words, thus we can compare histograms of arbitrary content. Second, certain

distance metrics are defined on distributions only. A normalized patch histogram φ(~p) is

then defined as follows:

φ(~p) =
H(~p)
| H(~p) |

(3.11)

Given the normalized histogram φ(~p) for a number of patches ~p, the classification is per-

formed according to the minimum distance D to a set of normalized training histograms

φ(~fi) of font ~fi.

j = argmin
i

D(φ(~p), φ(~fi)) (3.12)

Metrics

We have applied four distance metrics: First, we applied the L1 distance (DL1) and second

the L2 distance (DL2), both are very fast to compute. Third, we employed the Kullback-

Leibler divergence (DKL). It provides a measure for the disparity of two probability dis-

tributions. It is not a true metric, since it is not symmetric. Finally we implement the

3.5. Classification 39

0 1000 2000 3000 4000 50000.00

0.05

0.10

0.15

0.20

0.25

(a) Font JumpTroops Histogram

abcde
fghijk
lmnop
grstu
vwxyz

(b) Font JumpTroops Alphabet

0 1000 2000 3000 4000 50000.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

(c) Font Dromon Histogram

abcdefg
hijklmn
opgrstu
vwxyz

(d) Font Dromon Alphabet

Figure 3.16: Fonts and their visual word histograms.

Bhattacharyya distance (DBA), which describes the similarity of two discrete probability

distributions.

DL1(h, p) =
n∑

i=1

| hi − pi | (3.13)

DL2(h, p) =

√√√√ n∑
i=1

(hi − pi)2 (3.14)

DKL(h, p) =
n∑

i=1

hi ∗ log2

hi

pi
(3.15)

DBA(h, p) =

√√√√1−
n∑

i=1

√
hi ∗ pi (3.16)

40 Chapter 3. Local Patch based Font Recognition

3.5.2 k-Nearest Neighbor

Some of our experiments apply the k-Nearest Neighbor (KNN) classifier to character patches

directly. KNN is a simple supervised instance learning method. It can be described in five

steps.

1. We have to determine k, which will decide about the number of neighbors.

2. We calculate the distance D between a query instance and the learning dataset.

3. In order to determine the k smallest distances, they have to be sorted first.

4. We gather the labels of the k smallest distances.

5. A majority voting decides about the label of the query instance.

There is no method known to determine the k value automatically. Usually it is set

after several empirical tests e.g. 5 or 10. Also the effect of certain distance metrics is not

predictable. Furthermore, it is unknown which attributes should be used for comparison

exactly.

During testing KNN needs to calculate distances to the entire training dataset, there-

fore its computational cost is high. Further its recognition performance raises proportional

with the size of the training dataset. Therefore, there is a trade-off between recognition rate

and computational time. An example where a k-Nearest Neighbor classifier has been ap-

plied very successfully to a vast datasets is given by the publication of Torralba, Fergus

and Freeman [21]. It shows that even a simple classifier can be a powerful tool. Given

training dataset provides a dense coverage of feature space. In mosts application datasets

yield a sparse coverage of the feature space, especially if images are involved.

3.5.3 Patch Majority Voting

Some of our experiments apply a majority vote in order to determine the font name. Font

names C = c1, . . . , cm are determined through a majority voting from patch prototypes

pi,j . In training, for each font a list of prototypes indexes is created. While testing, a new

list of patches is translated into a list of patch prototypes which are evaluated in the voting.

The voting process for an example k is described by the following equation

ck = argmax
∀j∈C

occ(p, j) (3.17)

where C is the set of font names, the function occ returns the number of occurring patches

p assigned to font j. The font with the highest number of votes is selected.

3.6. Work flow 41

3.6 Work flow

This section will put previously introduced methods into a brief work flow description

of our final approach. Generally we can distinguish between preprocessing, training and

testing phase.

Preprocessing First, input text images had to be transformed into binary image space.

Second, single characters are extracted separately. Third, positions for feature extraction

are found by a image sampling method. We have four methods to choose from: Random

selection, k-Means, ITVQ or LDT. Fourth, image patches are extracted at certain positions

which were calculated before. Finally, weight of the character is calculated.

Training First, by clustering of a large number of image patches visual vocabulary is

created. Second, visual words are calculated for each font and its letters [a-z]. Their word

indexes are stored in a normalized histogram. Third, calculation of the minimum and

maximum thickness value for the entire alphabet for each font.

Testing First, input’s entire weight is calculated. Second, all fonts which does not fit into

acceptance window are skipped. Third, image patches are translated into visual words.

Fourth, indexes of visual words are summarized in a test histogram. Finally, distances

between candidates and test histogram are calculated. Figure 3.17 sketches extraction of

three patches and their assignment to prototypes.

Figure 3.17: Draft of patch extraction and prototype assignment.

42 Chapter 3. Local Patch based Font Recognition

43

Chapter 4

Evaluation

In order to evaluate our approach and features to automatic font recognition we have used

four datasets in several experiments. This chapter has following structure:

First, we will introduce our datasets in Section 4.1. The second Section 4.2 will evaluate

the application of Distance Transform histograms to OFR and OCR. In the third Section 4.3

results to NMF feature extraction in combination with majority vote will be discussed.

Finally, we present extensive experiments and evaluation of the main approach which can

be found in Section 4.4.

4.1 Datasets

All four datasets have two things in common. First, lower case letters [a−z] are considered

only. Thus, we skipped German Umlauts and other language specific characters, but also

capital letters. The reason for this is simple; most letters encountered in the wild are lower

case, and not all true-type fonts provide uppercase letters, numbers, or special characters.

Therefore, adding other characters would unbalance the training data.

Further it should be noted that (if not described differently), all characters were created

in the same size (90 pixels height).

Dataset I The smallest dataset contains 42 handpicked graffiti fonts. Fonts in this collec-

tion show distinct differences which should make further recognition easier.

Dataset II The second graffiti font dataset contains 72 different graffiti fonts, the addi-

tional 30 fonts were also handpicked from free available sources.

44 Chapter 4. Evaluation

Dataset III Here we collected 747 free fonts, which were provided by the Ubuntu pack-

age system. In this collection are standard, decorative, graffiti and also more exotic fonts.

Dataset IV The last and largest font dataset contains 9809 fonts. These were acquired

with a self designed and implemented web harvester, which downloaded all free avail-

able fonts from http://www.searchfreefonts.com. Our program could find over

13000 true type fonts in 45 different categories. However in this collection most fonts are

members of decorative, capital or digibats categories.

Unfortunate many files could not be used in further processing. Several did not con-

tain all characters and many could not be processed properly. Further we noticed that

Python image library PIL is not working properly with some font files. Examples for that

are cropped, displaced letters or we received corrupted symbols instead the desired char-

acters. In our case the free available software ImageMagick was more reliable than PIL with

respect to create single letter images from true type files. However, in the end we could

keep 9809 fonts.

