KUGGMÖTE / GEAR MEETING 2010

Gear rolling technology

Prof. Dr.-Ing. habil. Prof. E.h. Dr.-Ing. E.h. Dr. h.c. Reimund Neugebauer

Dr.-Ing. Udo Hellfritzsch

Dipl.-Ing. Mike Lahl

Dipl.-Ing. Sven Schiller

Dipl.-Ing. Matthias Milbrandt

Köping, Sweden, 2010-10-14

Agenda

- About Fraunhofer
 - Fraunhofer Gesellschaft
 - Fraunhofer-Institute of Machine Tools and Forming Technologies (IWU)
- Gear rolling process (cold forming)
 - Unique selling position Gear rolling
 - Process phases
 - Forming process (gear rolling video)
 - Gear rolling simulation
- Components and characteristics
 - Gear rolling results
 - Advantages concerning machine and process
 - Advantages concerning component
 - Gear qualities
 - Reference components
 - Finish rolling
- Future research projects and Summary

About Fraunhofer

The Fraunhofer-Gesellschaft

- The Fraunhofer-Gesellschaft undertakes applied research of direct utility to private and public enterprise and of wide benefit to society
- 60 Fraunhofer-Institutes
- Headquarter Munich
- 17.000 employees
- Our Customers:
 - Industry
 - Service sector
 - Public administration

About Fraunhofer

Fraunhofer-Institute of Forming Technologies and Machine Tools

- Founded on July 1st, 1991, located in Chemnitz and Dresden
- About 400 employees
- €24 million budget
- 4 000 m² test area Chemnitz und Dresden
- Project group in Augsburg since January 2009

Core Competencies

Machine Tools

Cutting Technologies

Mechatronics

- System Technologies
- Forming Technologies

Workgroup Gear technologies

- Gear rolling (single gears, gear shafts)
- Profile rolling (hollow profiles, groove profiles)
- Rolling of worm gears
- Thread rolling

Unique selling position / gear rolling competence

Stub tooth gearing

Normal gearing

High gearing

■ Tooth height factor y<2

■ Tooth height factor y=2

■ Tooth height factor y>2

2001

2003/2004

2005/2006

2008/2009

2010

tooth height factor $y = \frac{\text{tooth height } h_z}{\text{normal module } m_n}$

 Cold rolling of gears with tooth height factor y>2 is a development of Fraunhofer IWU Chemnitz

Prof. Neugebauer

Process phases

1 Component clamping

- Clamping between tips
- Radial tool feed until preform diameter
- Preform diameter calculated according to volume constancy

2 Initial rolling phase

- 0,1mm penetration of both tools into the part
- Initial rolling of exact number of teeth

3 Penetration and calibration phase

- Penetration of the tools until desired tooth root diameter
- Changes of rolling direction of the rolling tools
- Final calibrating

Forming process

- Component clamping
- Initial rolling
- Penetration with changes of direction
- Calibrating
- Component output

Process simulation

- Tool calculation
- Material flow
- Process parameters

Simulation

Simulation with **rigid dies** (3D simulation, transverse section)

- Analyses of tool loads (qualitative)
- Optimisation of tool construction (influence of root/tip radius, etc.)
- Conclusion concerning tool steels

Simulation with **deformable dies** (3D simulation, transverse section)

Funded by the DFG in cooperation with the Technical University Chemnitz

Gear rolling results

Real gears – cold rolled into the full work piece material

Gear wheels

Straight gears

Gear shaft (narrow located gears)

Gear shaft
(hollow, not
assembled / gear and
shaft in one part)

Sprocket gear

Gear parameters:

normal module: < 4 [mm]

tooth height: < 13 [mm]

pressure angle : 16 ... 24 [°] helix angle: 12 ... 34 [°]

tooth height factor: < 2,7

Rolling parameters:

cycle time: 5...45 [sec.] rolling force: 80 ... 200 [kN]

quality (DIN3962): 9 ... 11 (pre-gearing)