4.2 Distance Transform Histograms

This section evaluates histograms of Distance Transforms as feature for font recognition

and character recognition.

4.2.1 Distance Transform Histograms for OFR

Distance Transforms has been applied to shape and object detection [8] before. As we

explained in Section 3.4.2 known methods cannot be applied here. In the following we

present experiments which evaluate the use of Distance Transform histograms for font

recognition. Experiments have been carried out on font dataset IV. Test and training ex-

amples were created separately, where size of test data images was 20% larger than train-

ing. Applied distances between histograms were calculated by the Bhattacharyya metric.

If the correct font was within the 5, 10, 15 smallest distances, it was counted as recognized.

First manually generated histograms seamed promising. Distance measurements in-

dicated distinct differences between font histograms (illustration in Figure 4.1). For initial

testing we generated full alphabet histograms instead of words or single characters. Table

4.1 shows the recognition results with various bin partitions. Unfortunately experimental

results did not meet our expectations. Apparently the manually generated examples were

lucky choices, since overall results of our experiments were insufficient. In a second ex-

periment we introduced a fixed image size of 82 × 82. Before processing each image was

http://www.searchfreefonts.com

4.2. Distance Transform Histograms 45

bins top 5 top 10 top 15

10 bins 11.9% 16.6% 19.9%

20 bins 7.8% 10.3% 12%

40 bins 4.1% 5.2% 6%

(a) Test word: acfghjstu

bins top 5 top 10 top 15

10 bins 18.5% 23% 24.1%

20 bins 8.6% 10.6% 12%

40 bins 4.2% 5.1% 5.9%

(b) Alphabet

Table 4.1: Distance Transform Histograms applied for OFR recognition rates with different

bin numbers. Dataset IV was used.

Top X 5 10 15

Recognition 6.2% 8.2% 9.4%

Table 4.2: OFR results using histograms of Distance Transforms of rescaled font images to

fixed size on dataset IV. Bin number set to 20.

rescaled to this size. Table 4.2 summarizes the results for the second trial with best-in-five

scoring. As can be seen precision was even lower than in previous experiments.

Distance Transform Histogram for OCR

In previous experiments we have observed similarities between histograms of equal let-

ters. An example for different fonts but equal characters is shown in Figure 4.2. In order

to investigate these observations further we have carried out several experiments, which

are described in this section.

In order to probe DT histograms capabilities for OCR purpose, we have chosen 10

simple and rather similar fonts. So the recognition task is simple enough to show the

potential of this method, if there is any. Test dataset consists of 20% larger images than

data used for the character prototypes. In order to reach equal conditions, we extracted

each character and rescaled it with a simple resize operation to a fixed size of 80×80 pixels.

For each lowercase letter a histogram was calculated. Since single values were very

dominant we calculate their logarithm values. According to the classification with his-

togram distances method (Section 3.5.1), prototypes of the letters [a, . . . , z] were created

through the sum of their class members which were in this case the fonts. In contrast to

the previous experiments, there is no selection among the fife smallest distances: Since

there are only 26 letters we accept only direct hits as positive outcome.

46 Chapter 4. Evaluation

Number Bins 20 30 40 80

Recognition 12.3% 17.7% 18.1% 27.3%

Number Bins 160 320 640 1280

Recognition 36.9% 42.3% 49.6% 53.1

Table 4.3: OCR results using histograms from Distance Transform of font images. 10

similar fonts were used.

As Table 4.3 shows, results were not satisfying. The best precision of 53% was reached

with 1280 bin histograms, larger histograms did not show any improvement. Further test-

ing revealed that applications of smaller images result in lower recognition rates. Larger

images were not tested, due to very high computational cost.

To summarize this section; Usually simple methods for classification similar to mea-

sure distances of histograms, return promising results as long as the chosen feature is

feasible. Other classification methods can be applied instead, in order to improve results.

In this case however overall precision was too low. It does seam unlikely that histograms

of Distance Transforms can be successfully applied to OFR or OCR. However it has to be

noted that this results and conclusion are restricted to this specific method as we have

designed it.

4.3 NMF and Majority Vote

This section describes experiments which have been carried out in order to investigate if

visual words can be used for font recognition applying a majority vote.

Experiments were carried out on Dataset I. The chosen fonts offer rather large dif-

ferences in their appearance if compared to standard fonts. We assume this makes the

recognition task slightly easier. Further, if correct font received enough votes to be in the

best-in-five ranking, it has been counted as recognized.

Visual words have been created from small image patches by a NMF algorithm (ex-

ternal implementation). Positions for patch extraction have been calculated by k-Means

clustering of black pixels which is described in detail in Section 3.3.3. Classification has

been performed by majority vote of patch prototypes (see Section 3.5.3).

Recognition rates were rather low. We tested several parameter settings (number of

basis vectors, patch size, scaling factor and voting conditions) but recognition rates did

4.4. Letter Snippets – Visual Words in Font Recognition 47

not exceed 34%. Last option was to exchange the interest point algorithm. k-Means gen-

erates a regular sampling of a shape, instead we wanted to apply a method which is more

sensitive to the local shape. For that purpose we applied a external implementation of In-

formation Theoretic Vector Quantization (detailed description in Section 3.3.3). Based on

the new sampling we received patches which were more descriptive with respect to shape

information. Unfortunately, this method resulted in even lower recognition rates. Reason

for that was the much lower number of generated patches, hence the resulting number of

votes also was smaller and decision through major vote become less accurate.

As we were not able to find proper parameter settings and results did not improve, we

inferred that majority vote is not an appropriate method for font recognition with visual

words as features. Further we were convinced that we can achieve better results if we

introduce another classification method.

4.4 Letter Snippets – Visual Words in Font Recognition

In this section we will present the evaluation of the proposed approach to font recognition.

Classification was performed by comparison of distances between histograms of visual

words. Visual words were provided by clustering of image patches with the well known

k-Means algorithm. Since implementation details of previously applied NMF algorithm

were unknown, replacement of NMF with a simple but well known algorithm seamed to

be a logical step in order to produce well-founded results. As we have decided to apply

a bag-of-words approach, we have to investigate influential factors which can increase or

decrease the recognition performance (all factors were introduced in Section 3.2.2). Among

other thinks the following sections we will evaluate our method with respect to several of

those factors.

We began with evaluation of parameter settings in Section 4.4.1. The following Sec-

tion 4.4.2 presents results to word length, segmentation and impact of language specifics.

Further the approach was evaluated on the largest dataset, the corresponding results can

be found in Section 4.4.3. In Section 4.4.4 we present results which show the impact of the

second feature to overall precision. Further Section 4.4.5 presents results of a separated

serif – sans-serif recognition based on raw image patches. Finally, Section 4.4.6 illustrates

examples of successful and failed font recognition.

48 Chapter 4. Evaluation

4.4.1 Parameter

This section presents experiments whose purpose was to investigate the influence of fea-

ture parameters to recognition rate. We will also present experimental results, which will

illustrate the importance of choosing a appropriate size of a visual dictionary. Finally, we

investigated the influence of different distance metrics to the recognition rate.

Recalling Section 3.4.1 there are two factors which influence the performance of the

feature itself. First, the scaling factor σ is responsible for the amount of context captured

by each patch. Second, patch sizes define the feature complexity and ability to capture

details from extracted context.

Patch Scaling Factor

In several test runs on dataset I the scaling factor σ did not show extraordinary impact on

recognition rates, if it is chosen 2 ≤ σ ≤ 4. However factor σ = 3 yielded slightly better

results than 2 and 4. Further random tests for higher σ revealed most of the patches to be

too large, since they enclosed the entire letter. Further this would result in great losses of

shape details. Furthermore σ = 1 is not an option. The reason for that is the patch size

definition s = σd, where d denotes the smallest distance to the border and s denotes the

half width of a patch’s extraction context. If σ = 1 the patch would contain only black

pixel. σ-values 1 < σ < 2 produced patches with nearly no context information, therefore

they are also not an option. An illustration is given by Figure 4.3.

Patch Overlapping

We did not evaluate feature extraction with non overlapping image patches in detailed ex-

periments. Since several manual examples showed the necessity for overlapping patches

in our approach. There are two reasons for that;

First, the feature as we apply it (σ = 3), would be unable to recognize thick shaped

fonts. Since thick shape lead to large context extraction which usually is overlapping. If

these are not allowed to overlap most of found patches has to be discarded. This would

result in 1 − 4 patches per character, in this case the recognition outcome would depend

strongly on dedicated regions for patch extraction and still be very sensitive to noise and

unfortunate prototype assignment.

Second, to avoid small numbers of patches we would need to change the feature scal-

ing factor to 1 < σ < 2, then recognition would be very difficult since single patches would

contain very little shape context. In order to compensate this lack of information too large

numbers of patches would be needed. An illustration of these examples can be found

4.4. Letter Snippets – Visual Words in Font Recognition 49

in Figure 4.3. Therefore, application of overlapping patches seams to be the appropriate

choice.

Based on these examples we believe that non overlapping image patches will not per-

form well for font recognition.

Patch Size

In order to preserve local shape information we have to decide about the dimension of the

patches. We have tested four rectangular patch resolutions 5× 5, 10× 10, 15× 15, 20× 20.

Experiments were done on 42 fonts. The test dataset contained 20 different words printed

in each font. Character segmentation was not applied. Result Table 4.4 shows our results.

As we can see patch size 10× 10 showed the best results, while 15× 15 got the second best

recognition rates. This is also convenient with respect to computational time, since each

patch is represented by 100 values only.

Size of the Vocabulary and Distance Metrics

This section evaluate the importance of the size of the visual vocabulary and different dis-

tance metrics. Further we present results which show the necessity to apply a best-in-five

selection for recognition. Here we present experimental results from a dataset contain-

ing 72 different fonts. Further we did not apply character segmentation. For testing we

created 20 distinct word images, their length varied between 4− 6 characters.

As Table 4.4 indicates, a large number of prototypes raise recognition rates. Since the

vocabulary is crucial to the outcome, we have to investigate this topic more carefully. Fur-

ther we need to examine various distance measurements.

For feature translation we considered six codebooks, where the number of visual words

is 100, 250, 500, 800, 1750 and 2000. For recognition we applied four distance metrics,

which have been introduced in Section 3.5.1. Table 4.5 contains the experiment results, in

addition Figure 4.4 illustrates the results in histogram plots.

Number of visual words

Given this results we notice two important facts. At first, precision raises proportional

with the number of visual words until a certain boundary is reached. If the dictionary is

large enough, features which describe similar values are assigned to visual word vi, while

other features are assigned to visual words vk, where k 6= i. Here the Curse of Dimen-
sionality can be found, therefore the vocabulary should be chosen only as large as needed.

Second, too large vocabularies result in histograms being sparsely occupied. They do not

50 Chapter 4. Evaluation

show significant distances, hence they cannot be distinguished. This can be seen if we

take a closer look at recognition rates from vocabulary 1750 and 2000 and compare them

to 1500, which is illustrated in Figure 4.4. Precision begins to drop if the codebook is larger

than 1500. Unfortunately there is no known method to estimate the required number of

visual words preliminarily. This number has to be assigned manually.

Distance metrics

As we compare the overall recognition rates from these experiment. Bhattacharyya Dis-

tance 3.13 is clearly the best choice here. It also has a geometric interpretation, where it

describes the square of the angle between two position vectors. This is a more abstract

way to compare two vectors than direct distance comparison, which is in our opinion a

reason why it performs better than other measurements. Several other reasons why it is a

convenient choice are given in the publication from Aherne and Thacker [2].

Precision rate – best-in-x

Finally, as precision values are compared between direct hit, best-in-five and others, it can

be seen that increasing the acceptance window by 5 raises recognition rates differently. Be-

tween best-in-fifteen and best-in-ten precision increase by 5%, if we compare best-in-five

with best-in-ten we precision increased by 9%, but if we compare direct hit with best-in-

five recognition rate increased by 35%. Thus, the correct font is usually in the best-in-five

section. Since, we choose from rather similar fonts it seams an acceptable choice to accept

font as recognized if it is within the five smallest distances. It has to be noted that we

referred to results achieved with 1500 visual words and applied Bhattacharyya Distance.

To summarize the most important results in this section; the chosen feature extraction

method achieves best results, if patch size is set to 10×10 and scaling factor is set to σ = 3.

Further, the number of visual words must be found empirically with respect to the size of

the current dataset. It should be noted, that a large vocabulary leads to sparse representa-

tion and comparison of histograms may become difficult. However, later we will show an

indication to the existence of an upper bound on codebook size to our approach (more in

Section 4.4.3). Finally, experimental results showed that the favorable metric for histogram

comparison is the Bhattacharyya Distance.

4.4.2 Segmentation, Word Length & Language

Several local features can be extracted from specific characters only. Others can be cap-

tured at particular locations only. Consequently, there are characters which carry more

4.4. Letter Snippets – Visual Words in Font Recognition 51

font properties than others. Further the number of characters provided to the recognition

process is important as well. Knowing this, we have to ask the following questions: Which

characters carry most font characteristics? How many characters are needed in average?