6 (finished)

material: case hardening steels,

heat treated steels

Advantages concerning machine and process

- **Short process cycles** (up to 50% of gear hobbing, depending on the gear geometry)
- **Material saving** by forming process (no chips, initial work piece diameter for hobbing)
- Low forming forces because of incremental forming (small contact area between gaer and tools)
- Rolling of **narrow located gears** on shafts (no joining of gears on the shaft necessary)
- Rolling of **multiple gears** in one process by using multiple clamping concepts (reduction of cycle time)

Advantages concerning component

- Strain hardened surface layer (for low loaded components, elimination of hardening)
- Contour related and not cutted material fibre
- Excellent contour stability after case hardening
- Increased tooth root strengths and flank load capacity compared to cutted gears
- **Excellent surface roughness after rolling** ($R_a = 0.3 0.5 \mu m$; $R_z = 1.9 3 \mu m$)

increase

of basic

hardness

80%

46%

38%

hardness

HV 0.2

■ 460-480 **440-460**

400-420

380-400 360-380

340-360

■300-320 ■280-300 260-280

Advantages concerning component

- z14 x= 0,5507
- module: 3,45mm α_N = 24°
- d_f = 48,30mm β = 20°
- $d_a = 58,94$ mm y = 2,2
- cold rolled

Archivierungsangaben

Components and characteristics

Gear qualities after gear rolling Gear qualities after case hardening

Test parameters			Gear quality before case hardening		Gear quality after case hardening	
			Q _a	μm _{max}	Q a	μm _{max}
Profile measurement		Profile total deviation F _f	10	40	10	44
		Profile form deviation f _f	11	39	11	42
		Profile angular deviation $f_{H\alpha}$	9	13	9	16
Flank line (lead) measurement		Flank line total deviation F_{β}	10	40	11	63
		Flank line form deviation f _{fβ}	10	25	11	29
		Flank line angular deviation $f_{H\beta}$	12	69	12	92
Pitch measurement		Pitch single deviation f _p	9	18	9	19
		Pitch total deviation F _p	10	79	10	79
		Pitch error f _u	7	11	8	13

- Gear quality after gear rolling equivalent to gear hobbing (gear prefom manufacturing)
- Quality improvement by better tool quality and process optimisation
- Deviation through case hardening: maximum one gear quality

Reference components - cold rolled (into the full material)

Reference components - cold rolled (into the full material)

- Worms
- Pinions
- Threads
- Drill bits
- Rotor profiles

Finish rolling

Finish rolling of sinter gears

Process chain

Preform manufacturing by cutting

Heat treatment

Finish rolling

Benefit

- Compression of the surface layer
- Surface smoothing
- Quality improvement

Reference parts

Finish rolling

Finish rolling

- + excellent surfaces ($R_a=0.5 0.2 \mu m R_z=1.2 1.0 \mu m$)
- + compacted, strain hardened surface layer, improvement of gear load capacity

Surface after gear hobbing and case hardening

(not finish rolled)

aim: smoothing of surface roughness by finish rolling

Summary

Division gear technologies - competence, equipment, contact

Competences

- Gear rolling (single gears, gear shafts)
- Profile rolling (hollow profiles, groove profiles)
- Rolling of worm gears
- Thread rolling

Equipment

- Two rolling machines (cross rolling with 2/3 tools)
- Lab for metallographic investigations
- FZG-torque change device (load capacity test)
- Pulsator test bench for tooth root strength analyses
- ZEISS gear measurement machine (acc. DIN 3960 / 3962)
- Simulation software: Forge 2009, Simufact
- 4 engineers, 3 student assistants, 1 technician

Project cooperation (Industry, public research)

Research from development studies to the serial production

Contact

Email: mike.lahl@iwu.fraunhofer.de Head of Division Gear Technologies: Dipl.-Ing. Mike Lahl

Dipl.-Ing. Sven Schiller Email: sven.schiller@iwu.fraunhofer.de Member Gear Technologies:

Thank you very much for your attention.