How many do we need in best or worst case for accurate OFR results?

We can go further and compare languages on the basis of their relative character fre-

quencies. In addition to those questions we have also investigated the importance of char-

acter segmentation to our approach.

To answer these questions we have conducted a lot of experiments, which have been

carried out on 747 fonts from dataset III. We have created large amounts of synthetic test

data (in total more than 500000 images). To avoid artifacts, following experiments have

been repeated several times - results are averaged over multiple trials. In order to receive

the best possible visual vocabulary, several different versions have been tested. Their size

varied between 1490 − 5900 patch prototypes. Best results could be achieved with the

number of 4853 prototypes, which was the result form clustering of 420k patches and 5000

centroids. Following experiments were carried out with that codebook.

Single Characters First we evaluate OFR for single used character. Table 4.6 summarize

the results. Interestingly, the recognition rates differ strongly among individual characters.

The letters ’d,p,q’ (> 70%) seem to be best suited for font recognition, whereas ’s,v,x,z’

(< 30%) gave the worst results.

Word Length & Segmentation Second, experiments were done with different length of

words. Table 4.7a summarizes results from experiments with no character segmentation.

While precision increased with more letters, recognition rates above 85% were not reached

on average. As we repeated the experiment with applied character segmentation recogni-

tion rates increased significantly. Table 4.7b summarizes the results. Here precision above

90% was reached with four letters in average. It can be seen that segmentation is indeed

an important aspect of OFR, although it does not lower the results drastically. However

further increasing of the word length improved the recognition rate only slightly. Preci-

sion in case of no character segmentation is lower because of additional noise in single

patches. Since we worked on synthetic data this noise was created by near other letter

shapes, which were captured while patches were extracted.

Random vs. Regular Sampling Also, we repeated the random word recognition exper-

iment from the previous section, but instead of k-Means sampling we considered random

point selection. Here precision was in average 10% lower than with k-Means image sam-

52 Chapter 4. Evaluation

pling. If we had an application where speed is more important than precision, random

sampling becomes an option.

Best & worst words Further experiments considered recognition with best and worst

possible character combinations, their results are presented by Table 4.7c and Table 4.7d.

Interestingly worst combinations need 6 characters to reach precision above 90% which is

two more than the average case.

Language Finally, we evaluate the influence of different languages to OFR. Therefore

we choose, according to the relative word frequency of English and German, the 100 most

popular words. From these collections we inducted 200 datasets; one word per trial. Based

on these generated words, we estimated 87.99% as an average recognition rate for German

words, English came up to 86.50%. However, it should be noted that the 100 most fre-

quently used English words are on average shorter than the ones in the German language.

Additionally, we give an estimate for OFR dependent on the derived letter statistics com-

bined with the known letter frequency in a given language. Results for the five most fre-

quent letters are summarized in Table 4.8. Here, English gave the best results, followed by

Spanish, Italian, German, and French. Although with respect to letter frequency western

European languages are rather similar, we could still observe differences in recognition.

To summarize the most important results; in the optimal case, using the most discrim-

inable characters (d,p,q), three characters can already lead to a precision of 91% on 747

different fonts. However, in the worst case (the letters v,x,z) precision achieves only 58%.

On average (random selection), three distinct characters lead to a precision of 87%. Often

only 3-5 characters are sufficient, using more than 5 characters often leads to rates above

90%. Thus, assuming a sufficiently large text snippet, font recognition can be done reliably

with a very high best in five accuracy, i.e. the correct font is within the list of the five best

matching fonts.

4.4.3 Expanding the Dataset

In previous sections we have investigated the importance of parameter settings of the

feature itself. Further we explored the influence of input length and information value of

different characters to our approach. Here we present evaluation of our approach on a

large dataset of 9809 fonts (dataset IV).

Here experiments conducted the vocabulary from previous experiment section, where

dataset III has been applied. There are two reasons for that. First, the previous dataset

4.4. Letter Snippets – Visual Words in Font Recognition 53

is representative to most typefaces therefore its vocabulary stays suitable for other larger

datasets. Further new elements are not likely to be found, since the old vocabulary pro-

vides 4853 prototypes which is a high number if we consider binary images of the size

10×10. Second, histograms created with this codebook were still sparsely occupied, there-

fore we assumed it will be suited to the new dataset too.

Average Precision Experiments were carried out on various word lengths and several

randomly generated words for each trial. Table 4.9a summarizes the averaged results. It

can be seen that recognition was difficult if the number of considered characters was 2− 5

only. If the number of characters was higher than 5 we reached convenient recognition

rates in the very best-of-fife selection. We could also make an interesting observation if we

compared this results with Table 4.7b from previous much smaller dataset. Recognition

rates were about 1% lower than on previously presented results if words of length 9 were

considered. However comparison of shorter words showed distinct difference in recogni-

tion. If only 2 − 4 characters were supplied precision varied between 43% − 76% on our

large dataset, where on the smaller dataset of 747 fonts, 2 characters achieved 76% and 4

characters already exceeded 90% precision. However this was not surprising since many

fonts offer similar characteristics and more information is needed for certain fonts.

Skeleton sampling vs. k-Means Further experiments considered a new interest point

extraction, which returns locations from the character skeleton. Its details are introduced

in Section 3.3.3. These experiments were carried out to show if a regular sampling per-

forms better than a locally restrained one. In this case we expected LDT to perform better.

Patches which are extracted from the character skeleton, are most descriptive and concur-

rently their location is stable in different scales. Therefore comparison should be easier

than in the other case where patches are extracted from arbitrary positions. It should be

noted that test and training data were created in different sizes (10% difference in height),

since LDT returns exactly the same points, if supplied images are the same size.

Table 4.9b summarizes obtained results. As can be seen recognition results were sim-

ilar to the previously obtained results but in average about 6% − 18% lower than before.

In average we did not exceed 75% with LDT sampling method, where regular sampling

exceeds 92% recognition rate with same number of characters supplied. If 9 characters

supplied locally restricted patches resulted in average precision of 74%, where the previ-

ously introduced method needed only 4 characters.

However it has to be noted that, these experiments demanded a newly generated vo-

cabulary. Since regular sampling feature extraction produced different image patches

54 Chapter 4. Evaluation

than a skeleton oriented patch extraction. The conducted vocabulary contain 4182 pro-

totypes while previous vocabulary consists of 4853 visual words. Since vocabulary is used

sparsely we assume that the size difference between the two vocabularies has very little

influence on the outcome, if any.

While we created the new vocabulary, we experienced an interesting property of the

LDT patches. In the process of clustering the number of patches collapsed several times to

a number near to 1200 prototypes. Since it was not possible to apply all extracted patches

for computational reasons, we had to repeat clustering with different patches. This may

be also the reason why the LDT patch extraction method did not outperform regular sam-

pling. If number of centroids collapsed in the clustering process we could infer that large

number of patches are very similar. Hence too many visual words were too similar, which

finally resulted in lower recognition rates. Further we did not repeated experiments with

1200 visual words vocabulary. We are sure this would result in very low recognition rates,

since we needed a larger vocabulary for 72 fonts in experiments before4.4.1.

False Vocabulary Finally we have also conducted several experiments applying an in-

appropriate vocabulary. These were meant to indicate the importance of a proper vocabu-

lary. However recognition results drop about another 20%, if patches were extracted based

on the skeleton sampling and translation was performed with the codebook from regular

sampling. Therefore we can see that it is more important to generate a new codebook if

patch positions change, than if new data samples are provided.

4.4.4 Adding shape thickness feature

In Section 3.4.1 we have indicated a weakness of our feature: shape thickness cannot be

captured. The additional feature should balance this weak point. The following exper-

iments present its impact to the approach. Fonts which do not fit into the acceptance

window of ±10% of input thickness are considered as irrelevant.

Table 4.10a and Table 4.10b summarize the results obtained with features extracted

based on regular and skeleton sampling. The comparison with previously received results

reveals an overall improvement of 2% in recognition. Further we noticed a significant

speedup in the comparison of histograms. As can be seen in the second table, in average

64% of font candidates were removed by the font weight feature. It has to be noted that

the acceptance threshold of 10% has been estimated empirically. More accurate threshold

values require knowledge about the input length and an estimate of possible errors related

to the number of characters.

4.4. Letter Snippets – Visual Words in Font Recognition 55

To summarize these experiments; If few characters (1 − 4) are provided recognition

is difficult (< 80%) on dataset IV. However if more characters are provided convenient

results are achieved with high recognition rates above 92%. If a shape thickness fea-

ture is added, precision can be increased by further 2%. Further regular shape sampling

shows better recognition results than skeleton (locally restrained) sampling of the charac-

ter shape.

4.4.5 Serif or Sans-Serif Classification

The most known font categories are serif and sans-serif fonts. Serifs can be found in upper

and lower regions of a character.

One uprising question was, whether it is possible to recognize serif and sans-serif fonts

by direct comparison of their image patches. As serifs does not occur in the middle of a

low-case character, we considered patches from the upper and lower third of a letter only.

Extraction positions were given by the LDT sampling method, explained in Section 3.3.3.

The following experiment has been introduced to single image patches which were ex-

tracted from 330 serif and sans-serif fonts, which were obtained from dataset IV. These are

over 17000 image patches where each consist of 10× 10 pixels.

Classification has been performed with a k-Nearest Neighbor classifier, which has been

introduced in Section 3.5.2. Table 4.11 summarizes the result from 5-cross-folds validation

tests of serif font recognition. As can be seen, recognition of a serif font could be done

with an average precision over 75%. Concurrently sensitivity and specificity are at 80%

and 70%. We have repeated these experiment with smaller patches of the size 5×5 and re-

ceived similar but about 5% smaller recognition rates. However it has to be noted that, we

considered single letter snippets from certain image regions only. Several of the patches

were not extracted from proper positions, further the letter o does not contain serifs. There-

fore better extraction method would probably increase precision.

If we consider agglomerated patches from one letter, simple majority vote will result in

a convenient serif font classifier. Which could be applied as an additional hierarchy level

into the recognition process.

4.4.6 Illustrations of best-in-five results

To give a better impression of our approach, this section illustrates two results where our

approach has found the correct font within the best-in-five selection and two examples

where the correct font was not in the selection. Figure 4.5 visualizes these four examples,

where the first line in each picture shows the font for which we were looking. The illus-

56 Chapter 4. Evaluation

trations show that fonts within the best-in-fife selection are similar to each other, which

is the desired result. Further investigation of our results revealed that if a font is not rec-

ognized, it is often a sans-serif font with a very simplistic shape (illustration Figure 4.5c).

Since these fonts are very difficult to distinguish by shape descriptors only, this result is

not surprising.

4.4. Letter Snippets – Visual Words in Font Recognition 57

(a) Two different fonts (Angleterre-Book & Chancery-Cursive)

(b) Font Chancery-Cursive & word ” afgjtux “in
the same font.

(c) Font Stonesans 2 & histogram of word ” afgj-
tux “in the corresponding font.

Figure 4.1: Histograms of distance transforms - Example words and their font histograms

58 Chapter 4. Evaluation

Figure 4.2: 20 bin histograms of the letter w from three different fonts.

4.4. Letter Snippets – Visual Words in Font Recognition 59

50 0 50 100 150 200

20

0

20

40

60

80

100

120

140

(a) Thick font σ = 3

50 0 50 100 150 200

20

0

20

40

60

80

100

120

140

(b) Thick font σ = 1.5

20 0 20 40 60 80 100 120

50

0

50

100

150

200

(c) Thin font σ = 3

20 0 20 40 60 80 100 120

50

0

50

100

150

200

(d) Thin font σ = 1.5

Figure 4.3: Extracted regions by image patch feature for different scaling factors.

60 Chapter 4. Evaluation

Patch size 5 x 5 10 x 10 15 x 15 20 x 20

Top 5 56.0% 57.7% 59.6% 60.5%

Top 10 79.0% 79.2% 79.9% 79.9%

Top 15 90.8% 91.0% 91.7% 91.7%

(a) Result on 42 fonts with different patch sizes and 50 pro-
totypes

Patch size 5 x 5 10 x 10 15 x 15 20 x 20

Top 5 68.3% 68.4% 67.7% 64.0%

Top 10 87.4% 87.0% 85.8% 84.8%

Top 15 94.6% 94.8% 94.4% 93.2%

(b) Result on 42 fonts with different patch sizes and 250 pro-
totypes

Patch size 5 x 5 10 x 10 15 x 15 20 x 20

Top 5 69.5% 71.2% 70.6% 70.6%

Top 10 87.6% 88.6% 87.1% 87.3%

Top 15 94.6% 95.5% 95.4% 95.0%

(c) Result on 42 fonts with different patch sizes and 500 pro-
totypes

Table 4.4: Testing patch size. Subtables show results from several tests where various

numbers of prototypes (50, 100, 250 and 500) and patch size (5 × 5 − 20 × 20) were set.

Dataset I was used.

4.4. Letter Snippets – Visual Words in Font Recognition 61

words direct top5 top10 top15

100 0.10% 0.40% 0.66% 0.80%

250 0.13% 0.43% 0.66% 0.80%

500 0.18% 0.56% 0.76% 0.86%

800 0.21% 0.58% 0.79% 0.88%

1500 0.28% 0.62% 0.80% 0.89%
1750 0.25% 0.60% 0.78% 0.88%
2000 0.28% 0.62% 0.80% 0.89%

(a) Euclidean Distance

words direct top5 top10 top15

100 0.14% 0.47% 0.70% 0.82%

250 0.18% 0.56% 0.76% 0.85%

500 0.33% 0.56% 0.76% 0.85%

800 0.35% 0.72% 0.85% 0.92%

1500 0.46% 0.81% 0.90% 0.95%
1750 0.46% 0.81% 0.90% 0.95%
2000 0.45% 0.79% 0.90% 0.94%

(b) Bhattacharyya Distance

words direct top5 top10 top15

100 0.10% 0.40% 0.67% 0.81%

250 0.13% 0.44% 0.67% 0.80%

500 0.21% 0.59% 0.78% 0.87%

800 0.25% 0.61% 0.81% 0.90%

1500 0.34% 0.70% 0.86% 0.93%
1750 0.32% 0.69% 0.85% 0.92%

2000 0.35% 0.71% 0.86% 0.92%

(c) Manhattan Distance

words direct top5 top10 top15

100 0.13% 0.47% 0.69% 0.83%

250 0.16% 0.51% 0.72% 0.84%
500 0.21% 0.53 0.72% 0.81%

800 0.13% 0.47% 0.65% 0.79%

1500 0.11% 0.47% 0.64% 0.76%

1750 0.03% 0.47% 0.69% 0.79%

2000 0.02% 0.36% 0.57% 0.70%

(d) Kullback-Leibler divergence

Table 4.5: Application of diverse distance measurements and distinct vocabulary sizes on

dataset II.

d 74% a 56% k 48% w 30%

p 72% f 55% c 46% s 26%

q 70% n 54% e 42% v 25%

b 69% m 52% y 41% x 20%

r 60% h 50% j 39% z 16%

g 59% u 49% l 35%

o 57% t 48% i 33%

Table 4.6: Single letter recognition results on dataset III.

62 Chapter 4. Evaluation

(a) Euclidean Distance (b) Bhattacharyya Distance

(c) Kullback-Leibler Divergence (d) Manhattan Distance

Figure 4.4: Application of diverse distance measurements and distinct vocabulary sizes.

Showing recognition rates for direct hit, top 5− 15. Dataset II was used.

4.4. Letter Snippets – Visual Words in Font Recognition 63

Word length 2 3 4 5

Recognition 60.8% 68.9% 73.3% 77.2%

Word length 6 7 8 9

Recognition 78.7% 81.8% 82.0% 82.4%

(a) Unsegmented random characters

Word length 2 3 4 5

Recognition 76.0% 86.1% 90.6% 91.9%

Word length 6 7 8 9

Recognition 92.7% 93.1% 93.4% 93.7%

(b) Segmented random characters

Word length 2 3 4 5

Recognition 89.6% 91.0% 92.6% 93.4%

Tag length 6 7 8 9

Recognition 93.7% 93.7% 93.9% 94.3%

(c) Optimal case character selection

Word length 2 3 4 5

Recognition 33.2% 58.3% 75.1% 84.0%

Tag length 6 7 8 9

Recognition 91.1% 92.0% 92.4% 92.4%

(d) Worst case character selection

Table 4.7: Importance of segmentation and specific characters to OFR. Dataset III was used.

64 Chapter 4. Evaluation

English German French Italian Spanish

5.3→ e 7.2→ e 6.4→ e 6.5→ a 7.0→ a

4.5→ a 5.3→ n 4.4→ a 5.6→ o 5.7→ e

4.3→ t 4.2→ r 4.0→ r 4.9→ e 4.9→ o

4.3→ o 3.9→ a 4.0→ n 3.8→ r 4.4→ d

3.7→ n 3.8→ d 3.6→ t 3.8→ i 4.1→ r
...

...
...

...
...

1.54 1.42 1.42 1.42 1.46

Table 4.8: Language specific font recognition estimates.

Word length 2 3 4 5 6

Recognition 43.3% 69.4% 75.7% 80.9 84.6%

Tag length 7 8 9 26

Recognition 87.8% 88.0% 92.4% 94.5%

(a) Image sampling performed with k-Means.

Word length 2 3 4 5 6

Recognition 37.1% 51.1% 58.2% 65.5% 67.9%

Word length 7 8 9 26

Recognition 71.6% 73.2% 74.2% 82.8

(b) Image sampling performed with LDT.

Table 4.9: Average recognition results on dataset IV.

4.4. Letter Snippets – Visual Words in Font Recognition 65

Word length 2 4 5 6 8

Recognition 45.6% 75.8% 82.6% 86.0% 89.9%

(a) Image sampling performed with k-Means. Preselection based on
font weight.

Word length 4 5 6 7 8

Recognition 60.7% 67.3% 70.8% 73.1% 75.4%

Removed 6076 5978 6284 6570 6846

(b) Image sampling performed with LDT. Preselection based on font
weight.

Table 4.10: Average recognition results on dataset IV. Preselection of possible fonts ap-

plied.

Neighbors 5 10 15 20

Precision 73.5% 75.1% 75.7% 75.5%

Sensitivity 76.9% 79.1% 81.9% 81.2%

Specificity 70.0% 71.1% 69.4% 69.6%

Table 4.11: 5 cross-fold validation results from serif font recognition on 660 fonts from

dataset IV.

66 Chapter 4. Evaluation

(a) Positive — Care-Bear

(b) Positive — Credit-Valley-Bold-Italic

(c) Negative — Castor-Gate

(d) Negative — Jolt-of-Caffeine

Figure 4.5: Illustrations from best-in-five selection while main approach was applied.

Each first line is the font which was searched for.

67

Chapter 5

Conclusions

We noticed that many recent publications in the field of document analysis present re-

sults on handwriting recognition, which may have drawn attention and interest of many

researchers. However, automatic font recognition seams to be forgotten after several meth-

ods for small datasets have been published, leaving OFR on large datasets a rather unex-

plored subject.

Besides, there are practical reasons which may be daunting. One reason may be the

lack of free and large datasets. Freely available fonts are not easy to acquire in large num-

bers. Another problem is the ambiguous name space, which makes it difficult to create

reliable training datasets.

We have overcome these obstacles and presented an evaluation of letter snippets as a

new feature to the topic of automatic font recognition. By adding a second feature, a two

level hierarchic approach has been formed. The joining of applied features balanced their

drawbacks and resulted in an overall increased precision of the method. With respect to

a visual word approach, we showed in our experiments that a regular shape sampling

achieves better results than a locally restricted sampling. In fact, under certain conditions

font recognition seems to be an ill posed problem as there is a lack of information when

only few letters are supplied. Also, if inconvenient letters are chosen, we cannot expect

reliable recognition results. We could show, if supplied number of characters increases, the

task becomes more and more manageable, leading to precision higher than 94% for 9809

different fonts. Finally, we have investigated the influence of language specific character

statistics to font recognition.

However, comparison of our work with other approaches is very difficult. One reason

for that is the disparity of goals, where the task is the same. Where others concentrated

on high precision on small numbers of fonts, this work made a point to font recognition

68 Chapter 5. Conclusions

on huge font datasets which demanded another approach to the topic. Hence, the chosen

approach relies on a best-in-five selection, there is still room for improvement. Fortunately,

our method is flexible enough for further extensions. Nevertheless, we have presented a

feasible font recognition approach to a huge dataset which achieved convenient results.

69

Chapter 6

Future Work

A further increment to the hierarchy of the approach should compensate the loss of local

geometry which was introduced by the bag-of-words idea. This can be achieved by track-

ing the neighborhoods of all visual words. Where the neighborhood is described in prob-

abilities. This additional information can be used to introduce weighted-patches. Where

the weight is based on the probability of a patch being member of a given neighborhood.

Therefore patches which may contain noise or are simply misleading will receive a lower

rating than others and have a smaller impact on the final histogram. Further we could

introduce a adaptive patch exchange, where single outliers could be replaced by patches

with the highest probability to be there. We believe that an extension of the presented

approach with patch neighborhoods will result in an increased recognition rate.

70 Chapter 6. Future Work

71

Chapter 7

Appendix

Implementation For implementation we used Python as programming language. Fur-

ther we have made use of some integrated algorithms from two Python libraries. We

adopted a fast k-Means implementation from scientific tool library SciPy which is based

on several optimized C methods. Also we applied k-Nearest Neighbor algorithm from

the orange data mining framework. The most important tool was the module h5py which

allows storage of vectors and other data in one container file using the hierarchical data

format HDF5. The reason for its importance is simple; single file access become extremely

slow, if we worked with several ten thousands of files. Further we experience a additional

speed up while reading data if files were stored with average compression ratio.

Skeleton extraction for other applications As experiments in Section 4.4.3 showed, our

skeleton extract method LDT (see Section 3.3.3) did not perform as well as we expected.

Still there may be another application for this method. Application which do pose esti-

mation may benefit from our method. It is very fast and could be applied to foreground

segmented images in real time applications. Figure 7.1 illustrates an example.

72 Chapter 7. Appendix

50 0 50 100 150 200 250

100

0

100

200

300

400

500

600

Figure 7.1: Human silhouette processed by LDT sampling method.

73

Bibliography

[1] G. M. A. Schreyer, P. Suda. A formal approach to textons and its application to font

style detection. In Document Analysis Systems: Theory and Practice, volume Volume

1655/1999 of Lecture Notes in Computer Science, page 739. Springer Berlin / Heidel-

berg, 1999.

[2] F. Aherne, N. Thacker, and P. Rockett. The Bhattacharyya metric as an absolute simi-

larity measure for frequency coded data. Kybernetika, 32(4):1 – 7, 1997.

[3] H. Blum. A transformation for extracting new descriptors of shape. In W. Wathen-

Dunn, editor, Models for the Perception of Speech and Visual Form, pages 362–380. MIT

Press, Cambridge, 1967.

[4] J. Böhringer, P. Bühler, and P. Schlaich. Kompendium der Mediengestaltung. Springer-

Verlag, 2008.

[5] G. Borgefors. Hierarchical chamfer matching: A parametric edge matching algo-

rithm. IEEE Transactions on Pattern Analysis and Machine Intelligence, 10(6):849–865,

November 1988.

[6] R. A.-M. R. E.-P. Carlos Avils-Cruz, Juan Villegas. Unsupervised font clustering us-

ing stochastic versio of the em algorithm and global texture analysis. Iberoamerican
Congress on Pattern Recognition, Progress in Pattern Recognition, Image Analysis and

Applications Volume 3287/2004 Springer Berlin / Heidelberg ISBN 978-3-540-23527-

9:275–286, 2004.

[7] D. F. Elihu Katz. On the use of the mass media as ,escape’: clarification of a concept.

In Public Opinion Quarterly, volume 26, page 377. American Association for Public

Opinion Research, 1962.

[8] D. M. Gavrila and V. Philomin. Real-time object detection using distance transforms.

In Proceedings of Intelligent Vehicles Symposium, page 998, 1998.

74 Bibliography

[9] M. Inaba, N. Katoh, and H. Imai. Applications of weighted voronoi diagrams and

randomization to variance-based k-clustering. In Proceedings of the tenth annual Sym-
posium on Computational geometry, pages 332–339, New York, NY, USA, 1994. ACM.

[10] M. Jung, Y. Shin, and S. Srihari. Multifont classification using typographical at-

tributes. International Conference on Document Analysis and Recognition, 0:353, 1999.

[11] P. Kruizinga and N. Petkov. Nonlinear operator for oriented texture. IEEE Transactions
on Image Processing, 8(10):1395–1407, Oct 1999.

[12] C. W. Lee and K. Jung. Nmf-based approach to font classification of printed english al-

phabets for document image understanding. Modeling Decisions for Artificial Intel-

ligence Volume 3558/2005 Springer Berlin / Heidelberg 0302-9743 (Print) 1611-3349

(Online) ISBN978-3-540-27871-9:354–364, 2005.

[13] H. Ma and D. Doermann. Gabor filter based multi-class classifier for scanned doc-

ument images. Document Analysis and Recognition, International Conference on, 2:968,

2003.

[14] H. Ma and D. Doermann. Font identification using the grating cell texture operator.

DRR:148–156, 2005.

[15] J. MacQueen. Some methodes for classification and analysis of multivariate obser-

vations. In Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and
Probability, volume 1, pages 281–297. University of California, 1967.

[16] A. Rosenfeld and J. L. Pfaltz. Sequential operations in digital picture processing. J.
ACM, 13(4):471–494, 1966.

[17] J. Sivic and A. Zisserman. Video Google: A text retrieval approach to object matching

in videos. In Proceedings of the International Conference on Computer Vision, volume 2,

pages 1470–1477, Oct. 2003.

[18] M. Solli and R. Lenz. FyFont: Find-your-Font in Large Font Databases, volume B.K.

Ersbll and K.S. Pedersen (Eds.): SCIA 2007, LNCS 4522, pages 432 – 441. Springer-

Verlag Berlin Heidelberg, 2007.

[19] Y. W. Song-Chun Zhu, Cheng-en Guo and Y. Wang. What are textons? In A. Heyden et
al. (Eds.): ECCV 2002, LNCS 2353, pages 793 – 807. Springer-Verlag Berlin Heidelberg,

2002.

Bibliography 75

[20] H.-M. Sun. Multi-linguistic optical font recognition using stroke templates. Interna-
tional Conference on Pattern Recognition, 2:889–892, 2006.

[21] A. Torralba, R. Fergus, and W. T. Freeman. 80 million tiny images: A large data set

for nonparametric object and scene recognition. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 30:1958–1970, 2008.

[22] M. Turk and A. Pentland. Eigenfaces for recognition. Journal of Cognitive Neuroscience,

3(1):71–86, 1991.

[23] L. Weixiang, Z. Nanning, and Y. Qubo. Nonnegative matrix factorization and its

applications in pattern recognition. Chinese Science Bulletin, 51(1), January 2006.

[24] Y. Zhu, T. Tan, and Y. Wang. Font recognition based on global texture analysis. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 23(10):1192–1200, 2001.

[25] A. Zramdini and R. Ingold. Optical font recognition using typographical features.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(8):877–882, 1998.

76 Bibliography

77

List of Figures

1.1 An overview of most important font features. 6

1.2 Figures show examples of one global and five local features. Images from [4] 8

2.1 Typographical lines from a vertical projection profile. 10

2.2 First five eigenimages from character a. Intensity values are normalized. . . 11

2.3 A uniform text block for feature extraction. 12

3.1 Examples of visual words. 18

3.2 Here we can see an example for document binarization. The method ap-

plied was proposed by S. Lu and C.L. Tan of the Institute for Infocomm

Research in Singapore. They won the Binarization Contest arranged by IC-

DAR 2009. 19

3.3 Here are two examples of horizontal (a) and vertical (b) pixel projection,

which can be used for word and line segmentation. 20

3.4 An example of a difficult font for segmentation, where connected compo-

nent labeling has been applied. 21

3.5 An example of the ITVQ sampling method. 22

3.6 Comparing random selection to k-means clustering of foreground pixel co-

ordinates, while k was set to 50. k-Means shows in general a more regular

distribution than random selection. 23

3.7 k-Means Steps – (a) Initialization with random centroids, (b) assign vectors

to the nearest centroid, (c) moving centroids to new mean of points position,

(d) reassign vectors to new centroids . 27

3.8 The distance transform is a map of the size of the input image, where at

each pixel position minimal distance to the next white pixel is stored. This

example uses the L1 distance. Other distances can be applied as well. 27

78 List of Figures

3.9 Here are some examples for extracting thresholded maximum values from

a distance transform. Picture (a) shows only one maximum, where accep-

tance threshold is set to 0. In picture (b) and (c) a threshold was used to

accept additional pixels with 10% smaller values than the maximum value.

Picture (d) shows what will happen if the threshold will be set to a lower

value. 28

3.10 Representations of a distance transform and their derivatives. (a) is its dis-

tance transform and their first derivative in x-axis (b) and y-axis (c). Image

(d) is the sum of (b) and (c). We are interested in zero values within the let-

ter, which denotes maximal values of the distance transform and the center

of line stroke. 29

3.11 Two 1-D example of edge detection via first and second derivative. a), c), e)

Edges which are near to the border get −1. b), d), f) while edges which are

deeper in the shape get at least −2 responds in the second derivative. 30

3.12 Sub figure (a) shows the second derivative of the x-axis of the distance trans-

form and (b) the corresponding y-axis. (c) is the Laplacian of the distance

transform, which is the sum of (a) and (b). Now we can extract skeleton

points (see blue line in the middle of the line stroke). 31

3.13 Comparison of sampling methods. Images were sampled with 134 points

random, k-means and Laplacian Distance Transform (LDT), while ITVQ ex-

ample was generated with 150 iterations. 32

3.14 6 fonts which will be a problem for stroke template feature extraction. Most

of them would be discarded. 33

3.15 Centered on black pixels, binary image patches are extracted. Patch sizes are

determined automatically and lead to variations in the amount of context a

patch encodes. 36

3.16 Fonts and their visual word histograms. 39

3.17 Draft of patch extraction and prototype assignment. 41

4.1 Histograms of distance transforms - Example words and their font histograms 57

4.2 20 bin histograms of the letter w from three different fonts. 58

4.3 Extracted regions by image patch feature for different scaling factors. 59

4.4 Application of diverse distance measurements and distinct vocabulary sizes.

Showing recognition rates for direct hit, top 5− 15. Dataset II was used. . . 62

4.5 Illustrations from best-in-five selection while main approach was applied.

Each first line is the font which was searched for. 66

List of Figures 79

7.1 Human silhouette processed by LDT sampling method. 72

80 List of Figures

81

List of Tables

4.1 Distance Transform Histograms applied for OFR recognition rates with dif-

ferent bin numbers. Dataset IV was used. 45

4.2 OFR results using histograms of Distance Transforms of rescaled font im-

ages to fixed size on dataset IV. Bin number set to 20. 45

4.3 OCR results using histograms from Distance Transform of font images. 10

similar fonts were used. 46

4.4 Testing patch size. Subtables show results from several tests where various

numbers of prototypes (50, 100, 250 and 500) and patch size (5×5−20×20)

were set. Dataset I was used. 60

4.5 Importance of distance measurements & codebooks 61

4.6 Single letter recognition results on dataset III. 61

4.7 Importance of segmentation and specific characters to OFR. Dataset III was

used. 63

4.8 Language specific font recognition estimates. 64

4.9 Average recognition results on dataset IV. 64

4.10 Average recognition results on dataset IV. Preselection of possible fonts ap-

plied. 65

4.11 5 cross-fold validation results from serif font recognition on 660 fonts from

dataset IV. 65

	Introduction
	A Thousand Fonts are not enough
	Anatomy of Fonts

	Related Work
	Local Patch based Font Recognition
	Overview
	Type of features
	Learning systems

	Bag-of-Words
	Creating a Visual Dictionary
	Important factors at Bag-of-Words

	Preprocessing
	Image binarization
	Character segmentation
	Image sampling

	Features
	Hierarchical Recognition Features
	Histograms from Distance Transforms

	Classification
	Histograms and Metric
	k-Nearest Neighbor
	Patch Majority Voting

	Work flow

	Evaluation
	Datasets
	Distance Transform Histograms
	Distance Transform Histograms for OFR

	NMF and Majority Vote
	Letter Snippets -- Visual Words in Font Recognition
	Parameter
	Segmentation, Word Length & Language
	Expanding the Dataset
	Adding shape thickness feature
	Serif or Sans-Serif Classification
	Illustrations of best-in-five results

	Conclusions
	Future Work
	Appendix

